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Summary. The divergence stability of mixebp Finite Element Methods

for incompressible fluid flow is analyzed. A discrete inf-sup condition is
proved for a general class of meshes. The meshes may be refined anisotrop-
ically, geometrically and may contain hanging nodes on geometric patches.
The inf-sup constant is shown to be independent of the aspect ratio of the
anisotropic elements and the dependence on the polynomial degree is an-
alyzed. Numerical estimates of inf-sup constants confirm the theoretical
results.
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1 Introduction

Boundary value problems of incompressible fluid dynamics are described
by the Navier-Stokes Equations (NSE). Their robust and accurate numerical
solution in arbitrary domains can be achieved by the Finite Element Method
(FEM). It is well known that the performance of these methods is governed
by a) consistency and b) stability.

Consistencys related to the approximation properties of the Finite El-
ement spaces - they should be designed so that for the anticipated solution
class of the NSE a high rate of convergence is achievable. For low and mod-
erate Reynolds numbers, solutions of the NSE in polygonal domains exhibit
corner singularitiegsee, e.g., the recent monograph [26] and the references
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Fig. 1. Polar coordinateér, ¢) near a corner and boundary fitted coordindjes) near
o

there for details). In polar coordinates ¢) near a corner they are basically

of the form

(L.1) uc(r, ) = r°P()

forsomea > 0] and some analytic functiah(cf. Fig. 1). At high Reynolds
number there arise additionalboundary layergiue to the singularly per-
turbed character ofthe NSE. Boundary layers are solution components which
decay rapidly normal to the boundary. A typical example oégponential
boundary layeiis

(1.2) un(p, s) = C(s) exp(—pv/Re)

where(p, s) are the usual boundary fitted coordinates in a tubular neigh-
bourhood of the smooth boundady? of the domain withy denoting the
normal distance t@{2 ands being the arclength o2 (cf. Fig. 1). The
function C'(s) is smooth independently dfe. Since the NSE are nonlin-
ear, the boundary layers do not have necessarily the form (1.2) but rather
u(p, s) = C(s)U(p, Re) whereU is analytic and satisfies a certain nonlinear
ordinary differential equation (see, e.g., [11,12]).

The efficient resolution of corner singularity or boundary layer phenom-
ena with thehp version of the FEM requires properly designed meshes:
Combininganisotropicgeometric mesh refinement towards the boundary
and the corners with judiciously increased polynomial degrees allows one
to approximate corner singularities and boundary layers &ixponential
rate of convergence (see [9,10,19] and the references there foliithe
approximation of corner singularities and [15, 20, 22])Aprapproximation
of boundary layers).

Stabilityproblems arise intrinsically in the variational formulations due
to the incompressibility constraint - «w = 0. It is well known that the
velocity and pressure FE spaces can not be chosen independently. Stability
is only guaranteed as long as a discrete B&btBrezzi condition is satisfied
by the velocity and pressure spaces. For many pairs of velocity and pressure
spaces this inf-sup condition has been established (see [5,8,23] and the
references there fdr-version FEM and [4,21, 24,25, 31] and the references
there forp-version/spectral FEM). These stability issues are already present
in the much simpler Stokes equations that are obtained by linearization of
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the NSE. We therefore study here the stability of the FE-spaces in this model
problem.

However, the appearance of anisotropic elements of arbitrarily large as-
pect ratio raises additional stability concerns since almost all the presently
available techniques for establishing divergence stability seem to require
the shape regularity of the meshes in some sense. This precludes, of course,
anisotropic meshes which are mandatory,jnlFEM to resolve boundary
layers at exponential rates of convergence. Recently, some attention has been
turned to this issue and it has been proved by Becker and Rannacher [2, 3]
that a certain nonconforming low order element is indeed stable indepen-
dently of the element aspect ratio on axiparallel meshes. In [18] the authors
proved stability for conformingp-elements independent of the aspect ratio
on anisotropic quadrilateral mesh patches.

In this paper the earlier work [18] on the divergence stability for the
Stokes problem on anisotropic meshes is extended focusing again/an the
version of mixed Finite Element Methods. We prove stability for a family of
conforminghp velocity and pressure spacesiorgular meshesvhich may
contain anisotropic elements, hanging nodes and on elements with variable
polynomial degree, as required in the-FEM. In fact, on quadrilaterals,
the considered family are thé®y x Pn_»" elements already discussed
in [4]. The meshes we admit allow for the desired refinement properties,
geometrically towards corners and anisotropically towards boundaries, so
that singular behaviour as in (1.1) and (1.2) can be resolved. In particular,
we prove divergence stability on tensor products of geometrically refined
meshes. To do so, we establish first a discrete inf-sup condition for low order
elements with hanging nodes with an inf-sup constant depending only on
the geometrical grading factor. In this context we introduce an interpolant of
Clement type on geometric meshes with hanging nodes which is of indepen-
dent interest. The corresponding stability results for higher order elements
are obtained in a second step with the aid of a macro-element technique
and local stability results. The dependence on the polynomial dégiee
given explicitly, that is we show that the inf-sup constant is bounded from
below bka:‘% if the mesh contains no triangles and by the (pessimistic)
boundCk—3 otherwise. Numerical estimates of inf-sup constants indicate
the sharpness of our results and the dependence on the geometrical grad-
ing factoro. We refer also to [7] where the performance &ty x Py_3"
elements is studied numerically in an L-shaped domain.

The outline of the paper is as follows: In Sect. 2 we formulate the Stokes
problem and define the meshes and spaces to be analyzed. In Sect. 3 our main
stability result is given and we illustrate the approximation properties of our
mesh family in a simple model situation. In Sect. 4 we establish stability
results on reference meshes which implies by a macro-element technique
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the main result.

The standard notation is used in this paper: For a polygonal domainR?
oranintervalD = (a, b) we denote by7*(D) the Sobolev spaces of integer
ordersk > 0 equipped with the usual nornis||,. , and seminorms|,, p,.
We setH’(D) = L*(D), H}(D) = {u € HY(D) : trace(u) = 0 ondD}
andL3(D) = {p € L*(D) : (p,1)p = 0} where(-, ) , denotes th&?(D)
inner product. Fog > 0 nonintegral, the Sobolev spacls$ (D) with norm
||l are defined as usually via tife-method of interpolation (see, e.g.,
[13,29]). The set of all polynomials of total degree k on D C R? is
denoted byP, (D), the set of all polynomials of degreek in each variable
by Qr(D). If I is an interval we definé,(I) as the set of polynomials
on I of degree< k. In the following we denote by’ generic constants
not necessarily identical at different places but always independent of the
meshwidths and the polynomial degrees.

2 Problem formulation

2.1 Stokes problem

In a bounded, polygonal domai c R? we consider th&tokesoundary
value problem for incompressible fluid flow obtained by linearization of the
Navier-Stokes Equations: Find a velocity fiaeldand a pressurg such that

(2.2) —vAu+Vp=f in 2,
(2.2) V-u=0 in £,
(2.3) u=20 onof?.

Here,v > 0 is the kinematic viscosity which is related to the Reynolds
numberRe of the flow byr = 1/Re. The right hand sidef is a given
body force per unit mass. The usual mixed formulation of (2.1)-(2.3) is the
following:

Findu € H}(£2)? andp € L%(£2) such that

(2.4) v(Vu,Vo)g — (p,V-v), = (f,v)q,
(2.5) (.Y -u)p =0

forall (v,q) € H}(2)? x L3(2).

It is well known (see, e.g., [8,19]) that fof € L2(£2)? there exists
a unique weak solutiofw, p) of (2.4)-(2.5) due to the continuousf-sup
condition

(2.6) inf sip N UPo S gy
0#pELF(12) 0£ve HY (£2)? ’Uh,n HpHO,Q
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A conforming FE-discretization of (2.4)-(2.5) is obtained in the usual way:
Given finite dimensional subspac®sy C H}(£2)? and My C L3(12),
find (un,pn) € Vv x My such that (2.4)-(2.5) holds for arfp, q) €

V nx My. Afamily {V y x My } v isy(IV)-stable if the followingdiscrete
inf-sup conditiorholds

(2.7) inf sup (V-vplg >~(N) > 0.

0#pEMN 0£veV |’U|1,Q ||pH0,Q

If v(N)in(2.7) does not depend dvi, we say thatthe familyV y x My } x

is stable If a family is v(/V)-stable, the discrete problem has a unique
solution (ux,pn) In Vx x My and the rate of convergence of the FE
approximations{ (uxy, pn)}y Of (u,p) is determined by that of the best

approximations ofw, p) in {V x5 x My}, 1.e. we have the error estimates

[5,19]

lu—unly o <CYHN) inf [lu—ovl,
veV N
2.8 +Cv~ ! inf — ,
(2.8) s Ip = dllo.o
Ip = pnllpo < Cry *(N) inf [u—v|,
’ veEV N ’

2.9 C~y YN) inf ||p—
(2.9) +Cv( )qg&NHp dllo.

with C' = C(2) independent ofV andv.

2.2 Finite element spaces

We define the velocity-pressure space p¥ing x My to be analyzed below.

2.2.1 Preliminaries A mesh7 on a bounded polygonal domaia C R?

is a partition off? into disjoint and open quadrilateral and/or triangular
elements{ K} such that? = U7 K. We consider onlaffine meshes
where eachk’ € T is affine equivalent to a reference eleméntwhich

is either the reference trianglE = {(z,y):0<z <1,0<y <z} or
the reference squa@ = (0,1)?, i.e. K = Fg(K) with Fx affine and
orientation preserving. The me%his calledregularif for any two elements
K, K' € T the intersection N K is either empty, a single vertex or an
entire side. Otherwise, the me§hcontainshanging nodesnd is called
irregular. For an affine mesli and an elemenk” € 7 we denote byix
the diameter of the elemeif and bypx the diameter of the largest circle
inscribed intaK . Themeshwidthh of 7 is given byh = maxxe7 hi. The
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Fig. 2. The geometric meshes,, , andA,, , with n = 3 ande = 0.5

fractionoy = h—g is theaspect ratioof the cell K. A (regular or irregular)
affine meshr is calledx-uniformif there existss > 0 such that

2.10 < Kk < 00.
( ) 11?63«%(_01(_% o0

2.2.2 Reference meshe®ur hp-FEM will be based on certain two-level
families of meshes: Aacroscopic:-uniform mesh denote@,, which will
belocally refined either towards corners or towards the boundary. To this
end, we introduce now some meshes on the reference elelﬁmmdf
(which are the reference elements for). Most of these reference meshes
are irregular or contain anisotropic elements.

Definition 2.1 Letn € Ny ando € (0,1). OnQ, the(irregular) geometric
meshA4,, , with n + 1 layersandgrading factoro is created recursively
as follows: Ifn = 0, Ap, = {Q}. Given A, , forn > 0, A1 is
generated by subdividing that squake € A,,, with 0 € K into four
smaller rectangles by dividing the sidesifin ac : (1 — o) ratio.
The(regular) geometric mesﬁn,c, is obtained from4,, , by removing the
hanging nodes as indicated in Fig. 2.

In Fig. 2 the geometric mesh is shown for= 3 ando = 0.5. Clearly,A,,
is an irregular affine mesh, it contaihanging nodesThe elements of the
geometric mesh),, , are numbered as in Fig. 2, i.e.

(211) An,U:{Qll}U{Qij:1§i§372§j§n+1}'
The elements?;;, £25; and(23; constitute thaayer j.

Definition 2.2 Let 7, be an arbitrary mesh oh= (0, 1), given by a par-
tition of I into subintervalg K, }. On @, theboundary layer mesh\ . is
the product mesh

Ar. ={K:K=K,xI,K, €T}
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.72'2 j:Q

A 2
1 To 1 AL,

I i’l

0 T. 1 0 1

Fig. 3. Boundary layer mesh and geometric tensor product mesh on

Figure 3 shows a typical boundary layer mesh. We emphasize th&t.asy
allowed. In particular, rectangles of arbitrarily high aspect ratio can be used
such that boundary layer meshds: are nots-uniform.

Definition 2.3 Letn € Ny ando € (0,1). OnI = (0,1), let 7, , be the
one dimensional geometric mesh refined towardsven by a partition of

I into subintervals{lj};‘;Ll1 where
Ij = (xj_l,azj) with g =0 andxj = O'n+1_j,j =1,...,n+ 1.

OnQ, thegeometric tensor product mestfw is then given byr,, » ® 7y, o,
ie.
ALy ={lj ¥ Iy [ € Togo Ik € Tao} -

The tensor product mesh? , contains anisotropic rectangles with arbitrar-
ily large aspect ratio (see Fig. 3). For the proof of the inf-sup conditions
ahead, it is important to notice thaf , can be understood as the geomet-
ric mesh4,, , into which appropriately scaled versions of boundary layer
meshesAy, are inserted to remove the hanging nodes. A geometric tensor
product mesh is shown in Fig. 3 with= 5 ando = 0.5. The underlying
geometric mesh),, , is indicated by bold lines.

Remark 2.4The geometric meshe$, ,, A, , and the tensor product mesh
A? , canalso be defined on the reference triafigl&his is shown in Fig. 4.
On the reference squaéewe can even admit mixtures of geometric tensor

product meshes and geometric meshes as illustrated in Fig. 5. Of course,
other combinations are imaginable.

2.2.3 Geometric boundary layer meshes#/e define:
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n,o

0 T 0 1

Fig. 4. The meshesg, , andA2 , on the reference trianglB

Ty T2

& f i
1 ! 0 1 !

Fig. 5. Further reference meshes 6n

o

Definition 2.5 Consider a (coarse)}uniform affine mesly,, on a bounded
polygonal domain2 ¢ R2. An affine mesh7 on {2 is calledgeometric
boundary layer mestvith macro-element mesh,, if 7 is obtained from

Tm in the following way: Some elements € 7, are further partitioned
into FK(7’ ) whereT is any of the possibly irregular affine reference meshes
on K introduced in the previous subsection (Definitions 2.1, 2.2, 2.3 and
Remark 2.4) and’x is the affine mapping betweéfi and k.

The elements of,, are called macro-elements. If no macro-elemenft,in

is further refined, the notion “geometric boundary layer mesh” reduces to
the already introduced notion ok*uniform affine meshes” (such meshes
can of course also contain geometric refinements but they are not allowed to
have anisotropic elements) and the notion of “macro-elements” becomes in
that case unnecessary. “Geometric boundary layer meshes” are a very gen-
eral class of possibly highly irregular and anisotropic meshes. We will show
below that they are well suited for the effective resolution of boundary layer
and corner singularity phenomena, i.e. thheFEM based on such meshes
can resolve boundary layers and corner singularities at an exponential rate.
Typically, mesh-patches from,, near the boundary of the domain are par-
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Fig. 6. Geometric boundary layer meshes near convex corners

titioned anisotropically using\7, -meshes to approximate boundary layers.
Patches near corners are geometrically refined towards the corners with the
meshesA,, , or A2 . This takes into account boundary layers as well as
the singular behaviour of the solution near a corner. In the interior of the
domain a simple-uniform mesh can be used. Some examples of geometric
boundary layer meshes are shown in Figs. 6 and 7.

Remark 2.60f course, other reference meshes are imaginable for the further
local refinement in the macro-elements. As long as these reference meshes
are divergence stable (cf. the macro-element technique in Proposition 4.11)
they can be added to the “family of local refinement strategies”. Further, we
remark that no restriction on the regularity of the mesh between two adjacent
macro-elements is imposed (even if one demands the macro-element mesh
to be regular). For example, a mesh as in Fig. 8 is admissible.

2.2.4hp-FEM spaces We introduce thé&p-FEM spaces to be investigated
later on. Therefore, |€f be an affine mesh of2. With each elemenk” € 7
we associate a polynomial degige. All degrees are combined into adegree
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Fig. 7. Geometric boundary layer meshes near reentrant corners

L7/

Fig. 8. The macro-elements are irregularly connected in this mesh
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vector
(2.12) k={kx:KeT}

and we setk| = max{ky : K € T}.
We define the velocity and pressure spaces

SEL 2, T) == {ue H (02) 1 ulk o Fx

c { O, (Q) if K is a quadrilateral

2.1
(2.13) P (T) if K is atriangle

VKET}

and

SE’O(Q,T) = {p c LZ(Q) :plk o Fi

c { O, (Q) if K is a quadrilateral

2.14 -
( ) P (T) if K is atriangle

VKET}.

Implementationally, some care is required to ensure interelement continuity
in (2.13) if kx is variable. In some elements the external (or side) modes
in the polynomial spaces must be reduced whereas the internal (or bubble)
modes are of full degrekx. This can be achieved by introducing edge-
degrees as in [19].

We set further

S5 (2,T) = SEHQTINHY(2), - S5°(2,T) = $5°(2, TINLY(42).

If the polynomial degree is constant throughout the mésti.e. kx =
k VK € T), we use the shorthand notatiofi%' (12, 7) andS*0(£2, T).

3 Main results
3.1 Stability

In this section our main result on the divergence stabilitgf (12, 7)2 x
Sk=20(0, T) on a geometric boundary layer meghwith underlying
macro-element mesh,, is stated. LetK' € 7, be a macro-element and
Tk the restriction of/ to K. We permit general polynomial degree distri-
butionsk as in (2.12) ori/” which satisfy

(i) If Tk = Fr(AT,), thenk is constant o .

(i) If T = Fg(A), where the reference mesh on K contains an-
isotropic elements and has an underlying geometric mésh (e.g.
A= A? ), thenk is constant orFk (A, o).
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Theorem 3.1 Let 7 be a geometric boundary layer mesh on a bounded
polygonal domain2 ¢ R? such that the underlying macro-element mesh
T is regular andx-uniform for x > 0. Assume that all the geometric
refinements iry” are obtained with a fixed grading facterc (0,1). Letk

be a polynomial degree distribution gh which satisfies (i) and (ii) above
and let|k| = max{kg : K € T}. Then there exists a consta@t > 0
(depending only or, o and {2) such that the spaces

V=S8N, T2 My =SE20,T)

satisfy the inf-sup condition (2.7) with N') > C k|~ wherea =  if T
does not contain triangles and = 3 otherwise.

We will prove this theorem in Sect. 4 using a macro-element technique (cf.
Proposition 4.11 ahead). The main difficulty is to establish local stability
results on the reference meshes.

Remark 3.2Although a geometric boundary layer méshmay contain an-
isotropic mesh-patches, the inf-sup constant in Theorem 3.1 is independent
of the element aspect-ratio in such a patch.

Remark 3.3We could also allow for different geometric grading factoia

the geometrically refined patches. As longras bounded away frorh and

0, Theorem 3.1 still holds true. This is for example satisfied if only finitely
many macro-elements are refined geometrically. More general families of
reference meshes are of course admissible for the local refinement of the
macro-elements, provided they are patchwise divergence stable as will be
explained in Sect. 4.

Remark 3.4In particular, Theorem 3.1 states divergence stabilityxen
uniform regular meshes consisting of affine triangles and quadrilaterals,
which is already well known (cf. [21] for thkp-version).

Remark 3.5The inf-sup constant in Theorem 3.1 depends on the geometric
grading factors. The following numerical estimate indicates that one can
not expect to remove this dependence. We calculated inf-sup constants for
[QQ]2 x Qq elements (that is piecewise quadratic velocities and piecewise
constant pressure) on the basic geometric m&sh which consists (with

the numbering in (2.11)) of the four quadrilaterals

Qllz(O,U)X(0,0'), 022:(0',1)X(0,0'),
.912:(0,1> X (U,l), 932:(0,U)X(U,1).
In Fig. 9 the inf-sup constants are plotted éok (0, 1). The inf-sup con-

stant” (o) deteriorate as approaches = 0 oro = 1. The graph indicates
clearly that one can not bound the inf-sup constant uniformty & (0, 1)
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Inf-sup constants for Q2-QO0 elements on tensor product meshes

0.7

0.6

inf-sup constant
o o
» ol

o
w

o
)

0.1

O 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sigma

Fig. 9. Inf-sup constants fo;' x Sg° elements om\, ,, for varyingo

although the boundary layer meshds: are stable independently of the
aspect ratio [18]. In that sense we expect our results to be sharp. Figure 9
suggests in fact that'(c) > K+/o(1 — o) with K ~ 1.4 independent of

o€ (0,1).

3.2 Consistency

Theorem 3.1 establishes divergence stability for genesdfE spaces on
geometric meshes suchAs ,, A,Qw, ANM and combinations thereof. With

the subsequent arguments we wish to illustrate in this section that two solu-
tion features which typically arise in viscous, incompressible flow mandate
the meshes considered here and can be approximated at a robust exponen-
tial rate of convergence. In contrast to the inviscid case, the Navier-Stokes
Equations for viscous flows with viscosity = 1/Re > 0 are known to
exhibit, due to the elliptic spatial operater Au, corner singularities and
boundary layers governing the laminar behaviour (for corner singularities
we refer to [14, 16, 26] and for boundary layers to [11,12,27]).

Corner singularitiesbasically take the form (1.1) whexe, ¢) denote
polar coordinates at the corner as in Fig. 1 (more precisely, the solutions
belong to certain weighted Sobolev spac&jundary layersare solution
components that show in boundary fitted coordinates as inlFgyrapid
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variation in the coordinat@ normal to the boundargs?, but a smooth
behaviourindependent ofin the coordinate tangential t@s2. Generically,
they assume the form

(3.1) un(p,8) = C(s)U(p/d)

whereU is the so-called boundary layer profile which is independemnt of

For singularly perturbed linear reaction-diffusion equations where the vis-
cosity v tends to zero, we hawé = /v andU(p) = exp(—p). The same

type ofexponential boundary layeeppears in the linear Oseen approxima-
tion of the NSE (see [27] where boundary layers in Oseen type equations are
studied in a two dimensional channel). For the full NSE, the laminar bound-
ary layer is related to an analytic solution of a certain nonlinear ordinary
differential equation (as, e.g., the Blasius or the Falkner-Skan equations) and
we haved = /vd(s), d(s) > 0 smooth. Note that although in the Stokes
equation (2.1) there appears the viscosigs well, the Stokes-solutions do

not exhibit boundary layers - these phenomena are strictly related to the pres-
ence of additional advective terms in the equations as they arise for example
in the Oseen linearization. However, our stability analysis is only concerned
with the incompressibility constraint and does not deal with such advective
effects where an additional stabilization of the scheme is necessary at small
v (see, e.g., [28] for an analysis of a low ordeversion FEM).

Nevertheless, arigorous asymptotic expansion of laminar solutions of the
NSE near walls seems not to be available, and the interaction of boundary
layers and corner singularities at high Reynolds number seems not to be
completely understood yet. Therefore, we confine ourselves to a very simple
model situation where thép approximation of singular behaviour as in
(1.1) or (1.2) is considered. We focus on the approximation of one velocity
component, similar statements hold also for the pressure [17].

Let A?M be the tensor product mesh on the unit sqdageometrically
refined towards the origin (cf. Definition 2.3 and Fig. 3). We assume that
the velocity component € Hl(Q) consists of two exponential boundary
layers and one corner singularity component,:.&s, up to smooth terms,
of the form

u(z1, x2) = uc(x1, 2) + Ub, (1, x2) + up, (21, T2)
(3.2) = Uc(z1,22) + C1(22) exp(—z1/d) + C2(z1) exp(—z2/d).

Here,C; andC are analytic functions oft), 1] andd = /v = 1/vRe €
(0,1] is the small parameter in (3.1) related to the viscositpnd the
Reynolds numbeRe. u.(z,y) is a corner singularity function indepen-
dent ofd which belongs to the countably weighted sp&%é@) (we refer
to [1,10] for the exact definition of this space). In polar coordingtes)
near the corner (in our example the origin) the functigns of the form
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(1.1) with analyticd. The analyticity of¢ holds true ifthe input data is
piecewise analytias is indicated by closely related elasticity and potential
problems (cf. [1,10]). Decompositions as in (3.2) with) = up, = 0, u, Of

the form (1.1) and a (smooth) remaindgrhave been given for the Stokes
and Navier-Stokes Equations in [16]. However,= u,(v) and a further
decomposition of:, into boundary layers and a remainder (with bounds
uniform inv) does not seem to be available yet.

If in the geometric mesiy,, , with hanging nodes the number of
layers is related linearly to the polynomial degreei.e. k = [Cn] for
someC' > 0, we have the following approximation property for the corner
singularityu. € B%(Q) (see [9,19]):

(3.3) inf luc — vl g < K exp(—bk)
’UESk’l(QaAn,o') ’

whereK andb are independent df (and of course of)). SinceA?, , is finer

than4,, », (3.3) holds true also for the spasé'(Q, A2 ).

In [18] we investigated with the aid of [20] the approximation properties
foran exponential boundary layer functienof the form (3.2) on aboundary
layer meshAr, . whereT, , is the one dimensional geometric mesh as in
Definition 2.3. If the grading factos and the number of layers is such
thato™ < Cd for someC > 0 then

(3.4) inf (Hub —llg.g + dlup — vl Q) < K exp(—bk)
veSHI(Q,AT, ) ’ ’

for K andb independent ok andd. Since the mesh\7, , is also contained
in A2, (3.4) remains equally valid fo¥*(Q, A2 ). From (3.3) and (3.4)

n,o?

we conclude with the triangle inequality that the spas&$(Q, Az ) can
approximate functions of the form (3.2) at a robust exponential rate:

Proposition 3.6 Let u be of the specific form (3.2). Let the polynomial
degreek be related linearly to the numberof layers and let: be such that
o™ < Cdfor someC > 0. Then

1
3.5 inf (u—v ~+dlu—0v|, o) < Kexp(—bN3
@8) ot (=g +d he) p(~bN'S)

whereK, b > 0 are independent oV = dim(S*!(Q, A2 ,)) andd.

Remark 3.7The above analysis is strongly based on the exponential form
of the boundary layer. However, similar arguments may be applied to any
other separable form of the boundary layer given in (3.1).
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Remark 3.8We point out that in the mixed setting the a-priori estimates
(2.8)-(2.9) are not uniform i > 0. Nevertheless, the dependence of the
constants orv is algebraic. The exponential convergence estimate (3.5)
indicates that the-dependence in (2.8) and (2.9) can be compensated at a
modest number of degrees of freedom in theFEM, at least for laminar
flows.

4 Proof of the stability result

This section is devoted to the proof of Theorem 3.1. The proof will proceed
in analogy to the definition of geometric boundary layer meshes. First we
present local stability results, then we give in Sect. 4.2 a general stability
result for some low order elements on the irregular reference mgsh
which is of independent interest. These results are combined with the aid
of a macro-element technique presented in Sect. 4.3 in order to obtain the
proof of Theorem 3.1.

4.1 Local stability results

For the stability proof, we recapitulate some results on the stability of spectral
elements on the reference square and triangle.

Theorem 4.1 Let K = Q andk > 2. Then there exists a constafit> 0
independent of such that

V. -v,p)s
(4.2) inf sup Q > Ck™2
0#pEMN 0£veV § ‘0‘1,(@ HPHQQ

whereV y = Qi(Q)? N H}(Q)?, My = Q—2(Q) N L(Q).
If K =T andk > 2 then there holds

V-v,p)s
4.2) it osup 0P s

0#pEMN 0£veV N \""LT ||p||o,T N
with C independent of, V y = Py ()2 N HY(T)? and My = Pyo(T) N
L§(T).
Proof (4.1) is proved in [4] or in [24] and (4.3) in [21].0
Remark 4.2While (4.1) is known to be optimal, (4.3) is likely suboptimal.

Remark 4.3As in [21], Theorem 4.1 and the macro-element technique
ahead (cf. Proposition 4.11) imply immediately Theorem 3.k-amiform
regular meshes of affine elements.
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Divergence stability on boundary layer patches (as shown in Fig. 3) is es-
tablished in [18]:

Theorem 4.4 LetT = A, be a boundary layer mesh as in Definition 2.2.
Then there exists a constafit> 0 independent of, andk > 2 such that
the spaces

Vi =85N02,A7)%, My =Sy >0, Ar,)

satisfy the inf-sup condition (2.7) with( V) > Ck™2.
Proof This is proved in[18]. O

4.2 Stability of some low order elements on geometric meshes
with hanging nodes

In this subsection we establish divergence stability of low order elements
on the irregular geometric meshes, ,.

4.2.1 A Cément type interpolant on,, , We first present a result which

is of independent interest, namely &@€lent type interpolant : H&(Q) —
Sé’l(Q, A, ») on geometric meshes with hanging nodes. We remark that
suchirregular meshes are frequently generated by adaptive FE codes and our
interpolant/ allows one to derive residual a-posteriori error estimates along
the lines of [30]. This will be elaborated elsewhere. The degrees of freedom
of the FE-spaces,” (Q, A, ,) are given by the nodegV;}, shown in

Fig. 10. Let{¢;} /| be the usual Lagrange basis functions for these nodes,
ie.pi € S5 (Q, Ano), @il < 1andpi(N;) = 6. The support ofp;
consists of the layersandi + 1 (cf. Fig. 10). We define an interpolant

by

M
I:Hi(Q) = Sy (@, Ang), Tu=Y aipi
i=1

where
fsupp(%) udz .
area(supp(y;))

The next proposition states thais essentially an interpolant of &hent
type. Let

E(Any) ={e:eedgeofK, K € A, ,}

be the set of all edges of elements4y, ,. The length of the edge is
denoted by,
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N;

H
0 1
supp(y;)

Fig. 10. Nodes inS;™(Q, An.») andsupp(g;)

Proposition 4.5 There exists a constatt > 0 just depending on the grad-
ing factoro such that

1 2 2
Z hTHU—IUHo,K"‘ Z lu — Tuly
Ke€An, K K€An,»

— 2 2
+ E helHu_IUHO,e SC|“’1,Q
ec&(An,q)

In particular, ||Iu\|fQ <C Mf@-

Proof Define
£2; = supp(yp;), d; = diam(supp(yp;)).

0, is affine equivalent to a reference supp@nwhich is either an L-shaped
patch as in Fig. 10 or a square. As usual, the following scaling property
holds [6]

4.3 H o~ di k=01
(43) Fl o~ &l

Here, we usef +— ffor the pullback operators which are defined on
functions via composition with the affine mappin@s— (2;. Now, write
u; = ulp, and fix an elemenk” € A,, ;. Let

Clearly, the cardinality off - is bounded by a consta6tindependently of
K. Further, there exist constan®§ andCs just depending oa such that

d;

4.4 < —
(4.4) CQ_hK

< Vi € Jk.



Mixed hp-FEM on anisotropic meshes Il 685

Now, since|p;| < 1and|Jk| < C

=Tl = = 3wt Y wpi— 3w

K ieJk i€JK €Jk

< S (el o + s — ol )

ZEJK

2

0,K

Scaling and applying (4.4) yields

=il <0 3 (Il + 18-l

1€JK
2 ~ ~ 112
<0 il + i -l
1€k

where
~ Aid
g, = Jotde (= ).
ff) dx

With the aid of the first and the second Poiricarequality we get

2 ”u IUHOK <C Z |Ul|1g

i€Jg

The right hand side is scaled back(#® which gives the desired result:

(4.5) hz Ju — [UHOK <C Z ‘uz|1 52
i€JK
Further,
2
!u—Iu\iK = |u— Z uipi + Z Uii — Z Qi
ieJk i€Jk €]k 1K

<CSulf g+ Y lweils o, + D lwipi — cupils o,
i€JK i€JK

We have
2 ~ ~ 2
uipili o, < Cluigil] g
~ 2
<C H(Vuz')sozllo o+ Clu(Vells o

~ 112
<C HulHLfl < C|Uz’|1,(} <C ‘ui|1,(2i
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and
2 SN (e A2 ~ ~ N\~ 12
uipi — aipili o, < C (V@) (i — ai)lly o + C (Vs — Vai) @il
<C Hul - O‘iHng +C ||Vui”07_(}
< Claif} 5 < Cluili g,
where we used again scaling and the inequalities of P@ndagether we

get
(4.6) u—Tul} x <C Y ful} g, -

i€k
Let nowe be an edge of the elemeht andé the corresponding egde in
the reference elemer. We use now the notatiofi — ffor the pullback
operator induced by the affine equivalencefdfand . We get with the
trace theorem

2

1 12 -

—Nu—Iu|? <Cl|i-TIu <Cl|lu—Iu
0,e

he ' 0,é

1,K

c 2 2
< 2 [u— IUHO,K +C'lu— Iu’l,K'
K

Referring to (4.5) and (4.6) gives

1 2 2
(4.7) il = Tullg. <C ) fuili g,
€

1€JK
Combining (4.5), (4.6) and (4.7) is the assertion (singg| < C). O

Remark 4.6An analogous interpolant can be constructed for the geometric
meshA,, , on the trianglel’.

4.2.2 The spac&€!(K) In this subsection we introduce a low order ve-
locity space which is also used e.g. in [8]. To define this space, consider a
parallelogramK with verticesaq, as, as, ay = ag. We denote byf; the
edge[a;_1, a;] and byn; its unit outward normal as shown in Fig. 1&.

is affine equivalent to the reference unit squérin the (&1, &) reference
space. The vertices, edges and normal§ @fre denoted by;, a; andn;,
respectively. We introduce the reference variables

B, @e, dgi=1—@1, f4i=1— iy

and set

41 := To23T4, Qo= T123%4, q3:= D1T2%4, q4:= T1T23.
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as
a4 = Qg _
/ 3
. Fx
T
f = a
S L & 2
Un i
aw=a| b 7,
7 N a
fa f3 !
TA_il < ) = 7:1‘3
A .
R = 1
a, J’ a3
i

Fig. 11. Notation forK andQ

For example, the polynomigl vanishes on the sidg‘%, f3 andf,. Finally,
we let

pi=n;i(GoFg") i=1,... 4.
The velocity spac&! (K) is then defined as

LY(K) := Q1(K)? & span (p1, p2, 3, Pa) -

L1(K) is of dimension 12 an@; (K)? C L£L}(K) C Qo(K)? with strict
inclusion.

Lemma 4.7 A polynomialp € £!(K) is uniquely determined by the 12
guantities:

p(az) izla"'>4’
/p~nids i=1,...,4.

Furthermore, the restriction gb to any sidef; of K depends only upon the
degrees of freedom defined on that side.

Proof This is proved in [8, Sect. 11.3.1]. O

Remark 4.8If K is atriangle, we may define a spac K) with Py (K)? C
K1(K) c P2(K)? in complete analogy to the definition df' (k). For
details, see [8, Sect. 11.2.1].

For an affine mesfi on (2 consisting of quadrilaterals the spate' (12, 7)
is
4.8) £, T)={uecH (2)? ulx e LY(YK)VK € T}
and
LY, T) == LYY(02,T) N HL(2)%
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o M ﬂMj

H———I ® —Clcx .-

Fig. 12. The degrees of freedom @, (M)

4.2.3 Divergence stability @, x S;” on4,,, We are now able to show

the inf-sup condition for;" x So° elements on the irregular geometric
mesh4,, ,. To do so, we apply the technique of overlapping macro-patches
of [23].

Theorem 4.9 The space£; " (Q, An.») andSy°(Q, A,..,) are divergence
stable, thatis the inf-sup condition (2.7) holds with a constant just depending
on the grading factop.

Proof We introduce the patche{si\/[j}jj‘/i1 using the numbering in (2.11):
My = 11 U 295U £212 U (233,
Mj=U{2:1<i<3,j<k<j+1} 2<j<n

M is built of the four elements near the origin, whereds for j > 2
consists of the elements in the laygrandj + 1. Asin (2.14) and (4.8) we
let

SO’O(MJ') = {p € LQ(Mj) 1plr € Qo(K), K C Mj},
Lyt (M) = {v € HY(M;)? : v|x € LK), K C M;}
and

Nug, = {p € S%°0M) : (V- w.p)yy, = 00 € £ (01))}

The degrees of freedom af,"' (M;) are shown on Fig. 12. The circles
indicate the values o - n and the crosses the nodal values (cf. Lemma
4.7). Now, it holds

(4.9) Ny, = {p = const on M;},

since by our choice of the velocity spaces a pressutgjnis not allowed to
have jumps over the interelement edges. We can$plit)/;) orthogonally
in L2(M;) into

(4.10) SP0(Mj) = Nag, & Wy,
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Let
E(M;) = {e: e edge of an elemert C M;, e ¢ OM;}

denote the set of all interelement edges in the pAfghExtra care must be
taken due to the presence of hanging nodes. Therefore, we define

E(M;) = {e € E(M;) : e has no hanging node in the mid-pdint

Globally,£(A,, ») and&y(A,,,) are defined completely analogous. Recall
that the length of an edgss h.. We denote byf]. the jump of a piecewise
continuous functiorf across the edgeof an elements’:

[fle(z) = lim f(z+tn.) — lim f(x —tn.) x€e
t—0t t—0+

wheren, is the unit outward normal to the elemefit On each patcid/;
we introduce a mesh-dependent seminorm

bl = 3 W IVls 32 b [Nl as

KCM 6680

Forp € S%°(M;) only the jump terms contribute to this seminorm. Globally,
we define analogously

o= 3 MelValicr > he [lplas
KEAn N CEEO(An O'
Hence, a scaling argument gives the local stability condition

(V-v,p)y
(4.11) sup - M >v>0 Vp € W, \{0}
075116511 ‘U‘IM ‘p’M

wherey is independent of (and thus of the meshwidth) but depends on
the grading factos.

Now, let0 # p € Sg°(Q, An»). We writep; := p| ;. According to (4.9)
and (4.10) we decompose into

Pj = ¢ T

wherec; € Ny, is constant onV/; andg; € Wyy,. (4.11) implies that for

eachg; there exists a velocity; € £y (M;) (choosev; = 0 if g; = 0)
such that

2
(V- vj7qj)M]~ = ’V‘Qj‘Mj ) "Uj’LMj < IQj’M]. )
and therefore also

2
(V'Uj,pj)Mj > '7|pj’Mja |'Uj|17Mj < |pj|Mj'
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We set now := 31 v and havev € £4(Q, A,,;). Then

M
(4.12) (V-0,p)g 27> Ipila, = Cloli g
j=1
and
M
(4.13) o7 < D 1wilia, < Clolj -
j=1

(4.12) and (4.13) imply

(V-v,p)g Ipth

(4.14) sup >4 |p|hQ Ch ||p||0Q I ||

0£veLE (D, An,0) vl1g

Following still [23], we show that in (4.14) the semi-norm can be replaced
by the full L2-n0(m. By the continuous inf-sup condition (2.6) there is a
velocityv € H}(Q)? such that

2
(V-u.0)g 2 Clollg. g < Iploo-

Letv), = ITv := (fvy, [vg) € Sé’l(Q, A,.»)* wherel is the CEment type
interpolant of Proposition 4.5. We integrate by parts, apply Cauchy-Schwarz
and Proposition 4.5 to get

(V-vnp)g= (V- (vh—v),p)g+(V-v,p)y

Z /U—Uh -Vp dx

+ Z [ (n=v)-m)leds + ol
eegO(An,o') ¢

— 2
>—3 N Bl vn—vlf
KeAn o

=

_ 2 2
£ =l b g+ Cll
ec&(An,s)

2
> —Cy |'U|17QA |p|h,Q +C3 HpHOQ

’p|h
2 HPHSQ Cy— Cy D
’ Ipllo.o
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Further,[vs|, 5 < Clplly o, Such that we established

(v ' 'U,p) ) |p‘ )
@15)  sup L > ploo [ Co - O Y
0£veLy N (Q,An,0) |”|1,Q ’ HPHQ,Q

We write ¢ for the ratio|p|,, 5/ [[plly 5 @and combine (4.14) and (4.15) into

2P0 5 1 o min £8)

sup Qi

0£veLy (Q,An,0) vl1g

with f(t) = max(Cy — Cst, C1t). Sincemingxg f(t) = %, the asser-
tion follows. O

Remark 4.10A similar construction yields stability of low order elements
for the geometric mesh\,, , on the triangl€l’. This holds for example for
Syt x S5 elements or one could use the velocity spiéek ) mentioned

in Remark 4.8.

4.3 A macro-element technique

A useful tool to prove divergence stability is the macro-element technique
introduced for example in [24]. It is stated in a very general form in the next
proposition whose proof is given for the sake of completeness.

Proposition 4.11 Let F be a family of irregular or regular affine meshes
on the reference elemeff. On a bounded polygof? ¢ R? let 7 be an
affine mesh which is obtained from a (coarser) affiraniform macro-
element mesly,, in the following way: Some elements ff, are fur-
ther partitioned intoF (7) where7 € F and Fx is the affine map-
ping betweernk and K. Letk be a polynomial degree distribution of
and |k| := max{kg : K € T}. Assume that there exists a spakey C

SEL(0,T)2 ¢ HL(£2)? such that

(4.16) inf sup M > C

0£peS00(2,Tm) 02veX v V110 IPlloo —

with a constantC; > 0 independent of. Assume that on the reference
elementK the local stability condition

(4.17)  inf sup M

. > Cok™@ Vk > 2
0#peSy > (K) 0£vesy! (K)? ’”’1,9 HPHO,Q
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is valid withCy > 0 anda > 0 independent of. Assume further that the
family F is uniformly stable in the sense that there holds

V-v,p)z _
(4.18) inf sup Vevpl > Cy k|~

0pesh 2O (RT) o pvest (i 12 [Pk IPllo &

for all 7 € F and all polynomial degree vectokson 7 that appear in the
correspondingly refined macro-elements.

Then there exists a consta@it > 0 only depending o€}, Cy and k
such that the spaces

(4.19) V=552, T)?, My =5y>°2,7T)
satisfy the inf-sup condition (2.7) wit{ N) > C'|k|™“.

Proof Letp € ngz’o((?, T). We decompose into p = p* + p,,, where

pm is the L2(£2)-projection ofp onto Sg’o(!?, Tm), the space of piecewise
constant pressures with vanishing mean value on the macro-element mesh
Tm. Because of (4.16) there exiaig, € Xy C Sg’l((z, 7)? such that

(4.20) (V- 0m.pm)o > Cillpmlgo.  [omlo < [Pmllo.q-

Next, considep* ¢ S§_2’0(Q, T). Therefore, fix a macro-elemeht € T,

and setpj; := p*|k. By constructionpj, € S§*2’0(K, Tr) whereTx is

the restriction of/” to the macro-elemer’. We transfornpj, back to the
reference elemer via the affine transformatiof’s, that is we put

p}{ =pjx o Fk.

We haveTi = Fx(T) for someT e F if K is further refined off =
Fy(T) with 7 = K if K is not locally refined. By (4.17) or (4.18) there
existsv®, € S (K, T)? such that

2
Vv i) = Colk ]|
( K PR) g = 2|k Pk 0,K
*
Yk

(4.21)

0,K

< |7
1L,K — Pg

We can not use the usual pushforward operator to defjnen K but rather
the Piola-transform

v = Pg(vy) = | Jg| JKV o Fil.
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Here, Ji is the Jacobian of i and|Jx| = det(Jk). Jx is constant and
thusvj, € 5571(1(, Tk )?. Moreover, there holds (cf. [5])

(4.22) (V- viopi) . = (V- vk i)
(4.21), (4.22) and scaling give
2
(V vk, pk)i = C2 [k P 0.
C —x x (12
(4.23) > hTCQ &I 1Pk Mo,k -
K
By similar scaling properties for the Piola-transform (cf. [5]) we get
x hi | . hi || «
vkl x < Cg Vil S Cg Pillox
hg | .
(4.24) < CTK 1Pk Mok
Pk

where we applied once again (4.21). (4.23) and (4.24) imply the existence
of aS§’1(K, Tk )*-velocity field onK also denoted by, such that

c - 2
(Vi vk 2 52 B Pk llo -
(4.25) wkl g < IPkllox -

We define now™ = 3, v} which belongstci?g’l((), T)? C HY ()2
(4.25) holds independently df and hence the same estimate is valid for

v¥,

* ok C — * * *
(4.26)(V - 0", p") g 2 5 Ca k[ [Ip ., Wk <P llog-
——

=:C3
Select noww = v* + Jv,,, Whereo > 0 is still at our disposal. Then
(v : vvp)Q = (V : ’U*,p*)Q + d (v : vmvpm)()
+ (Vv pu)g +0 (V- vm,p)g-

Sincepy, is piecewise constant 6f, andv* vanishes oW K forall K € T,
the third term(V - v*, p ) 2 IS zero. With (4.20) and (4.26) one has for 0

. 2 2
(V- v,p)g 2 Cs k[ [[p*[I5,0 + 6C1 [Ipmllo, 0 = 0Ca [vmly g 197 ]l0,0
> Cs |k|™ [|]p*
> Cs |k|™ [|]p*

2 2
l0,0 T 0C1 IPmllo,0 = 0C4 [[Pmllo,0 17" llo,0
2 2

0.2 + 6C1 [[Pmllo,
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504 * 12 2
T (F2 Ho,rz — 0eCy ||pm\|o,n
I 1A
= (Caltt™ = "2 ) W13+ 8.(C1 = Cae) Il

Choosings = - ands = % yields

C3 (, —ay %2 - 2 - 2
(V-v,p)g > > &I ™ 15,0 + Cs 1k~ [[Pmllo,0 = Co &I 21150 -

(4.27)
From (4.26) and (4.20) follows also

‘”’1,9 < |”*’1,Q +6 ‘”m|1,9 <|lp*
(4.28) < Crlpllog

lo,.0 + ClE Ipmllo,0

with Cr independent ok. (4.27) and (4.28) imply (4.19) which finishes the
proof of Proposition 4.11. O

4.4 Proof of the main result

Applying the macro-element technique in Proposition 4.11 gives immedi-
ately the following corollaries used in the proof of Theorem 3.1.

Corollary 4.12 Let A, , be the geometric mesh @ (cf. Definition 2.1).
Letk be a polynomial degree vector as in (2.12) andA¢t= max{kx : K
€ A, .} Then there exists a constafit > 0 independent of. and k£ but
depending omr such that the pairs

V= SOEI(Q’ An,0)2> My = S(]Eilo(Q? An,a)

fulfill the inf-sup condition (2.7) with (V) > C \@|_%.
Proof We apply Proposition 4.11 with
F = @7 Tm = An,o

andx = k(o) is the uniformity constant of the mesh, , (which depends
only ono). SettingX y = Eé’l(Q, A, ), condition (4.16) is satisfied due
to Theorem 4.9 withC; = C (o) independent of. (4.17) holds because
of Theorem 4.1 withw = 1/2. The assertion follows now from Proposition
4.11. O

Corollary 4.13 Let A%,U be the geometric tensor product mesh@rcf.
Definition 2.3) with underlying geometric mesh, . Letk be a polynomial
distribution onA?w whichis constanton eacheleméfite A, ,.Let|k| =
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max {kx : K € A2 ,}. Then there exists a constafit> 0 independent of
n andk but depending on such that the spaces

Vi =5NQ,42 )%, My =SE2Q,42,)

satisfy the inf-sup condition (2.7) with V') > C' |k| 2.
Proof As in Corollary 4.12 above, we apply Proposition 4.11 with
F={Ar, : T, arbitrary}, Tp=A4,,

andx = k(o) is the uniformity constant of the mesh, , (which depends
only ono). SettingX x = £y (Q, A,..,), condition (4.16) is satisfied due
to Theorem 4.9 withC, = C;(o) independent of. (4.17) follows from
Theorem 4.1 and (4.18) from Theorem 4.4 witk-= 1/2 (since the constant
in Theorem 4.4 does not depend on the one dimensional MgsH hus
Proposition 4.11 can be applied and Corollary 4.13 follows.

Remark 4.14Corollaries 4.12 and 4.13 hold also for the meshgs, and

A?W on the reference triangl& with inf-sup constanty(N) > C |k| .
Divergence stability for the mixed meshes mentioned in Remark 2.4 is ob-
tained in the same way using Proposition 4.11, Theorem 4.1 and Theorem
4.4. The inf-sup condition holds with' |k|”® wherea = 1/2 if the mesh
contains no triangles and = 3 otherwise.

Proof of Theorem 3.1The proof of Theorem 3.1 is now straightforward.
We putX y = S5'(£2, Tw)?. By standard theory (see, e.g., [8,5]), (4.16) in
Proposition 4.11 is satisfied. Due to Theorem 4.1, Theorem 4.4, Corollary
4.12, Corollary 4.13 and Remark 4.14, we see that (4.17) and (4.18) in
Proposition 4.11 are valid witek = 1/2 if the mesh does not contain
triangles and withh = 3 otherwise. Proposition 4.11 therefore gives the
assertion of the theorem. 0
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