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If you wish to protect communications against potential
aggressors, you will use ciphers rather than codes.



What we are talking about

2
XX L

Codes protect against noise. There is no such thing as
cracking a code.




The fundamental problem of communication
IS that of reproducing at one point either ex-

actly or approximately a message selected at
another point.

Claude Shannon 1948

A Quotation
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i Basic Problem: Noisy Transmission

Discrete filrannel

Continuous Channel
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Binary Block Codes

e Assume we have only two letters, 0 and 1, and we
wish to form words from these, say of length 8.

e [Two examples of such words could be

11011001 and 00111110.

e These two words differ in 6 positions, and hence,
we say their distanceis 6.

e A componentwise sum (agreeingto 1+1=0) Is
defined and yields the new word 11100111.
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Binary Block Codes

e A binary block code is a selection

C = {00000000, 11011001, 00111110,11100111}

of such words of equal length (here 8).

e he minimum distance of this code C' is the
smallest distance that occurs between two of its
words. Here it is seen to be 5.

e As this code contains 4 words, mathematicians
say that C is an (8,4,5)-code.



Illustration

e Remark: A code of minimum distance d can be
used to correct errors of weight smaller than §,

and sometimes even more!

@@
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What is Encoding?

Assume we use our (8,4,5)-code
C' = {00000000,11011001,00111110,11100111} as
Introduced above.

We can use these 4 words to communicate 4
different binary messages, 00,01,11 and 10.

Then, assigning these four messages the four
codewords is what we mean by encoding:

00 ~ 00000000 01 +~ 00111110
10 — 11011001 11T — 11100111

As we encode every single bit essentially by 4
bits, we say the rate of C is 1/4.
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A Question

e Why did we not use the assignment

00 ~ 00000000 01 =~ 00001111
10 ~ 11110000 11 ~ 11111111,

and hence the code

D = {00000000, 11110000, 00001111, 11111111}?

e Hint: Determine the parameters of D and think of
the packing illustration.

e Observation: D is an (8,4,4) code, hence ...



Which Code is Better?

e Recall: A code of minimum distance d can be used
to correct errors of weight smaller than ¢, and

sometimes even more!

@@

. hence, C Is better!
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What is Decoding?

e By hand, we find out that among all words in C
the word 11100111 is closest to the received word
11000101 .

e Assuming that a lower number of errors is more
likely than a larger number, we decide that the
word 11100111 was the one originally sent.

e A decoder is a device that performs the task of
finding the closest codeword to a given received
word.
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The Other Example

e We have seen that a decoder can correct up to 2
bit changes when C is used. What if we had used

D = {00000000, 11110000, 00001111, 11111111}?

e [ransmit the word 11110000 and assume the
channel changes 2 bits, say the 6th and the 8th.

e We then receive 11110101 . How will our decoder
react now?

e The decoder will fail, because it finds two equally
likely choices, 11110000 and 11111111.



Shannon’s Promise

e Assume a (very long) stream of zeros and ones is
being transmitted through a noisy environment.



Shannon’s Promise

e Assume a (very long) stream of zeros and ones is
being transmitted through a noisy environment.

e We wish to make it robust against that noise.



Shannon’s Promise

e Assume a (very long) stream of zeros and ones is
being transmitted through a noisy environment.

e We wish to make it robust against that noise.

e Recipe A: Divide the stream into pieces of length 4,
encode these to length 8 and send them off.



Shannon’s Promise

Assume a (very long) stream of zeros and ones is
being transmitted through a noisy environment.

We wish to make it robust against that noise.

Recipe A: Divide the stream into pieces of length 4,
encode these to length 8 and send them off.

Recipe B: Divide the stream into pieces of length
32, encode these to length 64 and send them off.



Shannon’s Promise

Assume a (very long) stream of zeros and ones is
being transmitted through a noisy environment.

We wish to make it robust against that noise.

Recipe A: Divide the stream into pieces of length 4,
encode these to length 8 and send them off.

Recipe B: Divide the stream into pieces of length
32, encode these to length 64 and send them off.

What is better, given the same noise level?



Shannon’s Promise

e Suppose we wish to transmit information at a
certain constant rate, say 1/2, over a channel that
flips bits with probability < 0.11.




Shannon’s Promise

e Suppose we wish to transmit information at a
certain constant rate, say 1/2, over a channel that
flips bits with probability < 0.11.

e Theorem: Extending the the length (and keeping the
rate) of the used codes we can achieve arbitrary
reliability of the communication process.



Shannon’s Promise

e Suppose we wish to transmit information at a
certain constant rate, say 1/2, over a channel that
flips bits with probability < 0.11.

e Theorem: Extending the the length (and keeping the
rate) of the used codes we can achieve arbitrary
reliability of the communication process.

e In other words, recipe B is preferable to recipe A.
By going up to higher length, communication
errors will become less and less likely.



A Puzzle: Pascal’s Triangle

1

I 1

I 2 1

1 3 3 1

1 4 6 4 1

1 o 10 10 o 1
I 6 15 20 15 6 1
F O S O O O R ¢

What are the next entries in this table?
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The Plotkin Sum of Codes

e Let C and D be the codes studied earlier. We
define

Ce®D = {(c,c+d)|ceC, de D}

which is a code of length 16.

e Concretely: For the words 11011001 taken from the
code C and 11110000 taken from D we find

(11011001,11011001 4+ 11110000) = 1101100100101001.

e Proceeding in the same way with all choices of
words in C and D we see that C' @ D contains 16
words.
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e Definition: For m € N and 0 <r < m we define a
family RM(r, m) of linear codes by:

x RM(0,m)={000...0,111...1} of length 2™.

x RM(m,m) Is the set of all words of length 2™ .

* Forall m>1and 1<r<m-1
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e Observation: When m is odd, and r» = (m —1)/2
then RM(r,m) has rate 1/2.



Another Pascal Triangle

RM(1,4) RM(2,4) RM(3,4) RM(4,4)

(
RM(1,3) RM(2,3) RM(3,3)

o N Y Y N N

RM(0, 3
RM(0, 4

The recursion of Pascal’s triangle is underlying!



e According to the previous slide

RM(1,5) = RM(0,4) & RM(L,4),
RM(1,4) = RM(0,3) & RM(L,3),
RM(1,3) = RM(0,2) & RM(L,2),
RM(1,2) = RM(0,1) & RM(1,1)

Here, RM(0,1) = {00,11}, RM(0,2) = {0000, 1111},
and so forth, and RM(1,1) = {00,01,10,11}.



Example RM(1,5)

e According to the previous slide

RM(1,5) =
RM(1,4) =
RM(1,3) =
RM(1,2) =

RM(0,4) ® RM(1, 4),
RM(0, 3) ® RM(1, 3),
RM(0,2) ® RM(1, 2),
RM(0,1) ® RM(1, 1).

Here, RM(0,1) = {00,11}, RM(0,2) = {0000, 1111},
and so forth, and RM(1,1) = {00,01,10,11}.

e The entire code consists of 64 words of length 32,
has minimum distance 16, hence hence can

correct up to 7 errors.



The Mariner-9 Mission

e The code RM(1,5) was used in the Mariner-9
program of NASA.

The Mariner-9 spacecraft
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Performance Questions

The noise level of a given channel is usually
represented by the signal-to-noise ratio ).

Even if we use an error-correcting code C there
will still a probability Pzg(C,\) that a transmitted
word is decoded wrongly.

Performance comparison of different codes is
usually done in a logarithmic plot of Pgg(C, \)
against \.

We will however not go deeper into the
mathematics behind this.
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Performance Questions (cntd)

We do this with the codes RM(r, m) where
(r,m) =(1,3),(2,5),(3,7) and (4,9)

lamlada
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Performance Questions (cntd)

We do this with the codes RM(r, m) where
(r,m) =(1,3),(2,5),(3,7) and (4,9)

lamlada
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Performance Questions (cntd)

We do this with the codes RM(r, m) where
(r,m) =(1,3),(2,5),(3,7) and (4,9)

lamlada

& RM (4.9)

Performance Comparison
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Conclusions

e Shannon promises asymptotically excellent
benefits of coding.

e Using Reed-Muller codes we got an idea of this
result.

e An accoustic demonstration helped to physically
verify the principle.

e Thanks for your attention!
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