
Digital Object Identifier (DOI) 10.1007/s002119900074
Numer. Math. (1999) 83: 667–697 Numerische

Mathematik
c© Springer-Verlag 1999

Mixed hp-FEM on anisotropic meshes II: Hanging
nodes and tensor products of boundary layer meshes
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Summary. The divergence stability of mixedhp Finite Element Methods
for incompressible fluid flow is analyzed. A discrete inf-sup condition is
proved for a general class of meshes. The meshes may be refined anisotrop-
ically, geometrically and may contain hanging nodes on geometric patches.
The inf-sup constant is shown to be independent of the aspect ratio of the
anisotropic elements and the dependence on the polynomial degree is an-
alyzed. Numerical estimates of inf-sup constants confirm the theoretical
results.
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1 Introduction

Boundary value problems of incompressible fluid dynamics are described
by the Navier-Stokes Equations (NSE). Their robust and accurate numerical
solution in arbitrary domains can be achieved by the Finite Element Method
(FEM). It is well known that the performance of these methods is governed
by a) consistency and b) stability.

Consistencyis related to the approximation properties of the Finite El-
ement spaces - they should be designed so that for the anticipated solution
class of the NSE a high rate of convergence is achievable. For low and mod-
erate Reynolds numbers, solutions of the NSE in polygonal domains exhibit
corner singularities(see, e.g., the recent monograph [26] and the references
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Fig. 1. Polar coordinates(r, ϕ) near a corner and boundary fitted coordinates(ρ, s) near
∂Ω

there for details). In polar coordinates(r, ϕ) near a corner they are basically
of the form

uc(r, ϕ) = rαΦ(ϕ)(1.1)

for some|α ≥ 0| and some analytic functionΦ (cf. Fig. 1). At high Reynolds
number there arise additionallyboundary layersdue to the singularly per-
turbed character of the NSE. Boundary layers are solution components which
decay rapidly normal to the boundary. A typical example of anexponential
boundary layeris

ub(ρ, s) = C(s) exp(−ρ
√

Re)(1.2)

where(ρ, s) are the usual boundary fitted coordinates in a tubular neigh-
bourhood of the smooth boundary∂Ω of the domain withρ denoting the
normal distance to∂Ω ands being the arclength on∂Ω (cf. Fig. 1). The
function C(s) is smooth independently ofRe. Since the NSE are nonlin-
ear, the boundary layers do not have necessarily the form (1.2) but rather
u(ρ, s) = C(s)U(ρ,Re) whereU is analytic and satisfies a certain nonlinear
ordinary differential equation (see, e.g., [11,12]).

The efficient resolution of corner singularity or boundary layer phenom-
ena with thehp version of the FEM requires properly designed meshes:
Combininganisotropicgeometric mesh refinement towards the boundary
and the corners with judiciously increased polynomial degrees allows one
to approximate corner singularities and boundary layers at anexponential
rate of convergence (see [9,10,19] and the references there for thehp-
approximation of corner singularities and [15,20,22] forhp-approximation
of boundary layers).

Stabilityproblems arise intrinsically in the variational formulations due
to the incompressibility constraint∇ · u = 0. It is well known that the
velocity and pressure FE spaces can not be chosen independently. Stability
is only guaranteed as long as a discrete Babuška-Brezzi condition is satisfied
by the velocity and pressure spaces. For many pairs of velocity and pressure
spaces this inf-sup condition has been established (see [5,8,23] and the
references there forh-version FEM and [4,21,24,25,31] and the references
there forp-version/spectral FEM). These stability issues are already present
in the much simpler Stokes equations that are obtained by linearization of



Mixed hp-FEM on anisotropic meshes II 669

the NSE. We therefore study here the stability of the FE-spaces in this model
problem.

However, the appearance of anisotropic elements of arbitrarily large as-
pect ratio raises additional stability concerns since almost all the presently
available techniques for establishing divergence stability seem to require
the shape regularity of the meshes in some sense. This precludes, of course,
anisotropic meshes which are mandatory inhp-FEM to resolve boundary
layers at exponential rates of convergence. Recently, some attention has been
turned to this issue and it has been proved by Becker and Rannacher [2,3]
that a certain nonconforming low order element is indeed stable indepen-
dently of the element aspect ratio on axiparallel meshes. In [18] the authors
proved stability for conforminghp-elements independent of the aspect ratio
on anisotropic quadrilateral mesh patches.

In this paper the earlier work [18] on the divergence stability for the
Stokes problem on anisotropic meshes is extended focusing again on thehp
version of mixed Finite Element Methods. We prove stability for a family of
conforminghp velocity and pressure spaces onirregular mesheswhich may
contain anisotropic elements, hanging nodes and on elements with variable
polynomial degree, as required in thehp-FEM. In fact, on quadrilaterals,
the considered family are the “PN × PN−2” elements already discussed
in [4]. The meshes we admit allow for the desired refinement properties,
geometrically towards corners and anisotropically towards boundaries, so
that singular behaviour as in (1.1) and (1.2) can be resolved. In particular,
we prove divergence stability on tensor products of geometrically refined
meshes. To do so, we establish first a discrete inf-sup condition for low order
elements with hanging nodes with an inf-sup constant depending only on
the geometrical grading factor. In this context we introduce an interpolant of
Clément type on geometric meshes with hanging nodes which is of indepen-
dent interest. The corresponding stability results for higher order elements
are obtained in a second step with the aid of a macro-element technique
and local stability results. The dependence on the polynomial degreek is
given explicitly, that is we show that the inf-sup constant is bounded from
below byCk− 1

2 if the mesh contains no triangles and by the (pessimistic)
boundCk−3 otherwise. Numerical estimates of inf-sup constants indicate
the sharpness of our results and the dependence on the geometrical grad-
ing factorσ. We refer also to [7] where the performance of “PN × PN−2”
elements is studied numerically in an L-shaped domain.

The outline of the paper is as follows: In Sect. 2 we formulate the Stokes
problem and define the meshes and spaces to be analyzed. In Sect. 3 our main
stability result is given and we illustrate the approximation properties of our
mesh family in a simple model situation. In Sect. 4 we establish stability
results on reference meshes which implies by a macro-element technique



670 D. Scḧotzau et al.

the main result.
The standard notation is used in this paper: For a polygonal domainD ⊆ R

2

or an intervalD = (a, b) we denote byHk(D) the Sobolev spaces of integer
ordersk ≥ 0 equipped with the usual norms‖·‖k,D and seminorms|·|k,D.
We setH0(D) = L2(D), H1

0 (D) = {u ∈ H1(D) : trace(u) = 0 on∂D}
andL2

0(D) = {p ∈ L2(D) : (p, 1)D = 0} where(·, ·)D denotes theL2(D)
inner product. Fors ≥ 0 nonintegral, the Sobolev spacesHs(D) with norm
‖·‖s,D are defined as usually via theK-method of interpolation (see, e.g.,
[13,29]). The set of all polynomials of total degree≤ k on D ⊆ R

2 is
denoted byPk(D), the set of all polynomials of degree≤ k in each variable
by Qk(D). If I is an interval we definePk(I) as the set of polynomials
on I of degree≤ k. In the following we denote byC generic constants
not necessarily identical at different places but always independent of the
meshwidths and the polynomial degrees.

2 Problem formulation

2.1 Stokes problem

In a bounded, polygonal domainΩ ⊂ R
2 we consider theStokesboundary

value problem for incompressible fluid flow obtained by linearization of the
Navier-Stokes Equations: Find a velocity fieldu and a pressurep such that

−ν∆u + ∇p = f in Ω,(2.1)

∇ · u = 0 in Ω,(2.2)

u = 0 on∂Ω.(2.3)

Here,ν > 0 is the kinematic viscosity which is related to the Reynolds
numberRe of the flow byν = 1/Re. The right hand sidef is a given
body force per unit mass. The usual mixed formulation of (2.1)-(2.3) is the
following:

Findu ∈ H1
0 (Ω)2 andp ∈ L2

0(Ω) such that

ν (∇u,∇v)Ω − (p, ∇ · v)Ω = (f ,v)Ω ,(2.4)

(q, ∇ · u)Ω = 0(2.5)

for all (v, q) ∈ H1
0 (Ω)2 × L2

0(Ω).
It is well known (see, e.g., [8,19]) that forf ∈ L2(Ω)2 there exists

a unique weak solution(u, p) of (2.4)-(2.5) due to the continuousinf-sup
condition

inf
0 6=p∈L2

0(Ω)
sup

0 6=v∈H1
0 (Ω)2

(∇ · v, p)Ω

|v|1,Ω ‖p‖0,Ω

≥ C(Ω) > 0.(2.6)
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A conforming FE-discretization of (2.4)-(2.5) is obtained in the usual way:
Given finite dimensional subspacesV N ⊆ H1

0 (Ω)2 andMN ⊆ L2
0(Ω),

find (uN , pN ) ∈ V N × MN such that (2.4)-(2.5) holds for any(v, q) ∈
V N ×MN . A family {V N ×MN}N isγ(N)-stable, if the followingdiscrete
inf-sup conditionholds

inf
0 6=p∈MN

sup
0 6=v∈V N

(∇ · v, p)Ω

|v|1,Ω ‖p‖0,Ω

≥ γ(N) > 0.(2.7)

If γ(N) in (2.7) does not depend onN , we say that the family{V N ×MN}N

is stable. If a family is γ(N)-stable, the discrete problem has a unique
solution (uN , pN ) in V N × MN and the rate of convergence of the FE
approximations{(uN , pN )}N of (u, p) is determined by that of the best
approximations of(u, p) in {V N × MN}N , i.e. we have the error estimates
[5,19]

‖u − uN‖1,Ω ≤ Cγ−1(N) inf
v∈V N

‖u − v‖1,Ω

+Cν−1 inf
q∈MN

‖p − q‖0,Ω ,(2.8)

‖p − pN‖0,Ω ≤ Cνγ−2(N) inf
v∈V N

‖u − v‖1,Ω

+Cγ−1(N) inf
q∈MN

‖p − q‖0,Ω(2.9)

with C = C(Ω) independent ofN andν.

2.2 Finite element spaces

We define the velocity-pressure space pairsV N ×MN to be analyzed below.

2.2.1 Preliminaries A meshT on a bounded polygonal domainΩ ⊂ R
2

is a partition ofΩ into disjoint and open quadrilateral and/or triangular
elements{K} such thatΩ = ∪K∈T K. We consider onlyaffine meshes
where eachK ∈ T is affine equivalent to a reference elementK̂ which
is either the reference trianglêT = {(x, y) : 0 < x < 1, 0 < y < x} or
the reference squarêQ = (0, 1)2, i.e. K = FK(K̂) with FK affine and
orientation preserving. The meshT is calledregular if for any two elements
K, K ′ ∈ T the intersectionK ∩ K ′ is either empty, a single vertex or an
entire side. Otherwise, the meshT containshanging nodesand is called
irregular. For an affine meshT and an elementK ∈ T we denote byhK

the diameter of the elementK and byρK the diameter of the largest circle
inscribed intoK. Themeshwidthh of T is given byh = maxK∈T hK . The
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Fig. 2. The geometric meshes∆n,σ and∆̃n,σ with n = 3 andσ = 0.5

fractionσK := hK
ρK

is theaspect ratioof the cellK. A (regular or irregular)
affine meshT is calledκ-uniform if there existsκ > 0 such that

max
K∈T

σK ≤ κ < ∞.(2.10)

2.2.2 Reference meshesOur hp-FEM will be based on certain two-level
families of meshes: Amacroscopicκ-uniform mesh denotedTm which will
be locally refined either towards corners or towards the boundary. To this
end, we introduce now some meshes on the reference elementsQ̂ and T̂
(which are the reference elements forTm). Most of these reference meshes
are irregular or contain anisotropic elements.

Definition 2.1 Let n ∈ N0 andσ ∈ (0, 1). OnQ̂, the(irregular) geometric
mesh∆n,σ with n + 1 layersandgrading factorσ is created recursively
as follows: If n = 0, ∆0,σ = {Q̂}. Given ∆n,σ for n ≥ 0, ∆n+1,σ is
generated by subdividing that squareK ∈ ∆n,σ with 0 ∈ K into four
smaller rectangles by dividing the sides ofK in aσ : (1 − σ) ratio.
The(regular) geometric mesh̃∆n,σ is obtained from∆n,σ by removing the
hanging nodes as indicated in Fig. 2.

In Fig. 2 the geometric mesh is shown forn = 3 andσ = 0.5. Clearly,∆n,σ

is an irregular affine mesh, it containshanging nodes. The elements of the
geometric mesh∆n,σ are numbered as in Fig. 2, i.e.

∆n,σ = {Ω11} ∪ {Ωij : 1 ≤ i ≤ 3, 2 ≤ j ≤ n + 1} .(2.11)

The elementsΩ1j , Ω2j andΩ3j constitute thelayer j.

Definition 2.2 Let Tx be an arbitrary mesh onI = (0, 1), given by a par-
tition of I into subintervals{Kx}. On Q̂, theboundary layer mesh∆Tx is
the product mesh

∆Tx = {K : K = Kx × I, Kx ∈ Tx} .
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Fig. 3. Boundary layer mesh and geometric tensor product mesh onQ̂

Figure 3 shows a typical boundary layer mesh. We emphasize that anyTx is
allowed. In particular, rectangles of arbitrarily high aspect ratio can be used
such that boundary layer meshes∆Tx are notκ-uniform.

Definition 2.3 Let n ∈ N0 andσ ∈ (0, 1). On I = (0, 1), let Tn,σ be the
one dimensional geometric mesh refined towards0 given by a partition of
I into subintervals{Ij}n+1

j=1 where

Ij = (xj−1, xj) with x0 = 0 andxj = σn+1−j , j = 1, . . . , n + 1.

OnQ̂, thegeometric tensor product mesh∆2
n,σ is then given byTn,σ ⊗Tn,σ,

i.e.

∆2
n,σ = {Ij × Ik : Ij ∈ Tn,σ, Ik ∈ Tn,σ} .

The tensor product mesh∆2
n,σ contains anisotropic rectangles with arbitrar-

ily large aspect ratio (see Fig. 3). For the proof of the inf-sup conditions
ahead, it is important to notice that∆2

n,σ can be understood as the geomet-
ric mesh∆n,σ into which appropriately scaled versions of boundary layer
meshes∆Tx are inserted to remove the hanging nodes. A geometric tensor
product mesh is shown in Fig. 3 withn = 5 andσ = 0.5. The underlying
geometric mesh∆n,σ is indicated by bold lines.

Remark 2.4The geometric meshes∆n,σ, ∆̃n,σ and the tensor product mesh
∆2

n,σ can also be defined on the reference triangleT̂ . This is shown in Fig. 4.

On the reference squarêQ we can even admit mixtures of geometric tensor
product meshes and geometric meshes as illustrated in Fig. 5. Of course,
other combinations are imaginable.

2.2.3 Geometric boundary layer meshesWe define:
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Fig. 4. The meshes∆n,σ and∆2
n,σ on the reference trianglêT

Fig. 5. Further reference meshes on̂Q

Definition 2.5 Consider a (coarse)κ-uniform affine meshTm on a bounded
polygonal domainΩ ⊂ R

2. An affine meshT on Ω is calledgeometric
boundary layer meshwith macro-element meshTm if T is obtained from
Tm in the following way: Some elementsK ∈ Tm are further partitioned
intoFK(T̂ ) whereT̂ is any of the possibly irregular affine reference meshes
on K̂ introduced in the previous subsection (Definitions 2.1, 2.2, 2.3 and
Remark 2.4) andFK is the affine mapping between̂K andK.

The elements ofTm are called macro-elements. If no macro-element inTm
is further refined, the notion “geometric boundary layer mesh” reduces to
the already introduced notion of “κ-uniform affine meshes” (such meshes
can of course also contain geometric refinements but they are not allowed to
have anisotropic elements) and the notion of “macro-elements” becomes in
that case unnecessary. “Geometric boundary layer meshes” are a very gen-
eral class of possibly highly irregular and anisotropic meshes. We will show
below that they are well suited for the effective resolution of boundary layer
and corner singularity phenomena, i.e. thehp-FEM based on such meshes
can resolve boundary layers and corner singularities at an exponential rate.
Typically, mesh-patches fromTm near the boundary of the domain are par-
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Fig. 6. Geometric boundary layer meshes near convex corners

titioned anisotropically using∆Tx-meshes to approximate boundary layers.
Patches near corners are geometrically refined towards the corners with the
meshes∆n,σ or ∆2

n,σ. This takes into account boundary layers as well as
the singular behaviour of the solution near a corner. In the interior of the
domain a simpleκ-uniform mesh can be used. Some examples of geometric
boundary layer meshes are shown in Figs. 6 and 7.

Remark 2.6Of course, other reference meshes are imaginable for the further
local refinement in the macro-elements. As long as these reference meshes
are divergence stable (cf. the macro-element technique in Proposition 4.11)
they can be added to the “family of local refinement strategies”. Further, we
remark that no restriction on the regularity of the mesh between two adjacent
macro-elements is imposed (even if one demands the macro-element mesh
to be regular). For example, a mesh as in Fig. 8 is admissible.

2.2.4hp-FEM spaces We introduce thehp-FEM spaces to be investigated
later on. Therefore, letT be an affine mesh onΩ. With each elementK ∈ T
we associate a polynomial degreekK . All degrees are combined into a degree
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Fig. 7. Geometric boundary layer meshes near reentrant corners

Fig. 8. The macro-elements are irregularly connected in this mesh
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vector

k = {kK : K ∈ T }(2.12)

and we set|k| = max {kK : K ∈ T }.
We define the velocity and pressure spaces

Sk,1(Ω, T ) :=
{
u ∈ H1(Ω) : u|K ◦ FK

∈
{QkK

(Q̂) if K is a quadrilateral
PkK

(T̂ ) if K is a triangle
∀K ∈ T

}
(2.13)

and

Sk,0(Ω, T ) :=
{
p ∈ L2(Ω) : p|K ◦ FK

∈
{QkK

(Q̂) if K is a quadrilateral
PkK

(T̂ ) if K is a triangle
∀K ∈ T

}
.(2.14)

Implementationally, some care is required to ensure interelement continuity
in (2.13) if kK is variable. In some elements the external (or side) modes
in the polynomial spaces must be reduced whereas the internal (or bubble)
modes are of full degreekK . This can be achieved by introducing edge-
degrees as in [19].
We set further

S
k,1
0 (Ω, T ) = Sk,1(Ω, T )∩H1

0 (Ω), S
k,0
0 (Ω, T ) = Sk,0(Ω, T )∩L2

0(Ω).

If the polynomial degree is constant throughout the meshT (i.e. kK =
k ∀K ∈ T ), we use the shorthand notationsSk,1(Ω, T ) andSk,0(Ω, T ).

3 Main results

3.1 Stability

In this section our main result on the divergence stability ofSk,1(Ω, T )2 ×
Sk−2,0(Ω, T ) on a geometric boundary layer meshT with underlying
macro-element meshTm is stated. LetK ∈ Tm be a macro-element and
TK the restriction ofT to K. We permit general polynomial degree distri-
butionsk as in (2.12) onT which satisfy

(i) If TK = FK(∆Tx), thenk is constant onTK .
(ii) If TK = FK(∆), where the reference mesh∆ on K̂ contains an-
isotropic elements and has an underlying geometric mesh∆n,σ (e.g.
∆ = ∆2

n,σ), thenk is constant onFK(∆n,σ).
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Theorem 3.1 Let T be a geometric boundary layer mesh on a bounded
polygonal domainΩ ⊂ R

2 such that the underlying macro-element mesh
Tm is regular andκ-uniform for κ > 0. Assume that all the geometric
refinements inT are obtained with a fixed grading factorσ ∈ (0, 1). Letk
be a polynomial degree distribution onT which satisfies (i) and (ii) above
and let |k| = max {kK : K ∈ T }. Then there exists a constantC > 0
(depending only onκ, σ andΩ) such that the spaces

V N = S
k,1
0 (Ω, T )2, MN = S

k−2,0
0 (Ω, T )

satisfy the inf-sup condition (2.7) withγ(N) ≥ C |k|−α whereα = 1
2 if T

does not contain triangles andα = 3 otherwise.

We will prove this theorem in Sect. 4 using a macro-element technique (cf.
Proposition 4.11 ahead). The main difficulty is to establish local stability
results on the reference meshes.

Remark 3.2Although a geometric boundary layer meshT may contain an-
isotropic mesh-patches, the inf-sup constant in Theorem 3.1 is independent
of the element aspect-ratio in such a patch.

Remark 3.3We could also allow for different geometric grading factorsσ in
the geometrically refined patches. As long asσ is bounded away from1 and
0, Theorem 3.1 still holds true. This is for example satisfied if only finitely
many macro-elements are refined geometrically. More general families of
reference meshes are of course admissible for the local refinement of the
macro-elements, provided they are patchwise divergence stable as will be
explained in Sect. 4.

Remark 3.4In particular, Theorem 3.1 states divergence stability onκ-
uniform regular meshes consisting of affine triangles and quadrilaterals,
which is already well known (cf. [21] for thehp-version).

Remark 3.5The inf-sup constant in Theorem 3.1 depends on the geometric
grading factorσ. The following numerical estimate indicates that one can
not expect to remove this dependence. We calculated inf-sup constants for
[Q2]

2 × Q0 elements (that is piecewise quadratic velocities and piecewise
constant pressure) on the basic geometric mesh∆1,σ which consists (with
the numbering in (2.11)) of the four quadrilaterals

Ω11 = (0, σ) × (0, σ), Ω22 = (σ, 1) × (0, σ),
Ω12 = (σ, 1) × (σ, 1), Ω32 = (0, σ) × (σ, 1).

In Fig. 9 the inf-sup constants are plotted forσ ∈ (0, 1). The inf-sup con-
stantsC(σ) deteriorate asσ approachesσ = 0 orσ = 1. The graph indicates
clearly that one can not bound the inf-sup constant uniformly inσ ∈ (0, 1)
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Fig. 9. Inf-sup constants forS2,1
0 × S0,0

0 elements on∆1,σ for varyingσ

although the boundary layer meshes∆Tx are stable independently of the
aspect ratio [18]. In that sense we expect our results to be sharp. Figure 9
suggests in fact thatC(σ) ≥ K

√
σ(1 − σ) with K ≈ 1.4 independent of

σ ∈ (0, 1).

3.2 Consistency

Theorem 3.1 establishes divergence stability for generalhp-FE spaces on
geometric meshes such as∆n,σ, ∆2

n,σ, ∆̃n,σ and combinations thereof. With
the subsequent arguments we wish to illustrate in this section that two solu-
tion features which typically arise in viscous, incompressible flow mandate
the meshes considered here and can be approximated at a robust exponen-
tial rate of convergence. In contrast to the inviscid case, the Navier-Stokes
Equations for viscous flows with viscosityν = 1/Re > 0 are known to
exhibit, due to the elliptic spatial operator−ν∆u, corner singularities and
boundary layers governing the laminar behaviour (for corner singularities
we refer to [14,16,26] and for boundary layers to [11,12,27]).

Corner singularitiesbasically take the form (1.1) where(r, ϕ) denote
polar coordinates at the corner as in Fig. 1 (more precisely, the solutions
belong to certain weighted Sobolev spaces).Boundary layersare solution
components that show in boundary fitted coordinates as in Fig. 1 a rapid
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variation in the coordinateρ normal to the boundary∂Ω, but a smooth
behaviour independent ofν in the coordinates tangential to∂Ω. Generically,
they assume the form

ub(ρ, s) = C(s)U(ρ/d)(3.1)

whereU is the so-called boundary layer profile which is independent ofν.
For singularly perturbed linear reaction-diffusion equations where the vis-
cosityν tends to zero, we haved =

√
ν andU(ρ̂) = exp(−ρ̂). The same

type ofexponential boundary layersappears in the linear Oseen approxima-
tion of the NSE (see [27] where boundary layers in Oseen type equations are
studied in a two dimensional channel). For the full NSE, the laminar bound-
ary layer is related to an analytic solution of a certain nonlinear ordinary
differential equation (as, e.g., the Blasius or the Falkner-Skan equations) and
we haved =

√
νd̂(s), d̂(s) > 0 smooth. Note that although in the Stokes

equation (2.1) there appears the viscosityν as well, the Stokes-solutions do
not exhibit boundary layers - these phenomena are strictly related to the pres-
ence of additional advective terms in the equations as they arise for example
in the Oseen linearization. However, our stability analysis is only concerned
with the incompressibility constraint and does not deal with such advective
effects where an additional stabilization of the scheme is necessary at small
ν (see, e.g., [28] for an analysis of a low orderh-version FEM).

Nevertheless, a rigorous asymptotic expansion of laminar solutions of the
NSE near walls seems not to be available, and the interaction of boundary
layers and corner singularities at high Reynolds number seems not to be
completely understood yet. Therefore, we confine ourselves to a very simple
model situation where thehp approximation of singular behaviour as in
(1.1) or (1.2) is considered. We focus on the approximation of one velocity
component, similar statements hold also for the pressure [17].

Let ∆2
n,σ be the tensor product mesh on the unit squareQ̂ geometrically

refined towards the origin (cf. Definition 2.3 and Fig. 3). We assume that
the velocity componentu ∈ H1(Q̂) consists of two exponential boundary
layers and one corner singularity component, i.e.u is, up to smooth terms,
of the form

u(x1, x2) = uc(x1, x2) + ub1(x1, x2) + ub2(x1, x2)
= uc(x1, x2) + C1(x2) exp(−x1/d) + C2(x1) exp(−x2/d).(3.2)

Here,C1 andC2 are analytic functions on[0, 1] andd =
√

ν = 1/
√

Re ∈
(0, 1] is the small parameter in (3.1) related to the viscosityν and the
Reynolds numberRe. uc(x, y) is a corner singularity function indepen-
dent ofd which belongs to the countably weighted spaceB2

β(Q̂) (we refer
to [1,10] for the exact definition of this space). In polar coordinates(r, ϕ)
near the corner (in our example the origin) the functionuc is of the form
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(1.1) with analyticΦ. The analyticity ofΦ holds true ifthe input data is
piecewise analyticas is indicated by closely related elasticity and potential
problems (cf. [1,10]). Decompositions as in (3.2) withub1 = ub2 = 0, uc of
the form (1.1) and a (smooth) remainderur have been given for the Stokes
and Navier-Stokes Equations in [16]. However,ur = ur(ν) and a further
decomposition ofur into boundary layers and a remainder (with bounds
uniform inν) does not seem to be available yet.

If in the geometric mesh∆n,σ with hanging nodes the numbern of
layers is related linearly to the polynomial degreek, i.e. k = [Cn] for
someC > 0, we have the following approximation property for the corner
singularityuc ∈ B2

β(Q̂) (see [9,19]):

inf
v∈Sk,1(Q̂,∆n,σ)

‖uc − v‖1,Q̂ ≤ K exp(−bk)(3.3)

whereK andb are independent ofk (and of course ofd). Since∆2
n,σ is finer

than∆n,σ, (3.3) holds true also for the spaceSk,1(Q̂, ∆2
n,σ).

In [18] we investigated with the aid of [20] the approximation properties
for an exponential boundary layer functionub of the form (3.2) on a boundary
layer mesh∆Tn,σ whereTn,σ is the one dimensional geometric mesh as in
Definition 2.3. If the grading factorσ and the numbern of layers is such
thatσn ≤ Cd for someC > 0 then

inf
v∈Sk,1(Q̂,∆Tn,σ )

(
‖ub − v‖0,Q̂ + d |ub − v|1,Q̂

)
≤ K exp(−bk)(3.4)

for K andb independent ofk andd. Since the mesh∆Tn,σ is also contained
in ∆2

n,σ, (3.4) remains equally valid forSk,1(Q̂, ∆2
n,σ). From (3.3) and (3.4)

we conclude with the triangle inequality that the spacesSk,1(Q̂, ∆2
n,σ) can

approximate functionsu of the form (3.2) at a robust exponential rate:

Proposition 3.6 Let u be of the specific form (3.2). Let the polynomial
degreek be related linearly to the numbern of layers and letn be such that
σn ≤ Cd for someC > 0. Then

inf
v∈Sk,1(Q̂,∆2

n,σ)

(
‖u − v‖0,Q̂ + d |u − v|1,Q̂

)
≤ K exp(−bN

1
3 )(3.5)

whereK, b > 0 are independent ofN = dim(Sk,1(Q̂, ∆2
n,σ)) andd.

Remark 3.7The above analysis is strongly based on the exponential form
of the boundary layer. However, similar arguments may be applied to any
other separable form of the boundary layer given in (3.1).



682 D. Scḧotzau et al.

Remark 3.8We point out that in the mixed setting the a-priori estimates
(2.8)-(2.9) are not uniform inν > 0. Nevertheless, the dependence of the
constants onν is algebraic. The exponential convergence estimate (3.5)
indicates that theν-dependence in (2.8) and (2.9) can be compensated at a
modest number of degrees of freedom in thehp-FEM, at least for laminar
flows.

4 Proof of the stability result

This section is devoted to the proof of Theorem 3.1. The proof will proceed
in analogy to the definition of geometric boundary layer meshes. First we
present local stability results, then we give in Sect. 4.2 a general stability
result for some low order elements on the irregular reference mesh∆n,σ

which is of independent interest. These results are combined with the aid
of a macro-element technique presented in Sect. 4.3 in order to obtain the
proof of Theorem 3.1.

4.1 Local stability results

For the stability proof, we recapitulate some results on the stability of spectral
elements on the reference square and triangle.

Theorem 4.1 Let K̂ = Q̂ andk ≥ 2. Then there exists a constantC > 0
independent ofk such that

inf
0 6=p∈MN

sup
0 6=v∈V N

(∇ · v, p)Q̂

|v|1,Q̂ ‖p‖0,Q̂

≥ Ck− 1
2(4.1)

whereV N = Qk(Q̂)2 ∩ H1
0 (Q̂)2, MN = Qk−2(Q̂) ∩ L2

0(Q̂).
If K̂ = T̂ andk ≥ 2 then there holds

inf
0 6=p∈MN

sup
0 6=v∈V N

(∇ · v, p)T̂

|v|1,T̂ ‖p‖0,T̂

≥ Ck−3(4.2)

with C independent ofk, V N = Pk(T̂ )2 ∩H1
0 (T̂ )2 andMN = Pk−2(T̂ )∩

L2
0(T̂ ).

Proof (4.1) is proved in [4] or in [24] and (4.3) in [21].ut
Remark 4.2While (4.1) is known to be optimal, (4.3) is likely suboptimal.

Remark 4.3As in [21], Theorem 4.1 and the macro-element technique
ahead (cf. Proposition 4.11) imply immediately Theorem 3.1 onκ-uniform
regular meshes of affine elements.
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Divergence stability on boundary layer patches (as shown in Fig. 3) is es-
tablished in [18]:

Theorem 4.4 LetT = ∆Tx be a boundary layer mesh as in Definition 2.2.
Then there exists a constantC > 0 independent ofTx andk ≥ 2 such that
the spaces

V N = Sk,1
0 (Ω, ∆Tx)2, MN = Sk−2,0

0 (Ω, ∆Tx)

satisfy the inf-sup condition (2.7) withγ(N) ≥ Ck− 1
2 .

Proof This is proved in [18]. ut

4.2 Stability of some low order elements on geometric meshes
with hanging nodes

In this subsection we establish divergence stability of low order elements
on the irregular geometric meshes∆n,σ.

4.2.1 A Cĺement type interpolant on∆n,σ We first present a result which
is of independent interest, namely a Clément type interpolantI : H1

0 (Q̂) →
S1,1

0 (Q̂, ∆n,σ) on geometric meshes with hanging nodes. We remark that
such irregular meshes are frequently generated by adaptive FE codes and our
interpolantI allows one to derive residual a-posteriori error estimates along
the lines of [30]. This will be elaborated elsewhere. The degrees of freedom
of the FE-spaceS1,1

0 (Q̂, ∆n,σ) are given by the nodes{Ni}M
i=1 shown in

Fig. 10. Let{ϕi}M
i=1 be the usual Lagrange basis functions for these nodes,

i.e. ϕi ∈ S1,1
0 (Q̂, ∆n,σ), |ϕi| ≤ 1 andϕi(Nj) = δij . The support ofϕi

consists of the layersi andi + 1 (cf. Fig. 10). We define an interpolantIu
by

I : H1
0 (Q̂) → S1,1

0 (Q̂, ∆n,σ), Iu =
M∑
i=1

αiϕi

where

αi =

∫
supp(ϕi)

udx

area(supp(ϕi))
.

The next proposition states thatI is essentially an interpolant of Clément
type. Let

E(∆n,σ) = {e : e edge ofK, K ∈ ∆n,σ}
be the set of all edges of elements in∆n,σ. The length of the edgee is
denoted byhe.
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Fig. 10. Nodes inS1,1
0 (Q̂, ∆n,σ) andsupp(ϕi)

Proposition 4.5 There exists a constantC > 0 just depending on the grad-
ing factorσ such that∑

K∈∆n,σ

1
h2

K

‖u − Iu‖2
0,K +

∑
K∈∆n,σ

|u − Iu|21,K

+
∑

e∈E(∆n,σ)

h−1
e ‖u − Iu‖2

0,e ≤ C |u|21,Q̂
.

In particular, ‖Iu‖2
1,Q̂

≤ C |u|21,Q̂
.

Proof Define

Ωi = supp(ϕi), di = diam(supp(ϕi)).

Ωi is affine equivalent to a reference supportΩ̂ which is either an L-shaped
patch as in Fig. 10 or a square. As usual, the following scaling property
holds [6] ∣∣∣f̂ ∣∣∣

k,Ω̂
∼ dk−1

i |f |k,Ωi
, k = 0, 1.(4.3)

Here, we usef 7→ f̂ for the pullback operators which are defined on
functions via composition with the affine mappingsΩ̂ → Ωi. Now, write
ui = u|Ωi and fix an elementK ∈ ∆n,σ. Let

JK = {i : K ⊆ Ωi} .

Clearly, the cardinality ofJK is bounded by a constantC independently of
K. Further, there exist constantsC1 andC2 just depending onσ such that

C2 ≤ di

hK
≤ C1 ∀i ∈ JK .(4.4)
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Now, since|ϕi| ≤ 1 and|JK | ≤ C

1
h2

K

‖u − Iu‖2
0,K =

1
h2

K

∥∥∥∥∥∥u −
∑
i∈JK

uiϕi +
∑
i∈JK

uiϕi −
∑
i∈JK

αiϕi

∥∥∥∥∥∥
2

0,K

≤ C

h2
K

∑
i∈JK

(
‖ui‖2

0,Ωi
+ ‖ui − αi‖2

0,Ωi

)
.

Scaling and applying (4.4) yields

1
h2

K

‖u − Iu‖2
0,K ≤ C

∑
i∈JK

(
d2

i

h2
K

‖ûi‖2
0,Ω̂

+
d2

i

h2
K

‖ûi − α̂i‖2
0,Ω̂

)
≤ C

∑
i∈JK

‖ûi‖2
1,Ω̂

+ ‖ûi − α̂i‖2
0,Ω̂

where

α̂i =

∫
Ω̂ ûidx∫
Ω̂ dx

(= αi).

With the aid of the first and the second Poincaré inequality we get

1
h2

K

‖u − Iu‖2
0,K ≤ C

∑
i∈JK

|ûi|21,Ω̂
.

The right hand side is scaled back toΩi which gives the desired result:

1
h2

K

‖u − Iu‖2
0,K ≤ C

∑
i∈JK

|ui|21,Ωi
.(4.5)

Further,

|u − Iu|21,K =

∣∣∣∣∣∣u −
∑
i∈JK

uiϕi +
∑
i∈JK

uiϕi −
∑
i∈JK

αiϕi

∣∣∣∣∣∣
2

1,K

≤ C

|u|21,K +
∑
i∈JK

|uiϕi|21,Ωi
+
∑
i∈JK

|uiϕi − αiϕi|21,Ωi

 .

We have

|uiϕi|21,Ωi
≤ C |ûiϕ̂i|21,Ω̂

≤ C ‖(∇ûi)ϕ̂i‖2
0,Ω̂

+ C ‖ûi(∇ϕ̂i)‖2
0,Ω̂

≤ C ‖ûi‖2
1,Ω̂

≤ C |ûi|21,Ω̂
≤ C |ui|21,Ωi
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and

|uiϕi − αiϕi|21,Ωi
≤ C ‖(∇ϕ̂i)(ûi − α̂i)‖2

0,Ω̂
+ C ‖(∇ûi − ∇α̂i)ϕ̂i‖2

0,Ω̂

≤ C ‖ûi − α̂i‖2
0,Ω̂

+ C ‖∇ûi‖2
0,Ω̂

≤ C |ûi|21,Ω̂
≤ C |ui|21,Ωi

where we used again scaling and the inequalities of Poincaré. Together we
get

|u − Iu|21,K ≤ C
∑
i∈JK

|ui|21,Ωi
.(4.6)

Let now e be an edge of the elementK and ê the corresponding egde in
the reference element̂K. We use now the notationf 7→ f̂ for the pullback
operator induced by the affine equivalence ofK andK̂. We get with the
trace theorem

1
he

‖u − Iu‖2
0,e ≤ C

∥∥∥û − Îu
∥∥∥2

0,ê
≤ C

∥∥∥û − Îu
∥∥∥2

1,K̂

≤ C

h2
K

‖u − Iu‖2
0,K + C |u − Iu|21,K .

Referring to (4.5) and (4.6) gives

1
he

‖u − Iu‖2
0,e ≤ C

∑
i∈JK

|ui|21,Ωi
.(4.7)

Combining (4.5), (4.6) and (4.7) is the assertion (since|JK | ≤ C). ut
Remark 4.6An analogous interpolant can be constructed for the geometric
mesh∆n,σ on the triangleT̂ .

4.2.2 The spaceL1(K) In this subsection we introduce a low order ve-
locity space which is also used e.g. in [8]. To define this space, consider a
parallelogramK with verticesa1, a2, a3, a4 = a0. We denote byfi the
edge[ai−1, ai] and byni its unit outward normal as shown in Fig. 11.K

is affine equivalent to the reference unit squareQ̂ in the(x̂1, x̂2) reference
space. The vertices, edges and normals ofQ̂ are denoted bŷfi, âi andn̂i,
respectively. We introduce the reference variables

x̂1, x̂2, x̂3 := 1 − x̂1, x̂4 := 1 − x̂2

and set

q̂1 := x̂2x̂3x̂4, q̂2 := x̂1x̂3x̂4, q̂3 := x̂1x̂2x̂4, q̂4 := x̂1x̂2x̂3.
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Fig. 11. Notation forK andQ̂

For example, the polynomial̂q1 vanishes on the sideŝf2, f̂3 andf̂4. Finally,
we let

pi := ni

(
q̂i ◦ F−1

K

)
i = 1, . . . , 4.

The velocity spaceL1(K) is then defined as

L1(K) := Q1(K)2 ⊕ span (p1,p2,p3,p4) .

L1(K) is of dimension 12 andQ1(K)2 ⊂ L1(K) ⊂ Q2(K)2 with strict
inclusion.

Lemma 4.7 A polynomialp ∈ L1(K) is uniquely determined by the 12
quantities:

p(ai) i = 1, . . . , 4,∫
fi

p · nids i = 1, . . . , 4.

Furthermore, the restriction ofp to any sidefi of K depends only upon the
degrees of freedom defined on that side.

Proof This is proved in [8, Sect. II.3.1]. ut
Remark 4.8If K is a triangle, we may define a spaceK1(K)withP1(K)2 ⊂
K1(K) ⊂ P2(K)2 in complete analogy to the definition ofL1(K). For
details, see [8, Sect. II.2.1].

For an affine meshT onΩ consisting of quadrilaterals the spaceL1,1(Ω, T )
is

L1,1(Ω, T ) :=
{
u ∈ H1(Ω)2 : u|K ∈ L1(K) ∀K ∈ T }(4.8)

and
L1,1

0 (Ω, T ) := L1,1(Ω, T ) ∩ H1
0 (Ω)2.
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Fig. 12. The degrees of freedom ofL1,1
0 (Mj)

4.2.3 Divergence stability ofL1,1
0 ×S0,0

0 on∆n,σ We are now able to show
the inf-sup condition forL1,1

0 × S0,0
0 elements on the irregular geometric

mesh∆n,σ. To do so, we apply the technique of overlapping macro-patches
of [23].

Theorem 4.9 The spacesL1,1
0 (Q̂, ∆n,σ) andS0,0

0 (Q̂, ∆n,σ) are divergence
stable, that is the inf-sup condition (2.7) holds with a constant just depending
on the grading factorσ.

Proof We introduce the patches{Mj}M
j=1 using the numbering in (2.11):

M1 = Ω11 ∪ Ω22 ∪ Ω12 ∪ Ω32,

Mj = ∪ {Ωik : 1 ≤ i ≤ 3, j ≤ k ≤ j + 1} 2 ≤ j ≤ n.

M1 is built of the four elements near the origin, whereasMj for j ≥ 2
consists of the elements in the layersj andj + 1. As in (2.14) and (4.8) we
let

S0,0(Mj) =
{
p ∈ L2(Mj) : p|K ∈ Q0(K), K ⊂ Mj

}
,

L1,1
0 (Mj) =

{
v ∈ H1

0 (Mj)2 : v|K ∈ L1(K), K ⊂ Mj

}
and

NMj =
{

p ∈ S0,0(Mj) : (∇ · v, p)Mj
= 0 ∀v ∈ L1,1

0 (Mj)
}

.

The degrees of freedom ofL1,1
0 (Mj) are shown on Fig. 12. The circles

indicate the values ofv · n and the crosses the nodal values (cf. Lemma
4.7). Now, it holds

NMj = {p = const onMj} ,(4.9)

since by our choice of the velocity spaces a pressure inNMj is not allowed to
have jumps over the interelement edges. We can splitS0,0(Mj) orthogonally
in L2(Mj) into

S0,0(Mj) = NMj ⊕ WMj .(4.10)
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Let
E(Mj) = {e : e edge of an elementK ⊂ Mj , e 6⊂ ∂Mj}

denote the set of all interelement edges in the patchMj . Extra care must be
taken due to the presence of hanging nodes. Therefore, we define

E0(Mj) = {e ∈ E(Mj) : e has no hanging node in the mid-point} .

Globally,E(∆n,σ) andE0(∆n,σ) are defined completely analogous. Recall
that the length of an edgee is he. We denote by[f ]e the jump of a piecewise
continuous functionf across the edgee of an elementK:

[f ]e(x) = lim
t→0+

f(x + tne) − lim
t→0+

f(x − tne) x ∈ e

wherene is the unit outward normal to the elementK. On each patchMj

we introduce a mesh-dependent seminorm

|p|2Mj
=
∑

K⊂Mj

h2
K ‖∇p‖2

0,K +
∑

e∈E0(Mj)

he

∫
e
|[p]e|2 ds.

Forp ∈ S0,0(Mj)only the jump terms contribute to this seminorm. Globally,
we define analogously

|p|2
h,Q̂

=
∑

K∈∆n,σ

h2
K ‖∇p‖2

0,K +
∑

e∈E0(∆n,σ)

he

∫
e
|[p]e|2 ds.

Hence, a scaling argument gives the local stability condition

sup
0 6=v∈L1,1

0 (Mj)

(∇ · v, p)Mj

|v|1,Mj
|p|Mj

≥ γ > 0 ∀p ∈ WMj\{0}(4.11)

whereγ is independent ofj (and thus of the meshwidthh) but depends on
the grading factorσ.
Now, let0 6= p ∈ S0,0

0 (Q̂, ∆n,σ). We writepj := p|Mj . According to (4.9)
and (4.10) we decomposepj into

pj = cj + qj

wherecj ∈ NMj is constant onMj andqj ∈ WMj . (4.11) implies that for

eachqj there exists a velocityvj ∈ L1,1
0 (Mj) (choosevj = 0 if qj = 0)

such that

(∇ · vj , qj)Mj
≥ γ |qj |2Mj

, |vj |1,Mj
≤ |qj |Mj

,

and therefore also

(∇ · vj , pj)Mj
≥ γ |pj |2Mj

, |vj |1,Mj
≤ |pj |Mj

.
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We set nowv :=
∑M

j=1 vj and havev ∈ L1,1
0 (Q̂, ∆n,σ). Then

(∇ · v, p)Q̂ ≥ γ

M∑
j=1

|pj |2Mj
≥ C |p|2

h,Q̂
(4.12)

and

|v|21,Q̂
≤

M∑
j=1

|vj |21,Mj
≤ C |p|2

h,Q̂
.(4.13)

(4.12) and (4.13) imply

sup
0 6=v∈L1,1

0 (Q̂,∆n,σ)

(∇ · v, p)Q̂

|v|1,Q̂

≥ C1 |p|h,Q̂ = C1 ‖p‖0,Q̂

|p|h,Q̂

‖p‖0,Q̂

.(4.14)

Following still [23], we show that in (4.14) the semi-norm can be replaced
by the full L2-norm. By the continuous inf-sup condition (2.6) there is a
velocityv ∈ H1

0 (Q̂)2 such that

(∇ · v, p)Q̂ ≥ C ‖p‖2
0,Q̂

, |v|1,Q̂ ≤ ‖p‖0,Q̂ .

Let vh = Iv := (Iv1, Iv2) ∈ S1,1
0 (Q̂, ∆n,σ)2 whereI is the Cĺement type

interpolant of Proposition 4.5. We integrate by parts, apply Cauchy-Schwarz
and Proposition 4.5 to get

(∇ · vh, p)Q̂ = (∇ · (vh − v), p)Q̂ + (∇ · v, p)Q̂

=
∑

K∈∆n,σ

∫
K

(v − vh) · ∇p dx

+
∑

e∈E0(∆n,σ)

∫
e
((vh − v) · n) [p]eds + C ‖p‖2

0,Q̂

≥ −
 ∑

K∈∆n,σ

h−2
K ‖vh − v‖2

0,K

+
∑

e∈E(∆n,σ)

h−1
e ‖vh − v‖2

0,e


1
2

|p|h,Q̂ + C ‖p‖2
0,Q̂

≥ −C2 |v|1,Q̂ |p|h,Q̂ + C3 ‖p‖2
0,Q̂

≥ ‖p‖2
0,Q̂

(
C3 − C2

|p|h,Q̂

‖p‖0,Q̂

)
.
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Further,|vh|1,Q̂ ≤ C ‖p‖0,Q̂, such that we established

sup
0 6=v∈L1,1

0 (Q̂,∆n,σ)

(∇ · v, p)Q̂

|v|1,Q̂

≥ ‖p‖0,Q̂

(
C4 − C5

|p|h,Q̂

‖p‖0,Q̂

)
(4.15)

We writet for the ratio|p|h,Q̂ / ‖p‖0,Q̂ and combine (4.14) and (4.15) into

sup
0 6=v∈L1,1

0 (Q̂,∆n,σ)

(∇ · v, p)Q̂

|v|1,Q̂

≥ ‖p‖0,Q̂ min
t≥0

f(t)

with f(t) = max(C4 − C5t, C1t). Sincemint≥0 f(t) = C1C4
C1+C5

, the asser-
tion follows. ut
Remark 4.10A similar construction yields stability of low order elements
for the geometric mesh∆n,σ on the triangleT̂ . This holds for example for
S2,1

0 ×S0,0
0 elements or one could use the velocity spaceK1(K) mentioned

in Remark 4.8.

4.3 A macro-element technique

A useful tool to prove divergence stability is the macro-element technique
introduced for example in [24]. It is stated in a very general form in the next
proposition whose proof is given for the sake of completeness.

Proposition 4.11 Let F be a family of irregular or regular affine meshes
on the reference element̂K. On a bounded polygonΩ ⊂ R

2 let T be an
affine mesh which is obtained from a (coarser) affineκ-uniform macro-
element meshTm in the following way: Some elements ofTm are fur-
ther partitioned intoFK(T̂ ) where T̂ ∈ F and FK is the affine map-
ping betweenK̂ and K. Let k be a polynomial degree distribution onT
and |k| := max {kK : K ∈ T }. Assume that there exists a spaceXN ⊆
S

k,1
0 (Ω, T )2 ⊂ H1

0 (Ω)2 such that

inf
0 6=p∈S0,0

0 (Ω,Tm)
sup

0 6=v∈XN

(∇ · v, p)Ω

|v|1,Ω ‖p‖0,Ω

≥ C1(4.16)

with a constantC1 > 0 independent ofk. Assume that on the reference
elementK̂ the local stability condition

inf
0 6=p∈Sk−2,0

0 (K̂)
sup

0 6=v∈Sk,1
0 (K̂)2

(∇ · v, p)Ω

|v|1,Ω ‖p‖0,Ω

≥ C2k
−α ∀k ≥ 2(4.17)
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is valid withC2 > 0 andα > 0 independent ofk. Assume further that the
familyF is uniformly stable in the sense that there holds

inf
0 6=p∈S

k−2,0
0 (K̂,T̂ )

sup
0 6=v∈S

k,1
0 (K̂,T̂ )2

(∇ · v, p)K̂

|v|1,K̂ ‖p‖0,K̂

≥ C2 |k|−α(4.18)

for all T̂ ∈ F and all polynomial degree vectorsk on T̂ that appear in the
correspondingly refined macro-elements.

Then there exists a constantC > 0 only depending onC1, C2 and κ
such that the spaces

V N = S
k,1
0 (Ω, T )2, MN = S

k−2,0
0 (Ω, T )(4.19)

satisfy the inf-sup condition (2.7) withγ(N) ≥ C |k|−α.

Proof Let p ∈ S
k−2,0
0 (Ω, T ). We decomposep into p = p∗ + pm where

pm is theL2(Ω)-projection ofp ontoS0,0
0 (Ω, Tm), the space of piecewise

constant pressures with vanishing mean value on the macro-element mesh
Tm. Because of (4.16) there existsvm ∈ XN ⊆ S

k,1
0 (Ω, T )2 such that

(∇ · vm, pm)Ω ≥ C1 ‖pm‖2
0,Ω , |vm|1,Ω ≤ ‖pm‖0,Ω .(4.20)

Next, considerp∗ ∈ S
k−2,0
0 (Ω, T ). Therefore, fix a macro-elementK ∈ Tm

and setp∗
K := p∗|K . By construction,p∗

K ∈ S
k−2,0
0 (K, TK) whereTK is

the restriction ofT to the macro-elementK. We transformp∗
K back to the

reference element̂K via the affine transformationFK , that is we put

p∗
K̂

= p∗
K ◦ FK .

We haveTK = FK(T̂ ) for someT̂ ∈ F if K is further refined orTK =
FK(T̂ ) with T̂ = K̂ if K is not locally refined. By (4.17) or (4.18) there
existsv∗

K̂
∈ S

k,1
0 (K̂, T̂ )2 such that

(
∇ · v∗

K̂
, p∗

K̂

)
K̂

≥ C2 |k|−α
∥∥∥p∗

K̂

∥∥∥2

0,K̂
,∣∣∣v∗

K̂

∣∣∣
1,K̂

≤
∥∥∥p∗

K̂

∥∥∥
0,K̂

.(4.21)

We can not use the usual pushforward operator to definev∗
K onK but rather

thePiola-transform

v∗
K = PK(v∗

K̂
) = |JK |−1 JKv∗

K̂
◦ F−1

K .
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Here,JK is the Jacobian ofFK and|JK | = det(JK). JK is constant and
thusv∗

K ∈ S
k,1
0 (K, TK)2. Moreover, there holds (cf. [5])(

∇ · v∗
K̂

, p∗
K̂

)
K̂

= (∇ · v∗
K , p∗

K)K .(4.22)

(4.21), (4.22) and scaling give

(∇ · v∗
K , p∗

K)K ≥ C2 |k|−α
∥∥∥p∗

K̂

∥∥∥2

0,K̂

≥ C

h2
K

C2 |k|−α ‖p∗
K‖2

0,K .(4.23)

By similar scaling properties for the Piola-transform (cf. [5]) we get

|v∗
K |1,K ≤ C

hK

ρ2
K

∣∣∣v∗
K̂

∣∣∣
1,K̂

≤ C
hK

ρ2
K

∥∥∥p∗
K̂

∥∥∥
0,K̂

≤ C
hK

ρ3
K

‖p∗
K‖0,K(4.24)

where we applied once again (4.21). (4.23) and (4.24) imply the existence
of aS

k,1
0 (K, TK)2-velocity field onK also denoted byv∗

K such that

(∇ · v∗
K , p∗

K)K ≥ C

κ3 C2 |k|−α ‖p∗
K‖2

0,K ,

|v∗
K |1,K ≤ ‖p∗

K‖0,K .(4.25)

We define nowv∗ =
∑

K∈Tm
v∗

K which belongs toSk,1
0 (Ω, T )2 ⊂ H1

0 (Ω)2.
(4.25) holds independently ofK and hence the same estimate is valid for
v∗,

(∇ · v∗, p∗)Ω ≥ C

κ3 C2︸ ︷︷ ︸
=:C3

|k|−α ‖p∗‖2
0,Ω , |v∗|1,K ≤ ‖p∗‖0,Ω .(4.26)

Select nowv = v∗ + δvm whereδ > 0 is still at our disposal. Then

(∇ · v, p)Ω = (∇ · v∗, p∗)Ω + δ (∇ · vm, pm)Ω

+ (∇ · v∗, pm)Ω + δ (∇ · vm, p∗)Ω .

Sincepm is piecewise constant onTm andv∗ vanishes on∂K for all K ∈ Tm
the third term(∇·v∗, pm)Ω is zero. With (4.20) and (4.26) one has forε > 0

(∇ · v, p)Ω ≥ C3 |k|−α ‖p∗‖2
0,Ω + δC1 ‖pm‖2

0,Ω − δC4 |vm|1,Ω ‖p∗‖0,Ω

≥ C3 |k|−α ‖p∗‖2
0,Ω + δC1 ‖pm‖2

0,Ω − δC4 ‖pm‖0,Ω ‖p∗‖0,Ω

≥ C3 |k|−α ‖p∗‖2
0,Ω + δC1 ‖pm‖2

0,Ω
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−δC4

4ε
‖p∗‖2

0,Ω − δεC4 ‖pm‖2
0,Ω

=
(

C3 |k|−α − δC4

4ε

)
‖p∗‖2

0,Ω + δ (C1 − C4ε) ‖pm‖2
0,Ω .

Choosingε = C1
2C4

andδ = 2εC3|k|−α

C4
yields

(∇ · v, p)Ω ≥ C3

2
|k|−α ‖p∗‖2

0,Ω + C5 |k|−α ‖pm‖2
0,Ω ≥ C6 |k|−α ‖p‖2

0,Ω .

(4.27)
From (4.26) and (4.20) follows also

|v|1,Ω ≤ |v∗|1,Ω + δ |vm|1,Ω ≤ ‖p∗‖0,Ω + C |k|−α ‖pm‖0,Ω

≤ C7 ‖p‖0,Ω(4.28)

with C7 independent ofk. (4.27) and (4.28) imply (4.19) which finishes the
proof of Proposition 4.11. ut

4.4 Proof of the main result

Applying the macro-element technique in Proposition 4.11 gives immedi-
ately the following corollaries used in the proof of Theorem 3.1.

Corollary 4.12 Let ∆n,σ be the geometric mesh on̂Q (cf. Definition 2.1).
Letk be a polynomial degree vector as in (2.12) and let|k| = max{kK : K
∈ ∆n,σ}. Then there exists a constantC > 0 independent ofn andk but
depending onσ such that the pairs

V N = S
k,1
0 (Q̂, ∆n,σ)2, MN = S

k−2,0
0 (Q̂, ∆n,σ)

fulfill the inf-sup condition (2.7) withγ(N) ≥ C |k|− 1
2 .

Proof We apply Proposition 4.11 with

F = ∅, Tm = ∆n,σ

andκ = κ(σ) is the uniformity constant of the mesh∆n,σ (which depends
only onσ). SettingXN = L1,1

0 (Q̂, ∆n,σ), condition (4.16) is satisfied due
to Theorem 4.9 withC1 = C1(σ) independent ofk. (4.17) holds because
of Theorem 4.1 withα = 1/2. The assertion follows now from Proposition
4.11. ut
Corollary 4.13 Let ∆2

n,σ be the geometric tensor product mesh onQ̂ (cf.
Definition 2.3) with underlying geometric mesh∆n,σ. Letk be a polynomial
distribution on∆2

n,σ which is constant on each elementK ′ ∈ ∆n,σ. Let|k| =
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max
{
kK : K ∈ ∆2

n,σ

}
. Then there exists a constantC > 0 independent of

n andk but depending onσ such that the spaces

V N = S
k,1
0 (Q̂, ∆2

n,σ)2, MN = S
k−2,0
0 (Q̂, ∆2

n,σ)

satisfy the inf-sup condition (2.7) withγ(N) ≥ C |k|− 1
2 .

Proof As in Corollary 4.12 above, we apply Proposition 4.11 with

F = {∆Tx : Tx arbitrary} , Tm = ∆n,σ

andκ = κ(σ) is the uniformity constant of the mesh∆n,σ (which depends
only onσ). SettingXN = L1,1

0 (Q̂, ∆n,σ), condition (4.16) is satisfied due
to Theorem 4.9 withC1 = C1(σ) independent ofk. (4.17) follows from
Theorem 4.1 and (4.18) from Theorem 4.4 withα = 1/2 (since the constant
in Theorem 4.4 does not depend on the one dimensional meshTx). Thus
Proposition 4.11 can be applied and Corollary 4.13 follows.ut
Remark 4.14Corollaries 4.12 and 4.13 hold also for the meshes∆n,σ and
∆2

n,σ on the reference trianglêT with inf-sup constantγ(N) ≥ C |k|−3.
Divergence stability for the mixed meshes mentioned in Remark 2.4 is ob-
tained in the same way using Proposition 4.11, Theorem 4.1 and Theorem
4.4. The inf-sup condition holds withC |k|−α whereα = 1/2 if the mesh
contains no triangles andα = 3 otherwise.

Proof of Theorem 3.1.The proof of Theorem 3.1 is now straightforward.
We putXN = S2,1

0 (Ω, Tm)2. By standard theory (see, e.g., [8,5]), (4.16) in
Proposition 4.11 is satisfied. Due to Theorem 4.1, Theorem 4.4, Corollary
4.12, Corollary 4.13 and Remark 4.14, we see that (4.17) and (4.18) in
Proposition 4.11 are valid withα = 1/2 if the mesh does not contain
triangles and withα = 3 otherwise. Proposition 4.11 therefore gives the
assertion of the theorem. 2

References
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7. Gerdes, K., Scḧotzau, D. (1997):hp-FEM for incompressible fluid flow – stable and
stabilized. Research Report 97-18, Seminar für Angewandte Mathematik, ETH Zürich,
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