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1 Introduction
Like any branch of mathematics, geometry is a complex web of interconnected ideas. Running
through this web is a thread that seems to touch every branch of geometry, called gluing. In this
article, I wish to explore with you the pervasiveness of this mathematical idea. We will see that
there are two key consequences of gluing: it allows us to pass from the extrinsic to intrinsic and
from the local to global. We will discuss how geometric shapes can be glued together, followed by
gluing “things-on-a-shape”.

2 Gluing shapes
Gluing geometric shapes1 abstractly works very much the same way as in real life. To glue two
pieces of paper together, you need a glue stick and gluing instructions. To glue two geometric
shapes together, you do not need a glue stick, but you do need some sort of “gluing instructions”.
Two common ways of formulating these mathematical gluing instructions are by defining either an
equivalence relation between points of the spaces, or an isomorphism between parts of the spaces.
Both the equivalence relation and the isomorphism specifies, which points of the spaces should be
glued together.

As an example, suppose we start with two rectangles that we wish to glue together. A simple
way of gluing these would be along an edge to form a larger rectangle. A more interesting way would
be to glue opposite pairs of edges to form a cylinder. We can do something even more interesting:
If we do one half-twist before gluing, we obtain a Möbius strip. Interestingly, doing two half-twists
before gluing results in something that looks similar to a Möbius strip, but in fact the resulting
shape is topologically equivalent2 to a cylinder! Once we know how to glue things-on-a-shape we
will be able to prove this.

Exercise (hard)
Can you find a way to transform the strip with two half-twists into the cylinder by
flipping one of the half-twists in the fourth dimension without tearing it?

1By “a shape” I mean a geometric object living in some space. I allow for broad interpretations of the word, as
I am trying to make a general statement about geometry. If you would like, you can interpret a “shape” to mean a
polygon, a subset of Rn, a topological space, a manifold, etc.

2Two shapes are said to be topologically equivalent, if one can be deformed to another without tearing the shape.
For example, a square is topologically equivalent to a disk, but a circle is not topologically equivalent to a line.
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2.1 The intrinsic point of view
Even though gluing is a rather simple procedure, it has great implications to how mathematicians
study geometry today, because it lets us move from extrinsic definitions to intrinsic ones. A shape
is defined extrinsically, when it is seen as a part of some ambient space. As an example, we can
define the circle as a set of points satisfying some equation. Formally,

S1 = { (x, y) ∈ R2 | x2 + y2 = 1 } .

The “ambient space” in this situation is the Euclidean plane R2. One consequence of this extrinsic
definition is that the circle has a defined centre point.

On the other hand, an intrinsic definition of the circle would describe it as the shape obtained
by gluing the endpoints of a line segment. In this definition, there is no ambient space or a centre
point. One can also note that the intrinsic definition is more minimal. It tries to encapsulate only
the essential features of the shape without describing how it relates to some surrounding space.

Thinking back to the construction of the Möbius strip, we realise its definition was intrinsic. It
would have been possible to give an extrinsic definition in terms of equations.

Exercise
Can you write down equations that describe the Möbius strip as a subset of R3?

Understanding the notions of extrinsic and intrinsic properties changes our perspective on
geometry. So far we have been making a distinction between shapes and spaces. For example, we
call the plane R2 a “space”, thinking of it as floating in some abstract realm of ideas, not being
dependent on any larger space. In contrast, we say that the sphere is a “shape” living in three-
dimensional space. If we think of the sphere intrinsically instead of extrinsically, we can view it as
a two-dimensional space itself, just like the plane. Hence this shift in our perspective puts “shapes”
and “spaces” on an equal footing. In fact, modern geometers do not make a distinction between the
two and instead call everything a “space”. From now on, we will use this conventional terminology.

2.2 The local point of view
In addition to allowing us to shift to the intrinsic viewpoint, one of the purposes of gluing is to
construct complicated spaces from simple building blocks. Then, all the facts we know about the
building blocks apply locally to the complicated space as well. For instance, if we fix a point p
on the Möbius strip, then p is contained in at least one of the rectangles that we glued together.
Therefore, the properties of the Möbius strip near p are exactly the same as the properties of the
rectangle near p.

Because of the intrinsic and local viewpoints, many classes of spaces in modern geometry are
defined by gluing together spaces that we understand well. The most widely used class is that of
manifolds. These are spaces obtained from gluing (open) subsets of Rn.

3 Gluing things-on-a-space
When mathematicians study some complicated object, it is useful to enrich the object with as much
additional structure as possible. In the context of geometric spaces, I call these additional objects
associated to a given space “things-on-a-space”. In this section we will explore some examples of
things-on-a-space and how gluing constructions extend to them.
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3.1 Gluing functions
As the first example of a thing-on-a-space, let us consider functions. Recall that the Möbius strip
was constructed from two rectangles by gluing. Label the rectangles3 as R1 and R2. Furthermore,
denote by R11 a small, vertical strip along the left edge of R1 and by R12 a strip along the right
edge. Define R21 and R22 similarly on R2. Then, to form the Möbius strip M , one can first glue
R11 to R21 and then twist the rectangles before gluing R12 to R22.

Now, suppose f1 : R1 → R and f2 : R2 → R are two functions, which take the same values on
the points that are glued together. Then we can define a new function f : M → R on the Möbius
strip as the function, whose value at a point p ∈ M is determined by f1 or f2 depending on which
rectangle the point is on. Note that on the intersection of the rectangles, we can still define the
value of f without ambiguity, since the two functions have the same value there. We say that the
function f is formed by gluing the functions f1 and f2. In general, we can glue functions on a
space, whenever they agree on the intersections of the domains of definitions.

Recall the problem of showing that the strip with two half-twists is topologically equivalent
to a cylinder. Firstly, two topological spaces are equivalent, if there is a homeomorphism between
them.

Definition
A continuous function f : X → Y is a homeomorphism, if there is another continuous
function g : Y → X such that

g ◦ f = idX and f ◦ g = idY .

Now, suppose we form both the cylinder and the doubly twisted strip by gluing the rectangles R1

and R2. Then, one can check that the identity functions

idR1
: R1 → R1 and idR2

: R2 → R2

agree on the intersections in this case, and hence, can be glued to form a homeomorphism from
the cylinder to the doubly twisted strip.

3.2 Gluing properties
Consider the situation where we are given a space X that is formed by gluing spaces U and V and
we want to check if X has some property P . In some cases, it is possible to deduce that X has the
property P by showing U and V have the property, along with verifying some condition on the

3Note that one could for example define R1 = (0, 2) × (0, 1) and R2 = (2, 4) × (0, 1), and write down precise
formulas for the constructions. But for the sake of clarity, I omit the details and encourage the reader to verify
them.

3



intersection U ∩V . I will demonstrate this in the case where the property is simply connectedness.
Intuitively, a space is simply connected when it does not have “holes”. Let us also define path-
connectedness.

Definition (path-connected)
A (topological) space X is path-connected, if between every pair of points, there is a
continuous path contained in X starting from the first point and ending on the second
point.
Definition (simply connected)
A path-connected space X is simply connected, if every continuous loop in X can be
continuously deformed onto a point, without breaking the loop.

For example, the plane R2 is simply connected, because every loop can be contracted to a point.
But the plane without the origin R2 \ {(0, 0)} is not simply connected. Indeed, if we consider a
loop circling around the origin and try to contract it to a point, it will always “get stuck” on the
hole, where the origin used to be.

Now, suppose X is obtained by gluing two simply connected spaces U and V . With a bit of
knowledge from topology, one can prove that X is simply connected, if and only if U ∩ V is path-
connected. Therefore, we manage to extend the property of being simply-connected to the whole
space, provided some condition is satisfied over the intersection4. Although the analogy might
be distant, one can still appreciate the similarity of the argument to that of gluing functions on
a space. Note that we can immediately see that the cylinder and Möbius strip are not simply
connected.

3.3 Passing from local to global
A part of the local study of spaces is to define things-on-a-space locally. Then, the natural question
is:

When do locally defined things-on-a-space extend to globally defined ones?

In this section we have seen that functions and simply connectedness can be extended globally
by gluing, provided that some condition is satisfied on the intersections. I will mention one more
example: local solutions to a differential equation can sometimes be glued together to form a global
solution over the entire space. Hence, we have seen examples of gluing local functions, properties,
and solutions to form global ones. The benefit of these local-to-global principles is that it is often
easy to construct solutions, say, on a simple space. Then, if our space is formed by gluing simple
spaces, we can hope that the solutions can be glued to obtain a solution on the entire space.

4 Conclusion
Following this thread through the web of geometry took us from constructing spaces by gluing,
studying them locally, to finally gluing local structures to form a global picture of the spaces. This
is a template for a process that repeats throughout geometry, since it allows us to break problems
into tractable pieces, placing the gluing construction at the centre of modern geometry.

I will end on a philosophical note: As gluing constructions are furthermore exclusive to geometry,
they are a distinguishing feature of the very nature of geometry. I believe understanding the
significance of gluing will give us insight into fundamentally what space is.

4A note to the advanced reader: These kinds of gluing constructions can be automated—in a sense—by an
algebraic machine, called homology. The relation between gluing and homology is expressed in the Mayer-Vietoris
sequence. A deeper link is provided by Čech cohomology.
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