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1. INTRODUCTION

We will consider the finite element approximation of the equations of
linear elasticity:

Ao —¢(u) =0 in Q,

dive+f=0 in 1,
I (r.1)

u=20 on I'y,

ocn=g on Iy,

where the bounded domain Q@ c RN, N = 2,3, is assumed to have
a polygonal or polyhedral boundary 40 = T'; UT,, with T; Ny =
#, and T; # 0, ¢ =1,2. The unknowns of the problem are the displace-
ment u: 0 — R¥ and the stress tensor o : @ — R¥ xR¥ and the data
is given by the body force f and the boundary traction g. €(u) denotes
the linear strain tensor and div ¢ stands for the divergence of o. A is
the fourth order tensor expressing the constitutive law for a homogeneous,
isotropic and linearly elastic material, i.e.

Ao = ao + ftr(o)é,

where § denotes the unit tensor, tr(o) is the trace of o,
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for the plane stress and the three-dimensional problem. Here E denotes
the Young modulus and v the Poisson ratio. Our notation is standard and
the same as used in our paper [10].

If one assumes for example that f € [LZ(Q)]Y and g € [L%(Ty)]N
then (1.1) has a unique solution satisfying

lell + fleflo < C(lfllo + llgllo,ra)-

In particular, one can show [1] that the positive constant C can be cho-
sen to be independent of the Poisson ratio. This will be the case below;
the generic positive constant C' will be independent of the Poisson ra-
tio. Hence, all the estimates are valid also for incompressible and nearly
incompressible elasticity.

In order to obtain optimal L2-estimates for the displacement variable
we will use standard duality arguments, and for these we have to assume
that

lullz +llolly < Clifllo, (L.2)

for the solution of (1.1) with g =0.

In the mixed approximation of the elasticity problem one directly app-
roximates the system (1.1), instead of first eliminating the stress tensor
which would lead to the classical displacement method. For the motiva-
tions given for using a mixed method, and for discussions of the problems
connected with this approach, we refer directly to papers cited in the list
of references. In general, however, one can claim that most traditional mi-
xed methods are rather cumbersome to implement, and as a consequence
they have rarely been used in practice.

Recently [1,10] it has been shown that most of the problems connected
with mixed methods can be overcomed by using an idea originally propo-
sed by Fraijs de Veubeke [4], and it now seems to be possible to design
mixed methods which are competitive with displacement methods.

In the approach of Fraijs de Veubeke the assumption of a symmetric st-
ress tensor is dropped, and instead a new unknown skew symmetric second
order tensor v, with the physical meaning of the rotation, is introduced.
The equations to be approximated are then

Ao —Vu+~4=0 in (1,

oc—o0T =0 in 0,
divo+f=0 in Q, (1.3)
u=0 on I'y,

oon=g on I's,
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where o7 is the transpose of ¢ and
(Vu)i; = dju;, 4,7=1,2,..,N,

(8; = 8/9z;). Now, denoting by w(u) the rotation of  :
w(u)i; = ‘;'(ajui = diu;), 4,5=1,2,..,N,

we note that the solution of (1.3) coincides with the solution of (1.1) where
v = w(u).

In [10] we introduced and analyzed a family of mixed methods based
on the above formulation. We will not give the details of this family here.
Instead, we will review our method of analysis and apply it on two new
methods. Our methods very much resemble some classical methods first
introduced by Fraijs de Veubeke [3] and Watwood and Hartz [11], and later
analyzed by Johnson and Mercier [6] and Hlav4cek [5]. The difference is,
however, that the methods of the present paper are considerably simpler
to implement.

The methods to be introduced can without loss of generality be analy-
zed assuming homogeneous boundary conditions. Hence, we will assume
that g = 0 and then the basis for the mixed method is the following
variational form of (1.3): Find (0,u,7v) € H XV xW such that

a(o,7) + b(r;u,7) =0, re H,

b(o;v,n) + (f,v) =0, (v,p) €V xW, (1.4)

where
b(o;u,v) = (div o, u) + (o,9),

a(o,7) = (Ao,7),

and

vV =[L*(Q)",
H={oec[L*(Q))"*N |diveeV,0-n=0 on T},
W={rell @YV | y+4T=0}.

Above (+,-) stands for the inner product in [Z2()]N or [L2(Q)]N*N,
As usual, the finite element approximation is sought in a finite dimen-

sional subspace: Find (Ohsun,h) € Hu x Vi x Wo C HXV X W such
that

a(on,7) + b(r;un,mr) =0, 1€ Hy,

1.5
b(Uh;vm) + (fav) =0, (U,'?) € Vi X Wh. ( )
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2. CONVERGENCE ANALYSIS

The formulation (1.5) is an example of a saddle point problem and
hence it can be analyzed by the general theory of Brezzi [2]. In [10] we
showed that the analysis becomes particularly simple if the following mesh
dependent norms are employed:

lol2n=lold+ S ks / (o -n|2ds, o€ Hn,
TEry, TCT T

where

M ={oce[l2)"*N| o-nrell*T)Y, T€Th, TCT },

in= 3 le@ldat 5 b7t [ufdse 3 bt [ tds, wen,

KeCn TEr, TCr, T
and

H)IZ = lul?n+ Y. I —w@g g, w€Vi vEWh
KeCy

Here Cj denotes the regular finite element partitioning of (1. T denotes
an edge of an element of C, and hr stands for the length of T. T
denotes the collection of edges in the interior of 0 and [u] denotes
the value of the jump in u at the inter-element boundaries. Due to the
assumption T'y #0, ||-|li,» and | -||n are normsin Vi and Vi X W,
respectively.

The conditions to be verified when using the above norms are a coer-
civity condition for the bilinear form a :

a(0,0) > Cllol|3 1, 0 € Zp, (2.1)
where |
Zn={0o€Hy| blo;u,7)=0, v€Vh, YEWL },
and the Babuska-Brezzi condition for b :

b(o;u,
sup —(——”—j—)— 2 C“(us ’Y)“ha (u,’Y) € Vh X Wh- (2‘2)
ozoecH, |lo]lo,h

By integrating by parts on each element and using the Schwarz inequality,
one easily shows that

b(o;u,v) < llolloall(wsY)|ln, o € Hr,y (u,7) € Vo X Wh,
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Hence the stability inequality (2.2) is the best possible with our choice
of norms. In our papers [8,9,10] we have developed a ”macroelement
technique”, the use of which considerably facilitates the verification of
the Babuska-Brezzi inequality. Using this method of analysis the stability
inequality (2.2) can be verified by a simple "patch test”; cf. the next
section.

Using standard scaling arguments one can show that
lloello < llollo,n < Cllollo, o € Hp.

Thus the condition (2.1) can equally well be stated with | - |jo,» replaced
with the L?-norm ||-||o, and from the definition of A it then follows that the
condition is valid for a constant C' depending on the Poisson ratio v (with
C =0 when v = 1/2 for the plain strain and the three-dimensional prob-
lem). In [1] it was shown that the inequality with a constant independent
of the Poisson ratio follows from the following equilibrium condition:

If o € Hy satisfies (divo,u) =0 for all u € V;, then dive = 0. (2.3)

This condition is also needed in the analysis in order that the error estima-
tes obtained may be optimal. We also note that the equilibrium condition
implies the existence of an operator P, :V — Vj, such that

(divo,u — Pou) =0, o€ Hp, ueV. (2.4)

Summarizing, we can state that optimal error estimates for both the
stress tensor, the rotation and the displacement follow if the method can
be proved to satisfy the conditions (2.2) and (2.3).

3. THE FINITE ELEMENT METHODS

Let 2 C R? and introduce a partitioning C, of {1 into regular
triangles or quadrilaterals (a mixing of triangles and quadrilaterals is not
excluded). The quadrilaterals are further subdivided into four triangles by
drawing the two diagonals, and the triangles are divided into three smaller

triangles by connecting the center of gravity to the vertices; see the figure
below.
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Let Ty, Ta,...,T« be the triangles of K, with & =3 when K is a
triangle and k = 4 for a quadrilateral.

Denote by b, the function that is continuous on K, linear on each
T;Cc K, i =1,2,...,k, equal to unity at the interior node and vanishes on
8K. On K € Cp we define
B(K) = { 7 € [L*(K))?*? | (ri1,7iz) = ¢i(B2by,—01b), ci €R, 1=1,2 },
D(K) = { TE [C(K)]2X2 l Tilek € Pl(Tk)’ 7'7.7 = 1:23 k= 1,23-"7’5 }, :

and the finite element spaces are then defined through

Hy={ reH | n,€B(K)®D(K), KeCln }s
Vi={ veV | v, €[Pi(K)? KeCn } (3.1)
Wh={ yEW | v, € [P(K)**% KeCn }

We note that as the degrees of freedom for 7 € D(K) one can take
the values 7-n at two distinct points of each side of K, (3.2a)

and
/ i dz, for 1,7 =1,2. (3.2b)
K

Since for 7 € Hj only the continuity of 7-n across inter-element
boundaries is required, we also note that as the degrees of freedom for
r € Hy, one can for each K € Cs take the values (3.2) together with the
degrees of freedom for B(K).

Now, let us carry out the error analysis of the above methods.
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The equilibrium condition (2.3) follows from
Lemma 1. If 1 € H(K) = B(K) ® D(K) satisfies

/ v-divr dz =0 for ve [P (K)]?, (3.3)
K
then divr =0 on K.

Proof. First we note that div s =0 for each 7 € B(K), and hence we
have to prove the condition for r € D(K).

Let us prove the condition for the more difficult quadrilateral case. In
this case the proof follows from the fact that the dimension of the space
div D(K) is only six; cf. [7]. This is easily seen upon noting that each
7 € D(K) can be uniquely written as 7! + 72 + 73 where

Ti‘L.. € [P1(L:)]**2, *=0 on K\ L;,
with Ly = K, Ly, =Ty UT; and L3 = T, UT3. Denoting by (div 7)* the
constant value of div 7* on L;, we can write

3 3
/ v-divrdz= Z(div ) / vdz = Zv(G,-) - (div 7)* area(L;),

K i=1 L i=1 -
where G; denotes the center of gravity of L;. Now, K is convex and
nondegenerated and hence G;, Gy, Gz are not located on a straight
line. We can thus choose v such that v = (1,0) (and » = (0,1),
respectively) on G; and v =0 on G;, J #1,fori=1,2,3. This shows
that the condition (3.3) gives (div 7)* =0, ¢ = 1,2,3, which proves the
assertion for quadrilaterals.

The proof for triangular elements is analogous to that given above.

Lemma 2. The stability inequality (2.2) ¢s valid.

Proof. For the methods under consideration it suffices to apply the
macroelement technique of [8,9,10] with macroelements consisting of two
elements. Hence we define a macroelement to be the union of two elements
with one common side. For a macroelement we define

H, . ={0€[L*M)]**?|div o € [L}(M))? o, €H(K) KcM,
oc:n=0 on dM\L, LCdM },
Vie={ve[L*(M))? | v, €[P(K)?, KcCM },
Wi ={ 7€ [LXM)]**? |y +4T =0, 4, € [P1(K)]**%, KC M},
Ny ={(u,y) €V, xW,, | b,(0;u,7) =0, o€ H,, }



278 R. STENBERG

where L is either empty or the union of one or more of the edges of the
elements of M and

b, (05u,7) = (div o,u),, + (0,7) -

Now, in [8,9,10] it is shown that, in order to verify the stability condition
(2.2), it suffices to check that we have

{ (0,0}, if L#0,
N, = (3.4)
{ (r,w(r)) | r € Ry, }, if L=,

where R,, denotes the rigid body motions on M :
R, = {ve[L}(M))?|v=(a,b) +c(—z2, 1), a,b,cER }.

Now, for the methods in question the verification of the above condition
is identical to the corresponding proofs for the methods of [10]. For comp-
leteness let us repeat these arguments.

Let (u,v) € V,, x W,, be arbitrary and denote 2z = 712 = —721.
Define o € H, , through

(0i1,0i2) |, = (O2(b0:2), —01(biz)) ,i=1,2,

on each K C M. Now, divo =0 on M, and hence an integration by
parts yields

b, (o5u,7) = (0,7)p = /M(Um — 021) M2 dz

-y /K(—Bl(bxalz)—ag(bxazz)) cdz= Y /KbK|vzl2dz,

KCM KCM

since 0-n=0 on 8K, K C M. This shows that if (v,7) € N,, then

~12 = —~21 is a constant on each K C M. Hence, on each K C M ~

can be represented through ‘
MNe = w(wx) = Vw,,

for some w, € R,. A substitution and an integration by parts then gives

b, (o;u,v) = (div o,u),, + (0,7)

= ¥ @V -+ [ oonld dst [onuds

KCM
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where S denotes the common edge of the two elements of M. Now,
V(w, — u) is a constant tensor on each K C M, whereas [u] and
u are linear on S and L, respectively. Hence (3.2) shows that we can
choose o € H,, , suchthat b, (o;u,7) =0 forces V(w, —u) to vanish
on each K C M, u to be continuous along S and u to vanishon L
when L # 0. Hence we conclude that u is a rigid body mode on M
with u =0 for the case L # @. In addition we have ~ = w(u).
The stability of the methods is thus proved.

Lemmas 1 and 2 now imply (cf. [10]) the following

Theorem. For the method (3.1) we have the following error estimates

llo — onllo + |7 — rllo < CR2(lo]z + []2)

and
lw — unllo < CR*(Julz + |o2 + |7]2)-

Moreover, if the regularity estimate (1.2) is valid, we have the optimal
estimate

lu = unllo < Ch*(lul2 + o]y + |v]1)-

Remark. For the method we also obtain (cf. [10]) the estimate
1Phu = wallo < Ch* (o] + yl2),

where P} is the projection operator defined through (2.4). This estimate
can be applied for the analysis of some postprocessing schemes developed
for the improvement of the displacement approximation; cf. [1,10].

O
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