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Abstract 

We discuss the stabilization of finite element methods in which essential boundary conditions are approximated by 
Babu§ka's method of Lagrange multipliers and we show that there is a close connection with this technique and 
a classical method by Nitsche. 
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1. I n t r o d u c t i o n  

The foundations for the theory of mixed finite element methods were laid down in a paper by 
Babu~ka [1-1 in which he introduced the idea of approximating essential boundary conditions in 
the Dirichlet problem by using a Lagrange multiplier. It was shown that the method will converge 
optimally if the finite element spaces, i.e. the space for the unknown in the domain and the space for 
the multiplier on the boundary, satisfy an "inf-sup" condition. In the original paper [1] the actual 
question of how to construct subspaces satisfying the inf-sup condition was more or less left open. 
This problem was later studied in detail in a series of papers by Pitk~iranta [19-21], and it was 
shown that there is not too much freedom in choosing the spaces if the optimal order of 
convergence of the method is desired. 

Traditionally, the method of using Lagrange multipliers has perhaps not been considered as 
a method to be used in practice, but more as a model problem for studying the mixed finite element 
method. Lately, there has, however, been a renewed interest in the method and it has been 
proposed to be used in domain decomposition I-8, 9, 16], in fictitious domain methods [11, 12] and 
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for contact problems [13, 15, 17]. However, in view of the difficulties with satisfying the inf-sup 
condition the usefulness of the technique can be questioned. 

During the last few years it has been shown that the problem with the stability of a mixed finite 
element formulation can to a large extent be avoided by adding well-chosen stabilizing terms to the 
bilinear form defining the mixed method (cf. [10, 14] and the references therein). In two recent 
papers by Barbosa and Hughes [4, 5] this stabilization technique was proposed for the original 
method of Babu~ka. Since the finite element spaces now do not have to satisfy an inf-sup condition, 
the method now seem to have a much greater potential in the applications mentioned above. 
Similar ideas was independently introduced by VerfiJrth [22] for the approximation of slip 
boundary conditions for the Navier-Stokes equations and by Baiocchi et al. [3-1 for domain 
decomposition. 

The plan of this paper is the following. First, we recall the method of Babu~ka. Next, we propose 
and analyze a simplification of the stabilized formulation of Barbosa and Hughes. We then show 
that this method is closely related to a classical method by Nitsche [18]. 

2. Prel iminaries  

Let I2 be a bounded domain in R a, d = 2 or 3, with a smooth boundary/ ' .  We consider the model 
Dirichlet problem 

- Au = f  in f2, (2.1) 

u = g  on F. (2.2) 

This problem is chosen only for notational simplicity; our statements are also valid for other 
second-order elliptic problems such as, e.g., the equations of linear elasticity and Stokes problem. 

The Sobolev spaces H*(S)for S c t2 or S c / - ,  and s t> 0, are defined in the standard way (cf. 
[1, 2, 7-1. The norms are denoted I1 IIt, s with the subscript S dropped when S = t2. We recall that 
the following trace inequality holds for v ~ H~(12), with s > 12, 

II v IIs- 1/2,~ < C II v IIs. (2.3) 

(In the paper C and Cj will denote positive constants which all are independent of the mesh 
parameter h.) We will also use the space H-1/2(/-), i.e. the dual space of HI/2(I2), with 
the norm 

< / / , z >  
I lml l_ l /2 , r  = sup , (2.4) 

z~H,:2¢r) II z II x/e,r 

where ( . , . )  denotes the duality pairing. 
For functions v 6 HI(~)  with Av ~ L2(I2), it holds (cf. [1, 2-1) dr~an ~ H-1/2(/-) with 

~ - 1/2.r < c (  II v Jl, + II Av II o). (2.5) 
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The problem is then given in the following variational formulation: given f e  L2(I2) and 
g ~ HI/2(F), find u ~ HI(f2) and 2 e H-x/2(F) such that 

~(u,2;v,/z) = (f,v) + ( g , # )  V(v ,#)~  nx(t2)x H-1/2(F), (2.6) 

with the bilinear form defined by 

~(u,A;v,#) = (Vu, Vv) + (2, v) + ( / t ,u) .  (2.7) 

Above ( . ,  ") denotes the inner product in L2(f2). 
The problems has a unique solution (cf. [1]). By using Green's formula in (2.6) we get the relation 

8u 
2 + ~ n n = 0  o n F .  (2.8) 

3. The finite element methods 

When discussing the finite element methods we will, for notational simplicity, consider the case 
when simplicial meshes are used, but we emphasize already now that the big advantage of the 
stabilized methods is that a very big freedom can be allowed in chosing the finite element spaces 
since no stability conditions are needed. 

Let now ~h be a partitioning of the whole of R a into closed simplices (i.e. triangles and 
tetrahedrons, respectively) and assume that the partitioning satisfies the usual requirements that 
the intersection of two simplices is either empty, a vertex, an edge or a face. The partitioning of f] is 
now defined as 

Cgh = { K I K = S c ~  for some S e ~h}. (3.1) 

The finite element subspace for the field variable is then defined as 

V, = {v ~ HI(O)I qx ~ Pk(K) V K  ~ c~h}, (3.2) 

where Pk(K) denotes the polynomials of degree k/> 1 on K. 
We will assume that the elements of Cgh verify the usual regularity condition 

hx <-% Cpr VK e c~h, (3.3) 

where hx and PK are the diameter of K and the diameter of the biggest circle (sphere) inscribed in K, 
respectively. We have to remark here that this condition is not automatically valid for every mesh 
~ ,  satisfying the same condition. 

To define the space Ah for the Lagrange multiplier on the boundary we proceed as follows. For 
d = 2 the finite element partitioning Ch of the boundary consists of segments and for d = 3 the 
elements are curved triangles. This partitioning is also assumed to satisfy the usual compatibility 
conditions, i.e. the intersection of two elements is assumed to be either empty, a point or a curved 
edge (for d = 3). We further assume that each element E ~ o~h is the image of the reference element 
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/~ (i.e. the unit interval or unit triangle) under a smooth mapping FE. We then define 

Ah = { ~ ~ L2(r)  l~(x)~E = fi(F~l(x)) for some/~ e Pt(E), V E e 8h}, (3.4) 

with l >i 0. 
The regularity assumptions for the boundary mesh we state as follows: 

IIFell <<. ChE, IIF~7111 <<. Ch~ ~ V E ~ g h ,  (3.5) 

where I1"11 denotes the Euclidian norm and he is the diameter of E E 8h. 
We will also make the natural assumption that there are constants C1, C2 such that 

Clhr <<. he <<. C2hx for all K e C6'h and E e O~h with K n E  :# 0. (3.6) 

As usual we will denote h = m a x x ~  hr, and from (3.6) it then follows that he <<. Ch for all E 6 ¢h. 
First, we will consider the original method. 

Method 1: Babu~ka's method of  Lagrange multipliers 

In this the variational formulation (2.6) is transferred to the finite element subspaces: find 
(uh, 2h) ~ Vh x Ah such that 

~(Uh,)~h;V,#) = ( f , v )  + ( 9 , # )  V(V, kt) e V h x A  h. (3.7) 

The convergence of the method is given by the following classical result. 

Theorem 1A (Babu~ka [1], Brezzi [6]). Suppose that the finite 
conditions 

(~,v) 
s u p - - > ~ C I I l ~ l l - 1 / 2 . r  V l~ s Ah, 

wv.\~0/ II v [11 

and 

Iv12 ~ CIIvll 2 V V ~ { v ~ V h I ( ~ , v ) = O V ~ A h } .  

For the solution (uh, 2h) to the problem (3.7) it then holds 

Ilu - uhllx + 112 - ,~hll-a/2,r <<. C(h k Ilull~+x + hl+3/21[2 IIt+x,r), 

when u e Hk+ l(f2) and 2 e Ht+ I(F). 

element subspaces satisfy the 

(3.8) 

(3.9) 

(3.10) 

and 

Ilzl12-1/z,h = ~ hE IlzlloZ,E for z ~ L2(F). (3.12) 
g~sh 

IIvll2/2,h = Z h~ a IIvlIg,E for veHl( f2)  (3.11) 
E~Sh 

This method has been thoroughly studied by Pitk~iranta. Among other things, he showed that 
the stability and error analysis is most easily performed using the following mesh-dependent norms 
(introduced in [20] with a different notation) 
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For these norms it holds 

(v ,z)  <<. II v II X/2h II Z II x/~h V(V,z) e nx(I2) x L2(F) 

We also denote 

[[vlll,h = Ilvl[1 + Ilvllx/2,h VveHX(I2). 

The interpolation estimates in these norms are proved by scaling (cf. [20]). 

(3.13) 

(3.14) 

Lemma 1. For u e H k + 1 (["~) it holds 

inf [[u - VIILh ~< Chkllullk+l. 
v~Vh 

(3.15) 

Lemma 2. For 2 e Hl+X(F) it holds 

inf II 2 - ~ II- x/2,h ~< Ch I + a/2 I1,~ [11+ l , r "  
/~eAh 

(3.16) 

In the sequel we will also need the following inequality, which is proved by scaling using the 
regularity conditions. 

Lemma 3. There exist a constant CI such that 

I ~V _ 1/2,h Ci ~ ~<llVv[Io V veVh (3.17) 

In [20] the following result is proved. 

Theorem 1B (Pitk~iranta [20]). Suppose that the finite element subspaces satisfy the conditions 

and 

(l~,v) 
sup ~ >1 C [[1~ ][ -1/2,h V la e Ah. 

Ivl 2 ~CIIvl l2h V O e { v e  VhI<~,V> = 0 V u e A h } .  

For the solution (Uh, 2h) to the problem (3.7) it then holds 

Ilu - unllLh + 112 -- 2nll-1/2,n ~< C(h~llull~+l + hZ+a/2llAllt+l,r), 

when u e Hk+ 1(I2) and 2 e HI+ I(F). 

(3.18) 

(3.19) 

(3.20) 

In the papers [19-21], it is shown that the spaces Vh and Ah should be designed quite carefully in 
order that the stability conditions would be valid. Hence, there are reason to be quite pessimistic 
with regards to the general usefulness of this approach in the applications for which the methods 
has been proposed. 

Therefore, it is natural to try to modify the method with similar techniques as those that has been 
successfully used for the Stokes problem [14, 10]. This has also been done by Barbosa and Hughes 
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[4, 5]. Their methods did, however, contain terms that are not necessary for the stability. By 
dropping them we obtain the following method. 

Method 2: A simplification of  the symmetric formulation of  Barbosa and Hughes [4, 5] 
Find (uh, 2h) ~ Vh x Ah such that 

~h(Uh,~h;V,~) : (~V) "]- ( 9 , ~ )  V(V,].[) ~ Vh X Ah, (3.21) 

with 

( ~h(U,,~.;V,#) ---- ~ ( U ,  2;V,/.t) - -  ~ ~ hE ). +-~n,~ + t~n/E (3.22) 
Ecgh 

where ~ is the original bilinear form (2.7) and (- , - )~ denotes the Le-inner product on E. 
The first observation concerning this method is that it is consistent due to (2.8). 

Lemma 4. For the exact solution (u, 2) to (2.6) it holds 

~h(u,A;v,#) = (f,v) + (g,~t) V(v,l~)~ Vh×Ah, (3.23) 

provided that 2 ~ LZ(F). 

The next observation is that the modified bilinear form is bounded with 
mesh-dependent norms. 

Lemma 5. There is a positive constant C such that 

I~h(v,~;z,~)l ~< C(llvllx.h + II~lL-1/2.h)(llzlll.h + Ilnll-x/2.h) 

V(v,/~) ~ n~(f2) × L2(F) V(z, r/) e n~(t2) × L2(F). (3.24) 

Next, we will prove the stability and optimal order of convergence. 

Lemma 6. Suppose that 0 < ~ < C~. Then it holds 

~h(V, #; z, ~7) 
sup /> C(ll v II ~,h + II ~ II- x/2,h). (3.25) 

Proof. Let (v,/z) ~ Vh x Ah be arbitrary. We first note that the estimate of Lemma 3 gives 

E~Sk O, E 

>1 (1 - ~c/-x)lllZvllo 2 + ~ y~ hEll~llo2 E 

>>. C x ( ll Vv ll 2o + II~llZ-~/2.h), (3.26) 

respect to the 



R. Stenberg /Journal of Computational and Applied Mathematics 63 (1995) 139-148 145 

since it was assumed that 0 < ~ < C~. Next, let IIh:L2(F) ~ Ah be the L2-projection. Since the 
functions of Ah are discontinuous, we can define/~ ~ Ah by ~IE = h i  llIhvle for all E e $~h. We then 
have 

II/~ II- 1/2.h = I1 llhV II 1/2,h" (3.27) 

By using (3.13), Lemma 3 and the Young inequality we then get 

~h(v,p;O, f t ) = < v , ~ > - - ~  2 he, p + - ~ n , #  
E~#h E 

= Y~ h i ' l l / / hv l lg .E - -~  Y~ ~ + N , / - / , v  
E E d '  h E E t ~  h E 

( t~V q_ [[iAll_l/2,h)ll[lhVl[1/2,h i> II / /hv l l~ /2 ,h- -  ~ n  -1 /2 ,h  

/> I lnhvl l~/2,h --  C~(l l lZvl lo  + IlPll-,z,h) lllThvll,2,n 

>f II//hvll~/2,h - 1  : 2 C2(IIIZVlIo + I1~11-~/~,h) 2 --  ½ II//nvll~/2,h 

>/ ½ II/-/hV II 12/2,h --  C3 (11170 II o 2 + II ~ II 2_ x/:, h). (3 .28)  

Let now (z, r/) = (v, - p + 8/~) with 6 > 0. Using (3.26) and (3.28) we obtain 

~h(V, #; Z, ~l) = ~h(V, #; V, -- #) + 8~h(V, #; O, ~) 

i> (C1 -- ~C3)lllZvll~ + ½611Hhv 2 11~/2,h + (C~ - ~C3)11~112_1/2,h 

>>. C(llVvll~ + Illlhv 2 111/2,h + [[/All2-1/2,h), (3.29) 

when choosing 6 < C~/C3. Now, by scaling one can prove that 

IIVvllo 2 + [I//hv I> Cllvl[~.h. II ~/2,h 2 (3.30) 

Since (3.27) gives 

Ilz[lx,h + Ilr/ll-1/2,h ~< C([[vlll,h q- ][#11-1/2,h),  (3.31) 

we have proved the asserted stability estimate (which is optimal in view of Lemma 5). []  

Theorem 2. Let (Uh, 2h) ~ Vh X Ah be the solution to the problem (3.21) and suppose that 0 < ~ < Ct. 
With u e Hk+ ~(f2) and 2 e Ht+ ~(F) it then holds 

Ilu - Uhlll ,h '~ 112 - 2hll-l/2,h ~ C(h~llull~+~ + h ~+3/2112 IIt+~,r). (3.32) 

The big advantage with this formulation compared to the original method of Babu~ka is that the 
finite element subspaces can be chosen completely arbitrarily. 
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Let us next have a closer look at the method. We note that since the functions of Ah are 
discontinuous, the variable 2h can be eliminated locally on each boundary element. By testing with 
/~ ~ Ah in (3.21), we get the following expression for 2h: 

( 2hie = - //h On] +(o~hE)-l( / /hU--/ /hg)l~ V E e g h ,  (3.33) 

where (as before)/-/h is the L2-projection onto Ah. Now, substituting this into the equation we get 
from (3.21) when testing by v ~ Vh, and using the basic property of an orthogonal projection (i.e. 
//h = / / 2  =//~,) we get the following symmetric (and positive definite, cf. below) system for solving 
the unknown Uh: 

~Uh 

OUh ~ OV I + 2 (O~hr.)-l(//hUn'//hV)E + OtE~.hn (l-lh -- I)  - ~ n , t .  n -- I)-~n 
Eels E 

= ( f  v) - Hh a---n' l-lh9 + ~ (~hF.)- 1 (Hhg, Hhv)E. (3.34) 
E~gh 

Now, since the space A h c a n  be chosen arbitrarly, we may think that we choose Ah = L 2 ( l r ) .  Then 
the projection //h becomes the identity and we observed that we have rediscovered a classical 
method. 

Method 3: Nitsche's method [18] 
Find uh e Vh such that 

~h(Uh; U) ~- ,~h(U) VU ~ Vh, 

with 

/Ou, 
~h(U;V) = ( VU, VV) -- \On 

(3.35) 

/ v - - \ O n  u +~  ~ h~.l<u,v>e, (3.36) 
Ecgh 

~'h(V) = ( f v )  + ( g , v )  -- \On g + 7 Y', h{ , l (9 ,  v ) r  • (3.37) 
E~Sh 

By the way we have arrived at this formulation, it is clear that we have an optimal error estimate for 
it. That is, however, more easily obtained directly. 

Theorem 3. Let  uh ~ Vh be the solution to the problem (3.35) and suppose that ~ > C i  1. With 
u e H k+ 1(t2) it then holds 

]] U --  U h ]] l,h <~ C hk H u Ilk+ 1- (3.38) 
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Proof. The consistency of the method is immediately seen from the formulation. The stability is 
proved by Schwartz, Young and Lemma 3: 

~h(v;v) = 1117vl,~o- 2 (v .  O~-~/+ ~'llvll~/2.h 

0_~: - i/2,h 
/> II Vvll~ - 211vllm,h + ~11 vll~/z,h 

1 Ov z 
- ~ _ + (~ ' -  e)llvll~/z.h >t II Vvll~ - ~ x:2,~ 

I> 1 ~ I l V v l l g + ( ~ - , ) l l v  

t> c II v II 2 (3.39) 1,h~ 

when we choose C i  1 < e < 7. 
We have thus established the stability and the consistency. The assertion then follows from 

Lemma 1. [] 

In view of our analysis it seems that the Nitsche method is the most straightforward method to 
use. Unfortunately, this method seems to be quite unknown. We think, however, that it would be 
worthwhile to explore it in applications such as contact problems, for fictitious domain methods 
and for domain decomposition. 
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