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1. INTRODUCTION

During the last decade there has been a continuous search for simple "lock-
ing free” plate bending elements based on the Reissner-Mindlin theory. A great
number of methods have been proposed and many of these have been shown to
perform rather well in practical computations, cf. e.g. [2, 13] and the references
therein.

However, relatively few methods have allowed a rigorous mathematical sta-
bility and error analysis [1,3,4,14,15,16], a fact which suggest that the task of
finding a good Reissner-Mindlin element is a non trivial problem. From a practi-
cal side, this conclusion is supported by the fact that so many methods have been,
and are being, proposed.

To our knowledge the simplest method proposed for which the optimal order
of convergence has rigorously been proved, is a recent method by Arnold and
Falk [1].

The purpose of this note is to point out a modification of Arnold and Falk’s
element, which is considerably simpler to implement. Furthermore, for the mod-
ification it is possible to prove error estimates which are identical to those of the
original method.

The same idea has independently been introduced bu Durén, Ghioldi and
Wolanski [9].

In the next section we recall some theoretical results on the Reissner-Mindlin
model and the method by Amold and Falk. In section 3 we give our modification,
discuss its advantage, and give the error analysis.

Our notation is standard (cf. [7]) and consistent, though not completely equiv-
alent, with that of [1].

2. THE REISSNER-MINDLIN MODEL AND THE
ARNOLD-FALK METHOD

Let Q be the region occupied by the plate, the thickness of which is denoted
by t. Denote by wand ¢ = (¢, $2) the transverse deflection of Q , and the
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rotation of the normals to Q, respectively. Assuming a clamped boundary, the
model is: Find w € Hj(Q) and ¢ € [ H}(Q)]? such that

a($,9) + At7* (¢ — gradw, — gradv) = (g,v),

veHNQ), pelmi(yz. 2D

Here g is the (appropriately scaled, cf. [4]) load and

Ex

X=2(l+v)

is the shear modulus multiplied with the shear correction factor . As usual,
and v denote Young’s modulus and Poisson’s ratio, respectively. The bilinear
form a is defined through

a(¢,9) ='1—2‘(*‘1—l;7_'-;2-)—/ﬂ[(1 —v) (@) : e(¢) + v div ¢ div Y1,

where ¢ is the linear strain operator.
We recall that Korn’s inequality implies

a(,9) >CllBlI}, $elHID)?

for -1<wv<1/2.
Above and below C, Cy, C,, ... denote positive constants independent of t,g

and the mesh parameter 4. -
Introducing the shear

q =Xt"2(gradw — é)

as an independent variable, (2.1) can equivalently be written as:
Findw € H}(Q), ¢ [H{(Q)]? andq € [L%(Q)1?, such that

a(¢,¥) — (q,9) =0, ¥ € [Hy(Q)]%,
(q,gradv) = (g,v), wve H}(Q), (22)
)\“ltz(q,s)+(¢-—gradw,s)=O, s €[L2(Q)]2.

For the analysis the followin g Helmholtz decomposition proved in [4] is useful
LEMMA 1. Every q € [L%(Q)]? can be uniquely written as

q =gradr +curlp, re H)(Q), pEH(Q)NLI(Q). =
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Here and in the sequel we denote

curly = (_%,%) for v e Hl(Q),

and

curl p= 20 0V o ) € LHUOT.
3:172 3:1:1

In [1,4] the following result for a generalization of (2.2) is proved.

PROPOSITION 1. Let Q be a convex polygonal or smoothly bounded domain
in the plane. Forany t,0 <t < C, g € HY(Q), and f € [H~ Q)17
thermsaumqueso]utzon we H(Q), ¢ € [HO(Q)]2 and q € [L?(Q)]?

fo
a($,9) — (q,9) = (f, ), ¢€[H(Q)]?
(q,gradv) = (g,v), v€ Hi(Q),
k‘ltz(q,s)+(¢~—gradw,s) =0, se[Lz(Q)]z‘
Moreover, if £ € [L*(Q)]?, then ¢ € [H*(Q)])?, and we have

lirlls + llll2 + {lpll + tllpll2 + [lwlls < CCllgll-1 +[f]lo),

with q = gradr + curlp.
If additionally g € L*(Q), then r,w € H*(Q), and we have

lIrllz + [lwll2 < CClgllo + [If{lo). m

Next, let us recall the method of [1]. We introduce a regular triangulation 7}, of

Q, which henceforth is assumed to be polygonal. As usual the mesh parameter
is defined through

h = max h
Ten, 1

where hp denotes the diameter of T°. The triangulation is not assumed to be
quasiuniform.

For approximating the deflection the space of piecewise linear nonconforming
elements is used:
Wi={veL*(Q)|vyr € P(T), T € T, and v is continuous at midpoints

of element edges and vanishes at midpoints of boundary edges }.

(2 3)
The space for the rotation is

Vi ={$ € [HI(QD) [¢p €[P(T) ©B(TI:, TET}, (2.4)
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where B(T') denotes the spaces of cubic "bubbles" on T":
B(T) ={v € P(T) |vpr =0 }.

Futhermore, denote
Qs ={q €lL* (V) |qr € [P(D)*, T € Ti } (2.5

and let Py : [L%(Q)]?> — Q be the orthogonal projection. For v € W +
H'(Q) we define grad pU to be the [L%()]? function whose restncuon to
each T € Ty, is given by grad vjr.

The method is then defined as: Find wy, € W), and ¢, € V}LL such that

a($y,¥) + \72(Pog;, — grad ,wy, Pop—grad ;v) = (g,v),

(2.6
vEW, $EVE

The error estimate proved in [1] is the following.

PROPOSITION 2. Suppose thatQ2 is convex, g € L2(Q),and that 0 <t g
For the unique solutions (w, $) and (ws, ¢,) to (2.1) and (2.6), respectively, w
have -

llw — whllo + ||@ — dullo < Ch%|lgllo. ™

3. THE MODIFIED METHOD

The modification we are proposing is the following: The space for the de
tion is kept as defined in (2.3). For the rotations we use the standard spac
continuous piecewise linear functions

Vi={p € [H)(Q)]* | ¢ €[PI(T]?, T €Th },

i.e. the bubble degrees of freedom in (2.4) are dropped. We again denote by
the orthogonal projection onto the space Qy, as defined in (2.5). The meth ;,
then defined as: Find w, € W}, and ¢, € V}, such that

a($, 9) + X Y (12 + arh) ™ (Pogy, — grad yws, Poyp — gradh”)f"
TET,

=(g7v)r UEW’};, ¢€V’U

were a are positive parameters restricted to lie in a fixed range, C; < ar <
For the modification we can prove error estimates analogous to those
original method.
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THEOREM. Suppose that Q jg convex, g € L*(Q), and that 0 <t<C

For the unique solutions ( w, ) and ( Wy, @) fo (2.1 ) and (3.2), respecti vci;/, we
have

llw — wallo + |16 — 4]0 < Chligllo. m

Before turning to the error analysis of the method, let us discuss the difference
in implementing the two methods.

First, considering the original method (2.6), we see that when calculating the
contribution to the stiffness matrix from the bilinear form g an integration formula

simpler calculation of the stiffness matrix.
Let us remark that (3.2) can equivalently be written as:
Find wy, € W, $, € V, and qn € Qy, such that

a(¢h7¢)°—(qh:¢) =O) ¢€Vf2’
(qh)gradhv) =(g:v)7 UEWh)
W+ arhd) (g s)p+ (g, - grad yw;,s) = 0, s € Qs
TeT,
(3.3)

Comparin g with (2.2), we see that (3.3)isa "Galerkin-least—squares”, or "stabi-

For the analysis of the method Wwe need the discrete Helmholtz decomposition
theorem of Arnold and Falk.

LEMMA 2 (Arnold and Falk [1]).

Q, = grad , W, @ curl S’h,
With
Si={ve H'(Q)n12(q) lur € PUT), T e T3 )
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This is an orthogonal decomposition in [ L*(Q)]*. = .
Furthermore a classical estimate for nonconforming methods will be needed
[1,8].

LEMMA 3. There is a positive constant C such that

> [ vwenl <OMIL _int | lleradiCo = 0l

TeTh -
PE[H (I, veWs+ H(Q). m

Let us introduce some additional notation. -
By I, : Q; — grad , W, wedenote the orthogonal projection, and we define
anorm in Qp through

lIsIiz = Mas|f + > (&% + hP)Islig -
TeTh

REMARK. It is also possible to perform the error analysis using the same norm -
as in [1] for the shear, i.e. -

lIs|? = llgrad , k5 + 11415 + £* 117

where the decomposition s = grad,k + curll, k € W, l € Sy, is used for
s € Q, (note that I1;s = grad k). For this some extra technical details are
needed (cf. Lemmas 3.2 and 3.3 of [11]) and it gives the optimal estimate

|lgradr — grad ,r4]jo + |lp — pallo + tllp — pullt < Chllgllo,

with q = gradr + curlp and qj = grad,r;, + curlp,. However, this result
does not seem to be very useful, and hence we prefer to present a more straight-
forward error analysis. W

For this we write the method (3.3) with a more compact notation as

By (wh, d4, 98 v,9,8) = (g,v), vE Wi, $E Vs, seQs,
with
Bh(w)¢)q;vy¢7s) = a(¢7¢) + (q,gradhv - ¢) + (Sagradhw _.¢)

=27y (@ + arhp)(a,9)r
T€Th

Introducing the notation

ICw, &, @I} = llgrad ywl + 1611} + llallz,
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our stability estimate is the following.
LEMMA 4.

Bi(w,¢,q;v,9,s)
(mb,S)eSW,,xvthh lll(v!¢»s)lllh _>_GIH(W,¢,Q)HM,

(v,9,8)7(0,0,0)

wWEWh €V, qeqQ,

Proof: Let w e Wy, ¢ € V, and
such that grad ,z = I1,q.

Choosing v = w+ 2,
we get

q € Q4 be given. Further, let 7 ¢ Wi be

Y=¢, s= —q+6égrad,w, andletting § > 0, ¢ > 0,

Bh(w’¢:q; 'U,"/),S)

= Bh(w:¢:q; w+ Z,¢, ‘—q) +6 Bh(“’,¢,q; 0,0,gradhw)
=l +27 D (7 +arhd) (g3

*+ IM4qll§ - 8 (grad,w, ¢)

Tet,
+ 8 llgrad,wlls ~ 6271 37 (8% + o rh2) (grad ,w, q)y
TeT;
)
>(C1 — f)Hd’H% AT (2 4 arhy)|lq|f3
TeT,
) )
+IMaqllf + >llgrad o3 — ;ié\;(tz +arh)|grad ywl}
)
— m%(tz +arhy)|lq|f2
6 é
2 (Cr =il + (1 - SN 7{:_;@2 +arhy)||q|)?

IR + 01— £02 + 0o fgrad

2 CUIBIE + llall + llgrad w3y,

if & is small enough and § < min{2Cy, 2¢}.
Since we also have
liCv, %, 9)]lls < Clli(w, 6, )|l

the assertion i proven. m
We will now close the paper by giving the
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Proof of the Theorem : We first use Lemmas 1 and 2 to decompose the exact and
approximate shear:

q =gradr+curlp, 7€ Hy(Q), p€ H(Q) NLH(Q),
q, = grad v, + curlp;, rh € Wi, ph € Sh,

and to construct an interpolant { to ¢ as
q = grad 7 + curl p,

where # € Wy NHL(Q) and p € S, are the Clemént interpolants (cf. [12, Pp.
109-111]) to r and p, respectively.

We remark that I1,q; = grad,r,_and I1,q = grad7.

Further, let ¢ be interpolated by $eV,, and w by © € Wi N HI(Q).

Our stability estimate now supplies us with a triple (v, 4,8) € W, x VxQy,
such that

(v, ¥, 9|l < C (3.4)
and
NlCws — @, ¢4 — 6, a5 — D |lln < Bulws — @, 84— 6,4 — 5 v,9,5). (3.5)
Using (2.2), (3.3) and noting that
(qx, grad ;v) = (grad,ry, grad,v) = (g,v), veEW,,

(gradr, grad,v) = Z/ vgradr -nr+ (g,v), v &€ Wy,
TeTh

the normal technique gives

Bh(wh_‘@ﬂﬁh“&)qh—q;vyd),s)

= a(¢— ¢, 9) — (grad(r — ), ) — (curl(p—5),¥)

+ (grad(r —7), grad ,v) + (grad(w — @),S) —-(d:—-:ﬁ,s)
~ AT (@ +arhi) (4 -G, 8)r

T

TeT:
+ A7 ZaThT(q S)r — Z/ vgradr - nr.
TeT, TeT,

Let us estimate the different terms above.
Integrating by parts gives

((curl (p— 5), )| = |(p — B, curl )| < Chlpli [¥l.  BD |
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Next, we have

($=8:91<C Y K2l rlislfor < Chlgl2( ) bRlIsIR )72, (3.8)

TeT, TeT,

and using Lemma 2

[(grad(w — @), s)| = |(grad (v — @), I148)| < Chlw|y || s]jo (3.9)

Lemma 3 gives

,2%1:7. /;T’Ugl’adr-nﬂ < Chlirll2[lgrad ,v]jo. (3.10)

From the definition of § we get

12+ arhd)(q —q,s)|
TET

(3.1D)
S Chlt(|r]2 + [pl2) + |r]; + [pl11( E(tz + h%>HSH%,T)”2-
TeT,

The estimation of the rest of the t

erms in the right hand side of (3.6) is straight-
forward, and combining (3.4) -(3.

11) we obtain

liCws — @, ¢4 — , a4 — @) [[s
< Ch{lglz + [wlz + ||r]la + |p|s + 1 I7l2 + Ip[2) }]]|(v, %, 8) |||5
< Ch{lla + [wlz + ||r]l; + |p|; + t(|rl2 + |p|2) }.

Hence, the use of the triangle inequality and Proposition 1 gives

llgrad , (w — Wi lo + || — @1 + llgrad ,(r — r)]jo

Q@+ W)la - a3 )12 < Chfgl. (312)
TeT;

To proceed, we let » ¢ HL(Q), b€ [H{(Q)]? andr € [L2(Q)]? solve

a(0,¢)~(r,¢)=(¢~¢h,¢), Y€ [Hj(Q)]?,
(r,gradv) = (w — wy,v), v € Hy(Q),
(l‘,s)+(0—-gradz,s)=0, s e[L3(Q)]2.
(3.13)

)\‘Itz




434 L. P. FRANCA AND R. STENBERG

Using Lemma 1 to write r = gradk + curll, Proposition 1 yields
16112 + NIzl + kll2 + 1t + tlidlz < CClle — @allo + [lw = wallo) . (3.14)
Integrating by parts in the second equation of (3.13) gives

—divr = —Ak = w— ws,

and thus we get

[lw—ws|l§ = (gradk, grad ,(w—ws)) = 2 -/8T( w—wy) gradk-ny. (3.15)
TeT, ;

Letnow 3 € Wi N Hj(Q) and 9 € V, be the Lagrange interpolants to
2 and 0, respectively. We again use the Clemént construction to define k¥ €
WinN H& (Q) interpolating k, and 1€ S, interpolating . The interpolant ¥ -
to r is then defined through ¥ = gradk + curll. ‘
Using (2.2), (3.3), 3.13) , (3.15) and Lemma 2, we now get

6 — dallf + llw — wall§
= a($—¢y,0—8) — (a4 —a5,0—8) +(qd—qsgrad(z —2))
_(r—F,p—¢y) + (grad (k — k), grad ,(w — ws))
AP (q—apr—F) - ), [ (w—w) gradk-nr
Tet;, Y T
—271 S arhi(an, ).

TeTh

Standard interpolation estimates give

(a—as,0-8<C)Y_ hrlla—allorlBlzr
TETh

< Ch(Y hElla — asllf '/ 16la-
TeT

Lemmas 1 and 2 give

I(q — qu, grad (z — ))| = |(grad,,(r — r3), grad (z — )|
< C’hngadh('r —_ 'rh)Ho‘zlz.
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An integration by parts yields

I(r —F,6— )| < |(grad(k —k),¢ — ¢,)| + I(CUl‘l(l—z),¢“¢h)l
= |(grad (k— k), ¢ — ¢3)| + |(1 - I, curl (4 — ¢,))|
< Ch(lklz + 1U)]|¢ — a1 -

(3.19)
Since |[Fllo < Clirflo, we get
12 arht(@n DI <Y arhba - 4,0+ | arhi(q,n)]
TeT TeTy TeT, (3 .20)
<Ch(Y - arhilla - alf ) 2|r o + Ch?JlalloIr]fo.
TEeT,

Further, Lemma 3 implies

;}:/ (w = wy) gradk - nr| < Chllk]lllgrad,(w — wp)flo.  (3.21)
Ter, Y T

Collecting (3.16) through (3.21) and estimating the rest of the terms in the
standard manner we obtain
16— @alld + |lw — w3
< Ch{llgrad ,(w — wh)|lo + ||¢ — @4||1 + ||grad ,(r — 78 |[o

O+ W) lg - aal3 2 + hjqllo ) (3.22)
TeT,

{1612 + [zl2 + [|Kll2 + |[i]}1 + ¢]1)2 ).

Since lalle < Cllgllo, the final estimate now follows from (3.22), (3.14) and
(B12). m
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