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Abstract

We introduce a new triangular element for nearly incompressible elasticity and incompressible fluid flow. The method
consists of conforming linear elements for one of the displacement (or velocity for flows) component and linear non-
conforming elements for the other component. The element is proved to give an optimal approximation and this is also
confirmed by several numerical examples.

1. Introduction

In addition to materials for which the Poisson ratio is near one half, the problem of a nearly incompressible
material stems from the fact that it arises as an intermediate step in solving problems in plasticity. Computa-
tionally, a nearly incompressible material is well know to be problematic since a direct application of a standard
low order finite element method cannot be used. Usually the problem is instead reformulated by introducing a
new unknown, the “pressure”, by which it is of the same form as a regular perturbation of the Stokes equations
arising in fluid flow. To discretize by the finite element method one now uses different approximations for the
deflection (velocity) and the pressure. The discretization can be defined in two ways. The traditional “Galerkin”
approach consists of transfering the natural weak formulation of the problem into the subspaces. In order that
the method would work, the finite element spaces have to satisfy the well known “Babu$ka-Brezzi” condition.
The problem of selecting finite element subspaces satisfying this condition has by now been studied in great
detail, cf. the recent books [2,10]. In this approach there exists a general technique of using “bubble functions”
by which stable methods can be designed.

The second approach is more recent and in it the weak finite element formulation is altered to include some
properly weighted residuals of the differential equations (cf. [7] and [9] for a unified error analysis). By this
technique the set of finite element spaces that can be used is considerably enlarged.

In elasticity the introduction and discretization of the pressure variable is usually just an intermediate step
in order to obtain a working method; one uses discontinuous finite elements for the pressure and hence it can
be condensed in the assembling phase of the calculation. In fluid flow the same approach is also very common
and there the pressure elimination is made possible by a small perturbation of the incompressible condition, cf.
[2,10] and Egs. (25) and (26) below.
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For the two dimensional problem the two techniques mentioned above yield stable conforming elements
of every degree except the lowest, i.e. linear or bilinear displacements combined with a piecewise constant
pressure. However, even if it is not stable, the quadrilateral bilinear/constant element works quite well: for a
wide class of meshes it has been shown to be optimally convergent provided the pressure has been smoothed in
the right way, cf. [14]. For more general meshes the question of the convergence is open and hence no general
smoothing procedure for the pressure is known. Therefore the element cannot be recommended for general use.
The triangular element with a linear displacement (and hence a constant pressure) is well known to “lock”
except in the case when the mesh is obtained from a quadrilateral mesh by drawing the two diagonals to each
quadrilateral. For this type of triangulations the method behaves essentially as the quadrilateral bilinear/constant
element, cf. [2, pp. 229-231]. That the pressure should be filtered can be seen from the Poiseuille flow example
in Section 3 below.

In the pioneering paper [4] Crouzeix and Raviart showed that a linear/constant combination could be used
for the Stokes problem with Dirichlet boundary conditions provided that the linear elements for the velocity
are nonconforming, i.e. continuous only at the midpoints of the element edges. Recently a similar element for
quadrilaterals has been introduced by Rannacher and Turek [15]. This approach will not, however, work for
the equations of linear elasticity or the Stokes equations with certain “outflow” boundary conditions. The reason
being that it leads to an element suffering from unphysical mechanisms. This question will be discussed in
Section 2 below.

The purpose of this paper is to introduce a simple, but appearently new, idea: a plane elasticity element in
which linear conforming elements are used for one of the displacement components and linear nonconforming
elements for the other component. This means that the pressure is approximated with piecewise constants.
We will prove that the method gives optimally convergent approximations for all variables independent of the
Poisson ratio. For Stokes problem with Dirichlet boundary conditions it also has the advantage over the method
by Crouzeix and Raviart that it asymptotically has only two thirds the number of degrees of freedom for the
same mesh.

In the next section we will define our element. We then, in Section 3, give the results of some numerical
calculations with the element. The last section is devoted to the mathematical stability and error analysis.

2. The finite element method

Let us recall the plain strain problem. By the principle of virtual work the displacement of the body is
determined as follows: find u = (4, u2) € U(42) such that

2G/ [e(u):s(v)+( v )divudivv} d.():/f-vd.(2+/ g-vdy Vv e U(2). (1)
0 1—2v o

N

Here U(42) denotes the set of admissible displacements:
U ={ve H ()] |v, =0}. (2)

where f is the body load and g is the traction given along the part I'y of the boundary of 2. On the
complementary part /'p = 32 \ I'y of the boundary we assume that the body is fixed. Naturally, we assume
that the length of I'p is positive. G denotes the shear modulus and » is the Poisson ratio. We recall that
0<rv < % with the upper limit corresponding to a completely incompressible material. We further use the

standard notation

VU:{ﬁu,}‘ e(w) =1 [Vo+ (Vo)],

F’)Xj

2
. (?L‘l (9[)2
dive= — + and K:7= E KijTij.
(9X] (7,1’3 =l ’
ij=

Let us also recall that the stress is given by

o =26 <£(u) + <L> divuI), (3)
1 —2v
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with I denoting the identity tensor.
Our element can now be defined as follows. We introduce a triangulation C, of £ in the usual way and
define Uy, = (Uy 4, Uz i) by

Uy, ={vlv is linear in every triangle of C;, continuous at midpoints of interelement boundaries, and
vanishes at the midpoints of the edges lying on I'p},
Ua , ={v|v is continuous in (2, linear in every triangle of C;, and vanishes on I'n}. (4)
We note that the degrees of freedom for this element are the following: the values of the first displacement

component at the midpoints of the edges and the values of the second component at the vertices of the triangle.
The method is then: find u;, € U, such that

ZGZ/ [s(uh):s(v)+< v )divuhdivv] dfn = f~vd.()+/ g -vdy Vv € Uy. (5
K 0 I'n

ford 1 —2v

We remark that the method is nonconforming, i.e. it holds U, ¢ U(42), and hence we above have to take the
sum of integrals over each element. By the same reason the approximate stress have to be defined from

ouk =26 (s(uh) n <]—_V~2;) divu,,I) x  VKEC (6)
We point out that the element stiffness matrix is obtained exactly by a one point integration and also that it
is related to that of the standard “constant strain triangle” by a simple tranformation of the degrees of freedom.
For small values of the Poisson ratio the error analysis can be done directly for the formulation (5). Using
the discrete Korn inequality proved in Lemma 4.5 below this is standard (cf. [3]), and hence in our error
analysis we will only consider the problem with the Poisson ratio lying in the range, say, i <r< % The error
analysis will be based on Herrmann’s formulation of (1) obtained by taking

2Gy .
P==—\1-2; divu (7

as an independent unknown: find u € U(£2) and p € L*({2) such that

ZG/E(u) :E(v)dﬂ—/pdivvd!):/f~vd.(2+/ g-vdy Vv e U(1),
17} 173 n I'n
(8)

1 —2v / .
pqd.(2+/d1vuqd.()=0 Vg e L} ().
( 26v ) 0 173

Next, we note that the discrete problem (5) can as well be written in a mixed form: find u;, € U, and p, € Py
such that

2GZ/e(uh) () d - )
K

/p;,divvd.(): f-vd!2+/ g-vdy Yv e Uy,
K 0 I'n

Ket Keg,
(9
e / d2+ Y [ divaygd2=0  VgePp
2Gv ”Phq « wu,q = CIG B>
KecC,
with
Pi={qe L’(D]gx € P(K) VK€ Cy}. (10)

Let us stress that the introduction of the new variable is done only as a tool for the mathematical analysis;
the method is intended to be implemented by (5) in which the stiffness matrix is calculated exactly with the
one point rule.

With the auxiliary unknown p, the stress can alternatively be written as

ok = (2Ge(up) — pul) g VK € C). (11)



198 R. Kouhia, R. Sienberg/Comput. Methods Appl. Mech. Engrg. 124 (1995) 195-212

The detailed error analysis of the method will be postponed to Section 4 below. We here only give the optimal
error estimate that we will prove. In addition to standard notation for Sobolev space norms and seminorms (cf.
[11, pp. 266-267]) we here use the seminorm

Mih = Z ‘U(?,K Yo e U(N2) + U, (12)
KeC,,

and the norm
lol7, =area() ™ o]s+ o]}, Voe U(R) + U, (13)

Above and throughout the paper we use dimensionally correctly scaled norms.
We have to impose the following weak restriction on the meshes to be allowed.

ASSUMPTION 2.1. Let K be any triangle of Cy, for which all three vertices lie on the boundary 302 and let
(n1,n2) be the normal to that edge of K which lies in the interior of 2. We assume that there is a positive
constant «, independent of the mesh parameter h, such that:

(AD) |ny| > a if all vertices of K lie on the boundary part I'p.

(AN) |m2| = a if all vertices of K lie on the boundary part I'y.

We remark that it is very easy to ensure that this assumption is valid: one constructs the mesh so that every
triangle has at least one vertex in the interior of the domain.

THEOREM 2.2. Suppose that Assumption 2.1 is valid and that h is sufficiently small. Then there is a positive
constant C, independent of the Poisson ratio v, such that

Gllu—ull, , + o — o4y < Ch(Glul, +|a})). (14)

REMARK 2.3. The assumption that % is sufficiently small is here included in order to avoid some possible ex-
tremly coarse meshes for which the uniqueness of the solution should be checked separately. If the triangulation
is constructed such that every triangle has at least one vertex in the interior of the domain, then this assumption
is not needed.

Above and in the sequel the same notation C will be used for different positive constants which all are
independent of the Poisson ratio » and the mesh parameter # defined as the maximum of the diameters of the
elements in the mesh Cy. In cases when it is required by the context the constants will be numbered.

We will also use a smoothing of the stress tensor by projecting it onto the space of continuous linear elements
as is customary in finite element calculations, cf. [ 18]. We hence define

3, = {7‘ = {T,'j}. Tij=Tji € C(.Q)|T,'j|;( € P(K) VKe C;,}, (15)

and let o} € X be the smoothed stress defined from

/cr; crd2 = / oy Td0 Vr € 3. (16)
17y Jo

In general the smoothing cannot be expected to give an improved approximation, it holds
lo = oo < Ch(Glul, + o)), (17

but for a regular mesh it is though often more accurate than the original stress oy,
Let us next consider the approximation of the Stokes problem in fluid mechanics. The starting point is the
system of differential equations which we first recall: find the velocity « and the pressure p such that

—uAu+Vp=f,

18
divu=0 in (2, (18)

where u is the viscosity. In most works concentrating on the numerical analysis of finite element methods for
the case of Dirichlet boundary conditions along the whole boundary is considered. Without loss of generality
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these are chosen homogeneous. Hence the variational formulation is taken as: find u € U(£2) and p € Lg(!))
such that

Vu:Vvd.()—/pdivvd.(): fvd Yv e U(N2),
0

2 [z}

(19)
/divuqd.Q:O Vg € L),
0

where U({2) is as in (2), with /'p = 342, and the pressure has been normalized to have zero mean value, i.e.

it is in the space
/ gdN2 = O} . (20)
0

We would now like to recall that the first equation in (18) is obtained from the equilibrium equation by
using the relation 2udive(u) = puAu which holds due to the condition dive = 0. (Here div denotes the
vector valued divergence operator applied to second order tensors.) The alternative variational formulation of
the Stokes problem is thus: find u € U({2) and p € Lg(ﬂ) such that

L) = {q € L*(0)

2/,L/e(u) :£(v)d0—/pdivvd!2= f-vdn Yv e U(N]),
n 0 n

(21)
/divuqd.():O Vg € L3(0).
n

For a conforming finite element method to work it does not matter which of the formulations (19) or (21) is
used. For the method of Crouzeix and Raviart with linear nonconforming approximations for both components
of the velocity the situation is different. In the original work [4] the method based on the nonconforming
analog of (19) (i.e. one where integrals over (2 are replaced by sums of integrals over the elements) was
considered and it was shown that the method is stable and optimally convergent. If instead the nonconforming
method is defined from (21) it is easily seen that “mechanisms”, or “zero energy” deflection modes different
from the rigid body motions, can occure, (cf. [11, pp. 250-251]). Mathematically this means that a discrete
Korn inequality (of the form (41) below) does not hold. This fact has recently been proved by Falk and
Morley [6].

Suppose next, that a Dirichlet condition is imposed only on a part of the boundary and suppose that the
term f,VN g -vdy is added to the right hand side of the first equations in (19) and (21). This means that the
boundary condition

(uVu—pl) -n=g, only, (22)
is variationally posed in (19), whereas the condition
(Que(u) —pl) -n=g, on Iy, (23)

is the condition included in (21). Of these the second alternative (23) is usually considered more realistic
when modeling various “outflow” conditions and hence it seems that if Dirichlet boundary conditions are not
imposed along the whole boundary, a formulation based on (21) should be prefered over one based on (19). In
those cases the method of Crouzeix and Raviart cannot be used. As we will show, the present nonconforming
method will work. Let us therefore explicitely write it for the Stokes equations: find u;, € Uy, and p; € Py, such
that

2#«2/8(";:) ce(v)dn — Z/phdivvd.(2= f-vd()-&-/ g-vdy Yo € Uy,
K 0 I'n

Kec, UK KeC,
(24)

e/p;,qd.()-}— Z/divuhqd.(l:() Vg € Py,
a KGCA K
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with U and P, given by (4) and (10), respectively. By chosing € = 0 above we obtain the exact discretization.
In practice the penalty formulation with a small positive € is often prefered since then the pressure can be
locally eliminated and the discrete problem is symmetric and positively definite in the unknown uy:

1
2u Z /s(uh) Ce(p)dR+ - Z /divuhdivvd.(2= fvd2+ | g-vdy el
kec, /K € kec, 'K @ I (25)

The pressure is then obtained by
1
phlk' = —; div u,,|K VK € Ch. (26)

Apart from the trivial notational difference in the physical constants the problem is completely equivalent to
the method for the elasticity problem. Hence, we will perform the error analysis in Section 4 in the language
of elasticity. For completeness we will, however, also state our main result for the case of Stokes problem.

THEOREM 2.4. Suppose that Assumption 2.1 is valid and that h is sufficiently small. If 0 < € < Cih?, then it
holds

pllu = unlly+ o~ pally < Coh(eluly + pl,). (27)
If the domain (2 is convex and if I'p = 342, we additionally have
wlle = ually < C3h* (e ful, + [pl)). (28)

The pressure can be smoothed by projecting onto the space of continuous piecewise linear finite elements.

Let us point out that in a triangular mesh there are assymtotically twice as many edges as vertices. Hence,
our method will have approximately only two thirds as many degrees of freedom as the method of Crouzeix
and Raviart.

Let us also remark that the present idea, i.e. to combine nonforming and conforming elements, could be used
for quadrilateral meshes with the element of Rannacher and Turek [15]. On the other hand, for a quadrilateral
mesh one could as well first divide each element into two triangles in which our element would be used. Then
one can condense the degrees of freedom which are internal to each quadrilateral.

3. Numerical results

In this section we will present the results of some numerical calculations with our element. For comparison
we will also give the results obtained by some other elements. As examples of elements that lock we use the
linear constant strain triangle (referred to as “CST”) and the bilinear element with “full integration” (QUAD).
These methods are defined by (25) with the finite element subspace

Up={ucUD)|ux € [RI(K)]* VK EC), (29)

where we denote R (K) = P;(K) in the case when the mesh Cj, consist of triangles and R;(K) = Q;(K) for
a quadrilateral mesh.

We also present the results obtained by the constant strain triangle for a mesh obtained by drawing the two
diagonals in each element of a quadrilateral mesh (the “CST crossed mesh™ method). The last method to be
considered is the quadrilateral bilinear element using selective reduced integration (SRI-QUAD) defined by

ZG/ e(uy) e(v)+ v oy divug I, dive d.()=/f~vd.()+/ g-vdy Yv e Uy,
7 1-2» n I'n

(30)

where Uy, is as in (29) with R(K) = Q|(K) and I1, denotes the Lz—projection onto the space of piecewise
constants

Py={q e L*(2)|qx € Po(K) VK €Cy}. (31)

As is well known (cf. e.g. [11]) the method is in practice implemented by a selective reduced integration. For a
quite big class of meshes this method has been proved to give a convergent approximation for the displacement,
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z2

}
o VPIZ] 2o
}

symmetry boundary condition
L=16

Fig. 1. Cantilever beam with parabolically varying end shear load. The 4 x 2 quadrilateral mesh and the corresponding triangular mesh and
the crossed triangular mesh.

cf. [14]. In order that the stress would converge a filtering, as defined in [ 14], should be performed. In [14] the
“worst case”, i.e. Dirichlet conditions along the whole boundary, was considered and in practical computations
this very seldom occurs. Therefore, the stress can be quite good also without the filtering. The same holds for
the constant strain triangle with the crossed mesh.

For the above methods we also define a smoothed stress defined by (15) with

2}, = {'T= {T,'j}, Tij =Tj € C(.Q)lT,-ﬂK € Ri(K) VK ¢ Ch} (32)

For the bilinear element with selective reduced integration this projection is commonly used (cf. [11,18]) even
if it does not exactly perform the filtering for which an analysis have been done in [14]. The projection seems,
however, to perform a partial filtering but a rigorous analysis of this has not yet been presented.

EXAMPLE 3.1. A cantilever beam with a parabolic end load

This example is (a slight modification of) a standard test problem of a cantilever beam subjected to a
parabolically varying end shear, cf. [11, pp. 219-255]. We let 2= (0,L) x (—c,c) and I'p = {(x1, x2)|x) =
0,x, € [—c,c]}. On I'y we impose the following boundary conditions for the traction g:

g(xi, +c)=0, x; €[0,L],
3P

g(L,x2) =<0, @(cz—xg)) x2 € [—c,c].
A standard reference solution (denoted by uger) satisfying these traction boundary conditions is

P(1—»?)

2 —
—Wm{ﬂﬁ—@—xl)z] + <1Z> (x%—c2)},

Pl — 2 2 (33)
wager(1,2) = (—4Cﬁ”—l{<L—x.)3—L3+x1 [9{—”3—3 +3L2] + <13_”v) (L—xl)x%}-

Uy Ref(X1,x2) =

This solution is often taken as the solution for the problem where the displacement vanish on I'n. We will,
however, first solve the problem by imposing the exact displacement uger on I'p. By symmetry only half of the
domain is modelled and the data employed in the calculations are:

P=—1, L=16, c¢=2, E=1, v=03, and »=0.499.
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Table |
Normalized vertical tip displacements for the cantilever beam
Element NEL N u=ugpe on I'p u=0onIp
v =03 v =0.499 v=0J3 v =0.499
CST 16 20 0.455 0.207 0.450 0.065
64 72 0.782 0.662 0.751 0.103
256 272 0.933 0.733 0.918 0.213
CST crossed mesh 32 36 0.673 0.842 0.646 0.497
128 136 0.889 0.939 0.873 0.739
512 518 0.970 0.981 0.940 0.884
NC-CST u; conforming 16 36 0.882 0.884 0.884 0.908
64 136 0.967 0.968 0.971 0.990
256 528 0.992 0.992 0.994 1.007
NC-CST u> conforming 16 36 1.049 0.817 1.041 0.760
64 136 1.023 1.023 0.999 0.876
256 528 1.006 1.006 0.996 0.944
QUAD 2x2 int. 8 20 0.741 0.616 0.747 0.113
32 72 0918 0.704 0919 0.225
128 272 0.978 0.819 0977 0.455
SRI-QUAD 8 20 0.756 0.842 0.737 0.708
32 72 0.924 0.952 0914 0.901
128 272 0.980 0.987 0.975 0.967

In Table 1 we give the normalized tip displacement (i.e. us 5(L,0)/uzret(L,0)) obtained with the finite
element methods. The exact tip displacement obtained from (33) is

Uy ref(L,0)=244.14 for v=0.3,

uy ret( L, 0)=205.74 for v=0.499.

In Fig. 1 we show a quadrilateral mesh used and the corresponding triangular mesh and the crossed triangular
mesh. For the nonconforming method (NC-CST) we consider both alternatives for choosing the nonconforming
component of the displacement.

Next, we solve the problem by imposing the condition u = 0 on I'p. For this case the exact solution is
not known. Hence, we extrapolate from the results obtained with our nonconforming method for the 16 x 8,
32 x 16, 64 x 32 and 128 x 64 meshes. The values obtained are

us gxe( L, 0)=243.29 for v=0.3,

s xer( L, 0)=198.92  for v=0.499.

In Table 1 we also give the normalized vertical displacement for this case. It is interesing to note that for
the conforming linear (CST) and bilinear (QUAD) elements the locking is much more severe for this second
example, whereas the methods without locking give as good results in both cases.

Since for the same mesh the methods have a different number of degrees of freedom, we in Fig. 2 give the
normalized tip displacement against the number of degrees of freedom.

From Table 1 and Fig. 2 we see that our nonconforming element gives good results for this test problem.

EXAMPLE 3.2. Rigid circular inclusion in an infinite plate

We consider the case of a rigid circular inclusion of an infinite plate, subject to a unidirectional tension ¢ .
The problem definition and the computational domain is shown in Fig. 3.

The exact solutions [ 13] for displacements are

Jo
8Gr

Ur

2 2 2 2 28a*
(k= D)r" 4+2ya" + B+ a " +2r + cos26 » ,

r

4

=T - a4 22— P
Uy = RGr i:,B(K Da® + 2r r2]sm2€
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v=03 u=0onT,

v=0493, u=0o0nTl,

0 ————
A\—QQQ
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-0.5 - + .\x\
gL .\+ .\E
:;9 \ [ ]
=
= 15 +
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o
2 a=CST d
= = CST crossed mesh e
® =NC-CST u; conforming
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o =QUAD
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_3 L Il 1
3 1 15 2 2.5
log(N)
Fig. 2. Cantilever beam, convergence of tip displacement.
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Fig. 3. Rigid circular inclusion in an infinite plate.
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Fig. 4. The finest quadrilateral and triangular meshes used for the rigid circular inclusion.

203



204 R. Kouhia, R. Stenberg/Comput. Methods Appl. Mech. Engrg. 124 (1995) 195-212

Table 2
An infinite plate with a rigid circular inclusion; convergence of the relative L?-errors of stresses and displacements
Element NEL N er(op), % er(o}), % er(u), %
QUAD 4 8 >100 >100 94.45
16 32 >100 >100 81.25
64 128 >100 >100 52.39
256 512 >100 >100 24.67
SRI-QUAD 4 8 2372 14.65 8.23
16 32 14.95 8.47 3.04
64 128 6.69 2.82 0.71
256 512 2.83 0.85 0.17
CST crossed 16 16 42.66 23.89 14.12
64 64 25.44 13.86 4.65
256 256 12.24 5.54 1.08
1024 1024 5.33 1.79 025
NC-CST 8 16 2126 19.62 7.64
32 64 12.55 7.49 1.77
128 256 6.61 3.08 0.52
288 576 3.37 1.15 0.14
and stress components
2 2 4
i PR L R Sk PR (34)
2 r r rt
2 4
a(,:“;“’[wﬁ—(l—ﬁ)cosze], (35)
2 r? r
2 4
P (1 Bi+ﬂ> sin 26, (36)
2 r? ré

where «, 6, B,y are constants which depend on Poisson’s ratio only. In our case of plane strain it holds:
k=3—-4v, S=«k', B=-28 y=2v—1. (37)

The boundary conditions imposed in the calculations are as follows: along the circular arc AE, both displacement
components are zero, along the lines AB and DE symmetry conditions are imposed, and the tractions computed
from (34) are given along the parts BC and CD. The Poisson ratio is ¥ = 0.4999. Four basic quadrilateral
meshes are constructed for the numerical convergence study. The meshes for the nonconforming triangular
element are generated by dividing the quadrilateral elements into two triangles and the meshes for the standard
linear triangle is a combination of four triangles forming the boundaries of a quadrilateral element and its
diagonals, see Fig. 4. We give the results for the conforming constant strain triangle only for the “crossed
meshes” since for the other triangulation the results are as bad as for the fully integrated bilinear quadrilateral
element. In Table 2 we give the relative L?-errors for the computed stress ||o — @4, / ||o||y> the smoothed
stress ||or — a7l / llor]l, and displacement [lu — uyl|, / |Ju|l,-

EXAMPLE 3.3. Cook’s problem

A common test case for plane stress is the Cook’s wing type cantilever. The problem definition is shown in
Fig. 5. The physical parameters are £ = 1.0 and » = 1/3. The cantilever is of unit thickness. We compare the
behaviour of our nonconforming linear triangle only to the standard bilinear element. The left mesh in Fig. 5
is used for the case when u; is nonconforming. For the case when u; is nonconforming the assumption (AN)
forces us to use the slightly modified mesh on the right. The results obtained are given in Table 3. The principal
stresses at the points A and B are obtained from the post-processed stresses, as defined in (16). The results
obtained with the quadrilateral method for the 128 x 128 mesh can be considered as the “exact” values.
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%; conforming u; conforming
P
16 (o
!
44
B
48
Fig. 5. Cook’s cantilever problem.
Table 3
Numerical results for Cook’s problem
Element Mesh N u(C) T min (A) T nax (B)
QUAD 2x2 12 11.85 —0.0649 0.1031
4x4 40 18.30 —0.1382 0.1955
8x8 144 22.08 —0.1828 0.2247
16x16 544 23.43 —0.1986 0.2347
32x32 2112 23.82 —0.2027 02370
128x%128 33024 23.95 —0.2036 0.2371
NC-CST u; conforming 2x2 20 20.00 —-0.1662 0.1460
4x4 72 25.46 -0.1836 0.2014
8x8 272 23.86 —0.1920 02177
16x16 1056 23.94 —0.1976 0.2268
32x32 4160 23.94 —0.2006 02317
NC-CST u; conforming 2x2 20 31.28 —0.1126 0.2653
4x4 72 25.51 —0.1683 0.2241
8x8 272 24.41 ~0.1833 0.2259
16x16 1056 24.11 —0.1929 0.2301
32x32 4160 2401 —0.1981 0.2332

EXAMPLE 3.4. Poiseuille flow

A classical test for the Stokes problem is the Poiseuille flow, which, despite of its simplicity, reveals many
unstable schemes. The same parabolic velocity profile is imposed at both the inlet and outlet of a rectangular
channel. On the two other sides the velocity vanish. If H is the height of the channel the exact solution of the
problem is

u=(Ax2(H — x3),0), p=—2pAx],

where A is a constant. In the computations we have chosen the domain as 2 = (—H, H) x (0, H) with the
numerical value H = 4. We have further chosen 2uA = 1/H so that the pressure varies from —1 to 1. The
computations have been carried out both with uniform and slightly distorted meshes. The distorted meshes are
constructed so that the node at the point (—3,3) in the uniform mesh is displaced to (—2.99,3.01). We use
the values € =4.0- 107> and € = 4.0- 10~ for the penalty parameter. Three types of elements are compared:
the bilinear Q) — Py element, the linear triangle with a crossed mesh and the new nonconforming linear triangle.
The results of the computations are shown in Table 4 (here we do not use the earlier abreviations for the
elements, since they are not that common within the context of fluid mechanics). The potential danger in using
unstable elements is clearly seen from these results, the Q) — Py and the standard linear triangle yield highly
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27 -4.2 3.1 -3.6 3.6 -3.1 4.1 -2.6\1
-4.4 2.8 -3.9 3.4 -3.4 3.8 -2.8 4.4
2.8 -4.2 3.1 -3.8 3.6 -3.1 4.1 -2.8
-4.4 2.9 -3.9 3.4 -3.4 3.9 -2.9 4.4
2.7 -4.2 3.2 -3.7 3.7 -3.2 4.2 -2.7
2.7 ) 2.74.2 X -4.23.2 X 3.33.7 X-3.7(3.7 ) 3.33.2 X-3.24.2 X 4.32.7 X-2.7
2.7 -4.2 3.2 -3.7 3.7 -3.2 42 -2.7
-4.5 30 -3.9 3.6 -3.4 3.9 -2.9 4.4
4.6 -4.4/3.0X 3.44.0 X-3.43.56 X 3.§3.5 )(-3.44.0 X 3.942.8 X-2.84.4 X 4.4
44 3.0 -4.0 3.6 -3.4 3.9 -2.9 44
2.7 -4.2 3.2 -3.7 37 -3.2 42 -2.7
2.7 X 2.744.2 X-4.213.2 X 3.23.7 X-3.7(3.7 )X 3.33.2 X-3.44.2 X 4.327 X-2.7
2.7 %] 3.2 -3.7 37 -3.2 42 -2.7
-4.5 3.0 -4.0 3.6 -3.4 4.0 -2.9 4.4
4.6 »(-4.5/3.0 X 3.64.0 )-4.03.56 X 3.63.4 5-3.44.0 X 3.82.9 X-2.9/4.4 X 4.4
-4.5 3.0 -4.0 36 3.4 4.0 -2.9 4.4
~0.9 -0.8 -0.4 -0.1 0.1 0.4 0.6 0.9
0.9 0.8 0.4 0.1 0.1 0.4 0.6 0.9
-0.9 -0.6 -0.4 -0.1 0.1 0.4 0.8 0.9
0.9 0.6 <0.4 0.1 0.1 0.4 0.6 0.9
-0.9 -0.8 -0.4 -0.1 0.1 0.4 0.8 0.9
0.9 0.6 0.4 0.1 0.1 0.4 0.6 0.8
-0.9 -0.6 -0.4 -0.1 0.1 04 0.6 0.9
0.9 0.6 0.4 0.1 0.1 0.4 0.6 0.9

Fig. 6. Poiscuille flow, 8 x4 mesh, € = 4.0- 103, Pressure distribution for the Q; — Py element (top), linear element with a crossed mesh
(middle) and the nonconforming element (bottom).

oscillatory spurious pressure modes (checkerboarding), which is seen in Fig. 6 (note the minimal distortion of
the node in the upper left corner). Since we in the figure present the results with only two digits of accuracy
both alternatives for the nonconforming method give the same values. This example shows that also with a
crossed mesh the conforming linear element should be used cautiously for incompressible media.

4. Error analysis

We recall that in the error analysis we will restrict the Poisson ratio to lie in the interval % <r< % as it
for smaller values of » could be done directly for the formulation (5).
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Table 4
Poiseuille flow, relative L2-error of pressure
Element NEL N e=4.0-10" e=40-10"*
regular distorted regular distorted
er(pn), % er(pn), % er(pn), % er(pn), %
o1 —hR 32 42 12.50 609.24 12.50 68.03
128 210 6.25 144.58 6.25 17.74
512 930 3.13 35.55 3.13 5.20
linear triangle crossed mesh 128 106 12.50 620.31 12.50 68.17
512 466 6.25 146.93 6.25 17.78
2048 1954 313 35.82 3.13 5.47
NC-T ¢ conforming 64 105 12.50 12.50 12.50 12.50
256 465 6.25 6.25 6.25 6.25
1024 1953 3.13 3.13 3.13 3.13
NC-T r, conforming 64 105 18.71 18.70 18.74 18.74
256 465 9.04 9.04 9.07 9.07
1024 1953 445 4.45 4.47 4.47

Let us first introduce the following abreviations:

1—-2»
S(u,p;v,q) =2G : dn — dived2 — di dao+ do
(u,p;v,q) Z /Ks(u) g(v) Z /I;p ive Z 1V ugq ( o >/”pq

KeCy KeC,, kec, VK (38)
and
2 2 ! 2
eI = G lluallf y+ = Ll (39
With this notation the discrete problem (9) is written as: find (uy, pr) € Uy X Py such that
S(up, pnsv,q) = f‘vd(H—/ g-vdy Y(v,p)y € Uy X Py. (40)
Ja I'n
Next, let us recall the main theorem of the BabuSka-Brezzi saddle point theory (cf. e.g. [2,10]):
THEOREM 4.1. Suppose that the following two conditions hold:
> / le()P de = C v}, Veel, (41)
kec, 'K
and
divegds?
sup Lrec, Jx >Clgl, Vg€ P (42)
v€EU), Hle,h
Then there is a positive constant C3 such that
S(u,piv,q)
sup TP L s Clp)ll Y p) € U x P (43)
waretixr, @@l

Let us also recall the following discrete Poincaré inequality, ¢f. [1, Lemma 5.3].

LEMMA 4.2. There is a positive constant C such that
|v‘l.h > c Hle.h (44)
holds for all v € Uy,

Of the stability conditions we will first verify the “Babuska-Brezzi” inequality.

LEMMA 4.3. Suppose that the triangulation C,, satisfies the assumption (AD) and that h is sufficiently small.
Then the condition (42) is valid.
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Ky

LIES|

Li+1

Fig. 7. Macroelements used in the proof of Lemma 4.3.

PROOF. We will use our macroelement technique as presented in [16] for conforming elements. It is, however,
clear that it can be used for nonconforming elements as well.
For a macroelement M we first define

Upm = {(u],uz)i(vl,uz)‘K € [PI(K)]2 VKCM, ne H&(M), vy is continuous at midpoints
of interelement edges and vanishes at midpoints of the edges lying on oM},

Py ={plpx € Po(K) VK C M},
and

NM={p€PM Z/divvpd.()=0 vUeUO,M}. (45)
K

KCM
We will use the additional notation

Ni
0,

{K € Cy|K has all three vertices on 'y},

U K and 02=0\0.
KEN,

Let us organize the proof into seven steps.

Step 1. First, we consider a macroelement M = U’_| K; consisting of triangles with one common vertex in the interior

of M as in Fig. 7. For p € Ny, let p;, p2, ..., p; be the constant values in the elements. In the condition that
p € Ny we now choose v € Up y such that v, = 0 and vy (xy) =1 and v (x;) =0, iF£k, i=1,2,....1,
where x; is the midpoint of the edge S; between the triangles K; and K, (between K; and K} when j =1).
This gives



Step 2.

Step 3.

Step 4.

Step 5.
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0= Z/dlvvpdﬁ Z/ v-npdy =n ;length(Sy) (px — pr+1),

KCM KCM

where ny = (nyx,n24) is the normal to Sy, cf. Fig. 7. Hence, for p € Ny we have py = piyy if nyx # 0.
Since k is arbitrary, we conclude that Ny, is at most two dimensional and that this happens when two edges
are parallel to the x;-axis. But choosing v = (0,v7) with v2(xp) =1 (by the boundary conditions imposed
all other degrees of freedom for v, vanish) the condition that p € Ny, implies that Ny, consists only of the
pressures that are constant on the whole of M. This holds independent of the geometry of the macroelement
and hence the local stability estimate (cf. [16]) used in the macroelement analysis holds with a constant
independent of the particular macroelement of this type, i.e.

Y okewm S divegdn

sup
v€Uom

> Clgl, Vg € Py, (46)

with

o= Y el and gl =S hs/mq]n d,

KCM Sel'y

where I'y denotes the collection of interelement edges in the interior of M and [¢] is the jump in g along
an edge.

Next, we consider a macroelement M = Uf:E'K, obtained by adjoining one element to the type of macroelement
already considered, cf. Fig. 7. From Step 1 we already know that for p € Ny it holds p; = p2 =--- = p;.
By chosing v such that the only nonvanishing degree of freedom is vy (x;;1), where x;.; is the midpoint of
the edge S;;; between K; and K., we conclude that for p € Ny it also holds p; = p;,1 if ny 41 ¥ 0, where
iy = (nyg41,n3,-1) is the normal to Sy, . By restricting the possible macroelements to those for which
|1,141] 2 @, with @ > 0 fixed, one can show by a scaling type argument (cf. [16, Lemma 4]) that the local
stability estimate (46) is valid with a uniform constant independent of the particular macroelement of this
type.

Let p € Py, be arbitrary and write

p=p"+p+p, withpy, =pg, PG= (p” P (47)

(ie. pz=0and (p* + D)y =0), p* € L3(£2) and

1
P = — dﬂ
P area( £2) /}}p
Note that we have
2 %112 —2 12
lpllo = lp™{lo + 1121 + 1215 - (48)

Now the region £ can be _covered with macroelements of the types considered in Steps 1 and 2 in such a
way that each element in n belongs to at least one macroelement and each interelement boundary in s in
the interior of at least one macroelement. For these macroelements we proved that the spaces Ny consist of
the constant functions. By the macroelement technique of [16] the method defined on 2 with (approximate)
Dirichlet boundary conditions and a pressure in L(z)(f)) is stable. Alternatively stated: there exists v* € U,
such that

Z/dlvv pdfl = Z / dive*p*d2 > C ||p* Ho and o™, =lp"lly- (49)

Keg, KeC,

Next, since I'y # @ it is clear that the pressure which is constant on {2 can be stabilized with a function
which vanish outside of £2 if 4 is sufficiently small: there exists 7 € Uy such that

Z/dvad.() G pls. (2l , =P, and Z/dlvvpdf) 0. (50)

KeC, KeC,
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Using the above relations, the Bunyakowsky—Schwarz inequality and the elementary inequality 2ab < ca® +
b?/c, a,b,c > 0, we then get

Z/dlvvpd{) Z /dlvv(p +p)da > Z/dlvup d.Q-I—CngHO

KeCy KeC), KeC,

- . 2 C? .2 C_n
—G3 o], , llp™lly + C2 1Pl = —2—821|P ||o+7||P||o- (51)

Step 6. For E € N, let ng be the unit outward normal to JE. Define & € U, N[ H'(2)1? as the conforming piecewise

linear function such that for each £ € N, we have ¢ - np = hepie (we recall that Ag is the diameter of E)
along the edge of E which lies in the interior of £2, and such that all other degrees of freedom vanish. Since
the elements are regular (in the usual sense, cf. [3]) and by assuming that % is small enough, we have

> [ avepanzcilply g o, < Gl (52)
KeC,
In the same way as in Step 5 we now obtain the estimate

> [ divipaaz ~collp" s+ 1713) + ¢4 1915 (53)
KeCy,

Step 7. With v = v* + 60 + 62, (49), (51), (53) and (48) give

5C2 .
> [ divopan (c. R f«m) Ip |3+6<— —acb) 1512+ 8¢5 1312 > Cs Il

Keg, (54)

when & > 0 is small enough. From the Poincaré inequality of Lemma 4.2, (49), (50) and (52) we get
el n < Coliplly- (55)
The inequalities (54) and (55) now give the asserted stability estimate. O
For the proof of the discrete Korn inequality (41) we will use a technique introduced by Falk [5]. In the
proof we will need the following result proved in [ 16, Section 4]. Here we introduce the finite element space
Vi={v=(v1.02) € [C(D|vy)x € PI(K), vk € P(K) VK €Ch, vy, =0}. (56)
LEMMA 4.4. Suppose that the triangulation Cy satisfies the assumption (AN) and that h is sufficiently small.

Then there is a positive constant C such that the following condition holds:

" divegda2
sup Jo q

2 Cllqlly, Vg€ Py (57)
37 Hle

PROOF. The proof is analogous to that of Lemma 4.3 above. The Steps 1-4 were done in [16]. The rest of
the proof is the same as Steps 5-7 in the proof of Lemma 4.3. o

Let us next introduce some additional notation:

avy vy (0 ~1 _ dvy/dxz —61}]/5)6]
roty = o + 9x X= <1 ()) and curl v = (auz/ﬂxz —dv2/dx1 )"

We are now ready to prove the discrete Korn inequality. For completeness we will give the proof in detail
even if it follows the ideas given in {5].

LEMMA 4.5. Suppose that the triangulation C), satisfies the assumption (AN) and that h is sufficiently small.
Then the discrete Korn inequality (41) is valid.
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PROOF. For v € Uy, arbitrary we write

s(v)|K=(Vv—%rolv,y)‘K VK € Cy,. (58)
By Lemma 4.3 we know that there exists z € V, satisfying

/divzqd.(): Z /rotqu.(l Yq € Py, (59)

7] KeC, K

and

lzl; S Clefy (60)
Next, we define 7 by

Tk = (Vv —curl 2) g YK € Cy. (61)
Integrating by parts one obtains

Z / Vv :curl zd2 = Z / (01Vz -t +02V 7 tg) dy, (62)

kec, ” K kec, VK

where tx is the counterclockwise tangent to dK. Now, let us inspect the different contributions to the the sum of
integrals on the righthand side above. First, we recall that z = 0 on I'y. Hence, the contribution from the edges
lying on the boundary part I'y vanish. Next, consider the contribution from interior edges. Let Ey» = Ky N K>
be the common edge of two adjoining triangles K| and K3 in Cj. On the edge it holds

Vg tg, +Vz g, =0, i=1,2. (63)
Since the component v» is conforming this directly gives
/ vy, Vo -tk dy + / )k, V22 -t dy = / (Vo tg, + Vo -tg,)dy=0. (64)
Ep Ep £

Since Vzj - tg,,i = 1,2, are constants with opposite values we get

A U]|K|VZI 'lK] dy+/1: 1;1|K2Vz| *th d‘)’= VZ] . tKl_/E (U||](I - U]|Kz) d'y=0, (65)
12 12 12

where the last integral vanish since the integrand is a linear function vanishing at the midpoint of the edge.
From (64) and (65) we see that the contribution from interior edges in the sum of integrals in the right hand
side of (62) vanish. Finally, on an edge E C I'p it holds v = 0 and since v; vanish at the midpoint, and
Vzy-tg (with E= KN TI'p) is a constant, we have

/(L';Vzl tx + 03V ty)dy= / Vg tgdy=Vz - t,(/ vidy =0, (66)

E E E

i.e. the contributions to the right hand side of (62) by edges on I'p also vanish. We have now proved that

Z /Vv:curlzd!):(). (67)
ke, VK

Using this orthogonality relation, (58) and (59) we thus obtain

Z /s(v) crdf2= Z / (Vv — %rotv,\/) (Ve —curl 2) dn2
X .

KeC, kec, VK

=3 /\wﬁ VRS /rotv(rotvfdivz)d.0= Z/|Vv|2 do =l ,. (68)
JK K K

KeCy, KeCy, Keg,
From (61) and (60) and we get

7l <[]y, + Iz, < C ol - (69)
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The Bunyakowsky-Schwarz inequality, (68) and (69) then give

I
(Z /K\s(u)|2 d)z > Z /x e(v) :7d0/ ||7ll, = C o[, - (70)

KecC, KeC,

The assertion now follows from Lemma 4.4. o
Let us now end the paper by sketching the

Proof of Theorems 2.2 and 2.4. From Lemmas 4.2 and 4.4, and Theorem 4.1 the stability inequality (43) is
valid. By the theory of nonconforming mixed methods (cf. [2]) this implies that

(e —wy,p—pi)lll <C inf |[(u—v.p =@l
(0,q) U X Py

+ sup Z/ ((2Ge(u) — pI) -n); - vidy/ vl , (71)
aK

cely KeC,

with the positive constant C independent of ». We now use standard interpolation estimates for first term in
the right hand side above and for the second term we use a basic estimate for linear nonconforming methods
given by Crouzeix and Raviart [4, Lemma 3]. By this we arrive at the estimate (14) (and (27)).

The L2-estimate for the velocity for the Stokes problem with Dirichlet boundary conditions along the whole
boundary is derived by the usual Aubin-Nitsche technique in which Lemma 3 of [4] is needed. O
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