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Abstract. We apply a classical method of J.A. Nitsche (9] for the approzimation of
interface conditions in the Domain Decomposition of the Finite Element Method.
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1 INTRODUCTION

In engineering calculations it happens that one has a region consisting of subdomains
with independent finite element meshes that do not match at the interfaces. A natural
idea (cf. e.g. [4, 5, 8, 1, 11]) is to introduce Lagrange multipliers to ”mortar” the subre-
gions, i.e. to approximatively enforce the interface conditions. In order that this method
should work, rather restrictive stability conditions are required. Hence, the different finite
element meshes cannot be completely arbitrary.

Since a decade it is well known that much more freedom in designing a method for a
saddle point problem is obtained by using so called stabilizing technique, cf. [7, 6] and
the references therein. Recently, this approach has been proposed in connection with
interface and boundary conditions [2, 13, 3.

In a previous paper [12] we discussed the technique of stabilizing boundary conditions
as proposed by Barbosa—Hughes [2] and Verfiirth [13], and we showed that it is closely
related to a classical method of Nitsche [9]. It appears that Nitsches method is easily
implemented and robust and hence it deserves to be revived. In this communcation we
show how it can be used for mortaring.

2 THE MORTARING METHOD

Let us consider the simple Poisson model problem:
—Au = f in Q (1)
u = 0 on Of.
Here Q is a bounded domain in IR%, d = 2 or 3, with boundary 9.
For notational simplicity let us assume a decomposition of the domain into two disjont

subdomains O and €, , with Q = Q; U Qand the interface T = O N Qy. We then write
the original problem as two equations and the interface conditions:

~Aut = f in Q;, i=1,2,

u' = u® on T, (2)
out  Ou?
= 42 - T
8n1 8n2 0 on ’

v’ = 0 on 0NN, i=1,2.

Here n; is the outward unit normal to 0f);.
The two problems are clearly equivalent and it holds

ug, =u', i=1,2. (3)

Suppose next that we have finite element partitionings C; of the subdomains €;, i =
1,2, into (say) simplices and we want to approximate the solution in each domain with

2
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independent finite element spaces:
Vi={veH () | vk € P(K)VK €C},, vjpa=0}. (4)

We now give one alternative for using Nitsche’s method for the approximate enforcement
of the interface conditions. To this end we introduce a mesh (of intervals or triangles) &,
on Y. Let hp be the diagonal of E € &,. Further, we let v be a sufficiently large positive
constant (see below) and let «; be parameters satisfying

OSO[Z‘SL Oél+a2:1. (5)

The method is then defined as follows.
The Mortaring Method. Find (u},u}) = u, € Vi, = V;! x V2 such that

Bh(uh;v) = fh(’l)) Yv € Vh,

with
2 R ow? ow?
By(w;v) = Z(vwzavvz)ﬂ - <a18—n1 — Qp— Oy ot — %)y (6)
i=1
ov! on:
—(on— — « LW — W + hgt (w' —w? v — ) g,
< 1671/1 26n2 >T P)/E%;h E < >E
and

fh(v) = Z(fv UZ)Qz O (7)

i=1

First, we note that the formulation is consistent.

Lemma 1. The ezxact solution (u',u?) to (2) satisfies the discrete variational equations:

Bp(u;v) = Frp(v) Yv € V. (8)

Proof: Since u! = u? on the interface we have

2 SO out o
Bp(u;v) = ;(VU , Vu')g, <041a—1 - 0428”2 LU — U )y
2 out ou? out ou?
;Vu VU <C(1a 1—&26 1 U>T+<Oéla—nl—&ga—712,v>'r.
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Next, using the second interface condition, the relation a; + as = 1 and integrating by
parts, we get

2 out out ou? ou?

Bh(u; U) = ;(Vu’, VUZ)QZ — <Oéla—nl + Oéga—nl ,U1>T — <a18—n2 + OZQa—n2 ,U2>T
2 Do ou' ou?
= ;(VU ,VU )Qz — <a—nl,v >‘r— (a—m,v >’r
2 2

= - Z(Aulvvz)ﬂz = Z(f? Ui)ﬂi = fh(v)' =

i=1 i=1
For the meshes we need the following natural condition.
Assumption. There exists positive constants Cy, Cs, such that

Chhg, < hg < Cyhg,

forall K; €Cj and E € &, with K;NE#0,i=1,2. O
From this assumption the following result follows by standard scaling arguments.

Lemma 2. There exists a positive constant Cy such that
ovt ov? 2 2 4
hp|og=— — ag— <C Vol||2,. O
E%(;h EH 18”1 2an2HO,E I;H HO’QZ

Next, let us discuss the choice of the interface mesh &, and the parameters v and «;.
The most natural choice would be to let &, be equal to &} or EF, with

I ={E|E=KNT, KeC }.

In this case when we choose &, = &}, then the natural choice is to choose o; = 1. Then
the constant C; is easily estimated (especially for linear elements).
The stability and error estimates will be given in the following mesh dependent norm.

2
Il s = lIVe'lloe, + X he'llv: —v?[5 c.
=1 Eegy,

The advantage of Nitsches method is the stability:
Lemma 3. Suppose that v > C7. Then it holds

Bi(viv) > Cllolli, Yo € Vi.
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Proof: Using the Schwartz and the arithmetic-geometric-mean inequalites, and Lemma 2
we get

: 0|12 ' v? 1 2 11,1 2|12
Biy(viv) = > VY5, — 2<a18— —Oap, U~ Jr Y b llvt =75 e
i=1 1 n2 Eeén
2 . 1 ov' ov? 2
> Voi|2, — - hellog=— — ag— +(y—=¢ hat|lot — v?||?
;H HQQZ - Eze;h EH 18n1 28712 HO,E (v )E%;h 5l HO,E
CYI 2 i —
> (1= =) YVl + (v—2) 3 hg'llv' = ?[3 )
€7 E€&,
> Cllvlli

by choosing v > ¢ > C;. O

For a function v* defined on the subdomain §2; we define the mesh dependent norm

i i —11),i ov’ -
00, = IV, + 3 (R + sl 5 2), i = 1,2

Ecéy

The interpolation estimate in this norm is proved by scaling, cf. [10]. For this we need
the assumption on the meshes.

Lemma 4. Suppose the assumption on the meshes is valid. Then it holds

inf |lu—o'no, < CRM||ullpt1,0, . O
vreVy

We now have established the stability, consistency and the optimal interpolation esti-

mates, and hence we arrive at the error estimate for the method.

Theorem. Suppose that the assumption on the meshes is valid and that v > Cy. Then it
holds
lu —upllip < CR* ||ullpgr . O
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