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1. INTRODUCTION

One of the most popular methods to numerically solve the
Stokes equations in fluid mechanics is to use a mixed finite
element method where the velocities are approximated with
continuous isoparametric bilinear elements on quadrilateral
meshes whereas a piecewise constant approximation is used for
the pressure. After eliminating the pressure by simple pertur-
bation techniques one obtains a positive definite system for the
velocities alone. Another way to obtain the same method is to
apply penalty techniques with reduced/selective integration
(cf. [6], [8]). 1In numerical computations this method has been
shown to give excellent results for the computed velocities
and also for the pressure provided that the latter has been
"smoothed" in an appropriate way (cf. e.g. [6]). From a
theoretical point of view this success has been considered
somewhat surprising since it is well knowe that the method is
not uniformly stable in the sense of Babuska [1] and Brezzi [3].
For rectangular meshes, however, it has been possible to analyze
the method, cf. [7]. The analysis of [7] relies on a weak
Babuska-Brezzi-type stability condition together with a careful
consistency estimate and shows that the method converges with
the optimal rate provided the exact solution is smooth enough.
In this note we will extend and improve the analysis of [7].

We will show that the method in fact converges (after a pres-—
sure smoothing) for a very general class of meshes and that this
happens without any extra smoothness assumptions on the exact
solution. The fact that the extra smoothness assumption of [7]
is not required was also observed by Boland and Nicolaides [2]
in the case of a rectangular grid.

2. NOTATION AND PRELIMINARIES

Let @ be a polygonal domain in :m? with boundary T. The
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problem under consideration consists of the stationary Stokes
equations for an incompressible viscous fluid:

]

-vhu +Vp = f in Q,

2.1)

divu=20 in Q,

u=20 on [,

where u 1is the fluid velocity, p 1is the pressure, f 1is the
body force and Vv > 0 1is the kinematic viscosity.
We denote by s T and ﬂ-ﬂs T respectively, the semi-
b4 b4

norm and norm of the Sobolev space [HS(T)]Q where s and «
are integers. As usual Hé(T) denotes the subspace of H!(T)

consisting of functions with vanishing trace on dT. We will
also introduce the space

Lg(T) = {p€ 12 (1) | [ pdx =0}.
T

The inner product in [LZ(T)]a, for integral o, is denoted by
(',')T. The subscript T will be dropped if T = Q. As usual

we will denote by C and Cj positive constants, possibly
different at different occurences, which are independent of the
mesh parameter h. 1 9

In variational form (2.1) reads: Find u € [HO(Q)] and

p € Lé(ﬂ) such that
v(Vu, W) - (div v,p) = (£,v) Wv € (Hé(9>]2,
9 (2.2)
(div u,u) =0 Yu € LO(Q).
In the finite approximation of (2.2) the spaces [Hé(ﬂ)]z and
LS(Q) are replaced by the finite dimensional subspaces V.

h
and P,, respectively. Below we define the subspaces as

h’
1 2 2
v, = {ve @] I vig € [Q, ()] VK € Ch}
and
Ph = {p € Lg(Q) | p‘K is constant VK € Ch},

where Ch stands for a partitioning of (I 1into convex

quadrilaterals and Q1(K) is the space of (isoparametrically)

transformed bilinear functions [4]. As usual, the mesh para-




Error Bounds for Approximation of Stokes Problem 327

meter h 1is defined as h = max h_, where h denotes the
K K
KEC
diameter of K.
We now specify our aSSumptlons on the partitioning C
First, we assume that C is a refinement of a coarser

partitioning C oh? obtalned by subdividing each K € C into
four quadrllaterals by joining the midpoints of the opp051te
sides of ¥ by straight lines. Second, we assume that C2h is

also a similar refinement of a still coarser partitioning C&h'

Third, regarding C&h’ we merely assume that C is regular.

4h
By this we mean that there are the constants ¢ > 1 and
0 <Y <1 independent of h such that

he < 0P, |cos eiK[.g Yi i=1,2,3,4, VKEC,,

where hK, P and eiK are respectively the diameter of K,

the diameter of the largest circle contained in K, and the
angles of K.

Below we refer to the quadrilaterals of C2h or C4h as

"macroelements" and denote them by M. We also introduce the
subspace.

Vo = {v € [Hé(Q)lz l Viy € [Q1(M)]2 VM € CZh}

where Q1(M) is as above. The space P, will be written as

h
the sum of three subspaces. The unit square K is partitioned
1nto subdomalns K., = {(x,,x,) €K | -1 < x, < 1-,
2 < x, 5_2}, 1,] = 1,2 and on K we define the function
N through
L+] .
noo= DT =,
Kij

We then define the subspaces

Ph1

i

{p € P | le is constant VM € CZh}’

-1
Ph3 = {p € Ph | Ply = ¢ y1OF c,, € R, VM€ CZh}

M?> ™

where FM is the bilinear mapping of K onto M. The orthogo-

nal complement of Ph with respect to Ph1 3 Ph3 is denoted by

th. Finally we introduce a "pressure smoothing
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" .

operator” T: Ph +3Ph1 ® th. Every p € Ph

uniquely as p = z Pis Py € Phi' The filtered pressure T7p
i=1

is then defined as Tp = Py * Py

can be written

3. ERROR ANALYSIS

Let us start with a consistency estimate which is crucial
for the analysis in this paper.

Lemma 3.1. For each v € V2h and p € Ph3 we have

(div v,p) = 0.

Proof. Consider a macroelement M € C2h with nodes xl,

i=1,2,3,4, as in the figure below and suppose

: ; Py M
takes the values 1 as in the figure.

X1 X

Denote by vio= v(xl), i=1,2,3,4, the degrees of freedom
of v € VZhIM and write

x'xd = xt - xJ, i, = 1,2,3,4.

It will further be convenient to use the (scalar valued) vector
product in R?, i.e. if a = (a,,a,) and b = (b,,b,) we
defi 1272 1272

efine

aAb= a1b2 - a2b1.

Using Green's formula and integrating over the sides in M one
obtains
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Py = %-{(v1—v4) A xx!

o((57) + (559)) » ()

(div v

+

+ (vz—v ) A x3x2 + (-V1+v2) A x2x
+ (Y +v v2+ x2x1+x3x4\ + (- 4+v3) X3 4]
5 "——‘—-"-——-2 / v A X J

[(v1—v4—v2+v

W

o] —

) A (x x1-x3x )

+ (—v1+v2+v4-v3) A (x2x1—x3x4ﬂ =0,
since by the definition of xli, i,j = 1,2,3,4 we have

4 1 32 21 34
XX XX =XX XX .

. Since le = c\Pyr Oy h3’ the assertion
1s proved. o

Next we will turn to the stability estimate, the proof of
which will only be sketched since the arguments are very similar
to those given in [9].

€ R, for every p € P

Lemma 3.2. There is a constant C > 0 such that

(div u,p)

sup """”"""““‘Z.C”“PHO Vp € Ph'

u€Vh ]u]1

u#0
Proof. Consider a macroelement M € Céh and define

_ 1 2 2

o u * {velnynl® | vig € [Q,®)]% VKM, KE€C]
and

Ny = {p € PhIM | (div v,p)M =0 WvE€ VO,M}’

A straightforward calculation shows that Ny = {cTw? + czwg,

w R

€;sC € R}, where w1 is constant on M and ¢ takes the

values *1 in a chessboard - like manner on the subrectangles

~ _ _ M .
of %; Let P . = {p € Q, | pIM—-cMwi, QKEiR}, i ~“j,3, i?d
let th be the orthogonal complement of P to Pr1 @ Pa-

By the same arguments as those leading to the macroelement
Principle introduced in [9] (cf. Lemma 3.1 and Lemma 3.2 of
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3
[9]) one now concludes that for every p € Ph’ p = Z P;>
i=1

'Ei € $£i’ there is a v € N such that le € VO M VM € C4h
and
. ~ 2
(div v,p) Z,C1“92"0 (3.1)
and
vl <150, (3.2)

By the same reasoningvas in Lemma 3.3 of [9] one can also show
that for every ﬁl €P there is a g €V such that

hi 2h
(@iv 8,5 = 5,15 (3.3)
> 10 )
and
lely < clpyl- (3.4)
Since g € V2h we have by Lemma 3.1
(div g,p,) = 0. (3.5)
3 3
Let now p € Ph be arbitrary and write p = 2 S}. Define
2C i=
z =v + ———l—-g, where v, g, C, and C, are as above. A
2 . 1 2
(1+C2)

straightforward calculation, using the relations (3.1) to (3.5),
then gives (cf. the proof of Theorem 3.1 in [9])

Wit > ol + 15l 2 dml,. .

As a final preparation for our error estimate we will intro-
duce a seminorm on P, defined through

h
pl, = sup (9iV.V.P) Vp € P, .
h vEeV. {V‘ b
h 1
v#0

The following estimate is an immediate consequence of Lemma 3.2
and the definition of the seminorm ]-[h

Ielg > el 2 clmel,  V¥p € Bp. (3.6)

We are now ready to prove
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Theorem 3.1. Let (u,p) be the solution to (2.1) and let

(uh,ph) € Vh X Ph be its finite element approximation defined

as above. Then we have the error estimate
lu’uhh + “P“thno _<_ Ch(!ulz + lpl1),

provided u € [HZ(Q)]2 and p € H1(Q).
Moreover, if  1is a convex region, we have the additional
estimate

lumu ly < on®lul, + [pl))-

Proof. Let u € N be the interpolant to u and let ; be

the Lz—projection of p onto Ph' By the general theory of

Babu¥ka [1] and Brezzi [3] (cf. also [7]) one concludes that
there exists v € Vh and U € Ph such that
ol el < c,
and
!uh4gl1 + [phigih:EC{l(Vu4;),Vv) [4(div v,pJ;)I’+ (3.7)
+ (div(u-u),w)]}.

By standard interpolation theory [4] the first two terms on the
right hand side of (3.7) can be estimated as

| (V@u-u),7w) | < |u-u] |v| ﬁ'Ch[ulz, (3.8)

1 1
| (div v,pJS)[ [v'1“p45u0 ﬁ_Ch!pl1. (3.9)

A

To estimate the third term we write W = Ty + (I-T)u so as to
obtain

| (div(u-0),W)| < |(@iv(u-u),m)]| + (3.10)
+ | @iv(u=u) , (T-mw) |

For the first term on the right hand side of (3.10) we obtain,
using the estimate (3.6),

(@iv D) ,m0| < o] Jmul, < cnlul,. (3.11)

To estimate the second term on the right hand side of (3.10)

R L4 N . -
we introduce the interpolant u € V2h to u. Since div u =0,
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(I-m)yu € Ph3 and u € V2h

we have by Lemma 3.1
| (div (=) , (=) | = | @iv@E-), @-mw ]| < (3.12)

< [5R1, Cluly, + Imul ) < cl5=G1, luly, < clS=ul, < chlul,.

Here the last inequality is a consequence of standard inter-
polation error estimates. Upon collecting the estimates (3.7)
through (3.12) we obtain

luh—311 + [ph—ﬁwh < ch(ful, + lel))- (3.13)

The asserted estimate for |u-u now follows using the

h‘1
triangle inequality. To obtain the estimate for Hp—ﬂphno we
use (3.6) and get

“th - ﬁEuo.g Ch(luiz + ip|1)- (3.14)

The asserted estimate is now obtained upon applying the triangle
inequality together with the estimate

lo-mpl, < chlpl,. (3.15)
In order to obtain the~L2-estimate for the velocity we first
note that if we replace p by T in (3.7) through (3.12) we
obtain
lp,~pl, < callul, + [pl . (3.16)
From (3.16), (3.6) and (3.14) we then obtain

| (-mp, |, < lpy-mply + |mp-mp, | (3.17)
< Ip=mol, + Imp-mp,llg < enClul, + [p])).
We now proceed using the Aubin-Nitsche trick. Let (z,})
€ [Hé(ﬂ)]2 X Lg(ﬂ) be the solution to the problem
V(¥z,7) - (div A,w) = (u-u,v) Vv € [H @17,
(div z,w) =0 Vi € Lo(@).
In the usual way (cf. e.g. [5]) we then obtain

Jumu 12 < ahfumu, |, Clzl, + [A]) + | @iv(e=D),pmpy) [, (3.18)
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where 7z € Vh is the interpolant to z. To estimate the

second term on the right hand side of (3.18) we repeat the
arguments used in proving the estimates (3.10) through (3.12).

~ I
Let 2z be VZh—interpolant to z. Since div z = 0 and zEZVZh

we obtain

l(div(z—z’),p-ph): < [(div(z—'Z),p—wph)l + (3.19)
" ;(div@’-?),(1—-n>ph>15<:h}z|2<up-nph|0 .
+ I(I—ﬂ)phlh).

The asserted estimate now follows upon combining (3.18), (3.19)
and (3.17) and using the regularity estimate

21, + Al < clum g :

Remark., We could have 31mp11fled the above analysis by ch0031ng

the interpolants W and Z in V2h’ i.e. setting U = u,

Z = z. The reason for not doing this was to show that the
error constants in the final estimates are not substantially
larger than what they would be if the method were uniformly
stable in the classical sense - a fact that has also been

confirmed by numerous numerical calculations.
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