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In this paper, we introduce a new quadrilateral clement using isoparametric bilinear basis functions for both
components of the rotation vector and the deflection. The element is a stable modification of the MITC4 element.
We report on calculations with this new element, the original MITC4 and also the bilinear element, with selective
reduced integration. The numerical results are in accordance with the results of the numerical analysis and they
show that (i) the method with reduced integration is highly unreliable and cannot be recommended; (ii) the MITC4
performs rather well, but its instability can lead to a decrease in accuracy for the deflection and especially to an
inaccurate and oscillating shear force; (iii) the drawbacks of the MITC4 are not present in the modified method.

1. Introduction

The plate bending model by Reissner and Mindlin is today the dominating model used in finite
element computations. This despite the fact that the elements have to be designed very carefully in
order to avoid, or relax, the locking phenomena. The locking is most clearly seen in some low-order
methods for which the finite element method will not bend at all when the plate is thin. It should be
remembered, however, that similar phenomena will arise for many higher-order elements as well. For
these, the locking may not be total, the finite element model will bend, but the accuracy is not as good
as would be expected with the basis functions used.

- Mathematically, the locking is the result of the lack of stability of the method. Another effect due to
the nonstability of the method is that the calculated shear force can be oscillating and inaccurate. That
this problem often occurs seems to be common knowledge (sce the remark on p. 224 of [12]) but only
recently has it been reported explicitly (cf. [16]).

During the last few years, significant progress has been made on the mathematical stability and error
analysis of methods for Reissner—Mindlin plates. As a result, several new methods and families of
methods have emerged, cf. [1,3-5,8, 12, 14, 19]. Of these the ‘MITC’ family [5] is one of the most
attractive. The error analysis [4, 8] performed for these elements showed that they are optimally
convergent for all elements which are of at least quadratic (triangles) or biquadratic (quadrilaterals)
degree. The linear triangular element will not be convergent. For a restricted class of meshes, the
bilinear MITC4 element was, however, shown [3, 4] to give an optimally convergent deflection and
rotation, but the shear force will not be bounded in the L*-norm, which would be the optimal estimate.

However, in the recent paper [8], it was shown that it is possible to obtain stable and optimally
convergent linear and bilinear elements if one combines the ‘covariant interpolation’ technique of the
MITC family with some recent stabilization techniques introduced in [12] and [19].

The purpose of this paper is to present the element obtained in this way from the bilinear MITC4
element. We give a computational assessment of this new element. We compare it with the original
MITC4 and also to the ‘classical’ element with bilincar basis functions and a one-point reduced
integration for the shear energy. Our aim has been to try to do as revealing computations as possible in
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order to detect possible shortcomings of the elements. In this, we have been guided by the theoretical
results that have been derived for the elements.

In the next section we give the plate model and introduce our notation. In Section 3, we first recall
the MITC4 element and then we introduce our stabilized modification of it. We also recall the
formulation of the element with selective reduced integration. In this section, we collect the theoretical
results that are known for these methods. In Section 4 we give the results of our numerical calculations.
Conclusions are presented in Section 5.

2. The plate bending problem considered

Let {2 be the bounded two-dimensional region occupied by the plate. The unknowns of the problem
are the deflection w(x, y) and the rotation vector B(x, y) =(B,, B,). They are determined from the
condition that they minimize the energy of the plate:

Ew,B)= min E(,¢), 2.1

(U, YEU 4

with the energy defined as

1 I )
E(v, ) = ta(p, u,l;)+§GKtJ;} |¢—Vv|“d{2—fn gudQ. (2.2)

Here 4, , denotes the collection of kinematically admissible pairs of deflections and rotations for which
the strain energy is finite. We assume that the boundary conditions are such that the solution is unique.
g 1s the applied transversal load and ¢ denotes the thickness of the plate. G is the shear modulus and «
is the shear correction factor commonly used in this context. The first term on the right-hand side of
(2.2) represents the bending energy with the bilinear form defined as

9

m[ﬂ [(1=v)e(B): e() + vdiv B divyg]dn. (2.3)

a(B, ¥) =

Here E and v denote Young’s modulus and the Poisson ratio, respectively. &(-) is the linear strain
operator and ‘div’ stands for the divergence, viz.

1

&(B)=5{VB+(V8)}, (2.4)
] aB,

div g = ——-ai" oy (2.3)

For two symmetric second order tensors o and y we define
oy =0y, 20y, toy,. (2.6)
Let us also recall that from the solution (w, B), the bending moment M and the shear force Q are
obtained from
E?
12(1 — v%)

{(1-v)e(B) +vdivpl}, (2.7)

where I denotes the indentity tensor, and

0 =Gkt(f —Vw). (2.8)
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The possible ‘locking’ of a finite element model will appear for a ‘thin’ plate and in order to make a
rigorous analysis of this, it is customary (cf. [7, 12]) to consider the sequence of problems where the
loading is given by

g==trf, (2.9)

with f fixed independent of the thickness r. By this, it is ensured that the problem has a finite
non-vanishing solution in the limit 7— 0. In this limit, the Kirchhoff condition

B =W (2.10)

will be valid and the locking is due to a too strong enforcement of it in the finite element model. In an
analysis, it is also appropriate to consider the scaled shear force ¢ =1°Q, i.c.

g =Gkt (B —Ww). (2.11)

The solution to the Reissner—Mindlin equations exhibits a boundary layer (cf. [2] for a survey) and
hence the solution will usually not be very smooth even if the loading and the boundary arc smooth.
However, some regularity estimates can be proved (cf. [1, 7]) and these are used in Theorems 3.1 and
3.3 in order to present the estimates in a simple form.

3. The finite element methods

Our new element, the MITC4 and the method with selective reduced integration, all utilize
isoparametric bilinear basis functions for the deflection and both components of the rotation. Hence we
have

Uy = (v, ) € Uy | (v, W), €[Q(K) VKEE,) . (3.1)

Here €, denotes the partitioning of the domain into convex quadrilaterals and Q,(K) denotes the space
of isoparametric bilinear functions on K (cf. [11]). Henceforth we assume that the domain is polygonal.
The finite element methods are then defined as follows: Find (w,, 8,) € U”, satisfying

Eh(wh’ Bh) = min E}](U’ dl) ’ (32)

;
(vyeu a’d

with the discrete energy E, defined differently for the three methods.
Let us first recall the element introduced by Bathe and Dvorkin.

3.1. The MITC4 element [6]

For any K€€, let Fy = (F, x, F, ) be the bilinear mapping of the unit square K onto K. The
Jacobian matrix of F, we denote by J, i.e.

aFr,K an,K
_| 9¢ an
JK B aE\nK aFy.K ’ (33)
a& an

where (£,7) are the coordinates of K (i.e. the natural coordinates of K). We remark here that in the
finite element literature, the name Jacobian is often used for the transpose of the above matrix. We will,
however, use the more established definition. Further, let
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I(K)={5= (%, %,)| % = a + bn, 3, = c + d&, for some a, b, ¢, d ER} (3.4)
and
I'(K)={s = (7,.7,) |s(x, y) =J '$(F ;' (x, y)) for some § € I'(K)} , (3.5)

with J ¢' denoting the transpose of J;'. For a given vector valued function s, the reduction operator R,
is defined so that R,s| . € ['(K) and determined through

j{ [(R,s —~s)-7]ds =0 foreveryedge E of K, foreach K€%, . (3.6)

Here 7 is the tangent to the edge E.
The method is now defined from (3.2) with

1 1 ,
E,(v,¢)= *2—t3a(1[1, i)+ 3 Gkt L IR, —V|* d - L gu dQ2 (3.7)

for all v in the finite element subspace for the deflection.
The approximation for the shear force is obtained from

Q,=GkrtR,B, —Vw,) . (3.8)

REMARK 1. We point out that for a function v in the finite element subspace for the deflection,
Vol =J ' Vi|g holds for all K€ €,, with 0(&,m)|gx =v(F, «(£,m), F, x(£,m))|x and V denoting the
gradient with respect to the (£,7) variables. Since Vi(€,m)|¢ € I'(K), it follows that R, Vv = V.

REMARK 2. In [6], the reduction operator R, is defined using a different notation. By using some
tensor analysis (cf. e.g. [10, 21]) it is easily seen that the above definition is identical to that of [6].

REMARK 3. For a rectangular element, the MITC4 coincides with the T1 element of Tezduyar and
Hughes [13] and the QUAD4 clement of MacNeal [17].

In [3], it was shown that this element is closely related to the so-called ‘Q,~P,” element for the
Stokes problem and that the error estimates known for that (cf. [20]) can be transferred to the present
element. In [3, 4], this was done for the case of rectangular elements, but it can be extended [22] to the
same class of elements for which the Stokes element has been analyzed. This class is given as follows.

ASSUMPTION MI. Let €,, be a partitioning of {2 into regular quadrilaterals. Divide the unit square K
into 4 x4 equal squares kij, i,j=1,2,3,4, and let F,, be the bilinear mapping of K onto the
‘macroelement’ M € €,,. The mesh €, is then defined by (cf. Fig. 1) 6,={K|K=F,(K,), ME€,,,
i,j=1,2,3,4}.

Fig. 1. Example of a mesh constructed so that Assumption MI holds.
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For both the MITC4 and its stabilized modification, we need one additional assumption on the mesh.
This in order that the operator R, has the optimal approximation property (cf. [25]).

ASSUMPTION MII. For an element K € €, let 8, denote the distance between the midpoints of the two
diagonals of K. We then assume that 8, < Ch}, for every K € €,.

For simplicity, we present the error estimates for the MITC4 and its modification for the case of a
clamped plate and a convex domain. For this case, the solution is regular enough in order that the
methods will converge with the optimal order, and the estimates can be concisely stated by using the
L*-norm of the load. For a more general case, one would need to give the estimate with the help of the
regularity of the exact solution (cf. [8]).

We use standard Sobolev space notation (cf. [11, Appendix 41]). As usual, & denotes the mesh
parameter. By C we denote various positive constants independent of the mesh parameter & and the
plate thickness 1. This means that under the assumptions stated in the theorems, the three finite element
methods below will not show any locking of the deflection.

THEOREM 3.1 [3, 4, 22]. Suppose that the mesh €, satisfies Assumptions MI and MII. Suppose further
that the plate is clamped and that §) is convex. For f € L*(€2), it then holds that

”W_WhH]+”B"BhH1$Ch“fHu' (3.9)

REMARK 4. If one imposes the additional assumption that the elements are rectangular, then the
following L ’-estimate holds [3, 4]

lw - WhHUSChZHf”() . (3.10)

REMARK 5. For the Q,~P, Stokes element, the pressure is not convergent in general (cf. [20]). This
means that for the MITC4, we cannot assure that the L>-error for the shear is bounded independent of
t. For the case of rectangular elements and a quasi-uniform mesh (i.c. h < Chy, for all K& €,), the
analysis of [20] and [15] would give the estimate

h
la=allo= (=)l (3.11)
which shows that the error in the shear is very sensitive to the plate thickness. Here and below we
denote g, =1 °Q, where 0, is the approximate shear force of the method in question.

Let us also recall that for the Q,—P, clement, it is known (for meshes satisfying MII) how to filter
the pressure in order to get a convergent pressure. We do not know, however, how this filtering could
be carried over to the MITC4.

In view of the above theorem and remarks, it seems that the following method is both simpler and
more robust than the MITC4.
3.2. The new stabilized form of MITC4

We now modify the method by defining the discrete energy as

3 G 3 ’)
E,z(v,¢)=52—a(¢,¢)+ > al fk }Rh¢—vul‘dn~j0 g dQ . (3.12)

Kee, 26 + ah’)

Here hy denotes the longest of the edges of the clement K € €6,. « is a fixed positive constant. The
reduction operator is defined as for the original MITC4. The approximate shear force is obtained from
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B Gkt
(£ + ahl)

0k (R,B, —Ww,) foreachelement KEE, . (3.13)

The above stabilization technique was first introduced in [19] (cf. also [12]) but there it was required
that the deflection is piecewise quadratic. In [8], it was shown that one can use linear or bilinear
elements for the deflection if one includes an MITC reduction operator. We did the analysis for the case
of linear elements and with the local mesh length & was replaced by the global mesh parameter &, but
it is possible to perform the analysis for the above formulation as well. This will be done in a
forthcoming paper [22]. One can prove optimal error estimates for a general mesh (i.e. regular in the
usual sense, cf. [11]).

THEOREM 3.2. [8, 23]. Suppose that the plate is clamped, that ) is convex and that the mesh €,
satisfies Assumption MI1. With f € L*(2), it then holds that

e =willi + 18 = Bll+ (2 iilla=allin)™+ g =gl = Chll A, (3.14)

h

REMARK 6. For a quasi-uniform mesh, this gives

la - aullo= ()£, (3.15)

for the shear. Hence, we see that the shear does not necessarily have to converge but it stays bounded
independent of the plate thickness. We recall that this does not have to be the case for the original
MITCA4.

Let us also point out that the above modification has the advantage that the stiffness matrix is more
well conditioned which will be of importance, e.g. when some iterative solution method is considered;
cf. [18] where this observation is used for designing multigrid methods.

3.3. The element with selective reduced integration

In this element we minimize

1 1
E, (v, ¢)= 5 Ca(s, P) + 3 GK[J; IR, (¥ —VW)|* d2 — L gu df2 (3.16)
2 2
with the reduction operator R, defined from

(R, )|« = value of ¢ at the midpoint of the element K for every K € €, . (3.17)

This is usually stated as a ‘selective reduced integration”: the bending energy is integrated exactly
whereas the one point Gauss rule is used for the shear term. The approximate shear force is piecewise
constant calculated from

0, =GR (B, —Ww,) . (3.18)

This method was one of the first that was shown to give satisfactory results for thin plates. However, it
is easily seen that the method cannot be stable; if we consider the case of a completely free plate, the
solution to the finite element model will exhibit unphysical ‘zero energy modes’ (cf. e.g., [11, pp.
332-335]). With enough enforced boundary conditions, these zero energy modes will be eliminated, but
they are a sign of the instability of the method and this can often cause some problems.

In spite of its known deficiencies, this element is presented in most modern textbooks such as [9, 11].
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Although the method is not stable, it has been possible to prove error estimates in some particular
cases; cf. [15] by Johnson and Pitkiranta. They consider the clamped plate and rectangular elements
and the estimate they prove is as follows.

THEOREM 3.3 [15]. Let the plate be clamped and suppose that (2 is a rectangle with a partitioning €,
consisting of equal rectangular elements. If w € H*(Q), B € [H* ()]’ and ¢ €[H'(2)]*, we then have

llw - will, + 1B =Bl + (t+h3)1[‘1"qhnogc}l(HWHs + Hﬁ“a +1lqll)) - (3.19)

REMARK 7. In [15] the following estimate is also reported:

w=wyllo=Cr(Iwlls + 1B+ llall) - (3.:20)

We first note that compared to the estimates for the two previous methods, here we need more
regularity of the exact solution (and the load). Furthermore, the proof given in [15] relies heavily on the
assumptions of rectangular elements and clamped boundary conditions and substantial generalizations
seem hard to obtain. Let us also remark that for some of the discrete shear components, the estimate
derived is better, but the ‘filtering’ operator needed to improve the shear would be quite complicated,
and for a nonrectangular mesh unknown.

The analysis in [15] is based on the equivalence between the present element and a mixed method
with piecewise constant approximations for the shear. For a general quadrilateral, this equivalence does
not hold. Hence, in our calculations we could have considered the mixed method, but we chose the
present method since this is the method usually presented in the literature [9, 11].

4. Numerical experiments

We perform all our numerical experiments for a clamped square plate with a uniformly distributed
load. We show that it is possible to obtain quite revealing results with this seemingly simple problem. In
the calculations, we have chosen the Poisson ratio » = 0.3 and the shear correction factor k = 5/6. The
side length of the square is chosen equal to unity. Due to the symmetry, only one-fourth of the square is
discretized and hence the side of the computational domain is 0.5. We consider the case of a ‘thin’ plate.
The solution to the problem is then very near the Kirchhoff solution obtained in the limit when - 0.
For the Kirchhoff plate, an exact solution is easily computed by classical means. Hence, that is
considered as the exact solution.

Below we perform several tests where we check the accuracy and sensitivity of the methods with
respect to distortions of the mesh and changes in the thickness of the plate.

In the stabilized MITC4, we have chosen a = 0.1 and as the parameter s, we take the length of the
longest side of the element K. In our last numerical test, we study how the accuracy of the stabilized
MITC4 depends on the parameter a.

4.1. Results for uniform and randomly distorted meshes

In our first test, we choose t=0.01. We consider a finite element partitioning into N x N equal
squares (see Fig. 2).

The calculations are then repeated with a sequence of distorted meshes. These are constructed from
the regular ones by moving each interior node at random within a square centered at the node and with
side length 0.4h where h (=1/N) is the side length of the original elements. The nodes lying on the
sides of the computational domain are moved in the same way in the direction of the sides. The meshes
obtained are presented in Fig. 3.

Below we give the results of our calculations. From Table 1 we see that for the MITC4 and its
stabilized modification (abbreviated as ‘STAB’), the mesh distortion will not affect the accuracy of the
centerpoint deflection except for the coarsest mesh. For the method with selective reduced integration
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Fig. 2. The uniform mesh for N =4, Fig. 3. The distorted meshes.
Table 1
The normalized centerpoint deflections w, (center)/w(center) for the uniform and distorted meshes for 1 = 0.01
Selective reduced integration MITC4 Stabilized MITC4
N Uniform Distorted Uniform Distorted Uniform Distorted
2 0.9593 0.9648 0.9590 0.9177 1.0673 1.1602
4 0.9905 0.8862 0.9904 0.9915 1.0205 1.0252
8 0.9991 0.9151 0.9991 0.9964 1.0068 1.0062
16 1.0013 0.9804 1.0013 1.0008 1.0032 1.0032

(abbreviated as ‘SRI’), however, the accuracy is decreased (that this does not happen for the coarsest
mesh seems to be a coincidence, cf. Section 4.3).

That the mesh distortion seriously affects the accuracy of the deflection for the SRI is even more
clearly seen from Table 2; for N = 4 the distortion increases the L -error by double and for N = 16 the
increase in the error is about tenfold. This can be expected from the theoretical analysis; as already
mentioned, the analysis of [15] is based heavily on the assumption of rectangular elements (for the
uniform case we see that the accuracy is better than predicted by the estimate (3.23)). The distortion
has no significant influence on the error for the MITC4 and STAB. For reference, we have also listed
the error for the normal Lagrange interpolant in the finite element space for the deflection. We see that
with respect to this error measure the stabilized method is better than both the SRI and the MITC4,
and also slightly better than the interpolant.

Next, we give the errors in the moments and also for the moment obtained from the bilinear
interpolant of the rotation (i.e. calculated from (2.7) with B replaced by its Lagrange interpolant)

Table 2
The errors [lw — w,||,/|lwll, for the uniform and distorted meshes for 1= 0.01
Selective reduced integration MITC4 Stabilized MITC4 Interpolant

N Uniform Distorted Uniform Distorted Uniform Distorted Uniform Distorted
2 0.2687 0.2462 0.2691 0.2876 0.1539 0.1192 0.1504 0.1443
4 0.0698 0.1448 0.0699 0.0773 0.0408 0.0436 0.0474 0.0542
8 0.0161 0.0925 0.0161 0.0203 0.0095 0.0109 0.0126 0.0134
16 0.0027 0.0251 0.0027 0.0033 0.0025 0.0027 0.0032 0.0034
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Table 3
The errors |M — M, ||,/ ]M]], for the uniform and distorted meshes for 1= 0.01
Selective reduced integration MITC4 Stabilized MITC4 Interpolant
N Uniform Distorted Uniform Distorted Uniform Distorted Uniform Distorted
2 0.6057 0.6320 0.6058 0.6265 0.6035 0.6397 0.6055 0.6294
4 0.3187 0.3688 0.3187 0.3464 0.3182 0.3429 0.3188 0.3419
8 0.1613 0.2217 0.1613 0.1714 0.1612 0.1680 0.1613 0.1672
16 0.0809 0.1065 0.0809 0.0849 0.0809 0.0844 0.0809 0.0840

(Table 3). Here the mesh distortion has a quite small effect on any of the methods (although the biggest
change is again for the SRI).

The effect of the mesh distortion is most pronounced for the shear force as could be expected from
the theoretical analysis. From Table 4 we see that for the uniform mesh all three methods give a shear
which is much better than predicted by the theory. This convergence of the shear is probably due to
some superconvergence effects. By distorting the mesh, however, the instabilities surface; the accuracy
of the shear for the SRI is completely destroyed and for coarser meshes the accuracy for the MITC4 is
also affected. For finer meshes, the MITC4 starts to catch up with the stabilized method. The
conclusion is, however, that the stabilized method is far more reliable than the other two. In Fig. 4 we
show the distribution of the calculated shear forces along the horizontal symmetry line of the plate
(along which the exact solution satisfies Q, = 0). The graphs are for the distorted meshes with N = 16.
Here we see how irregular and oscillating the shear is for the SRI. The stabilized method gives better
results than the original MITC4, but for this mesh and value of 1, the difference is not as big as it is for
coarser meshes or smaller values of the thickness (cf. below). Let us also note that even if Assumption
MII is not valid for the randomly distorted meshes, only the accuracy of the shear force is affected.

The next test is to repeat all calculations for a very thin plate with ¢ = (.001. The results are listed in
Tables 5-8.

Again, we see that all three methods work very well as long as the mesh is uniform. For the distorted
mesh, the situation is different. Now the SRI fails completely and the moment is very bad. For the
coarsest mesh with N =2, the MITC4 locks totally. The L’-error of the deflection in the MITC4 is also
affected for all meshes. Furthermore, for this thickness, the shear is very bad. In Fig. 5, we show the
shear distribution for the MITC4 and the stabilized method for the distorted meshes with N = 8. We
point out that the vertical scale is different here from that of Fig. 4 (the shear for the SRI is so highly
oscillating that there is no point in showing it).

4.2. Results for meshes obtained by moving one node

Next we show that the instabilities in the SRI and MITC4 can show up in a quite innocent looking
test; we only move one vertex in the mesh (see Fig. 6). Here we have moved the node which is nearest
the clamped corner. This has a big effect on the MITC4. Results obtained by moving a node in the
middle of the domain are presented in [23].

From Tables 9 and 10 we see that this can have a very dramatic effect on the shear force. This
distortion does not have any effect on the moment for any of the three methods. For the thinner case of
t = 0.001, the accuracy of the deflection will also be affected as can be seen from Table 11. Note that for
N =4, the cffect on the deflection of the MITC4 is bigger than for the randomly distorted meshes.

Table 4
The errors ||@ ~ @,11,/11Qll, for the uniform and distorted meshes for ¢ = 0.01
Selective reduced integration MITC4 Stabilized MITC4

N Uniform Distorted Uniform Distorted Uniform Distorted
2 0.5199 2.7209 0.4530 5.5407 0.4413 0.4579
4 0.2546 3.9164 0.2772 0.6834 0.2757 0.3137
8 0.1328 3.9063 0.1761 0.5660 0.1760 0.2783
16 0.0784 2.4186 0.1172 0.2652 0.1174 0.1919
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Fig. 4. The shear force distribution along the horizontal symmetry line for the method with selective reduced integration (top),
MITC4 (middle) and stabilized MITC4 (bottom). A distorted mesh with N = 16. The thickness of the plate is 1 = 0.01. The dotted
lines give the exact solution,

Table 5
The normalized centerpoint deflections w,(center)/w(center) for the uniform and distorted meshes for ¢ = 0.001

Selective reduced integration MITC4 Stabilized MITC4
N Uniform Distorted Uniform Distorted Uniform Distorted
2 0.9573 0.2685 0.9573 0.0720 1.0656 1.1585
4 0.9885 0.3835 0.9885 1.0019 1.0186 1.0233
& 0.9971 0.6329 0.9971 0.9942 1.0048 1.0041
16 0.9993 0.8114 0.9993 0.9982 1.0012 1.0011
Table 6
The errors lw —w,|l,/|lw]], for the uniform and distorted meshes for 1= 0.001
Selective reduced integration MITC4 Stabilized MITC4 Interpolant
N Uniform Distorted Uniform Distorted Uniform Distorted Uniform Distorted
2 0.2711 0.7859 0.2712 .9432 0.1554 0.1191 0.1504 0.1443
4 0.0720 0.5134 0.0720 (.0840 0.0422 0.0447 0.0474 0.0542
8 0.0183 (.3385 0.0183 0.0261 0.0107 0.0122 0.0126 0.0134
16 0.0046 0.2070 0.0046 0.0063 0.0027 0.0031 0.0032 0.0034

4.3. A study of the distortion robustness for a coarse mesh

Next, we perform a test introduced by Weissman and Taylor [24]. We take the uniform 2 X 2 mesh
and move the center node along one of the meshlines (cf. Fig. 7).
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Table 7
The errors {|M — M, ||,/||M]|, for the uniform and distorted meshes for ¢ = 0.001
Selective reduced integration MITC4 Stabilized MITC4 Interpolant
N Uniform Distorted Uniform Distorted Uniform Distorted Uniform Distorted
2 0.6059 (0.8207 0.6059 0.9503 0.6035 0.6397 0.6055 0.6294
4 0.3188 0.6892 0.3188 0.3554 0.3182 0.3430 0.3188 0.3419
8 0.1613 0.5399 0.1613 0.1839 0.1612 0.1683 0.1613 0.1672
16 0.0809 0.4176 0.0809 0.0919 0.0809 0.0847 0.0809 0.0840
Table 8
The errors [0 — @, ll,/11@]l, for the uniform and distorted meshes for = 0.001
Selective reduced integration MITC4 Stabilized MITC4
N Uniform Distorted Uniform Distorted Uniform Distorted
2 0.5216 74.0530 0.4533 43.2862 0.4414 0.4585
4 0.2552 29.4427 0.2774 3.7011 0.2758 0.3162
8 0.1282 21.6957 0.1762 3.8323 0.1760 0.3011
16 0.0644 30.1994 0.1172 2.5511 0.1172 0.2723
1.0
Qy \/ \/
-1.5
.0 X .5
1.0 1.0
Qy
-1.5 ~1.5
.0 X .5 .0 X .5

Fig. 5. The shear force distribution along the horizontal symmetry line for the MITC4 (top) and the stabilized MITC4 (bottom).
A distorted mesh with N =8. Plate thickness 7 = 0.001. The dotted lines give the exact solution.

» T

we

Fig. 6. The meshes obtained from the uniform ones by moving one node.
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Table 9

The errors |@ — Q,]l,/|IQll, for a mesh obtained by moving one node in the

uniform partitioning, = 0.01

N Selective reduced integration MITC4 Stabilized MITC4
4 1.5283 1.4494 0.3171
8 0.2280 0.2341 0.1846

16 0.0795 0.1186 0.1180

Table 10

The errors |@ — Q,]l,//1@ll, for a mesh obtained by moving one node in the

uniform partitioning, 1= 0.001

N Selective reduced integration MITC4 Stabilized MITC4
4 20.6448 20.8639 0.3203
8 5.2072 5.1977 0.1874
16 0.6435 0.2928 0.1187
Table 11

The errors ||w —w,|l,/[lwll, for a mesh obtained by moving one node in the

uniform partitioning, ¢ = 0.001

N Selective reduced integration MITC4 Stabilized MITC4
4 0.1511 0.1513 0.0438
8 0.0196 0.0191 (0.0108
16 0.0046 0.0046 0.0027

In Figs. 8-11, we see how the errors for the three methods vary with the distance 6 by which the
node is moved. From the figures we see that the stabilized method is much more robust than the two
others. The shear force is again the quantity where difference is biggest; the SRI and the MITC4 both

fail completely except for the uniform mesh.

CL

79l M I LR PP

Fig. 7. The distortion of the 2 X 2 mesh.

o SRt
-~ MITC4
o STAR

Fig. 9. The distortion sensitivity of the errors |jw —w, ||,/
liwll, for the 2 % 2 mesh.
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Fig. 8. The distortion sensitivity of the errors w,(center)/
w(center) for the 2 X 2 mesh.
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Fig. 10. The distortion sensitivity of the errors |M - M, ||,/
[IM]], for the 2 x 2 mesh.
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Fig. 11. The distortion sensitivity of the errors ||Q — @, I,/ Fig. 12. The dependence of the error w, (center)/w(center)
@1l for the 2 x 2 mesh. on the parameter a.

4.4. The accuracy of the stabilized MITC4 with respect to the parameter a

In all our previous calculations, we have chosen the parameter e equal to 0.1 (and the mesh length
hy as the length of the longest side of the element K). Here we show the results of some calculations in
which we check the accuracy of the method with respect to . We do the calculations for both a clamped
and a simply supported plate. We take the distorted meshes of Fig. 3 with N =§ for the clamped plate
and N = 4 for the simply supported case (both cases fit into the same pictures).

From the first figure we see that a higher a gives a ‘softer’ plate. From Fig. 13, we see that the
stabilized method gives a smaller L*-error than the original MITC4 (i.e. the method with « = 0) for the
whole range 0 <« <0.2. For the simply supported plate, this is the case for 0 < a <0.6.

The moment is not much influenced by the choice of a as can be seen from Fig. 14,

For the clamped plate, the accuracy of the shear is greatly influenced by the choice of «. For the
simply supported case, the influence is smaller. The reason for this is probably that the clamped
boundary conditions is the ‘worst case’ with respect to the stability of the method.

©,06 0,25
& 4 -
T 0,09+ B Simply supp. &
o 3,08 : & ]
o -+ Clamped g 0,20
. 5 5 0,15
£ 0,034 &
;
B T S e &
20,024 b
3 * @
& o R
W 0.0 - @ 0,05+ B Simply supp
£ o £ ~* Clamped
c 1 5
i =
- 0,00 v T v T v 0,00 T T
9,0 0,2 0.4 0.6 0,0 0,2 0,4 0,6
« o
Fig. 13. The dependence of the error [jw—w,||,/{lw|, on Fig. 14. The dependence of the error [|M — M, |[,/||M||, on
the parameter a. the parameter a.
0,6
b
0,5
= Simply supp.
0.4 - Clarmped

izeg L2-error in shear force

Nermal

Fig. 15. The dependence of the error [|Q - Q,1l,/[@]l, on the parameter .
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5. Conclusions

In this paper, we have introduced a new stable modification of the MITC4 plate bending element
introduced by Bathe and Dvorkin. By performing numerical experiments, we have shown the
importance of the stability of a method. In our examples, we considered the original MITC4, the new
modification of it and the bilinear element with a reduced one-point integration for the shear term. The
examples show that the method with reduced integration is highly unreliable and should not be used.
The MITC4 performs much better, but for irregular meshes or very thin plates, it suffers from a
decrease in accuracy. Especially the shear force can be oscillating and inaccurate, but the deflection can
also be affected. The new modification of the MITC4 does not have these drawbacks; it works well in
all calculations performed.

Our numerical examples also show that in order to perform revealing benchmark calculations, it is
not cnough to do calculations for regular meshes; for those, all three methods perform excellently.
Neither is it enough to report on, say, the centerpoint deflection and the moments. Instead all variables
of interest should be checked.

Finally, we would like to remark that, in view of the way the shear term is modified in our new
element, the ‘shear correction factor’ does not seem to be a very relevant parameter for the plate
model.
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