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Abstract

We consider the finite element method in which essential boundary conditions are
imposed in a weak sense using a technique introduced by Nitsche. This technique is
applied in a convection-diffusion-reaction problem and for slip boundary conditions
in Stokes flow. We give the error estimates for the methods and also some numerical
results.

|
Introduction

Traditionally, one of the main advantages of the standard finite element
method has been its efficiency in treating complicated geometries and the
accompanying boundary conditions. There exists, however, problems for
which is seems to be worthwhile to explore the use of non-standard
techniques for treating boundary conditions. Two of these problems will be
considered in this paper; a convection-diffusion-reaction problem and slip
boundary conditions for viscous incompressible flow. For these we will
apply a technique introduced by Nitsche [6].

The plan of the paper is the following. In the next section we recall the
method of Nitsche and introduce a new variant of it. Then we apply the
techniques for the two problems mentioned above. We give the theoretical
error estimates and discuss the advantages with the technique. In the last
section we give the results of some numerical computations.

The Nitsche method

We let ¢, denote the regular finite element division of € into triangles or
tetrahedrons. For simplicity we assume that Q =Uxec, K. We use the
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notation £ =9K NI for an ed

ge or side lying on the boundary T" of the
domain Q. We also define

O Wlsn = D e, Wi
for s=1or s=2, and

(V’ w)-l,h,G = ZECG hf;l (V: W)g ,

for a subset G = TI". The notation

)k and'(-,-)E is used for the I,-inner
products on K and E, respectively

- The mesh parameters are defined by

hge =diamK, he =diamE and hzmax,(ech hg.

Let us next consider Nitsche’s me

thod [6] for the model Dirichlet
problem
-Au=f in Q,
, (1)
U—uy=0 onT.

In the method no bound

ary conditions are imposed on the finite element
subspace defined as

Vi={ve H\Q)lvx e B(K) VK e Ch} -
The method is defined as: find u, €V, such that

Bu,V)=F(V) VveV,, (2)
with

B(u,v) = (Vu,Vv) = (Vu- 7, v)—{u,Vy- n)+ B(u, V) othrs
and

(3)
FO)=(f)~ (U, Vv 7) + B(uto, ) s

where B>0 is constant and 7 is the outward unit normal vector to the
boundary. The method is consistent and one has an optimal error estimate in
the norm

}Mﬁh 2"1’"12 +(v, V)-x,h,r .

L
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Theorem 1. There are positive constants C, and C so that if B>C it
holds

“u B uh“L = Ch* el -

The proof is given in [6] (see also [7])- Let us here simply indicate the main
steps of it. First one has

Bu,u) = (Vu,Vu) - 2AVu-n, ) + B, )1 .r-
Next, using the folloWing inverse inequality

S op helVu il s < Ve | (4)

and the arithmetic-geometric-mean inequality, it follows that if > C; then the
following stability estimate holds

B(u,u)= Czﬂul]i , VueVh

The error estimate then follows from the interpolation estimate in the norm

I lln-
The biggest drawback with the above method is the condition B> G,

where C; is the constant in the inverse estimate of Eq. 4. This condition is
avoided if the forms of Eq. 3 are modified to be

B(w,v) = (Y, Vv) = (Vi V) + (V- i)+ B, v)-nr>
)

and

FO) = (f )+ (o, V- )+ Blio, V) -

With this the method is still consistent and, in particular, stable for all positive
values of B:

Bu,u) = (Vu,Vu) + B, u)-1ar 2 Cuullih.
Therefore one obtains:

Theorem 2. Suppose that 3> 0. Then the problem defined by Eq. 2 and
Eq.5 hasa unique solution satisfying

S R R
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"u — Uy ”L A < Chk nu“k+1 :

Compared to the original Nitsche method this formulation has the drawback
that the symmetry of the discretization is lost. Hence, it does not seem to be
too attractive. In the diffusion-convection-reaction problem considered below
the situation is different.

Let us here remark that there is a close connection between Nitsche’s
approach and recent stabilizing techniques for saddle point problems. This is
discussed in [4]. In connection with the Stokes problem Douglas and Wang
[2] have proposed non-symmetric formulation similar to our modification of
Nitsche’s method. Many other variants of Nitsche’s method exist and some of
them are discussed in [7].

The diffusion-convection equation
We consider the steady scalar diffusion-convection-reaction problem
Lu—f=~dAu+a-Vu+cu—f=0 in Q,

: (6)
u=u, onl, ;

where the diffusion coefficient d 2 0, the velocity vector @ and the sink factor
c¢20 are constants. This problem is numerically difficult both in the
convection- and reaction-dominated cases. ;
The method we propose combines the SUPG [1] formulation and the
modified Nitsche method: find u, € V, such that :
Bo s, V) + Br (i, V)= F(v) Vvel,, 7
where

B, v) =(dVu,Vv) + (G- Vu,v) + (cu,v) + (Lu,T- V),

B (u,v) =—(a- ﬁu,v)r__ —(dVu-n, V) +(u,dVv- Ay + B dv)_y s (8)
FO) =(fv)+(f,T- VV)in — (Zz' : h'uo,v>r_ + (uo,dVv~ ﬁ>r + B(ug,dVLLh‘r,

and V, is defined as for the previous problem. The stability vector expression
is T=oa/|al, where o is positive.
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As the problem is not symmetric it is natural to use the modified form of
Nitsche’s method. By this one has more freedom in choosing the positive
parameter 3. We would like to point out that in the limiting case d =0 the
boundary condition wu=u, is only left on the inflow part
I ={fel'ld-n<0} of the boundary. An advantage of our formulation is
that this is correctly taken into account by the method. Similarly, in the
reaction limit when d =0 and d=0 no boundary condition is left in the
problem and the same happens in the numerical scheme.

For brevity we will give the error estimate for the case of a small
diffusion. It will be given in the norm

I = dblf + el +1al™ (@ Vv.a@- Vv),, + (V@ e+ d(vav)nr-

Theorem 3. Suppose that d <Clalhy VK €Cn, B>0 and that o> 0 is
sufficiently small. Then the solution w, € V, to the problem of Eq. 7 and
Eq. 8 is unique and satisfies '

k+1/2
=, < CHE 2l |
The proof makes use of standard techniques explained for example in [3].
Let us also remark that for the case when the diffusion is greater , i.e.
for elements where d > Cld|hy , one chooses ot=0.

The Stokes equations

We consider the problem scaled so that the viscosity equals unity: find the
velocity i and the pressure p such that

V-u=0 1in Q,
i=u, onlj, )
f=0 onT,

i-Ai=g, i-@F-A)A=0 onl,
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where ¢ =6(iZ,p)- 7, with o(ii, p) = 2e(ii) — pI, and e(ii) is the Symmetric
part of Vii. We assume that the velocity is given on I and that the traction
vanish on I,. On T we impose a slip type of condition. We will also assume
that the disjoint boundary parts I3, i=1,2,3, all have a positive measure and
that 0Q =T, U UT;.

We will use a well known stabilizing technique [5] to handle the
divergence constraint. The slip condition #-7i=0 on I3 we treat by the
original symmetric Nitsche technique. This seems to be more practical than
imposing it in strong form as that would involve both local co-ordinate
transformations and the approximation of the normal at corners (either

appearing in the domain or arising in its finite element modelling). We remark

that the essential condition # =14, on I} could of course also be treated by
Nitsche's method.

The finite element method is thus defined as: find (s — Uy, pr) € Vi X P,
such that

gﬂ(ﬁh,ph;‘-}’:Q)+$1‘(ﬁhaph;‘7aq):?‘(gaQ) V(V,p)th XPh ’ (10)
where
Bo (i, p;7,q) = 2((i),£(7) (V- i, q) - o(L(U, p), L, @D 1>
B (i, p;V,q) = --(ﬁ-z‘,fi»;z)l.3 — (@75 )y +BE AT R
FO.Q =) +0F, LG9, (8,5 )y, +B(e,7-7)_y . (1)
and § =0(V,q) 7. It is readily verified that the formulation is consistent, 1.€.
the exact solution (if,p) satisfies Eq. 10. (Here one has to use the fact that
since V-1 =0 it holds Aii =2V -e(ii)).
The finite element space for the velocity is defined by
v, = {v e [H(QI 191 e [B(KOIV VK ¢, | 9]r, = o}.
The pressure is approximated either discontinuously

P={peL(Q)lpkeB(K) VK ey},

with /20 or continuously (/=1)

T P S —
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P ={peC(Q)!pkeP(K)VK (s}
For the error estimate we use the following norm
7, =150 +F.9)- e,y -

With this we get a measure of how well the essential boundary condition
i-n=gon I, isapproximated.

Theorem 4. Suppose that either k2N or P, < C(). There are positive
constants Cy and C, such that if 0<a <C, and B> C, then the solution
(i, — Uy, p) € Vs X By to the problem of Eq. 10 and Eq. 11 is unique and
satisfies :

7 -], +lp = 2l < CH* ([, +1Pl, )
where s =min{k,l+1}. |

The proof of this result is obtained by combining techniques given in [5]
and [6].

Examples

Although the bilinear and linear forms of the variational formulations are
somewhat more lengthy than when enforcing the Dirichlet type of conditions
strongly, no particular problems arise in practice. The examples are solved
using linear triangular elements.

Example 1

The diffusion-convection-reaction problem can be quite difficult from the
nAumerical point of view when the convection term dominates, i.e., when
a=hla|/d is large and the Dirichlet data is non-smooth. In that case a
boundary layer much thinner than the element size appear at the outflow
boundaries and also inside the domain. Similar behavior is possible also in the
reaction dominated case when &= h’c/d is large.

Fig.1 shows the numerical results when the solution domain is the
rectangle Q= {(x,y}|0<x<land 0<y<1} and the Dirichlet data is zero
except on I'={(x,y}!x=0and 0.3<y<1} where the value is one. The




334 INCOMPRESSIBLE FLOWS

stability parameters used were ot =min(6,4}/9 and B=10 and the problem
parameters were varied to end up with representative combinations of 4 and
¢. It is noteworthy that the oscillations of the SUPG-formulation, when the
boundary layers are skewed to the flow, are reduced substantially.

Fig.1. Numerical results on a regular 800 triangular element mesh where each small
rectangle of the figures is divided into two triangles. The columns correspond to the
dimensionless parameter values @ =0 (first) and & = 50 (second) and the rows ¢=0 (first)
and ¢ =1 (second).

Example 2

The second example problem describes flow past a frictionless cylinder
positioned at the center of a rectangular domain. Due to the symmetry only the
upper half

Q={(x,y)I-1<x<1, 0<y<land yx%+y?2 >3/10)

of the original domain was used in the calculations. The boundary conditions
describe the channel flow, where the right hand side edge is of the type I
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(outflow), the upper and left hand side edges are of the type I (wall and
inflow). The remaining part, consisting of the lower edge with a cylindrical
section, is the type I3. The velocity components given on the inflow part
represented fully developed channel flow.

In this example we applied piecewise linear approximations for the
pressure and velocity components on a mesh consisting of triangles. The
stability parameters were o =1/10, B=10. Numerical results of Fig.2. show
that the frictionless wall conditions are satisfied correctly.

Fig.2. Channel flow past a frictionless cylinder on a mesh consisting of 850 triangles. Dark
éaCkg?Ound coloring represents small pressure values and light larger ones. The highest
velocity component in the vertical direction at the inlet is one. The velocity vectors shown
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by dots have zero magnitude. The lower figure is a magnification of the neighbourhood of
the cylinder.
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