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We give an error analysis for the recently introduced mixed-interpolated finite element
methods for Reissner—Mindlin plates. Optimal error estimates, which arce valid uniformly with
respect to the thickness of the plate, are proven for the deflection, rotation and the shear
force. In addition, the ecarlier families are augmented with a new method with lincar
approximations for the deflection and the rotation. We also introduce a simple postprocessing
method by which an improved approximation for the deflection can be obtained.

1. Introduction

The shear locking of finite element discretizations of plates based on the
Reissner—Mindlin model has long been a major object of research. An impressive
amount of methods and tricks has been introduced for avoiding the problem. These
are far too many to review here and instead we refer to any recent engineering text.

However, for the large majority of methods introduced, a mathematical stability
and error analysis is missing.

An exception to this are the mixed-interpolated families introduced in Ref. 7.
These families generalize some low-order methods earlier introduced.***® The
analysis given in Ref. 7 was, however, not complete. Only the “worst case” of a
zero thickness (for the scaled equations), i.e., the classical Kirchhoff model, was
analyzed. Furthermore, no estimate for the shear force was given.

The purpose of this paper is to complete the error analysis. We will derive
estimates, uniformly valid with respect to the thickness, for all variables involved. In
addition, we introduce and analyze a new postprocessing method for obtaining an
improved approximation for the deflection. Finally, we complement the earlier
families with a new method using linear approximations for the deflection and the
rotation. For this method we also perform an error analysis.
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126 F. Brezzi, M. Fortin & R. Stenberg

The paper is arranged as follows. In the next section we recall some theoretical
results on the plate model. In Sec. 3 we first review the procedure of Ref. 7 for
designing an clement and then give three example families. We then perform a
general error analysis for methods designed this way and apply the result for the
three concrete familics. Our postprocessing method is also introduced and analyzed.
The last section is devoted to the new linear method.

If not explicitly defined our notation will be the established, cf. Ref. 15.

2. The Reissner—Mindlin Model

Let ) be a plane polygonal domain. Assuming, for simplicity, that the plate is
clamped along the boundary of (), the model is: find weH}(Q) and BelH ()]’
such that
aBm) + AP - Vwom = W) = (f0), melHIP,  veHYQ)., (21

with the bilinear form « defined as

E
aB.m) = 5y [ 10 0 el em) + 0 div B divn)

Here € is the small strain operator, 1 the thickness of the plate and

)= Ex ’
2(1 + v)

with £ and v denoting the Young modulus and Poisson ratio, respectively. « is the
“shear correction factor.”
Given the solution (w, B), the shear force of the plate is obtained from

q= M "(Vw— B).
Hence, ge[L*())]? and the problem can equivalently be formulated as

aBm) + (@YW =m)=(f,v), melH(D]: veH|Q),
(2.2)
AT gs) + (B - Vw,s) =0,  selLA0)]

In the limit obtained when letting 1—0 the regularity qe[L*(Q)]% is lost, and the
appropriate space for the shear is

H ™ '(div; Q) = {qe[H ()] | div qeH " {(Q)}. (2.3)
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Therefore the limit problem is to find w'eH{i(Q), Be[H}Q)]* and
q"eH " '(div; Q) such that

aB’m) + @\ Vv = m) = (fv),  melHID) veH)Q),
(2.4)
(BY — W' s) =0, seH '(div; Q).
This is a typical example of a saddle point problem and the conditions of Ref. 10 are
easily seen to be valid.
The first condition
a(m.m) = CmllE = WD, (um)eZ 25)
with
7= {(v,n) e Hy(Q) x [HYQ)]? | (Vv — m,s) = 0, seH " !(div; Q)},

follows from Korn’s inequality, while the “inf-sup” condition

(Vv -1, s)
sup e
O ve Q) vl + dmily

= Clislln '(giv: 0y seH " !(div; Q), (2.6)
0= nelH()]

is a direct consequence of the definition of the norm
lallft ‘v o) = llall2 s + [[div gl|2y, qeH ™ '(div; Q). (2.7)

For the original problem (2.2), the theory of Ref. 10 now gives the following basic
existence result.

Proposition 2.1. The system (2.2) has a unique solution satistying
il + 1IBI + Hlalln i o) + tlldllo = ClIfIl -1 0 (2.8)
A more detailed information concerning the regularity of the solution is obtained by

splitting the shear using a Helmholtz decomposition theorem proved in Ref. 13.
Here and in the sequel we denote

rotq = rot (¢, 42) = dig, — d2q; = ddi‘L,
(2.9)
rotp = (d,p, —dp) = (Vp)~,

with the notation (v, v,)* = (v,, — v,) for the /2 clockwise rotation.
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Furthermore, we introduce the space
H(rot; Q) = { qe[L*()]* | rotqeL*()),q 7 = Oon aQ }, (2.10)
with 7 denoting the tangent to #€2. It can be shown that the dual space of Hy(rot; )
coincides with H ™ !(div; Q).
The following Helmholtz decomposition holds.
Lemma 2.1. Every qeH " '(div; Q) can uniquely be written as

q = Vi + rotp. (2.1

with gre H(Q) and pe Lj((2).
Moreover, we have the equivalence of norms

Halln div: ) = Vil + Pl O (2.12)
Here we used the notation

L) = {gelX(Q) | jnq ~ 0}
By using this decomposition it is possible to write (2.3) as a system of two Poisson
cquations and a singularly perturbated Stokes problem': find weH (L)),
Be[H{(M)]?, e HY(Q) and pe H' ()LL) such that

(Vi W) = (fiv),  veH)(Q),

a(B,m) — (rotp,m) = (V,m) = 0,  me[H{(Q)]?,

(2.13)
A~ 'P(rotp,rotq) + (B,rotg) = 0,  qeH'(W)nLi(Q),
(YW, Vé) = (B,VE) — AT\ (Vg VE) = 0, EeH ().
Accordingly, the estimate (2.8) becomes
il + 1BIL + 1wl + Hipllo + diplly = ClifI] . (2.14)

For deriving L *-estimates we need a regularity result for the problem with a more
general right-hand side.

Proposition 2.2.'>' Let Q) be a convex polygonal domain. For fel*(Q) and
ge[L ()] the solution to the problem
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(Vi W) = (fLv),  veH)Q),

a(B,m) — (rotp.m) — (Vrm) = (2.m).  me[H (D],
(2.15)
A (rotp, rotg) + (B, rotq) = 0, geH'(Q)nLi(€Y),

(Vw, VE) = (B, VE) — AT 15(Vih, V&) = 0, EeH) ()
satisfies

il + 1Bl + [0l + Hipll + dlpllz = CUIfMlo + Hgllg). O

Remark. This regularity estimate cannot in general be much improved. This is due
to a boundary layer which exists even for a domain with a smooth boundary; cf.
Refs. 2, 3, and 4 for a survey. O

When analyzing the mixed-interpolated finite element methods, it turns out that
they can be viewed as discretizations of the system obtained from (2.13) when taking
rot p as an independent unknown a: find weH\(), Be[H)(D)]% yeH (),
peH'(Q)nLi(Q) and aeHy(rot; Q) such that

(Vi W) = (fiv). veH)Q), (2.16)

a(B.m) = (p,rotm) = (Vihm) = 0,  me[H)D)]%, (2.17a)
Aot e, g) + (rotB,g) = 0, gel3(), (2.17b)
(a,8) — (p, 1ot 8) =0,  deH(rot; ), (2.17¢)

(Vw, V&) — (B, VE) — A '3(V VE) = 0, &eHY(Q). (2.18)

Remark. Note that since a=rot p, we have % rot a= A rot B. Hence, for >0 it is
correct to seek the solution a in Hy(rot; 2). Note also that for the limit problem
with £=0 we only have aeH " !(div; Q). O

3. The Mixed-Interpolated Finite Element Approximation

Most finite element methods for Reissner—Mindlin plates used in practice can
be presented as follows. We choose two finite element subspaces W;,c H}(€}) and
V,,c[H§(Q)]* for approximating the deflection and rotation respectively. Then the
discretization is defined as: find wy,e W,c H\(£2) and B, eV, c[H}(Q)]? such that

a(Brm) + M (R, (B — V), Ry, (m — Vo)) = (f,v), ve W, neVv,,
3.1)
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where R, is some suitably chosen “reduction operator” introduced in order to
circumvent the shear locking phenomenon. For the class of methods to be analyzed
in this paper the reduction operator is defined in the space of piecewise smooth
functions of Hy(rot; Q) and takes its values in a subspace Iy of Hy(rot; ).
Furthermore, the subspaces W), and I';,, and the operator Ry, are chosen so that

R, Vv = Vy, ve W,
Hence, the discrete problem is of the form
aBu,m) + A THR,B, — Vi, Ry — Vo) = (f,v), ve W), neV,. (3.2)
The approximation for the shear q, eI, is then obtained from
an = M H(Vw, — R, By).

Hence the equivalent mixed form corresponding to (2.2) is

aBur.m) + (q,, Vv = Rym) = (f, ), neV,, velV,, (3.3a)

A s) F (RyBy — Yy, s) = 0, sel), (3.3b)

In Refs. 6 and 7 an analysis of this class of methods was performed for the limiting
case r=0. It was shown that the deflection and rotation converge optimally if there
exist an auxiliary space Qj,cL§(Q)) such that it, together with the spaces W, V,,, and
I';, satisfies the following conditions:

PL VW,cl'),.

P2. rot I')cQ,,.

P3. rot Rym =P rotn, ne[H\(Q)]% with P,,: L HD)-Q, d denoting the L -projection.
P4. If sel’, satisfies rot s =0, then s = Vv for some ve W,.

PS. (Vi", Q) is a stable pair for the Stokes problem, i.c., we have

rotm, ¢
sup L) o e,
0=qeV, Il

These properties give the following recipe for building a method:

1.~ We pick a pair (Vy, Q)) ¢ [H{(€2)]* x L§(€Q2) which is known to be stable for the
Stokes problem.

2. Qy which is now fixed, we have to find a space T, rcHy(rot; Q) and an operator
R, : [HNQ)]? - I';, which together with ), and P, satisfies the commuting
diagram property (CDP)'®
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, rot 5
HQ)F  ——> L)

Rh[ 4'« P/l

£ 4

. rot
Ly — Oy

3. The final task is to find a space W, cH{({2) such that
VW, ={sel,lrots =0}.

By the construction, the method now satisfies the properties P1-P5.

The theory for mixed methods for the Stokes problem is by now rather complete,
and there exists a wide choice of stable combinations; cf. Refs. 23 and 14. The same
applies for mixed finite element methods for second order elliptic problem; several
complete families satisfying CDP are now known; cf. Refs. 27, 11, 12, and 14 for a
unified presentation. As a consequence, the above procedure gives rise to several
families of Reissner—Mindlin elements, some of which can be found in Ref. 7.

When we follow the above procedure for triangular elements, we naturally arrive
at three different families of methods, one based on the classical Raviart-Thomas
mixed methods?’” and the others on the more recent Brezzi-Douglas—Marini'' and
BrezziaDouglas—l‘Tortin»Marini12*'4 families. In all three families ¢, denotes a
triangulation of {} satisfying the usual regularity and compatibility conditions.

We let k=2 and choose the spaces V,, and Q, as the same for all families:

V= {melHN(D]* | mxeVuK), KeCy }, (3.4)
where
v = {fofor ke
with
SUK) = {veP (K)|veePe) for every edge e of K'} (3.5)
and
Qp = {peLi() |prePi-(K), KeCy}. (3.6)

It is well-known that (V,,, Q) satisfies P5 17.29.23 with only minor assumptions on the
mesh for k=4.

Remark. For k=23 the space for the rotation above could be chosen slightly smaller
by defining
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ViK) = [P @ {m|m = bgrotv,velP,_((K) },

where bg=A;AA; is the “bubble function” on K and P,_(K) denotes the
homogeneous polynomials of degree k — 1. But this choice gives degrees of freedom
in which both components of the rotation are represented and hence the first choice
has some practical advantages. This is especially the case when these elements are

used for shells. ©
Let us now complete the definition of the three families,

Family L
We define

Wy = {veH\Q)] vigkePi(K), KeCy } .
For I, we take the 7/2-rotation of the Raviart—Thomas space
Iy = {seH(rot; Q) [ se[Pr(K))* + (x2, —x)Pi(K), KeCy },

which together with O, satisfies CDP with R, defined through

f [(Rys — ) 1]v = 0, veP, _ (e) for every edge e of K,
P

fK Rys = s) 1 =0, re[Pr oK)’

forevery KeC;,. O

Family I1.
We let S,(K) be as in (3.5) and define

W, = {veH)Q) |vreSyK),KeC), 1

(3.7)

(3.8)

(3.10)

I, = {seHy(rot; Q) | s xe[Py(K)]% s - T.€P; - (e) for every edge ¢ of K, KeC, }.

@.11)

This space combined with Q, is the triangular BDFM pair (cf. Refs. 14 and 12
where the corresponding space for rectangles was first introduced). The reduction

operator we now defined, differently from Refs. 12 and 14, by

J [(Rys — ) 1]v =0, veP, (e} for every edge e of K,
4

(3.12a)
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j‘K(Rz, s = s) thtaf = 0, re[P, -(K)]%, (3.12b)

fK(R,, s—8) Ve =0, j=0,...k=2 (3.12¢)
where @q.....¢x 2 are (arbitrary) polynomials in P(K), chosen once and for all, with
Agj=xixh 7% =0, k=2.0

Remark. The advantage of this choice compared with the previous family is that for
k=123 the same basis functions arc used for the deflection and the two components
of the rotation. O

Family 111
In this choice we have

er = { X’E][(l)(gl) 2 V}KEIJI\' + ](K), KEC}Z }' (313)
For I';, we now use the space

I, = { seHyrot; Q) | s xe[PuK)]% KeCy ), (3.14)

which together with Q, gives the rotated Brezzi~Douglas—Marini family. The
reduction operator we now define through

J [(Rys —s) 7]v=20 vePy(e) for every edge e of K, (3.15a)
f,\»(Rh s—s) =0 relP oK) (3.15b)

JK(R;,S S8 Vg =0, =0, k-2, (3.15¢)

where @,...,¢r - 7 are as in (3.12¢).

Remark. Note that for k=4 we have for family III that V,cI', and hence R;m=mn
for all neV,. This means that the solution is obtained by a direct minimization of
the energy in the finite element subspaces (i.e., “full integration™ is used). 0
Following Refs. 14 and 27 it is casily proved that the reduction operators for the
families II and III are well-defined and that they satisfy the commuting diagram
property P3. Properties P1 and P4 are evident. Hence, we have three families
satisfying P1 to P5. Let us now give an error analysis of the methods in which we
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obtain more refined error estimates, uniform in 7, for all variables involved. The key
for the analysis of the methods is a discrete analog of the Helmholtz decomposition
in Lemima 2.1.

Lemma 3.1. Suppose that P1 to P4 are valid. Then for every qel'y, there exist unique
veW,, peQ, and acl’, such that

q=Vy+ a (3.16)
and

(a,s) = (rots, p), sel’,. (3.17)

Proof: Due to P3 the following mixed finite element discretization has a unique
solution (a, p)el’, x Q,

(a,s) — (rots,p) = 0, sel’,

(rota, g) = (rot q, q), geQ,.
From P2 we now have

rot(q — a) = 0,
and P4 shows that there is e W), such that
q— a= Vi
The uniqueness of  follows from the uniqueness of «. O
Remark. Note that, due to P1, (3.17) implies the following orthogonality result
(a, V2) = 0, ze W, 0 (3.18)
Using this decomposition we get the following splitting,

Theorem 3.1. Suppose that P1 to P4 are valid. Then the solution (wy, B, q,)e W, x
Vi x Ij of (3.3) can be found by solving the following problem: find Whs Bos Ui P
a,)e W, xV, x W, xQ, xT, such that:

(lelz’ VV) = (f' V)v ve W/I’ (319)

a(Blw "l) - (l)/n r()t"l) - (Vl}b’h’ R/z 1]) = U, T]EV;,, (320d)
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Aot e, g) + (ot B g) = 0, geQy, (3.20b)
(0, ®) — (pjr1rot ) = 0,  del’y, (3.20¢)
(Vwp, VE) = (R, By VE) — A7V, VE) = 0, geW, (3.21)

and setting q;, = Vi, + ay.
Proof: Let (wy, B q;) be the solution to (3.3) and use Lemma 3.1 to write
q, = Vi, + « (3.22)
and
(g, 8) = (rots, pp), sel’), (3.23)
with unique ¢p,e W, a, el and p,e Q). We will now show that (wy, By, ¥, pi» @)

satisfy (3.19)—(3.21). Testing by v in (3.3a) and using the orthogonality (3.18) we get
(3.19). From (3.3a) we also get that

a(Bpm) — (e Rym) — (Vi Ry m) = 0.
From (3.23) and P3 we now have
(o, Rym) = (pp, rot Rym) = (py, Py rotm) = (P py rotm) = (py, rotm).
Hence, (3.20a) is satisfied. Next, for ge Q) let ye ', be defined through
(y, ) = (rot 8, q), del),.
Testing by this -y in (3.3b), we get using P3

0

i

ATV, + e y) + (R, By — Yy, y)
= A"} (rot ay, q) + (Tot Ry, By, q) = A7 'P(rot ay, q) + (10t By, g).

Finally, (3.21) is obtained by choosing s=V¢ in (3.3b) and using the orthogonality
(3.18). The asserted equivalence is now proved if the solution to (3.19)-(3.21) is
unique. To this end let f=0. Then (3.19) shows that , = 0. Next, we choose n =8,
q=ps 8=a; multiply (3.20c) by A7t and add all the equations of (3.20). This
gives

a(Bu By) + AT allg = 0.
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Hence, a; =0 and B, = 0. (3.20¢) now reduces to
(rot 8, pp) = 0, dely.

Using P3 a standard argument used in connection with mixed methods shows that
p;= 0. The last equation (3.21) now shows that w, =0. 0

From above we see that the problem decouples into a Poisson problem (3.19), a
Stokes-type problem (3.20) and another Poisson problem (3.21). Hence, the error
analysis is naturally performed in three steps. First, we immediately have

Lemma 3.2. For the solutions « and ¢, to (2.16) and (3.19), respectively, we have

W= dully = Cinf || — o], O (3.24)

pel,

Next, let us compare the solution (B, p, @) of (2.17) with the solution (B, p,. a;,) of
(3.20). For this we introduce the following notation

AP, oim, 8) = a(B,m) + A~ (. B),
B(B, o p) = (rot B,p) + A~ 'C’(rot @, p),
and note that the problems (2.17) and (3.20) can be written as
AB, ;m, 8) = B, 8;p) = (Vikm),  (m,8)e[H{(()]* x Hy(rot; Q),
B(B.asq) =0,  qeLj((),
and
ABp> apim, 8) = B(m, & py) = (Vi, Rm) (M, 8)eV, xT,
BB arg) =0,  qeQy,
respectively. Furthermore, we note that the bilinear forms 4 and B are continuous
on ([Hy(]* x Hy(rot; Q) x (HY(]* x Hyrot; Q) and ([HYQ)]? x
H(rot; Q) x L3(€) if in [H{(Q)]* x Hy(rot; Q) we make use of the norm
HIB- )l 12 = [IBIIF + llalls + r¥]jrot /|3

(and the usual L*norm in L)),
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Remark. Recall that
ta = trotp and trota = Atot B

so that this norm is natural. O
Now we easily get the following result.

Lemma 3.3. Suppose that P1 to P5 are valid. For the solutions (B, p, a) and
(B P @) t0 (2.17) and (3.20), we then have

(B @) = (B )l | + 1l = pallo

scf it B~ B+ ity = gl
(m, 8)eV, xI, qel),

gl sup TR
0=meV, Il

Proof: We note that the problem naturally fits into the abstract theory of Ref. 10.
Hence we have to prove that

AB i Boo) = CLIB @)l % (B, 0)eK,,
with
Ky = {(B.a)eV, x I [ BB, a;q) = 0. qeQy},
and
sup B(m, a;q) > Clig

(“’(;)Evhxl‘ht e, el
(m, @)= (0, 0)

o, qeQp.

Of these the first condition follows directly from P2 (and Korn’s inequality). The
second condition follows trivially from PS. The saddle point theory then gives

LB o) = (B aw) I+ 1p = pallo

< c{ inf (B a) — (. B[]+ inf [Ip = qlly

(m, 8)eV, < T, qel,

+ sup (Vi Rym) = (Vi m) }

! !
0=meV, i]"'l!ei
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Furthermore we have
(Vi Rym) — (Viem) = (Vg — ¥, Rym) + (VL R, m — m)
< W — dll IRmily = (Vi Rym — m)
= Cliy = i iimih + (Ve R,m — m),

which proves the asserted estimate. 0
The third step in the analysis is given by

Lemma 3.4. For the solutions w and wy, to (2.18) and (3.21) we have

w = wplli = 1B — RyBllo + [IB — Bullo + Ch|IB — Bully + inf |w — v|,.

vel,

Proof: Let w/e W, be the solution of
(V! VE) = (Vw, V),  éeW,

From (2.16) and (3.19) we have (Vi,, Vv) = (Vy, Vv). From (2.18) and (3.21) we
have

]!V(W’ - Wh)]](z} = (v(wl - le)v V(WI - Wh)) = (B - R/:B/n V(WI - Wh))

IA

1B = RyBullo IV = wi)llo
which gives
IV = willo < 1B — RyByllo- (3.25)

Next, we note that any useful reduction operator satisfies the basic interpolation
estimate

NI = Rymllg < Chimll,  melH) Q)

with I denoting the identity.
Hence, we can conclude the estimation as follows:

HB - R/zBIzH() = Ei(B - RhB) + (B - B/z) e Rlz) (B - Bh)”()
< [IB = RyBllo + [|B — Bullo + {IT = Ry (B — Bu)llo (3.26)

= [IB — RuBilo 1B — Billo - Ch|IB — Bill,.0
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Next we give estimates on a — a, without a £ factor.

Lemma 3.5. For the solutions a and a, of (2.17¢) and (3.20c) we have

e = ayil v = C{llp = pallo + A inf fja = Bfjy}.
el

For a quasi-uniform mesh we additionally have

hlle — aully = Clip = pallo + A inf fle = 8]
5el,

Proof: We recall first that
(¢ — @y, d) = (p — py, 10t 3), del),.
Letting a’ be the L*-projection of a onto I, we then have

i

a — oy d a - a,d
Sup ,g___.l..__lz__)- == Sup _(______h___).
del, HSI‘H&M:Q) sl Haull”{mt:il)

< |lp = pallo,
which, using local scaling arguments, gives

[ 5 7 >\ 12

(S mklie’ = ailit) = Cllp = palo-

KeC,
Hence we have
N L) 12 )
(S hklla = alli) = Cllp —palle + b inf jl = 8l
KeC, del,

which for a quasi-uniform triangulation reduces to

hile = ayllo = Clip = pally + 1 inf fla = 3l
el

Moreover, using (3.27) and (3.28) we get

(3.27)

(3.28)
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((1 — Oy, 6)

o — a,ll = s
[la a/l‘l*l \Up: HSH‘

Be i)

= sup (@ — a!;%ﬁf - R,3) . Vi .1’/?,8;(){ R;d) }
e[ 811 118}
/ 172 N
= Y mklie - wli) +lip = pallo |
Ke'(’,}

< Cyllp = pallo it Jla = 8y |
de l',,

We can collect all the above error estimates in the following theorem.

Theorem 3.2. Suppose that the properties P1 to P5 are valid. For the solutions to
(2.16)—(2.18) and (3.19)~(3.21) we then have

w = wille + 1B = Balli + llp = pullo + fle — ayfy
+ Clrot(a — ay)llo + [Je = ayl] | + W = il = CE(h),
with

E(r) = { inf [ = vil, + inf [IB = 0]}y + inf [l — oll, + inf [Ip — gl
Ve W/; Oe\/,, ge Wh ge Qh

B — RyBlly + 4 inf [je — 8]fy + inf [t]ja — ]|y
el yel,

# Plrotta — il + sup TR |
T

Moreover, for a quasi-uniform mesh we have
hla = aylly < CE(h). O
For the example families we hence get

Corollary 3.1. Suppose that for the solution of (2.13) we have weH""'(Q),
BelH" " {(M)*, weH* Q) and peH* Q). For the approximation with the

families [, II and I we then have the estimate
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lw = wally + {1B = Balls + lla — aqull
k
< ChA(Wlepr + 1Blisr T [de+1 + Pl + tples).

For a convex domain we have in addition

= willo + 1B — Bullo < CR* (wlea + Blest + [Wleor + 1l T tples )

Proof: We note that

Hq - qh” - = C(;]a - ah“wl + H‘j/ - '«/’iz”t)‘

Hence, we have to evaluate the error expression E(/). Recalling that 1*rot a= A rot
8, and using P3 we get the estimate

inf [tle = yllg + £7]jrot (@ = )lio]
vel),

< tlja — Ryally + 2ot (@ — Rya)llg = tlle — Ryally + 7jrot @ — Py rot el
= flje = Ryally + Afjrot B = Py rot Bljy = Ch*(tlafy + IBli+1)-

From the definitions of the reduction operators, we see that all three families satisty

jK (Rh'n - "]) r= 0, re[Pk~2(K)]2’ KECI:-

Letting IT;, be the orthogonal projection onto the space
{re[L(M) | re[Pio(K)),,  KeCy}
we therefore get
(V¢m — Rym) = (Vi — 1LV m — Rym)
<[V — I, Vil lm — Rymllo = ChY\dlisimly
This gives the estimate

Vi, Rpm —
sup ( Lb» l’l"]I "1)

= Ch* i,
6=meV, il
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The rest of the interpolation estimates in E(h) are standard, and hence we have
proved the first of the asserted estimates.
Let us turn to the L -estimates. We proceed as usual and consider the solution
O<[H ()] yeH(rot; Q), reLY(Q) to
A0, v;m,8) — B, d:r) = (B~ Brm), (M, 8)e[HND)]? x Hy(rot; ),
B0, vy;q) = 0, qgeL3().
The standard manipulations then give
HB - B/}HS = A(O - 61* Y R/i’y; B - Bi o — ah)
— BB~ Bia —ayr— Pyr)

- B(O - Ol’ Y~ RII'YLU - p/?) + (Vl///zv Rh()]) - (Vl[}’ 01)*

for any 8/eV,. Let us now fix 0/ to be the Clemént interpolant (cf. Ref. 16 and Ref.
23, pp. 109~111) of @ in the following subspace of W,

{melH{D] | mgelP (K%, KeC,).
With this we have
107, = Cli8ll,  and (|0 - 0], = Chl0),,
and in particular R,0' = 0/, which gives
(Vi Ry0') = (Vi 0F) = (Vi = Vi, 0)
= (0 = Wy dVOT) < [l = Yl 1107111 < Cllwr = il 1101

Now we get
1B = Bulld = (110 = 0%y = Ry [ + [Ir = r o) (L 1I(B = Bi o — )] ]

e = pallo) + CllY = dullo 1101],

= Ch (00 + Iy + ty[) B = B a = a1+ lIp = pall)
+ Cli = dllo 110]].

(Note that here we have to use the fact that 1% roty = A rot 0 for estimating
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tHrot (v — Ryy)llg = Aljrot @ — Py, rot 0]|y < Ch|0],.)

From Proposition 2.2 we have

(1812 + Il + tlyl) = ClIB — Ballo,
which gives

B — Bullo = CLAUIB — Bpa — ap)ll |+ {Ip = pallo) + 1l¥ = dullo].
The estimate
1o = dllo = CR* " Milli

is standard and hence we have derived the L*-estimate for the rotation. To derive
the L -estimate for the deflection we use the usual duality argument. We let
ze H}(Q) be the solution to

(Vz, Vv) = (w — wy, v), ve H)(Q),

and let 2/ be its interpolant in the space of continuous piecewise linear functions.
Using (2.16), (2.18), (3.19), and (3.21) we then have

w - W/zHg) = (Vw —wy), Vz) = (V(w — wy), V(z — Z])) + (B — RiBy, VZI)
< ChlzLlIV(w = wi)llo + (B — RyBy, V2').

Next, we note that due to (3.9b), (3.12b), and (3.15b) (B —R,,8, Vz')=0 holds, and
hence we have

(B — RyBy, V2') = (R,B — RyBy, V2') = |IR,B — RyBallo 1IV2'1lo
< Cl[RyB = RyBallo [l = ClIR, = D (B — Bx) + (B — Bullo I2ll2
< (ChiB = Baly + 1B — Ballo) 2ll2-
The assertion now follows from the regularity estimate |jz]], < Cljw — wyly. D

Remark. Due to the boundary layer the assumptions above are unrealistic.
However, if f is smooth, we know that the solution is smooth in any compact subset
Q' of Q. For a convex domain we also know by Proposition 2.2 that we H>(()),
BelHX(O)]? veH*(Q) and peHY ). Denoting Q=00 we then get the
following rigorous estimate for () convex:
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2p0
w = willo + 1B = Bullo = Cho(wirg + Blog + [dog + Ipliar + 1pla)

Lokt L . "

FCRE (Wl + Blevia + Wi + Pl + 4plis 1)-
This is clearly a quite crude estimate. It would be interesting to know if, €.g., some
optimal interior estimates could be derived for this problem. o
Next we note that for the third family Lemma 3.4 gives a better estimate for the
deflection.
Corollary  3.2. Suppose that () is convex and that we have weH*"2(Q),

BelH* \()]%, yeH* () and peH* " (Q). For the solution of (3.3) with the
family 111, we then have

: ] k+ i ; |
w = wylls = " (wlean + IBliet + [y + Il + tples ). O
On the other hand, the same result can also be obtained by “postprocessing” the
solution with the families I and II. Given the approximate solution Wi B qy) e
W), xV;, < I}, obtained by the original method, we calculate a new approximation for
the deflection
wie Wi = {veH|(Q) | vkePr(K),  KeCy},
by solving the system
(Vwi, W) = (B, W) + A 3(f,v),  veWi.
For this new approximation for the deflection we get the following error estimate.
Theorem 3.3. Suppose that ) is convex and that we have weH " 2((),
Be[H*"(Q)), veH* () and peH*"'(Q). For the deflection w} obtained by

postprocessing the solution with the families I and I1I we then have

w = willy < Ch* (Iwlgey + Bleey + (Wi + Pl + 1plis ).

Proof: First, we note that the exact solution (w, B, q) satisfies
(Vw, W) = (B, V) + A7t (q, W) = (B, W) + A" Y3(f,v),  veW:.
Let we W}, be the interpolant to w. We then have
V0w = W)llG = (Vow) = W), V(wi; = w))

= (Vlw = W), VWi = w)) + (B, — B, V(w} — ),



Error Analysis of Mixed-Interpolated Elements 145
which gives

V0w — wi)llo = 2[IVw = W)llo + |IB — Bullo-

The assertion now follows from a standard interpolation estimate and Corollary
310

4. A New Linear Element

From the preceding section the reason why linear elements in general cannot
be used is clearly seen; it would require the linear-constant velocity-pressure
combination to be stable. It is a classical result that this is not the case. For
quadrilateral elements it is also well known that the bilinear-constant is not a
uniformly stable Stokes element. Nevertheless, this method can, under some
restrictions on the mesh, be proven to give an optimally convergent solution
provided that the pressure has been filtered in an appropriate way (cf. Ref. 26).
These results can be carried over to give optimal error estimates for the deflection
and the rotation obtained with the MITC4 element.”*

The lowest order method obtained with the theory presented above, is a method
in which linear deflections are combined with a rotation space consisting of linear
functions augmented with piecewise quadratic functions with the values of the
tangential component of the rotation at mid-edge nodes as degrees of freedom.
Another variant of this idea would be to use linear approximations for one com-
ponent of the rotation and quadratic for the other, cf. Ref. 28.

However, there is an alternative which is both simpler and cheaper. In this a
recent stabilization technique developed for mixed finite element methods (cf. e.g.
Refs. 20 and 24) is used. The idea is to augment the normal “Galerkin” formulation
with appropriately scaled least-squares forms of the differential equations. In the
context of Reissner—Mindlin plates this approach was first used in Refs. 21 and 25.
For the lowest order methods for Reissner—Mindlin plates this technique becomes
particularly simple; the stability is achieved by simply replacing > with 1>+ yh* (y
being a positive constant) in the shear term of the energy expression.

Let us now describe and analyze the method so obtained. Let €, be a triangular
decomposition and define the spaces as

Wy, = {veHy(Q) |vkeP(K),KeCy }, (4.1)
Vi = {me[H{DP | ke[ P1(K)), KeC, . (4.2)
The method is then defined as : find w,e W, and B, eV, such that

aBpm) + AU+ yh?) THRB, — Ywy, Rym — V) = (f,v),
(4.3)
VEWh? nEan



146 F. Brezzi, M. Fortin & R. Stenberg

with R, as the reduction operator to the lowest order rotated Raviart—Thomas
space

Iy = {seHy(rot; ) | s ke[ Py(K)]* + (2, —x)Py(K), KeCy }, (4.4)

ie., Ry is defined through
f [(Rys — s) - 7] = 0 for every edge ¢ of K, 4.5)

for every Ke (.

The positive parameter y is supposed to lie in a fixed range: C,<y<C,. We
recall that & denotes the global mesh parameter.

The approximation q; eI, for the shear is then calculated through

q, = /\([2 + 7172) Mbl(vwh - RhB/z)'
Hence, (wy, By, q) solves the problem

a(Blz> ’“) + (q/n Vv — R/z"l) = (f’ V), "lEVln VEW/H
(4.6)
AN + v Qe s) + (RyBy — Vwy,8) = 0, sel),

For this method we are able to prove the following estimate

Theorem 4.1. There is a positive constant C such that

W = willi + 1B = Bulli + (t + 1) lg — qullo
= Ch(wly + [Bl2 + [¥ls + [ply + 1]pl2). D

For the analysis we first note that with Q,, defined as

Qi = {peLi(Q)) |pike Po(K), KeC), }

the spaces I'j, and W), satisfy the properties P1 to P4.
Hence, Lemma 3.1 is valid and the discrete problem can equivalently be writen as

(Vi W) = (f,v), ve Wy, (4.7)
Ah(B/n ap;n, 8) - Bh("‘v 8;[7/1) - (Vl//ha Rh"‘) = O> (1]7 S)EV;, X rlﬂ (483)

Bh(Bha (LN (1) = 07 qulzv (48b)
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(thv Vg) - (Rh Biv Vf) - A 1(t2 + yhz)(V(j/},, Vf) = O’ (S:EE W;,, (49)

with

Ap(B.a:m, ) = a@,m) + A7 + yh')(a, B),

Bu(B.a;p) = (rot B,p) + A~ (17 + yh*)(rot e, p),

and Qh:V% + ay.
The analysis again divides into three steps of which essentially only the Stokes

part differs from that of the preceding section.
We now define the norms

B, @)l 17 = 1IBIT + (7 + A9l

GRS TON T NI It

eek,

where £, stands for the collection of element edges in the interior of Q, ([p]),.

denotes the jump in p along e and /1, is the length of e.
With these norms the first of the stability conditions is always satisfied:

AyB. o B) = ClIIB )l [ (B, e)eVyx Ty (4.10)

The second one is then the following.

Lemma 4.1. There is a positive constant C such that

By(m, o q)
sup = CHth’ (Itet' (411)
(m,a)eV, x I, [ H(“? a)” [h
(m, a)=(0,0)

Proof: The degrees of freedom for aeI’, are now the constant values of (a - 1), for

everyeeLy,.
Hence, for a given ge Q,, we can define aeI’;, through

(@ 1), = h, ' (ApD),  €€Ep

This gives
Bu(0, a; q) = Cyllglli-
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Local scaling arguments give
IO ) [ = Callglly,

which proves the claim. O
Let us now complete the

Proof of Theorem 4.1. We directly get
10 = dlly = Chll (4.12)

Next, the stability estimates (4.10) and (4.11) imply the stability of the discrete
Stokes system, i.e., there exists (7, 8, g)eV, x T, xQ, such that

HIm, 81 + Hlglle = €
and
1B, = B oy = ) 1y + 1pn — Puplly
= A,By — B oy, — Rya;m, 8) — By(m, 8:p), — Pyp) (4.13)
+ By(By ~ B, — o’iq),

where B/eV, is the interpolant to B and &’ is the L*-projection of a.
Using (2.17) and (4.8) we now get

Ay(Br = By — alim;8) — By(m, 8:p;, — Pyp) + By(By — B, — ;)
=a(B = BLm) = (rotm.p — Pup) + A1 (rot(e — a').q)

+(rot(B = B, q) + AN + yh¥)(e — o, B)

- AN+ yh?)(rot 8. p — Pyp) — A lyh?(rot al,g)

+ (Vi Rym) — (Vi m)
= a(B = BLm) + AP0t (@ — al),g) + (ot (B — BY), q)

= A lyh¥(rotal, ) + (Vi Rym) — (Vi m). (4.14)

The second and the third term on the right-hand side above can be written as
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(rot(B — BY.g) = > [ (B~ B 7laD

(4.15)
172
< (S n B8] Ll = culpl:
(’E‘E/;
and
h*(rotal, q) = h* Z J TR
ee'’lty
(4.16)

[ 2 12 -~ '
<h( S e[ 1) gl = Chliedllo = Chlladl

ce’k,
Here we used an interpolation estimate and an equivalence of norms, both easily

proven by scaling arguments.
Furthermore, we have

(Vlvb/zv Rhn) - (VI,II, Tl) = (V(l,b/, - ‘!’)a Rh"‘) + (V(//, Rhn _'“)

< Wl = dhLiIRmlle + lhilim — Rymllo < CUlgn — il + Alldliimil).
(4.17)

The rest of the interpolation estimates needed are standard and hence a combina-
tion of (4.12)-(4.17) gives

= il + 1B = Bally + (¢ + Wl = oyllo = CA(IB2 + [y + afg + dafy).
The estimates for ||w — wy]||; is now obtained as in Lemma 3.4. O

Remark. The same extension can, of course, also be made to the family IIL. This
leads to a method with V, as in (4.2) and

W, = {veH)Q) | vkePy(K),KeC) }. (4.18)
This discretization is then defined as

a(B/h "l) + /\(12 + ’yhz)Ai(Bh - V”’ha’q - VV) = (fs V),
(4.19)
ve le’ 'I]GV/Z.
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Note that since V,, is a subspace of the lowest order Brezzi-Douglas—Marini space,
the “reduction operator” reduces to the identity, i.c., “full integration” is used.
This method has earlier been proposed by Pitkiiranta (Ref. 25, Remark 4330
Let us finally mention that in Ref. 22 we proposed a similar modification for a
recent method by Arnold and Falk.!
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