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Abstract. The purpose of this work is to prove the following result: If a doubling metric measure space

supports a weak (1, p)–Poincaré inequality with p sufficiently small, then annuli are almost quasiconvex.

We also obtain estimates for the Hausdorff s–content and the diameter of the spheres.
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1. Introduction

Standard assumptions in analysis on metric measure spaces include that the measure is doubling and that

the space supports a Poincaré inequality, see for example [3], [5] and [17]. Roughly speaking the doubling

condition gives an upper bound for the dimension of the metric space and the Poincaré inequality implies

that there has to be a number of rectifiable curves connecting any two points in the space. However, very

little is known about these assumptions. The objective of this work is to obtain geometric consequences of

the Poincaré inequality under some conditions for the measure.

It is known that if a complete doubling metric measure space supports a (1, p)–Poincaré inequality, then the

space is quasiconvex i.e. there exists a constant such that every pair of points can be connected with a curve

whose length is at most the constant times the distance between the points, see [17], [5] and [14]. We have

included a sketch of the proof here.

In this work, we improve this result: If the space supports a weak (1, p)–Poincaré inequality with p sufficiently

small, then annuli are almost quasiconvex. This result, Theorem 3.3, is of a quantitative nature, and we obtain

an estimate for the modulus of curve families joining small neighbourhoods of a pair of points. Observe that

the proof of quasiconvexity gives only one curve joining any pair of points. This result is also partial converse

of the result by Semmes about families of curves implying Poincaré inequality, see [16].

The condition in the main result is related to a weaker condition, which is called local linear connectivity,

see for example [10]. In [4] and [11] the standing assumption is that the space is locally linearly connecdted

and that it supports a (1, p)–Poincaré inequality. It follows from the main theorem that the assumption on

local linear connectivity can be removed.



Finally, we complement the main result by proving that if the space supports a (1, p)–Poincaré inequality

for a sufficiently small p, then we obtain lower bounds for the Hausdorff s–content and the diameter of the

spheres. If the measure is Ahlfors Q–regular, for some Q > 1, then the results of [1] and [15] yield upper

bounds for the Hausdorff (Q−1)–dimensional content of spheres. Our result therefore completes this picture.

2. Preliminaries

In this section we recall standard definitions and results needed for the proofs of Theorems 3.1, 3.3, and 3.4.

In this paper (X, d, µ) denotes a metric measure space and µ is a Borel regular outer measure such that the

measure of bounded open sets is positive and finite. The ball with center x ∈ X and radius r > 0 is denoted

by

B = B(x, r) = {y ∈ X : d(x, y) < r}.

We write

uA =
∫

A

u dµ =
1

µ(A)

∫
A

u dµ

for every measurable set A ⊂ X with 0 < µ(A) < ∞ and measurable function u : X → [−∞,∞].

The measure is said to be doubling if there is a constant Cµ ≥ 1 such that

µ(B(x, 2r)) ≤ Cµµ(B(x, r))

for every x ∈ X and r > 0.

Let s > 0. The restricted Hausdorff s–content of a set E ⊂ X is

HR
s (E) = inf

∞∑
i=1

rs
i

where the infimum is taken over all countable covers of E by balls Bi of radius ri ≤ R. The Hausdorff

s-content of E is H∞s (E) and the Hausdorff measure

Hs(E) = lim
R→0

HR
s (E).

Thus the s–content of E is less than or equal to the Hausdorff s–measure of the set, and it is finite for

bounded sets.

A curve in X is a continuous map γ of an intervel I ⊂ R into X. A curve is rectifiable, if its length is finite.

We say that the space is quasiconvex if there exists a uniform constant Cq ≥ 1 such that every pair of points

x, y ∈ X can be connected with a rectifiable curve γxy, whose length satisfies l(γxy) ≤ Cqd(x, y). Moreover,

the space is locally quasiconvex if each point has a quasiconvex neighbourhood.

A metric space is said to be linearly locally connected if there is a constant C ≥ 1 so that for each x ∈ X and

r > 0 any pair of points in B(x, r) can be joined in B(x,Cr) by a rectifiable curve, and any pair of points

in X \B(x, r) can be joined in X \B(x, r/C) with a rectifiable curve.



Let U be an open set in X. We say that a Borel function g : U → [0,∞] is an upper gradient of u in U if

|u(x)− u(y)| ≤
∫

γxy

g ds

whenever γxy is a rectifiable curve joining two points x and y in U . In Rn the modulus of the gradient is an

upper gradient of every Sobolev function, but unlike the gradient, an upper gradient is not unique.

We will use the following definition for the Poincaré inequality:

Definition 2.1. We say that a metric measure space X supports a weak (1, p)–Poincaré inequality, 1 ≤ p < ∞,

if there exist constants C > 0 and λ ≥ 1 such that∫
B(x,r)

|u− uB(x,r)|dµ ≤ Cr

(∫
B(x,λr)

gp dµ

)1/p

(2.1)

for every x ∈ X and 0 < r < diam(X), for every function u : X → R, and for every upper gradient g of u.

The word weak refers to the possibility that λ may be strictly greater than 1.

There are several possible definitions for the Poincaré inequality. Most of them are equivalent if the measure

is doubling and the space is complete. For example, instead of all measurable functions, it is enough to

require inequality (2.1) for compactly supported Lipschitz functions with Lipschitz upper gradients. Or we

may replace the upper gradient by the local Lipschitz constant, see [14]. For more information about the

Poincaré inequality, see also for example [2], [6] and [9]. Let Γ be a family of curves in X and let 1 ≤ p < ∞.

The p–modulus of Γ is defined as

modp Γ = inf
∫

X

ρp dµ,

where the infimum is taken over all nonnegative Borel functions ρ : X → [0,∞] satisfying∫
γ

ρ ds ≥ 1 (2.2)

for all rectifiable curves γ ∈ Γ. Functions ρ satisfying (2.2) are called admissible (metrics) for Γ.

Suppose that E and F are closed subsets of an open set U ⊂ X. The triple (E,F ;U) is called a condenser

and its p–capacity for 1 ≤ p < ∞ is defined as

capp(E,F ;U) = inf
∫

U

gp dµ,

where the infimum is taken over all upper gradients g of all functions u in U such that u|E ≥ 1 and u|F ≤ 0.

Such a function u is called admissible for the condenser (E,F ;U). If U = X, we write (E,F ;U) = (E,F ). If

X supports a (1, p)–Poincaré inequality then any function u that has an upper gradient in Lp(X) must be

measurable and be in class L1
loc(X) (see [12]) and hence is in class Lp

loc(X) (see [8]).

There is a fundamental equality between the modulus and the capacity.

Proposition 2.2. Let (X, d, µ) be a metric measure space. Then

capp(E,F ;U) = modp(E,F ;U),



where the modulus on the right-hand side is the modulus of all curves joining the sets E and F in U .

For the proof of Proposition 2.2, see for example [9].

It is possible to estimate modulus through capacity. Because we want estimates from below, the following

result is useful.

Proposition 2.3. Let (X, d, µ) be a proper and locally quasiconvex metric measure space. Suppose that X

supports a weak (1, p)–Poincaré inequality, 1 ≤ p < ∞, and that E and F are two compact disjoint subsets

of X. Then, in the definition of capp(E,F ), we can restrict to locally Lipschitz functions u.

For the proof, see [13].

Given a Lipschitz function u : X → R and x ∈ X, we set

M#u(x) = sup
B

1
diam B

∫
B

|u− uB |dµ,

where the supremum is taken over all balls B ⊂ X that contain x. With this sharp fractional maximal

operator we obtain a pointwise estimate for the oscillation of functions. For the proof, see for example [7].

Proposition 2.4. Let (X, d, µ) be a metric measure space with µ doubling, and let u : X → R be Lipschitz.

Then there exists C ≥ 0 that depends only on the doubling constant of µ such that

|u(x)− u(y)| ≤ Cd(x, y)
(
M#u(x) + M#u(y)

)
,

whenever x, y ∈ X.

3. Quasiconvexity of annuli

In this section we prove Theorem 3.3, which is the main result of this paper. We start with a sketch of the

proof of Theorem 3.1. See also [17], [5] and [14].

Theorem 3.1. Suppose that (X, d, µ) is a complete metric measure space with µ a doubling measure. If X

supports a weak (1, p)–Poincaré inequality for some 1 ≤ p < ∞, then X is quasiconvex with a constant

depending only on the constants of the Poincaré inequality and the doubling constant.

Proof. Let ε > 0. We say that x, z ∈ X lie in the same ε–component of X if there exists a finite chain

z0, z1, . . . , zN such that

z0 = x,

zN = z and

d(zi, zi+1) ≤ ε for all i = 0, . . . , N − 1.

(3.1)

Clearly, lying in the same ε–component defines an equivalence relation, and the distance between two different

ε–components is at least ε. If x and y lie in different ε–components, then it is obvious that there does not



exist a rectifiable curve joining x and y. Thus, the function g ≡ 0 is an upper gradient for the characteristic

function of any component. By applying the (1, p)–Poincaré inequality to the characteristic function of any

component, it follows that all the points of X lie in the same ε–component. Hence for every ε > 0 the space

X consists of only one ε–component.

Let us fix x, y ∈ X and prove that there exists a curve γ joining x and y with length at most Cd(x, y),

where C depends only on the doubling constant and the constants in the Poincaré inequality. We define the

ε–distance of x and z to be

ρx,ε(z) := inf
N−1∑
i=0

d(zi, zi+1),

where the infimum is taken over all finite chains {zi} satisfying (3.1). Note that

ρx,ε(z) < ∞

for all x, z ∈ X. If d(z, w) ≤ ε, then

|ρx,ε(z)− ρx,ε(w)| ≤ d(z, w).

Clearly, for all ε > 0, the function g ≡ 1 is an upper gradient of ρx,ε. Thus by Proposition 2.4 and the

Poincaré inequality,

ρx,ε(y) = |ρx,ε(x)− ρx,ε(y)|

≤ Cd(x, y)
(
M#ρx,ε(x) + M#ρx,ε(y)

)
≤ Cd(x, y) sup

z∈X
M#ρx,ε(z)

≤ Cd(x, y) sup
B

(∫
B

gp dµ

)1/p

≤ Cd(x, y).

Note that C does not depend on ε.

Now we take a sequence εj → 0. For every εj , there exists a chain zj,0 = x, . . . , zj,Nj
= y such that

d(zj,i, zj,i+1) ≤ εj for all i = 0, . . . , jNj − 1.

Let

sj,i =
i∑

k=0

d(zj,k, zj,k+1).

We define mappings

γj : [0, Cd(x, y)] −→ {zj,0, . . . , zj,Nj}

so that

γj ([sj,i−1, sj,i)) = {zj,i}, if i = 0, . . . , Nj − 1 and

γ(t) = y, if t ≥ sj,Nj−1.
(3.2)



Let {ai}∞i=1 be a countable dense subset of [0, Cd(x, y)]. We define γ0,i = γi and choose {γj,i}i ⊂ {γj−1,i}i

for every j so that

lim
i→∞

γj,i(aj) = xj

for some xj ∈ X. Because bounded and closed sets are compact in X, such a subsequence exists for every j.

Now we can define γ̃ : {a1, a2, . . .} → X so that

γ̃(aj) = xj

for every j ∈ N.

It is straightforward to show that γ̃ is 1–Lipschitz. Because {ai}i is dense and X is complete, there exists a

unique 1–Lipschitz extension γ for γ̃ to the set [0, Cd(x, y)]. Hence γ is a curve connecting x and y, and its

length is at most Cd(x, y). Because x and y were arbitrary, this proves that X is quasiconvex. �

The following result is a modification of Theorem 5.9 in [10]. We include the proof for the sake of completeness.

Lemma 3.2. Let (X, d, µ) be a metric measure space. Suppose that the measure µ is doubling and that X

supports a weak (1, p)–Poincaré inequality for some 1 ≤ p < ∞. Let E and F be two compact subsets of a

ball B(z,R) ⊂ X and assume that for some 0 < κ ≤ 1, we have

min{µ(E), µ(F )} ≥ κµ(B(z,R)). (3.3)

Then there is a constant C ≥ 1 so that∫
B(z,10λR)

gp dµ ≥ C−1κµ(B(z,R))R−p,

whenever u is a continuous function in the ball B(z, 10λR) with u|E ≤ 0 and u|F ≥ 1, and g is an upper

gradient of u in B. Here, λ is the same constant that appears in the weak Poincaré inequlity (2.1).

Proof. Let u be a continuous function in the ball B(z, 10λR). Assume that u|E ≤ 0 and u|F ≥ 1, and let g

be an upper gradient of u in B(z, 10λR).

The proof splits into two cases depending on whether or not there are points x in E and y in F so that

neither

|u(x)− uB(x,R)|

nor

|u(y)− uB(y,R)|

exceeds 1/5. If such points can be found, then

1 ≤ |u(x)− u(y)| ≤ 1/5 + |uB(x,R) − uB(y,R)|+ 1/5,

and hence

1 ≤ C

∫
B(y,5R)

|u− uB(y,5R)|dµ ≤ CR

(∫
B(z,10λR)

gp dµ

)1/p



from which the claim follows. Note that B(x,R) ⊂ B(y, 5R) ⊂ B(z, 10R).

By symmetry, the second alternative is that for all points x in E we have that

1/5 ≤ |u(x)− uB(x,R)|.

Because u is continuous, and hence x is a Lebesgue point of u,

1/5 ≤
∞∑

j=0

|uB(x,2−jR) − uB(x,2−j−1R)|

≤ C
∞∑

j=0

∫
B(x,2−jR)

|u− uB(x,2−jR)|dµ

≤ C
∞∑

j=0

(2−jR)

(∫
B(x,λ2−jR)

gp dµ

)1/p

.

Hence there exists jx such that

C 2−jxR

(∫
B(x,λ2−jxR)

gp dµ

)1/p

≥ 2−jx .

Using the Covering Theorem 1.2 in [9] and the fact that X is doubling, we find a pairwise disjoint collection

of balls of the form B(xk, λrk) with rk = 2−jxk R such that

E ⊂
⋃
k

B(xk, 5λrk)

and

C

∫
B(xk,λrk)

gp dµ ≥ µ(B(xk, λrk))R−p. (3.4)

Hence using equations (3.4) and (3.3) we get∫
B(z,10λR)

gp dµ ≥
∞∑

k=1

∫
B(xk,λrk)

gp dµ

≥(1/C)
∞∑

k=1

µ(B(xk, λrk))R−p

≥(1/C)
∞∑

k=1

µ(B(xk, 5λrk))R−p

≥(1/C)µ(E)R−p ≥ (κ/C)µ(B(z,R))R−p

as desired. This completes the proof. �

The following theorem is our main result.

Theorem 3.3. Let (X, d, µ) be a complete metric measure space with a doubling measure µ that satisfies

µ(B(x, r))
µ(B(x, R))

≤ C
( r

R

)Q

for some Q > 1 and for every x ∈ X and 0 < r < R. If X supports a weak (1, p)–Poincaré inequality for

some p ≤ Q, then there exists a constant C > 1 such that for all z ∈ X, r > 0, every pair of points in



B(z, r) \ B(z, r/2) can be joined in B(z, Cr) \ B(z, r/C) with a curve whose length is at most C times the

distance between the points.

Proof. Fix a ball B = B(z, r) and points x, y ∈ B(z, r)\B(z, r/2). By Theorem 3.1 X is quasiconvex. Hence

there exists a curve connecting x and y whose length is at most Cqd(x, y). If d(x, y) < r/2Cq, the shortest

curve connecting x and y in X cannot intersect B(z, r/4) or leave B(z, 2r). So we may assume that

d(x, y) ≥ r

2Cq
.

Consider the sets

E = B(x, ar) and F = B(y, ar).

If we choose a = 1/(8Cq), then dist(E,F ) is comparable to r, and from each point of E and F there exists

a curve in the annulus connecting it to x and y respectively with length no more than r. So it is enough to

prove that the sets E and F can be connected with a curve in B(z, Cr) \B(z, r/C) with length at most Cr

for some uniform constant C > 1.

Let Γ be the family of rectifiable curves joining E and F , and not leaving B(z, 10λr). Given A > 1, ΓA
1 is

the subset of Γ consisting of all the curves intersecting B(z, r/A) and ΓA
2 is the subset of Γ consisting of all

the curves not intersecting B(z, r/A).

Because the measure µ is doubling, it follows that

min{µ(E), µ(F )} ≥ 1
C

µ(B(z, r)).

By Lemma 3.2 with p = Q,

modQ(Γ) = capQ(E,F ;B(z, 10λr))

= inf
g

∫
B(z,10λr)

gQ dµ

≥ 1
C0

µ(B(z, r))r−Q,

where the infimum is taken over all functions g satifying the conditions of Lemma 3.2. The constant C0 is

independent of r. On the other hand,

modQ(ΓA
1 ) ≤ modQ(B(z, r/A), X \B(z, r/2))

and we can control the right–hand side of the above inequality using the following admissible metric

ρ(x) = (|z − x| log2(A/2))−1
χB(z,r/2)\B(z,r/A)(x).

Without loss of generality, we may assume that log2 A is an integer. By using

B(z, r/2) \B(z, r/A) =
log2(A/2)⋃

j=1

B(z, 2−jr) \B(z, 2−j−1r),



we have

modQ(ΓA
1 ) ≤

∫
X

ρQ dµ

≤(log2(A/2))−Q

log2(A/2)∑
j=1

µ(B(z, 21−jr))(2−jr)−Q

≤C2Q(log2(A/2))−Qµ(B(z, r))r−Q

log2(A/2)∑
j=1

(2−j)Q2jQ

=C2Q(log2(A/2))1−Qµ(B(z, r))r−Q.

Because 1−Q < 0, by choosing

A ≥ 21−(22+QCC0)
1

Q−1

then modQ(ΓA
1 ) is small compared to modQ(Γ). Hence

modQ(ΓA
2 ) ≥ modQ(Γ)−modQ(ΓA

1 ) ≥ 1
2C0

µ(B(z, r))r−Q.

Let

ΓA,L
2 = {γ ∈ ΓA

2 : l(γ) > Lr}.

Then ρ = 1/(Lr)χB(z,10λr) is an admissible metric for ΓA,L
2 , and hence we have that

modQ(ΓA,L
2 ) ≤

∫
X

ρQ dµ = µ(B(z, 10λr))r−Q · L−Q

≤ Cµ(B(z, r))r−Q · L−Q

If L ≥ (4C0C)1/Q, then

modQ(ΓA
2 \ ΓA,L

2 ) ≥ 1
4C0

µ(B(z, r))r−Q,

and hence there exists a curve connecting E and F in B(z, 10λr) \B(z, r/A), with length less than Lr. This

completes the proof. �

The following theorem shows that Theorem 3.3 does not hold if p > Q, because in that case, the modulus of

a curve family going through one point may be positive. If we have two metric measure spaces (X1, d1, µ1)

and (X2, d2, µ2) that satisfy the (1, p)–Poincaré inequality, and we glue X1 and X2 together by identifying

points x1 ∈ X1 and x2 ∈ X2 with positive p–capacity, we get a space that supports the (1, p)–Poincaré

inequality but where the annuli around the point x1 are disconnected.

Theorem 3.4. Let (X, d, µ) be a metric measure space with a doubling measure µ. If the local growth bound

Q(x) = lim sup
r→0

log µ(B(x, r))
log r

at a point x0 is strictly less than p and the space supports (1, p)–Poincaré inequality, then there exists rx0

such that

capp({x0}, X \B(x0, rx0)) > 0.



On the other hand, if p < Q(x0), then

capp({x0}, X \B(x0, r)) = 0

for all r > 0.

Proof. If p > q where q = Q(x0), then there exists 0 < tx0 < min{1,diam(X)/3} such that for all r ≤ tx0

we have

µ(B(x0, r)) ≥ rs, (3.5)

where s = (p + q)/2. Let u be a continuous function such that u(x0) = 1 and u = 0 in the complement of

B(x0, rx0), where 0 < rx0 < tx0 is chosen so that µ(B(x0, rx0)) ≤ µ(B(x0, tx0))/2, and let g be an upper

gradient of u. Let ri = 2−itx0 and Bi = B(x0, ri). Because X supports a (1, p)–Poincaré inequality and x0

is a Lebesgue point, we have

1/2 ≤ |u(x0)− uB0 | ≤
∞∑

i=0

|uBi
− uBi+1 |

≤C

∞∑
i=0

ri

(
1

µ(Bi)

∫
B(x0,λri)

gp dµ

)1/p

≤C
∞∑

i=0

ri

(
r−s
i

∫
B(x0,λri)

gp dµ

)1/p

≤C

∞∑
i=0

r
1−s/p
i

(∫
B(x0,λtx0 )

gp dµ

)1/p

≤Ct1−s/p
x0

(∫
B(x0,λtx0 )

gp dµ

)1/p

.

Note that 1− s/p > 0. Here we used also equation (3.5) and the fact that µ is a doubling measure.

It follows that ∫
B(x0,λtx0 )

gp dµ ≥ Cts−p
x0

≥ C

and we have a lower bound for the capacity.

If 1 < p < q, then there exist a real number p < q0 < q and a sequence of positive numbers si → 0 such that

µ(B(x0, si)) ≤ sq0
i .

Then µ(B(x0, r)) ≤ rp for all s
q0/p
i < r < si and by a standard way of estimating the capacity of an annulus

we get

capp({x0}, X \B(x0, 1)) ≤ capp(B(x0, s
q0/p
i );X \B(x0, si))

≤ C(− log si)1−p,

which converges to 0 as si → 0. �

The following example shows that the condition Q > 1 is necessary in Theorem 3.3.



Example 3.5. Let X = R with euclidean metric and Lebesgue measure. Then X supports a (1, 1)–Poincaré

inequality and satisfies the mass bound with Q = 1, but all the annuli are disconnected and hence they are

not quasiconvex.

4. Size of spheres

In this section, we complement the main result by proving that if the space satisfies the assumptions of

Theorem 3.3, we obtain lower bounds for the Hausdorff s–content and the diameter of the spheres. The

proofs are based on methods similar to that in Theorem 3.3.

Theorem 4.1. Let (X, d, µ) satisfy the same assumptions as in Theorem 3.3. Then there exists c > 0 such

that if 3r ≤ diam X, then

diam({x ∈ X : d(x, x0) = r}) ≥ cr

for every x0 ∈ X.

Proof. Fix x0 ∈ X and r ≤ diam(X)/3. Let

G = {x ∈ X : d(x, x0) = r}.

Fix z ∈ G and 0 < a such that G ⊂ B(z, ar). Suppose that a < 1/4. Let

E = B(x0, r/2) and F = X \B(x0, r).

As X is connected and complete, and r ≤ 1
3 diam(X), the set {x ∈ X : d(x0, x) = 3r/2} is nonempty.

Because the measure µ is doubling, there exists ν = ν(Cµ) > 0 such that

min{µ(E), µ(F ∩B(x0, 2r))} ≥ νµ(B(x0, 3r)).

By Lemma 3.2 we have

capQ(E,F ) = capQ(E,F ∩B(x0, 2r);B(x0, 3r)) ≥ 1
C1

µ(B(x0, r))r−Q.

On the other hand, we can estimate capQ(X \ B(z, r/2), B(z, ar)) in the same way as in Theorem 3.3 and

obtain

capQ(E,F ) = capQ(E,G)

≤ capQ(X \B(z, r/4), B(z, ar))

≤C2(log 1/a)1−Qµ(B(x0, r))r−Q.

Here we used the fact that E ⊂ X \B(z, r/4) and G ⊂ B(z, ar).

Hence

C2(log 1/a)1−Qµ(B(x, r))r−Q ≥ capQ(E,F ) ≥ 1
C1

µ(B(x0, r))r−Q,



and this gives the lower bound

a ≥ exp
(
−(C1C2)

1
Q−1

)
.

�

Theorem 4.2. Let (X, d, µ) satisfy the same assumptions as in Theorem 3.3. Then if x0 ∈ X, 3R ≤ diam(X)

and s ≤ Q− p, we have

H∞s ({x ∈ X : d(x, x0) = R}) ≥ cRs.

Proof. Let

E =B(x0, R/2),

F =B(x0, 2R) \B(x0, R), and

F̃ ={x ∈ X : d(x, x0) = R}.

Let {B(xi, ri)}i be a covering of F̃ . If ri ≥ c0R for some i, then

∞∑
j=1

rs
j ≥ rs

i ≥ cs
0R

s.

So we may assume that all ri are small compared to R.

By using the admissible metric

gi(x) = Cr
(Q−p)/(p−1)
i d(x, xi)(1−Q)/(p−1)χB(xi,R/2)\B(xi,ri)(x),

we get the estimate

capp(B(xi, ri), E) ≤ Cµ(B(x0, R))R−QrQ−p
i ,

and hence

capp(F̃ , E) ≤
∞∑

i=1

capp(B(xi, ri), E)

≤Cµ(B(x0, R))R−Q
∞∑

i=1

rQ−p
i

≤Cµ(B(x0, R))R−p
∞∑

i=1

(ri/R)s.

On the other hand using Lemma 3.2 in the same way as in the proof of Theorem 4.1 we get the following

lower bound for the capacity

capp(F̃ , E) = capp(F,E) ≥ cµ(B(x0, R))R−p. (4.1)

Therefore, by the previous series of inequalities,

C
∑

i

(ri/R)sµ(B(x0, R))R−p ≥ cµ(B(x0, R))R−p,



that is, ∑
i

rs
i ≥ cRs.

Finally, by taking infimum over all coverings of F̃ we get H∞s (F̃ ) ≥ cRs. �
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Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), no. 1, 108–146.
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and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155–296.

[17] , Some Novel Types of Fractal Geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford

University Press, New York, 2001.

[18] Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev.

Mat. Iberoamericana 16 (2000), no. 2, 243–279.

Eingegangen am 18. April 2006

Riikka Korte

e-mail: rkorte@math.hut.fi

Institute of Mathematics

P.O.Box 1100

FIN-02015 Helsinki University of Technology

Finland


