MATRIX INTERSECTION PROBLEMS FOR CONDITIONING

MARKO HUHTANEN* AND OTTO SEISKARI ¥

Abstract. Conditioning of a nonsingular matrix subspace is addressed in terms of its best
conditioned elements. The problem is computationally challenging. By associating with the task an
intersection problem with unitary matrices leads to a more accessible approach. A resulting matrix
nearness problem can be viewed to generalize the so-called Lowdin problem in quantum chemistry.
For critical points in the Frobenius norm, a differential equation on the manifold of unitary matrices
is derived. Another resulting matrix nearness problem allows locating points of optimality more
directly, once formulated as a problem in computational algebraic geometry.
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1. Introduction. This paper is concerned with the problem of conditioning of
a nonsingular matrix subspace V of C"*" over C (or R). Matrix subspaces typically
appear in large scale numerical linear algebra problems where assuming additional
structure is quite unrealistic. Nonsingularity means that there exists invertible ele-
ments in V. The conditioning of V is then defined in terms of its best conditioned
elements. In the applications that we have in mind, typically dimV < n?. For exam-
ple, in the generalized eigenvalue problem dimV = 2 only. In this paper the task of
assessing conditioning is formulated as a matrix intersection problem for V' and the
set of unitary matrices.! Since this can be done in many ways, the interpretation is
amenable to computations through matrix nearness problems and versatile enough in
view of addressing operator theoretic problems more generally.

Denote by U(n) the set of unitary matrices in C"*™. The intersection problem
for V and U(n), which are both smooth submanifolds of C"*™, can be formulated as
a matrix nearness problem

v min |||V =U]|| (1.1)
€v,UeU(n)
in a unitarily invariant norm |||-]||. (Here we interpret a matrix nearness problem

more generally, involving two subsets of matrices.) Other equivalent formulations can
also be considered. Maximum intersection takes place with the so-called Hurwitz-
Radon matrix subspaces [17, 24]. (See also [7].) Then, quite remarkably, any nonzero
element is a scalar multiple of a unitary matrix. Whether or not the intersection is
empty, the task can be viewed as a matrix nearness problem generalizing the Lowdin
problem of dimV = 1 [19]. See also [9, 2]. In the operator norm the value of (1.1)
yields the distance to the intersection such that finding minimizers is equivalent to
finding a best conditioned element of V. In the Frobenius norm a differential equation
on U(n) is derived for finding critical points (local minima or saddle points). This is
computationally feasible by the fact that for differential equations on manifolds there
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are structure preserving numerical integration methods [11, p. 112]. In this paper, a
simple computational scheme is derived.
Another condition for an intersection considered is

in |[|[1 — V*V]||. 1.2
min || i (1.2)

In the operator norm, also this problem is equivalent to finding a best conditioned
element of V. In the Frobenius norm this gives rise to a problem in computational
(real) algebraic geometry when performing computations on the coeflicients relative
to a chosen basis of V. This approach admits, after removing redundancy, locating
local minima. As an illustration, the case dimV = 2 is treated in detail.

In practice, typically in large scale problems, an improvement in conditioning
of an initial guess V € V may well suffice instead of finding a local minimum. For
instance, in ILU preconditioning various tricks are used to improve conditioning of
the factors.? Both of these methods can be used to this end. For sparse large scale
problems we regard the formulation (1.2) as more attractive.

The paper is organized as follows. In Section 2 matrix intersection problems
for matrix subspaces are described. Computational methods to solve the respective
nearness problems in the Frobenius norm are considered in Section 3. Section 4 is
concerned with describing how conditioning of matrix subspaces arises in practice.
Numerical experiments are presented in Section 5.

2. Matrix intersection problems for conditioning of matrix subspaces.
Assume V is a matrix subspace of C"*" over C (or R). Depending on whether V
contains invertible elements, V is called either nonsingular or singular [15].

DEFINITION 2.1. A matriz subspace V is nonsingular (singular) if the determi-
nant function does not (does) vanish identically on V.

Generically a matrix subspace is nonsingular; see [16] for a qualitative treatment
of nonsingular matrix subspaces in view of matrix inversion. With dimV =1 we are
dealing with the standard notion of nonsingularity of a matrix.

Mere nonsingularity is not sufficient for practical purposes. The standard one
dimensional case is thoroughly studied. Namely, for a matrix V' € C"*", denote by
01> -+ > 0, > 0 its singular values and by

VIl =01 and [[V][p =

its operator and Frobenius norms. The condition number (V) = o1 /0, is employed
to measure the conditioning of V. This scalar appears, e.g., in perturbation bounds
for computing factorizations for solving linear systems and in assessing the speed of
convergence of the conjugate gradient method for positive definite matrices [8].

To deal with conditioning of matrix subspaces for dimV > 2, it seems more natu-
ral to formulate appropriate matrix intersection problems. Classically such problems
arise as follows.

ExAMPLE 1. Probably the most encountered matrix intersection problem is that
of whether two matrix subspaces V and W intersect projective geometrically, i.e., in
the complement of the zero matrix. The task can be approached by comparing the

2In ILU preconditioning, the matrix subspaces are defined by fixing a sparsity structure.
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singular values of the difference of the orthogonal projectors onto V and W; see, for
instance, [2, p. 201] and [8].

The most well-conditioned elements of a matrix subspace can be found by formu-
lating matrix intersection problems with the set of unitary matrices U(n) and then
treat them as matrix nearness problems. For matrix theoretic properties of U(n), see
[26, pp. 427-428].

THEOREM 2.2. Suppose V is a nonsingular matriz subspace. Then a matriz V
solving

min ||V - U] (2.1)
VeV, UeU(n)

satisfies k(V) = % — 1 =minyey k(V).

Proof. Since U(n) is compact, the minimum exists. As is well known, in terms
of the singular values of V € V, the distance of V to the set of unitary matrices is
max;=1,.. |l —0j|; see, e.g., [13, p.454]. Since V is a homogeneous set, the matrix

V can be scaled by a factor ¢ > 0. With the optimal scaling we have
toy —1=1—to,, (2.2)

ie., t =2/(01 + op) holds. Thereby, if V solves (2.1), necessarily ¢ = 1 and therefore
o1+ o, = 2. The condition number of V is hence (V) = 2/0,, — 1. It remains to
show that this equals miny ¢y x(V).

For this, observe first that the condition number of a matrix is scaling invariant.
Thus, in the minimization problem miny ¢y (V') the subspace V can be replaced with
those matrices V' of V that satisfy 01 — 1 = 1 — g,,, by the above scaling argument.
From this it follows that the two minimization problems have the same minimizers. O

COROLLARY 2.3. If V € V solves minycy yeym) ||V — Ul|p, then the singular
values of V' satisfy Z?:1 ogi(l—0;)=0.

Proof. For any matrix V' € V), consider its scalings tV with ¢ > 0. For the
minimum, differentiate -7 (1 — to;)? and find its zeros. At an optimal matrix no
scaling is needed and ¢t = 1 yields the condition. O

We do not have a unique solution by the fact that U(n) and V are invariant in
multiplication by e with @ € [0,27). (If V is a matrix subspace over R, then let
0=0orf=m.)

It is not unconceivable that, aside from the dimension, the value of (2.1) is the
single most important scalar for a matrix subspace. It is preserved under unitary
equivalence; two matrix subspaces V and W are said to be unitarily equivalent if
W = U VU, with U1, U, € U(?’L)

EXAMPLE 2. Assume V € C"*™. The problem (2.1) in the one dimensional case
V = span{V'} is equivalent to the so-called Lowdin problem in quantum chemistry
[19]. (For more details on this and related problems, see [9, 2].) By taking the singular
value decomposition V = Q1 2Q5 of V', with @1 and Q)2 unitary and ¥ diagonal having
nonnegative entries, the best unitary approximation to V' is Q1Q)5.

We interpret (2.1) as a distance function to the intersection by the fact that its
value expresses how much V should be perturbed to obtain a matrix subspace of the
same dimension containing a unitary matrix. The task of finding a nearest singular
matrix subspace of the same dimension to V is seemingly more challenging. These two
extremal problems are pivotal for understanding the conditioning of matrix subspaces.
Observe that there are singular matrix subspaces of dimension O(n?). (Take a matrix
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subspace with a zero column.) Thereby, even though the real dimension of U(n) is
as high as n? [23, p. 200], there exists large dimensional matrix subspaces with no
intersection with U(n).

According to the proof, (2.1) is a function of the extreme singular values of the
elements of V. We have

i V-U|l < i V-Ul|lp < i V-U 2.3
VerIllJlgU(n)H ||_V€VTIllJ12U(n)|| HF_\/EVEVI,IIIJISU(MH @3

by standard arguments. The value of (2.1) is bounded from above by one and equals
zero if and only if V intersects the set of unitary matrices. Its value is one if and only
if V is a singular matrix subspace.

ExaMPLE 3. In operator space theory one is concerned with matrix subspaces V
over C with the properties that I € V and V* € ¥V whenever V € V [3, p. 47]. Such
a matrix subspace is called an operator system. Hence, in operator space theory the
setup is such that V always intersects U(n). For instance, the set of Toeplitz matrices
is an operator system. (Toeplitz matrices have constant diagonals.)

Maximal intersection with U(n) takes place with the so-called Hurwitz-Radon
matrix subspaces.

DEFINITION 2.4. A matriz subspace V of C"*™ over R is a Hurwitz- Radon matriz
subspace if each of its nonzero elements is a scalar multiple of a unitary matriz.

The scalar

min (V) (2.4)
is a natural candidate for measuring the conditioning of a matrix subspace V. (For
measures based on the use of the determinant, see [15].) Its computation seems
very challenging, though. The equivalent interpretation (2.1) is more accessible since
there are several equivalent ways to formulate conditions for an intersection. (It is,
moreover, versatile enough allowing to consider, for example, other classical matrix
groups in place of U(n).) In terms of a unitarily invariant norm ||| - |||, it is natural
to consider

in [[|[1 - V*V|]|. 2.
min [||7 = V*V]] (2.5)

By involving a single matrix, the identity, and a subset of C™*™  this formulation
resembles more a typical matrix nearness problem. (Therefore, unlike (1.1), this is
nontrivial only for dimV > 1.) We have a nonnegative scalar equaling zero if and
only if V contains a unitary matrix. Moreover,

in||I —V*V|| <min ||l -V*V]|. < in ||l —V*V
min || < min] lp < v min ] ]
holds. In the operator norm this matrix nearness problem is also equivalent to deter-
mining miny ¢y x(V) as follows.

THEOREM 2.5. Suppose V is a nonsingular matriz subspace. Then a matriz V
solving

min || — V*V| (2.6)
vey

3 Any Hurwitz-Radon matrix subspace of dimension two at least is necessarily a subspace over R.
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satisfies k(V) = /2% — 1 =minyey (V).
Proof. For any element V € V), consider its scalings tV with ¢ > 0. An optimal
value for the scaling ¢ to minimize ‘I — tQV*VH in the operator norm satisfies

t?0? —1=1—t%02.

Consequently, t = /2/(07 + U%)1/2. At an optimal matrix V', necessarily ¢ = 1 and
thereby o7 + 02 = 2. The condition number of V is hence k(V) = /2 — 02 /0,,. It
remains to show that this equals miny ¢y &(V).

For this, combine the arguments of the proof of Theorem 2.2 with the fact that
the map t — t2 is increasing for ¢ > 0. O

The claim concerning the Frobenius norm can be proved similarly.

COROLLARY 2.6. IfV €V solves minyey || — V*V|| 5, then the singular values
of V' satisfy Z?:1 o3(1—07%)=0.

Proof. For any matrix V' € V), consider its scalings tV with ¢ > 0. For the
minimum, differentiate >-7_, (1 —#?0%)* and find its zeros. At an optimal matrix no
scaling is needed and ¢ = 1 yields the condition. O

Compared with Corollary 2.3, now the singular values are weighed more non-
symmetrically around one as can be seen by the factoring a single term

02(1—03) = 0j(1 +05)05(1 — 0;)

in the latter sum.

To end this section, the measures proposed yield incomplete overall information
on the conditioning of a matrix subspace. To illustrate this, take a singular matrix
subspace and perturb just one of its elements to have a nonsingular matrix subspace.
(A related problem: for a nonsingular matrix subspace, find its singular subspace
of the largest possible dimension.) None of the measures reflect the fact that the
nonsingularity is a result of such a minor modification of a singular matrix subspace.
An apparent problem is that, at present, we do not have an analogy of the singular
value decomposition for matrix subspaces.

3. Computing local minima for the nearness problems. Next we are con-
cerned with finding local minima for the above minimization problems in the Frobenius
norm. Here the standard inner product

(A, B) = trace (B*A) (3.1)

on C™*™ is used. For matrix subspaces over R, take the real part and denote the
respective inner product by (A, B)g = Re (4, B).

3.1. Flow on the manifold of unitary matrices. For the operator norm (2.1)
is apparently not readily computed. For a matrix subspace V of C"*™ over C (or R),
consider the matrix nearness problem
min V-U 3.2
VeV, Uel(n) I b (82)
instead. Of course, these problems are related through (2.3). By regarding the set of
unitary matrices as a smooth Riemannian submanifold of C™"*™ a differential equation
is derived for locating critical points.* Because of the structure of U(n), in what
follows, we regard V as a vector space over R.

4The approach presented can be taken with U(n) replaced with any smooth connected subman-
ifold of C™*™ whose tangent spaces can be readily computed and projection back to the manifold is
feasible. (For instance, symplectic matrices constitute another classical matrix group of importance.)
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Fic. 3.1. Decomposing @ as Q =V + V| and then V| as V| =Vp +Vp, .

EXAMPLE 4. Bear in mind that there can exist many local minima. For example,
take V to be the set of Toeplitz matrices. Then V contains is the identity matrix. For
other unitary matrices, take a Toeplitz matrix having ones on the first subdiagonal
and €% at the (1,n) position with any 6 € R.

For a differential equation, we reason geometrically to find a unitary matrix corre-
sponding to a local minimum or a saddle point of the problem (3.2). First decompose
any given unitary matrix @ as

Q=V+V, (3.3)

with V' € V and V) in the orthogonal complement of ). For a necessary condition
on @ to solve (3.2), the orthogonal part V| must be orthogonal to the tangent space
To(U(n)) of U(n) at Q. (Hence, if @ solves (3.2), take V according to (3.3).)

To enforce orthogonality, in (3.3) decompose the orthogonal part V| further as

Vi=Vr+Vr1

with Vp € Tg(U(n)) and Vr, in the orthogonal complement of Tq(U(n)); see Figure
3.1. Then define a smooth vector field on U(n) as

— Vi (3.4)

at Q. There holds (V,—Vy)r = ||Vr||?, so that the component in V increases along
the flow. We have a critical point if and only if V|, = Vi), i.e., the orthogonal part
V. is orthogonal to the tangent space.

Consider the flow generated by the vector field (3.4). To reach a minimum from an
arbitrary starting point @, the connectedness of U(n) is a prerequisite for the success
of this approach. (Of course U(n) C {M € C"" : ||M||p = y/n}.) Recall though
that the set of unitary matrices is not simply connected; its fundamental group is Z.

Aside from connectedness, to form the vector field (3.4) in practice, the tangent
spaces of U(n) must be computable. Typically they are derived by considering curves
a(t) satisfying a(0) = Q € U(n) and a(t)*a(t) = I for small |¢| > 0. Then, after
differentiating, one can conclude that at @) the tangent space is

{QiH : with H* = H} (3.5)
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which is a vector space over R. Thereby the vector field (3.4) can be given as

Vr = Q@i - ViQ) = 5 (Vi ~ QVIQ) (3.6)

which is an O(n?’) computation at most once V| has been computed. Observe that
we have a critical point if and only if Q*V is Hermitian. Instead of trying to use this
fact in solving the corresponding nonlinear equations, we proceed by solving for the
flow.

There are several numerical integration methods for solving differential equations
on manifolds [11]. Because of its central role in applications, the unitary case has re-
ceived attention early [6]. For an inexpensive structure preserving numerical integra-
tion method, set iH = —2(Q*V,. —VQ). Certainly, ||H||r = |[Vr||r < ||Q||F = vn.
Then define

At At
QI - TiH)’l(I + 5 iH). (3.7)
Based on the use of the Cayley transform, this is unitary satisfying
At At
QI — 7Z'H)*l(l + 711{) ~ Q+ AtQiH + O(h*H?)

by using the Neumann series with (I — %iH)_l. Observe that QiH = —Vr, so that

the first order term is in the direction of the vector field. The method (3.7) can be
seen as a linearly implicit Runge-Kutta method [10, p. 102]. Regarding the choice of
the step-length, we use standard methods.

Once a critical point (local minimum or saddle point) is reached, we have @ and
V satisfying

Q=V4+V, =V+Vpr,.

To improve this, compute the nearest unitary matrix @ to V. If @ # @, compute the
trajectory starting from Q.

EXAMPLE 5. Although most likely a curiosity, consider computing the unitary
polar factor of M € C™*" with the flow. Assume ||M||p = 1. For this, look at the
one dimensional case ¥V = spang{M}. Then V| = Q — (Q, M)rM and

—(Q, M)r

—_
! 2

(@M — M*Q).

(For methods to compute the polar factor, see [8]. Note that in the iterative methods
for the polar factor, the iterates are not unitary.) Poor starting points may not lead
to the polar factor. For example, if M is Hermitian, then the starting point @ = I is
a critical point. (This is certainly an unfortunate initial guess. A multiple eI of the
identity is now a critical point only for § = 0,7/2, 7 or 37/2.)

For more advanced structure preserving numerical integration methods on U(n),
projection back to the manifold must be feasible. With U(n) the projection of a matrix
M € C™*™ is accomplished with the singular value decomposition M = Q1XQ% as
described in Example 2. The nearest unitary matrix to M is Q1Q3, i.e., the unitary
polar factor of M. Observe that the time step (3.7) is devised in such a way that this
projection is superfluous.

Classifying the critical points computed does not appear to be simple. With
respect to the condition (2.5) in the Frobenius norm this can be done more readily.
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3.2. Direct optimality conditions. For finding (2.5), consider formulating
computable conditions for optimality in the Frobenius norm. As opposed to (3.2),
now the matrix subset

(V*'V . V eV}

involved is not readily characterizable, except that it is closed and homogeneous over
R. This leads us to perform computations on the coefficients relative to a fixed basis
Vi,..., Vi of the matrix subspace V over C. (Proceed similarly with subspaces over
R.) As a result, a system of polynomial equations is obtained. Hence, we are faced
with a problem in computational algebraic geometry.

In terms of the basis, define

H(z1,...02k) = (z1Vi 4+ -+ 2eVi) " (21 + - - + 26 Vi) (3.8)

from CF to the set of n-by-n Hermitian matrices H. Since H is a matrix subspace of
C"*" over R, the real part of the inner product (3.1) is used. Identifying C* with
R?* from now on we regard V as a vector space over R. Then we are dealing with
a smooth map (3.8) whose rank is 2k — 1 at most at any point. (For the rank of a
smooth map at a point, see, e.g., [23, p. 228].)

PROPOSITION 3.1. Suppose V is a matriz subspace of C"*™ over C of dimension
k. When regarded as a subspace over R, at any point the rank of the map (3.8) is at
most 2k — 1.

Proof. Fix V,Vp € V. Then linearize the curve t — (V + tVo)*(V + tVp), with
t € R, to have the linear map Vo — V*Vy + V'V from V to ‘H. Its rank yields the
rank of (3.8) at V. It is at most 2k — 1 since its nullspace contains iVy. O

As a consequence, looking for the critical points of the function

(21, 2) — [T = H(z1,. ..,z (3.9)

to find a local minimum is not advisable by the fact that we have too many degrees
of freedom. To remove a redundant degree of freedom, observe that

H(te®z, ... tez) = t?°H(z1, ..., z)

for any t € R and 6 € [0, 27). By using this, we may impose € to be chosen in such a
way that 2z is kept real and then look for the critical points.

We proceed more geometrically to save storage and reduce computational cost
with sparse problems. Clearly, there is a unitary matrix in V if and only if the image
of the map (3.8) contains the identity. Otherwise, to find a matrix H = H(z1,...,2x)
in the image nearest to the identity, the difference I — H must be orthogonal to the
range of the linearization of (3.8) at H. This happens exactly at the critical points
of (3.9). To locate them geometrically, set

1, ; Loy *
ij:§(vj Vi + V;'V;) and KJk:Z(VJ Vi = Vi&'Vj)

for j < k. Denote z; = x; +iy; for j = 1,..., k. (If the basis matrices V; are
orthogonal against one another, then all but Hj; are trace zero matrices. Choosing
the basis orthonormal may be advisable for numerical stability.) Then the respective
element in the image of (3.8) can be written as

k—1

k
Z x JF% JHjj + QZZ ziwe + yiye) Hik — (296 — yj20) Kji) -
j=1 J=1k>j
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Linearizing this yields a basis of the range of the linearization of (3.8) at H.

The case k = 2 is illustrative and thereby treated in detail in the following propo-
sition. In practice the two dimensional case appears in the generalized eigenvalue
problem.

By Proposition 3.1, in the two dimensional case the rank of the map (3.8) is at
most three. It suffices to consider the case of z5 being real.

PROPOSITION 3.2. Assume k = 2. For x1 # 0 and xo # 0, the range of the
linearization of (3.8) at (x1,y1,%2,0) is spanned by My = x1H11 + xoHq2, My =
ToHoo +x1Hip +y1 K12 and M3 = y1 Hip — 21 Kio.

Proof. Linearization yields the tangent space at (x1,x2,y1,y2) as

z1 0 T2 —y2 Hyy

0 z2 21 Y1 Haa
[tl t2 ts t4] y1 0 y2 x2 Hia

0 y2 y1 —1

for t; € R, j =1,...,4. By computing the LU factorization, the appearing 4-by-4
matrix has rank at most 3. If z; # 0 and x2 # 0, then the U factor reads

z1 O ) —Yy2

0 z2 1 Y1

0 0 (z1y2—z2vy1)/®1 (T122+Y1Y2)/21
0 0 0 0

proving the claim once ys is set to zero and —1/x1 is taken as a common factor in the
third row. O

It is immediate that if the matrices Hy1, Hi2, Hoo and Ko are linearly inde-
pendent, then the spanning matrices of Proposition 3.2 are linearly independent.
Imposing orthogonality against

I — H(x1,y1,22,0) =T — (27 + y7)Hyy — 23 Hap — 222 (x1 Hio + 41 K12)

leads to three polynomial equations of degree three in the variables x1, y1 and zo. It
is noteworthy that in large scale problems the spanning matrices V; and V5 are often
sparse. Then, performing computations in sparse-sparse mode, it is not inconceivable
to deal with the matrices H11, Hi2, Hos and K75 in realistic applications to compute
the traces needed. (Being Hermitian, only half of the nonzero entries are stored.
Hence, in reality, only two sparse matrices need to be stored.) For operations in
sparse mode, see [25, Chapter 10].

Whether the number of solutions to the system of polynomial equations obtained
is finite can be inspected by invoking methods from computational algebraic geometry
[5, Chapter 2]. If so, then to estimate their number, there are Bézout’s and Bernstein’s
theorems [5]. These are pessimistic estimates since we are interested in real solutions
only. For the real case, see [22].

To check whether a critical point computed is a local minimum, one can inspect
the eigenvalues of the Hessian of (3.9) with the restriction zo = 5. Of course, with
the computed critical points, it is less expensive just to compare the values of (3.9).

In case dimV > 2 these two dimensional techniques can also be used to improve
the conditioning of an initial guess V3 € V with a “descend” direction Vo € V. This
can be repeated to have a descend method.

4. Conditioning in applications. Cases in which the conditioning of a matrix
subspace is of interest are (non exhaustively) described in the examples that follow.
Matrix subspaces typically appear in large scale numerical linear algebra problems
where assuming additional structure is unrealistic.
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4.1. The generalized eigenvalue problem. A matrix subspace problem aris-
ing in connection with the generalized eigenvalue problem involves the invertibility of
the elements of a nonsingular matrix subspace V = span{V;, Vo} with V;, Vo € C**™,
(For the generalized eigenvalue problem, see [21].) In large scale applications these
spanning matrices are typically also sparse.

The problem is concerned with transforming the generalized eigenvalue problem

Viz = AWz (4.1)

into the standard eigenvalue problem. Then it is of interest to have a fixed element
V = 2:V1 4+ 29Vo of V that is as well-conditioned as possible in considering the formu-
lation

Viy = p(z1Vi 4+ 22Va)y

equivalent to (4.1). (Now multiply with the inverse of V' from the left.) This problem
is mentioned (in passing) in the positive definite case in [21, p. 344].

4.2. Matrix factorization problems. Let A € C"*" and assume W and V;
are matrix subspaces of C"*™ over C (or R). With W € W consider the map

W (I — P)AW, (4.2)

where Pj is a projection on C™*™ onto V; and I denotes the identity matrix (regarded
as acting on C™*™). If this linear map has a nontrivial nullspace possessing invertible
elements W, then

A=viw! (4.3)

with Vi = PLAW. (The dimension of the nullspace measures how nonunique the
factorization is.) This is a very general method to compute factorizations; for more
details, see [14, 15]. Denote by V the nullspace of (4.2).

For two reasons, in practice the factorization (4.3) is not exact. First, because of
finite precision, the computation of the nullspace is always approximative. Second, in
very large scale problems exact factoring is not even realistic. Then the dimensions
of W and V; are very moderate compared with n? and thereby an arbitrary matrix
can be factored only approximately [4]. The factors computed do satisfy

[4-nw]

_ _ —1
W <[ AW —Vi|| < [|[ A= VAW | [[W]] (4.4)

in the operator norm. How accurately (4.3) can be expected to hold is hence related
with the conditioning of the nullspace V (or an approximate nullspace).

Classical factorizations are rarely unique. The available degrees of freedom should
be used to choose well-conditioned factors.

EXAMPLE 6. Gaussian elimination is a matrix factorization result®, expressed
in terms of (and occasionally overshadowed by) an algorithm. In computing an LU
factorization of a matrix A € C"*"  one deals with the matrix subspace V = LD,
where L is an invertible lower triangular matrix and D denotes the set of diagonal
matrices. Hence, dimV = n. (If partial pivoting is used, replace A with PA, where P

5A € C"*™ has an LU factorization if and only if A is strongly nonsingular.
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is a permutation.) Typically V' € V with unit diagonal is chosen in practice, although
it is not necessarily an optimal element in view of the criteria proposed. With n = 2
simple examples can be devised to see this. Of course, only if V = D there is a unitary
element in V.

EXAMPLE 7. In representing A € C"*™ as the product of two symmetric matri-
ces, the dimension of the nullspace V is least n [14]. (This is a classical factorization
[12].) Aside from an interest to have a well-conditioned element, a nonempty inter-
section with unitary matrices would give rise to a factorization of A as the product
of a symmetric and a symmetric unitary matrix.

4.3. Approximating with a unitary matrix in experiments. So-called
scattering parameters describe the electrical behavior of a linear electrical network.
(See, for example, [20].) Linearity means that the underlying operation involves a
matrix. A network analyzer is an instrument aimed at measuring the entries of such
a matrix. Since there can be variations in measurements, consider repeating these
experiments.

With lossless networks one deals with unitary matrices. Thus, after k < n ex-
periments, suppose we are given matrices Vi,..., Vi that should all equal the same
unitary matrix ). Due to errors in measurements, none of the matrices is exactly
unitary. How should one choose the best unitary approximation now?

In the case k = 1 the task reduces to the Lowdin problem. For k > 1 we propose
taking V to be the span of the measurement matrices Vi, ...,V and then solving a
nearness problem considered in Section 3. The resulting unitary matrix U is then
taken to be an approximation to ). Thus, unlike in the problems described earlier in
this section, now we are not looking for an element of V but a unitary matrix that is
closest to V.

5. Numerical experiments. Next numerical experiments are described in the
two dimensional case. The method of Section 3.2 is considered before that of Section
3.1. The reason for this change of order is computational. It is more economical (and
hence, more of practical interest) to perform computations on the coefficients relative
to a chosen basis of V.

5.1. Direct optimality conditions. In the two dimensional case, to find a well-
conditioned element of V = span{V}, V2} we consider (2.5) in the Frobenius norm. As
described in Section 3.2, this leads us to look for

V =V(zy,y1,22) = (z1 + 119) Vi + 22V2 (5.1)
with x1,y1, z2 € R satisfying
(I-V*V,Mi)g=I—-V*V,May)g = (I —V*V,M3)g =0, (5.2)

where the spanning matrices of Proposition 3.2 are

My =21 ViV + %(Vm FVW),

—1 T

My = — ViV = VEVi) + S (Vo + V5 V) + 20 V5 W,
1T

My = SH(ViVa = ViVi) 4 (Vi Ve £ V3 V).
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TABLE 5.1
Critical points and conditioning of Example 8.

T m i) HI*V*VHF H(V)
0.184 0.144 0.148 1.246 19.57
-0.065 -0.071 0.183 1.554 17.554
0.206 -0.029 -0.098 1.611 8.521
-0.032  -0.06 0.189 1.554 11.204
0.032 0.06 -0.189 1.554 11.204
-0.184 -0.144 -0.148 1.246 19.57
-0.206  0.029  0.098 1.611 8.521
0.065 0.071 -0.183 1.554 17.554

The polynomial system (5.2) can be solved seemingly robustly with the existing spe-
cialized software. We used a freely available software called BERTINI [1] which is based
on homotopy continuation. We also experimented with commercial symbolic software
to find closed form solutions. This did not seem very attractive by the fact that the
CPU time required to solve the polynomial system was somewhat unpredictable.

Regarding the tests, two small dimensional examples are described first. Then a
more realistic example is concerned with a generalized eigenvalue problem taken from
Matrix Market collection.

EXAMPLE 8. In this example we have

0 2 0 0 12— i i

I U T A | 0 143 120 24
L L e N B R T R R B
140 -2 —1-2 -1 0 1+i  —i 11—

(5.3)
These spanning matrices of V lead to a to a polynomial system with integer coeffi-
cients. See Table 5.1 for the critical points and conditioning. (The symbolic software
MATHEMATICA managed also to solve the problem in less than a minute.) We had
four different critical points (modulo multiplying by —1).

ExXaAMPLE 9. In this simple example we take V} = I + V and Vo=1- ‘7, where

49 134 3 1317 21 31 21 497

100 + 50 2 + 100 50 200 1000 + 500

_ _ 74 4L 18 9 29 6i 14 4 430
V — 20 100 25 25 50 5 25 100 (5 4)

6,690 18 9 _ 5T 3 12 | 23 |- :

5 100 10 50 1000 2 5 100

187 9 474 11 31 271

—l+35 —s5+i —10-2 L1

Now the matrix subspace V clearly contains a unitary element (all the multiples of
the identity matrix) and the purpose of this test is to show that we are able to locate
it. See Table 5.2 for the critical points and conditioning. (MATHEMATICA was also
able to solve the problem symbolically in less than a minute.) We had five different
critical points (modulo multiplying by —1).

ExaMPLE 10. In our third numerical experiment we have

Vo — (Vo, Vi)V
Vie 2 and Vy = 2 (~2, 1)V
IVillr [Va — (Vo, Vi)Vi |l r
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TABLE 5.2
Critical points and conditioning of Example 9.

a1 Y1 zy | [T =V*V]r s(V)
0.5 0 0.5 0 1
-0.003 -0.018 -0.215 1.597 14.581

0 0.015 -0.218 1.593 21.07
0.003 0.018 0.215 1.597 14.581
0 -0.015 0.218 1.593 21.07
-0.5 0 -0.5 0 1
0 -0.179 0.171 1.475 34.035
0 0.2 0.097 1.437 5.163
0 -0.2  -0.097 1.437 5.163
0 0179 -0.171 1.475 34.035
TABLE 5.3

Critical points and conditioning of Example 10.

1 Y1 z | [T=VV]r (V)
6.763  2.649 5.674 29.594 1.0499-10°
6.578  2.881 -5.685 29.619 8.4919-10%
6.721  2.663 -0.054 30.144 1.7400-10°

-6.578 -2.881  5.685 29.619 8.4919-10%
-6.763  -2.649 -5.674 29.594 1.0499-10°
-6.721 -2.663  0.054 30.144 1.7400-10°
0 4.601 5.690 29.908 1.0964-10°
0.016 -0.031  5.691 30.473 3.4739-10°
0 -4.623 5.682 29.918 9.5620-10%
0 4.623 -5.682 29.918 9.5620-10%
-0.016  0.031 -5.691 30.473 3.4739-10°
0 -4.601 -5.690 29.908 1.0964-10°

forming an orthonormal basis of V. Here ‘71, 172 € C961x961 are the matrices DWG961A
and DWG961B from Matrix Market appearing in a generalized eigenvalue problem
Viz = AVez. (In realistic problems, the original spanning matrices may differ sig-
nificantly, e.g., in norm. It seems advisable to replace them with an orthonormal
basis.) The condition number of V5 in this case is approximately 1.12 - 107 and V; is
singular. See Table 5.3 for the critical points and conditioning. We had six different
critical points (modulo multiplying by —1) such that elements with condition number
of order 10° were found.

5.2. Numerical integration on the unitary matrices. The method derived
in Section 3.1 is formulated as Algorithm 1 by using a random unitary matrix as a
starting point. Regarding the numerical experiments, Algorithm 1 always converged,
although the number of iterations needed to reach a local minimum with a given
tolerance ¢ varied with problem dimension n, the specific problem and the starting
point Q. Problems with greater n seemed to have multiple local minima more often
and the variance in the number of iterations needed to reach them from different
starting points @) also seemed to increase with n.

Regarding the dominating operations of Algorithm 1, in addition to forming V|
we need to perform two matrix-matrix products and perform one matrix inversion
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Algorithm 1 Numerical integration for critical points of (3.2)

1: Generate a random matrix M € C™*" with normally distributed elements and
calculate its QR decomposition M = QR. Use @ as a starting point.
repeat

Compute V| .

Set iH = —%(Q*VL - ViQ).

If ||V.||F has increased compared with the previous iterate, reduce the step-
length At := %.

Compute Q = Q(I — £LiH)~Y(I + £tiH)
7. until |H||F < e.

A

@

per repeat.

ExaMPLE 11. In this example the matrix subspace is that of Example 8. Now
the problem (3.2) seems to have a unique solution (modulo multiplication by e?). Tt
was reached with e = 1073 and At = 1 after 70 — 80 iterations, on the average. Then
k(V) = 9.7.

ExXAMPLE 12. In this example the matrix subspace is that of Example 10. Now
it becomes apparent that Algorithm 1 is computationally significantly more intensive
than the method of Section 3.2. It took an hour to find a solution to the problem
with € = 0.1 on a modern workstation, after 274 iterations. Then (V) ~ 1.3 - 10°.

6. Conclusions. Conditioning of a nonsingular matrix subspace has been ad-
dressed in terms of matrix intersection (and respective nearness) problems. In the
Frobenius norm, two computationally feasible approaches have been investigated. One
leads to a differential equation on the unitary matrices and the other to a problem
in computational algebraic geometry. For large and sparse problems, the latter alter-
native appears more attractive. Numerical experiments were carried out in the two
dimensional case.
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