A CACCIOPPOLI ESTIMATE AND FINE
CONTINUITY FOR SUPERMINIMIZERS ON METRIC
SPACES
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ABSTRACT. We prove a Caccioppoli estimate for p—superminimizers
on metric spaces. As an application, we provide a new proof for
the fine continuity of p—superminimizers.

1. INTRODUCTION

We study superminimizers of the p-Dirichlet integral
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on metric measure spaces. In the Euclidean case, minimizing this p—
energy functional is equivalent to solving the p—harmonic equation. In
general metric spaces, it is not clear how to define the p—harmonic
equation, but the variational approach is available.

Our main result is a Caccioppoli type estimate for p—superminimizers,
Theorem 3.4. It answers to a question that was motivated in [5] by
Kinnunen and Latvala. They were able to prove a weaker estimate
that is sufficient to show that the infinity set of any p—superharmonic
function is of zero capacity. It is well known that the sharp estimate
holds in the Euclidean case, see for example [9], and it is also one of
the main ingredients in proving that the Wiener condition is sufficient
for regularity at the boundary, see for example [4].

The difficulties in the proof of Theorem 3.4 arise from the fact that the
equation is not available and we can use only the minimizing property.
We have developed a method to overcome this difficulty, and it enables
us to extend the classical proof also to this situation.

Our method can be used in the metric space setting to obtain simpler
proofs also for other estimates that are classically proved exploiting the
equation. These include for example some Caccioppoli type estimates,
see Lemma 3.1 in [7] and Lemma 4.1 in [8], as well as an integrability
estimate, see Theorem 7.45 in [4].
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As an application of Theorem 3.4, we present a new proof for the fact
that p—superharmonic functions are p—finely continuous. The proof fol-
lows ideas in [5], where g—fine continuity of p—superharmonic functions
was proved for all ¢ < p with weaker estimates. Recently, Bjorn proved
the p—fine continuity using a different approach by obstacle problem
technique, see [3].

2. PRELIMINARIES

Let X be a metric space with a Borel measure . The measure is said
to be doubling if the measure of every open ball is positive and finite,
and there exists a constant ¢, > 0 such that

,LL(B(.T, 2T)) S C,LLM(B(‘I7 T‘))
for every x € X and r > 0.

Let 1 < p < 0o. The space X is said to support a weak (1, p)—Poincaré
inequality if there exist positive constants cp and 7 such that

1/p
][ lu—upen|de < cpr <][ 9u du)
B(z,r) B(z,rr)

for all balls B(z,r) C X and for all measurable functions u with upper
gradients g,. Function g, : X — [0, 00| is an upper gradient of u if
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.
for every x,y € X and every rectifiable path « joining x and y. If u is
a function that is integrable to power p in X, let

1/p
ooy = ([ s int [ aran)
X g Jx

where the infimum is taken over all upper gradients of u. Following [10],
we define the Newtonian space on X to be the quotient space

N'(x) = {u : [lull yrex) < 00}/~,
where u ~ v if and only if |Ju — v||y1r(x) = 0.

Let E C X. We define N,”(E) to be the set of functions that can be
extended to a function in N'P(X) that is zero p—quasieverywhere in
X\ E.

The relative p—capacity of a set E C B(z,r) is defined by

capy(E,B(z.20) =int [ gan
B(z,2r)

u

where the infimum is taken over all upper gradients g, of functions
u € NyP(B(z,2r)), whose restriction to E is bounded below by 1. A
property is said to hold p—quasieverywhere if it holds outside a set of
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p—capacity zero. Moreover, a function u is said to be p—quasicontinuous
if for every € > 0, there exists an open set U with p—capacity less than
e such that ux\y is continuous.

Let 1 <p < oo. Aset EC X is called p—thin at z € X if

/oo (Capp(E N B(z,7), B(z,2r)) ) Ve g

cap,(B(z,r), B(z,2r)) E

r
A set U C X is said to be p—finely open if X \ U is p-thin at each
point z € U. The p-finely open sets define a topology, which we call
the p—fine topology. We say that a function is p—finely continuous if it
is continuous with respect to the p—fine topology.

Let 1 < p < oo. Suppose that 2 C X is an open set and let ¥ €
N'P(Q). A function u € N'(Q) such that u — 9 € NyP(Q) is a

p—minimizer with boundary values 9 in €, if

/%@S/%w (2.1)
Q Q

for every v € N'P(Q) such that v — 9 € N;?(Q). A function u €
NEP(X) is called a p-minimizer in Q, if (2.1) holds in every open set
Q' € Q for all v such that v — u € NyP(Q). A function u € N7(Q)
is a p—superminimizer in €2, if (2.1) holds in every open set ' € Q
for all v such that v — u € Ny;?(€') and v > u p-almost everywhere
in €. Observe that v is a p-minimizer if and only if v and —u are p—

superminimizers. If a p—minimizer is continuous, we call it p—harmonic.

3. A CACCIOPPOLI ESTIMATE FOR P—SUPERMINIMIZERS

We will need the following Caccioppoli and Harnack type estimates.
For the proofs, see for example Lemma 3.1 and Theorem 4.3 in [7].

Lemma 3.1. Suppose that v > 0 is a p—superminimizer in ) and let
6 < 0. Let n be a compactly supported Lipschitz continuous function
i  such that 0 < n < 1. Then

/%WAWWSC/W”*%W,
Q Q

where ¢ = (p/|B])".

Lemma 3.2. Let u > 0 be a p—superminimizer in ). If 0 < s <
k(p — 1), then for every ball B(z, R) with B(z,10TR) C Q, we have

1/s
(]/ u® dp) <c inf wu,
B(z,R) B(z,R)

where ¢ < 0o depends only on p,c, and the constants in the Poincaré
inequality, and k depends on p and the data associated to the space.
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Lemma 3.3 is a straightforward generalization of Lemma 2.117 in [9].

Lemma 3.3. Let u > 0 be a p—superminimizer in () and let n be a
compactly supported Lipschitz continuous function such that 0 <n <1,
supp(n) C B(z, R) with B(2,107R) C Q and g, < ¢/R. Then

[ gty du < cuBe R)R T jnt,

Proof. Fix (3 so that max{l —p,1 — k} < < 0. By Lemma 3.1,

/ g dp < ¢ / uP o gh dp
B(Z,R) B(Z7R)

Then by Hélder’s inequality, (3.1) and Lemma 3.2, we have
/ g gy dp
(2,R)
(r—1)/p 1/p
(/ P! pd#) (/ W18 ”gndu)
B(z,R) B(z,R
1/p
(R p/ uPtP- 1dﬂ> (/ w=Ae=1) d,u)
B(z B(z R)
(r—1)/
(R p/ mf u Y6 1du)
B(z,R

1/p
o (/ (,int ) =P - pdy)

= cu z,RRpmfu -1 O
DR ot

IN
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Now we are ready to prove our main estimate.

Theorem 3.4. Suppose that 0 < u < k is p—superminimizer in an open
set 2 C X. Letn be a Lipschitz continuous function with the properties
0<n<1,n=0inQ\B(z,R), and g, < ¢/R, B(2,10TR) C Q. Then
there exists a constant ¢ such that

l/ @ di < ckp(B(z, R)RP( inf ).
B(z,R) B(z,R)

Proof. Let
ve = u+e(k —u)nP.

Then for every 0 < & < 1, we have v. > u and v, — u € Ny?(B(z, R)).
Moreover, since v, is absolutely continuous outside a path family of
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p—modulus zero, we have
Go. < gu(l —en”) +ep(k —u)nP~'g,
= gu +e(=gunt” + p(k — u)i""" gy).
Fix x € B(z, R). We apply mean value theorem to function

(&) = (gu(@) + & (=gu(@)n(2)” + p(k — u(z))n(2)"" g5(2)))"

to conclude that

go.(x) < fe) = f(0) +f(§)
for some £ € (0,¢) that may depend on z. It follows that

9o () <gu(x)” + ep (—gu(2)n?(x) + p(k — u(z))n(z ) Loy (@)) -
(9u(@) + € (=gu(@)n(@)? + p(k — ul@))n(z) " gy(2)))"
<gu()? + ep (—gu(x)n" () + p(k — u(z))n ( ) (90))
(9u(@) + € (—gu(@)n(@)? + plk — u(z))n(x)" g, ()"

Because u is p-superminimizer, we have

/ gul)? du(z) < / gu. (@) du(2),
B(z,R) B(z,R)

and consequently

0< / (=gul)n? () + plk — ulz))() " gy(x))
B(z,R)
(gu() + £ (=gu(@)n(@)? + p(k — u(@))n()? " g,(@)) " du(z).

Now by using Lebesgue’s Dominated Convergence Theorem and by
letting € — 0, it follows that

0< / (—gun” 4+ p(k —w)n*~'g,) ¢&~ " dp.
B(z,R)

Hence by Lemma 3.3,

/ ghn? dp < / p(k —w)P g9 dp
B(z,R) B(z,R)

<pk / g9t dp
B(z,R)

<cku(B(z, R))R_”(Bi(gg) w? .

Remark 3.5. The proof of Theorem 3.6 in [5] combined with Theo-
rem 3.4 shows the capacity of level sets of p—supersolutions decreases
at the following rate

cap, ({r € B(z,R) : u(z) > A}, B(z,2R))

< —(p—1) —P( inf p—1
<A u(B(z, R)R (Bl(?,R)“)
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This estimate is optimal, as can be seen by considering the fundamental
p-superharmonic function u(z) = |z|?~/®=1 1 < p < n, in R".

4. FINE CONTINUITY

Definition 4.1. We say that a function u : Q — (—o00,00] is p-
superharmonic if

(1) w is lower semicontinuous in §2,

(2) w is not identically co in any component of €2, and

(3) for every open ' € Q the comparison principle holds: if h €
C(ﬁl) is p~harmonic in " and h < w on 0, then h < u in 0.

Every bounded p—superharmonic function is a p-superminimizer by [6].
In this section, we use Theorem 3.4 to prove that p—superharmonic
functions are p—finely continuous. The proof follows closely ideas in [5],
where it is shown that p—superharmonic functions are ¢—finely continu-
ous for every ¢ < p. With the sharp estimate, we are able to obtain the
optimal result. See also Theorem 2.121 in [9] for the Euclidean case.

First, we recall Lemma 3.3 in [2].
Lemma 4.2. There exists ¢ > 0 such that if E C B(z,r) with0 <r <
diam(X)/6, then

1 pE) < cap,(F, B(z,2r)) < CM.

Theorem 4.3. Let u > 0 be p—superharmonic in §2. Then u is p—finely
continuous in €.

Proof. By lower semicontinuity, u is continuous at z € Q if u(z) = oc.
Suppose that u(z) < oo for z € Q. Fix R with B(z,20R) C Q. Denote
Er = {u > k} and u;, = min{u, k} for £ € R. It is enough to show
that Fj is p-thin at z whenever u(z) < k. By the lower semicontinuity
of u in ©Q and Theorem 5.1 in [6], we have

u(2) = limm(r)

where

m(r) = Bi(rzlfr) U

Let 0 <r < R and denote

v = u —m(20r).
Let n be a Lipschitz cutoff function such that 0 < n <1, 7 =1 in
B(z,r),n =01in Q\ B(z,2r) and g, < ¢/r. Since the function (k —
u(z))~'on is a test function for the capacity cap,(ExNB(z,r), B(z,2r)),
we have

cap,(Ex N B(z,1), B(z,2r)) < (k — u(z))_p/ gh, d.

B(z,2r)
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Theorem 3.4 implies that
/ PP dp < eu(B(z,2r))rP(_inf v)P"! sup v
B(z,2r) B(z,2r) B(z2r)
< ckp(B(z,2r))r (m(2r) — m(20r))"~"
By Lemma 3.2,
/ g dp < eor? < (k- m(ZOR))/ Pt dpu
B(z,2r)

B(z,2r)
< cp(B(z,2r))r P(k — m(20R))(m(2r) — m(20r))P~ L.

Combining the estimates, we obtain
/ gb, dp < ckp(B(z,2r))r " (m(2r) — m(20r))P7" .
B(z,2r)

By Lemma 4.2, it follows that
(r) = cap,(Ex N B(z,7), B(z,2r))
P eap, (B(z, 1), B(z,21))

fB( 2 )957, dp
—p Z,aT < 2 _ 2 p_l.

W(B(z, 2y = ) =)
Since m(20R) < m(r) < u(z) for r € (0,20R), we have

R R
| ez [ mear - mezor)) <

P r P

r

<c(k —u(z))

< (u(z) —m(20R)) In(10).
Letting p — 0 proves that Ej is p-thin at z. O

We obtain the following corollary. Note that by [1], all Newtonian
functions are p—quasicontinuous.

Corollary 4.4. Let u : 2 — [—o0, 00| be p—quasicontinuous. Then u
18 p—finely continuous outside a set of p—capacity zero.

Proof. 1t is enough to prove the claim for any given ball B(z, R) € Q
with small radius. Let (E;); be a sequence of subsets of B(z, R) such
that

lim cap,(Es, B(2,2R)) =0

and the restriction of u to B(z, R) \ E; is continuous. Let E; be the
p—fine closure of E;. It is enough to show that

capp(ﬂif?, B(z,2R)) = 0.
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By Theorem 3.2 in [6], there is a function u; € Ny (B(z,2R)) such
that
cany (B, B2R) = [ g dp
B(z,2R)

and u; > 1 p—quasieverywhere in FE;. It is easy to see that u; is a
p-superminimizer as a solution of a obstacle problem. Hence Theo-
rem 4.3 implies that u; is p—finely continuous in B(z,2R). By the
p-fine continuity, u; > 1 quasieverywhere in Ef. Thus

capp(E?, B(z,2R)) < cap,(E;, B(z,2R))

and the claim follows. O
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