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Abstract. In matrix computations, such as in factoring matrices, Hermitian and, preferably,
positive definite elements are occasionally required. Related problems can often be cast as those
of existence of respective elements in a matrix subspace. For two dimensional matrix subspaces,
first results in this regard are due to Finsler. To assess positive definiteness in larger dimensional
cases, the task becomes computational geometric for the joint numerical range in a natural way. The
Hermitian element of the Frobenius norm one with the maximal least eigenvalue is found. To this
end, extreme eigenvalue computations are combined with ellipsoid and perceptron algorithms.
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1. Introduction. Appearing in diverse applications, positive definiteness is a
central notion for square matrices and operators; see, e.g., [19] and [5]. For related
computational matters, see [15, Chapter 4.2]. For matrix subspaces, the concept of
positive definiteness is a far more delicate issue. Matrix subspaces with Hermitian
and, preferably, positive definite elements arise in factoring problems and in large
scale numerical linear algebra of preconditioning [21, 9].1 In both cases, the existence
of these elements reflects fundamental aspects of operators. The challenge with ma-
trix subspaces lies, not least computationally, in the fact that the subset of positive
definite matrices can be a tiny, needle-like set. This paper is concerned with making
this computational geometrically more quantitative. Ways to locate positive definite
elements are devised. In a certain sense the most positive definite element is found.

Focusing on two dimensional matrix subspaces, first results regarding the exis-
tence of positive definite elements are due to Finsler [12]. (For related computations,
see [10, 18].) The three dimensional case is related with the investigations of Binding
[6]. Later, in semidefinite programming, a similar task defines the feasibility problem
of semidefinite programs [29]. Quantitatively, for inclusion regions, we employ strictly
positive maps of the simplest possible type. Denote by V a matrix subspace of Cn×n
over R whose elements are Hermitian. In terms of an orthonormal basis V1, . . . , Vk of
V, this leads us to consider the map

x 7−→ (x∗V1x, . . . , x
∗Vkx) with ||x|| = 1 (1.1)

whose image, i.e., the joint numerical range, is seemingly the most tangible object
to study positive definiteness of V. Traditionally, its convexity has been an object of
interest; see [17] and references therein. It is noteworthy that the convexity of the
image in a basis of V implies convexity in any of its basis. Thereby we are primarily
dealing with a property of the matrix subspace V rather than that of the map (1.1).

We devise methods to approximate the joint numerical range with a small number
of half-spaces.2 In this sense the problem becomes computational geometric. In
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particular, V possessing positive definite elements is information involving just a single
half-space through the origin. This interpretation leads to the notion of most positive
definite element of V in terms of the hyperplane through the origin which is farthest
away from the joint numerical range. To generate half-spaces, we use the fact that
the structure of maps of the form (1.1) is invariant under orthogonal transformations.
This combined with eigenvalue computations for the boundary points of the convex
hull of the image yields relatively sharp information on the location of the image.

It is a natural task to find the distance of the joint numerical range from the
origin, yielding an orthogonal invariant of V. We solve the problem for the convex
hull of the image. Equivalently, we look for a positive definite element of V of the
Frobenius norm one having the maximal least eigenvalue. Two algorithms proposed
to solve the problem are based on the ellipsoid algorithm used in convex optimization.
These methods allow us to locate the most positive definite element in the prescribed
sense and compute the distance of the convex hull of the joint numerical range from
the origin. For the easier feasibility problem of locating a positive definite element in
V, the perceptron algorithm is suggested as a simpler alternative.

The paper is organized as follows. In Section 2 fundamentals of Hermitian ma-
trix subspaces are presented, including examples. In Section 3 geometric aspects of
locating positive definite elements of a Hermitian matrix subspace are developed. Al-
gorithms to solve the maximal least eigenvalue problem and locating positive definite
elements are devised in Section 4. In Section 5 numerical experiments are presented
to illustrate the performance of the algorithms. In Appendix A the classical case
dimV = 2 and Finsler’s result is covered. Related problems involving positive defi-
nite matrices are discussed in Appendix B.

2. Hermitian matrix subspaces and positive definiteness. Denote by V
a matrix subspace of Cn×n over R.3 To avoid confusion, throughout the paper also
Cn×n is regarded as a vector space over R. On V the standard inner product

(V,W ) = Re trW ∗V (2.1)

is used. The respective Frobenius norm is denoted by || · ||F . Regarding our interests,
so-called nonsingular matrix subspaces are of central relevance [21, 9]. A matrix
subspace is said to be nonsingular if it contains invertible elements. Among matrix
subspaces, nonsingularity is a generic property [23].

For additional properties, the set of Hermitian matrices H is of dimension n2 in
Cn×n. The notion of Hermitian matrix subspace is defined in a natural way as follows.

Definition 2.1. A matrix subspace V of Cn×n over R is Hermitian if all its
elements are Hermitian.

The Hermitian elements of a matrix subspace V can be readily recovered by
computing the nullspace of the linear map

V 7−→ V − V ∗ (2.2)

from V to Cn×n. We call this nullspace the Hermitian matrix subspace of V.4

Equivalence is a fundamental operation on matrix subspaces which can be re-
garded as a relaxation. Matrix subspaces V and W are said to be equivalent if there

3If V is initially a matrix subspace of Cn×n over C, then it can be treated as a matrix subspace
over R by doubling the dimension.

4To fully measure how much V deviates from being a Hermitian matrix subspace, inspect the
singular values of the linear map (2.2).
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exist invertible matrices X,Y ∈ Cn×n such that W = XVY −1. Hermitian structure
is preserved in congruence, i.e., when Y −1 = X∗.

For a necessary and sufficient condition on a matrix subspace V to be equivalent
to a Hermitian matrix subspace, suppose V1, . . . , Vk is its basis. Consider the problem
of finding out, whether the matrices XV1Y

−1, . . . , XVkY
−1 are Hermitian for some

invertible matrices X and Y . To solve this, compute the intersection of the nullspaces
of the linear maps

M 7−→ VjM −M∗V ∗j (2.3)

on Cn×n, for j = 1, . . . , k. If there exists an invertible element M in the intersection,
then X and Y are determined by the condition Y −1X−∗ = M. With k = 2 this arises
in the generalized eigenvalue problem.

Denote by S++ the convex cone of positive definite matrices in Cn×n. (See, e.g.,
[2, II Sec. 12–15] for the convexity of S++.) Of course, S++ and its closure are of
tremendous importance in convex optimization, see, e.g., [7].

Definition 2.2. A Hermitian matrix subspace V is said to possess positive defi-
nite elements if V ∩ S++ 6= ∅.

For a classical two dimensional example, consider the generalized eigenvalue prob-
lem. Then it is of central relevance to know if the respective matrix subspace possesses
positive definite elements; see [27, Chapter 15.3]. Further examples follow.

Example 1. Denote by H the set of Hermitian matrices. An invertible matrix
A ∈ Cn×n is the product of a Hermitian matrix and a positive definite matrix if and
only if the Hermitian subspace of V = A−1H contains positive definite elements. (Of
course, A is Hermitian if and only if V contains the identity.) This is a classical notion,
such a matrix is said to be symmetrizable [4, p.67].

Example 2. In view of preconditioning very large linear systems, assume having
an invertible sparse matrix A ∈ Cn×n. Consider the homogeneous linear system

AW −W ∗A∗ = 0. (2.4)

We are interested in those solutions W ∈ Cn×n which are sparse.5 Let W denote
their span. Then one looks for the positive definite elements of the matrix subspace
AW by the fact that with the respective products the conjugate gradient [15, Chapter
10.2] method can be executed.

Observe that Hermitian matrix subspaces possessing no positive definite matrices
can be high dimensional. (Consider a matrix subspace with the (1, 1)-entry equaling
zero.)

Whenever nonempty, V ∩ S++ is an open subset of V by the fact that if V ∈
V ∩S++, then V +E ∈ V ∩S++ for E ∈ V small enough in norm.6 Hence the convex
cone V ∩ S++ is a submanifold of V of the same dimension. This is useful, although
hardly completely satisfactory information.

Example 3. The set of diagonal Hermitian matrices in C3×3 is isometrically
isomorphic to R3 in a natural way. The positive definite elements correspond to

{(d1, d2, d3) ∈ R3 : dj > 0, j = 1, 2, 3}. (2.5)

5Clearly, there are sparse solutions as W = A∗ illustrates. Then AA∗ leads to the normal
equations which is not attractive for preconditioning.

6For small n, to test whether V ∈ V ∩ S++, it is advisable to attempt to compute a Cholesky
factorization [15, p. 146].
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Let V be a two dimensional subspace of R3 (i.e., a plane through the origin) whose
intersection with (2.5) is a sharp needle-like set.

For the volume, on the tangent spaces of V ∩ S++ we employ the standard inner
product (2.1). Thereby V ∩ S++ is regarded as a Riemannian submanifold of Cn×n.7

Because the intersection can be a very small set, any purely random process to decide
whether V possesses positive definite elements is highly unlikely to be successful. It
is informative, for comparison, to bear in mind that the set of Hermitian matrices is
of dimension n2 in Cn×n of which S++ occupies just a 1

2n portion.
The question of existence of positive semidefinite elements and estimating their

volume can be turned, at least in principle, into a problem in real algebraic geometry.
For the minimum dimension of the underlying space, denote by L the set of lower
triangular matrices with real diagonal entries, regarded as a subspace of Cn×n over R
of dimension n2.

Theorem 2.3. To the set of positive semidefinite elements of a Hermitian matrix
subspace V ⊂ Cn×n corresponds a real homogeneous variety of L ⊂ Cn×n.

Proof. By the Cholesky factorization, a Hermitian matrix H is positive definite if
and only if H = LL∗ for a lower triangular matrix with a positive diagonal. Moreover,
if L is lower triangular, it readily seen that LL∗ positive definite if and only if L has
nonzero diagonal entries. Otherwise LL∗ is positive semidefinite.

For the construction, with respect to the inner product (2.1), denote by P the
orthogonal projector on H onto V. To characterize the positive semidefinite elements
of V, define

L 7−→ (I − P )LL∗ (2.6)

from L to H. This equals zero if and only if LL∗, which is positive semidefinite,
belongs to V. Let M1, . . . ,Ml be an orthonormal basis of the orthogonal complement
of V in H. Then L is mapped to zero by (2.6) if and only if

(LL∗,Mj) = 0 for j = 1, . . . l. (2.7)

Since these are homogeneous polynomial maps of degree two in the entries of L sep-
arated into real and imaginary parts, to the positive semi-definite elements of V cor-
responds a homogeneous variety of L.

There are n2 − dimV equations. (For computational aspects of real algebraic
geometry, see [3].) As an extreme, the corresponding variety is the whole L if and
only if V = H. Involving n2 real variables, solving (2.7) does not appear very realistic
unless n is small. On the positive side, though, the degrees of the polynomial equations
are just two.

The subspace L has the advantage that its elements mapped from the variety to
the positive definite elements are immediately recovered.

Corollary 2.4. V does not possess positive definite elements if and only if the
variety contains only singular elements.

3. Locating positive definite elements geometrically. There are several
necessary and sufficient conditions guaranteeing positive definiteness of a Hermitian
matrix [19, Chapter 7]. For a Hermitian matrix subspace V, an analogous problem
consists of locating positive definite elements, if any. (If V is not Hermitian, then

7It is somewhat exceptional to use the inner product (2.1) with the manifold of positive definite
matrices. For the usual Riemannian geometry of nonpositive curvature, see [5, Chapter 6].
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start by computing its Hermitian matrix subspace.) As just described, with matrix
subspaces the challenge lies in the fact that the subset of positive definite matrices
can be needle-like.

3.1. Positive definiteness and the joint numerical range. To locate pos-
sible positive definite elements for k > 2, an approach can be based on polynomial
inequalities. (For k = 2, see Appendix A.) To this end, suppose V1, . . . , Vk is a basis
of a Hermitian matrix subspace V and set

V ≡ V (t1, . . . , tk) = t1V1 + · · ·+ tkVk (3.1)

with tj ∈ R for j = 1, . . . , k. A Hermitian matrix is positive definite if and only if all
its leading principal minors are positive; see, e.g., [19, p. 404].8 This gives rise to n
polynomial inequalities in the parameters t1, . . . , tk for determining V ∩ S++.

Clearly, even for moderate n, dealing with the determinants of large leading prin-
cipal submatrices is computationally very unappealing. In particular, it certainly may
not be the simplest way to inspect the structure of V ∩ S++.

Regions including V ∩ S++ can be determined more economically with the help
of strictly positive maps. For matrix analysis of positive maps, see [5, Chapter 2] and
references therein.

Definition 3.1. A linear map Φ : Cn×n → Cl×l is strictly positive if Φ(A) is
positive definite whenever A is.

For a straightforward example, the linear map on Cn×n to any leading principal
submatrix is strictly positive.

With (3.1), in terms of a strictly positive linear map Φ, define

(t1, . . . , tk) 7−→ det Φ(V (t1, . . . , tk)) (3.2)

This is a homogeneous polynomial of degree l. Here it is natural to choose the basis
V1, . . . , Vk to be orthonormal, so that the linear map (3.1) yields an isometric iso-
morphism between the parameter space Rk and V. This is always assumed in what
follows. To have regions including V ∩ S++, we are interested in those parameter
values for which the function (3.2) is positive.

For linear inequalities, inexpensive to generate, consider the strictly positive linear
map Φx(A) = x∗Ax for any fixed x ∈ Cn. This inserted into (3.2) gives rise to the
open half-space in Rk (through the origin) defined as

{(t1, . . . , tk) :
k∑
j=1

(x∗Vjx) tj > 0}. (3.3)

For a necessary condition the parameters must satisfy, any intersection of such half-
planes yields an unbounded convex polytope in the parameter space (as long as there
are no contradicting inequalities).

What is the best we can do with a small number of half-spaces? With an or-
thonormal basis V1, . . . , Vk of V, define

V(x) = (x∗V1x, . . . , x
∗Vkx). (3.4)

for x ∈ S2n−1 = {x ∈ Cn : ||x|| = 1}. Clearly, V is smooth. Without any loss of
generality, we allow only orthonormal bases of V. Then we have orthogonal invariance

8Also called Sylvester’s criterion.
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in the sense that UV(x), where U ∈ Rk×k is an orthogonal matrix, is of the same form
as (3.4) but in another orthonormal basis of V. And conversely, to any orthonormal
basis corresponds such a transformation U .

Example 4. Let Vj be simultaneously unitarily diagonalizable. (That is, UVjU∗

are diagonal for a unitary matrix U , for j = 1, . . . k.) Then the image of (3.4) is a
convex polytope.

The image of V is called the joint numerical range of matrices V1, . . . , Vk. With
respect to the image, a single half-space determines the existence of positive definite
elements, if any.

Proposition 3.2. A Hermitian matrix subspace V possesses positive definite
elements if and only if the image of (3.4) is contained in an open half-space whose
boundary contains the origin.

Proof. Suppose there is a positive definite linear combination
∑k
j=1 ujVj . Assume∑k

j=1 u
2
j = 1. Then consider UV(x) where U ∈ Rk×k is an orthogonal matrix having

(u1, . . . , uk) as its first row. This is just (3.4) represented in another orthonormal
basis. By construction, its first component is strictly positive, so that the image is
contained in an open half-space.

For the converse, if the image is contained in an open half-space, then for some
unit vector (u1, . . . , uk) and for every nonzero x holds

∑k
j=1 uj x

∗Vjx > 0. Thereby

the linear combination
∑k
j=1 ujVj is positive definite.

For a unit vector (u1, . . . , uk), suppose the open half-space {(t1, . . . , tk) : u1t1 +
· · · + uktk > 0} contains the image of V. Then the positive definite matrix V =∑k
j=1 ujVj is said to correspond to the hyperplane {(t1, . . . , tk) : u1t1+· · ·+uktk = 0}.

This interpretation yields a way to define the most positive definite element in terms
of the hyperplane farthest away from the joint numerical range.

Definition 3.3. Assume a Hermitian matrix subspace V possesses positive def-
inite elements. The most positive definite element corresponds to the hyperplane
through the origin having the maximum Hausdorff distance from the image of V.

By the fact that the image of V is connected, the hyperplane in question is outside
the convex hull of the image. Thereby the notion is well-defined. Interpreted in terms
of the corresponding positive definite elements, the most positive definite element of
the definition is hence defined as being the one solving the minimization problem

max λmin(V )
s.t. V ∈ V

V ≥ 0 (equivalent to λmin(V ) ≥ 0)
‖V ‖F = 1,

where λmin(V ) denotes the smallest eigenvalue of a Hermitian matrix V . Hence, we
can alternatively regard a computational geometric problem as a problem in eigenvalue
optimization. (For eigenvalue optimization, see [25].)

In the case dimV = 2 we are dealing with the numerical range of a matrix.
Admitting many extensions, (3.4) is among them [20, pp. 85–87] being perhaps
the most natural one (except that no assumptions on orthonormality are made).
Traditionally, its convexity has been an object of interest, leading to the respective
notion for matrix subspaces.

Definition 3.4. A Hermitian matrix subspace V is said to have convex numerical
range if the image of the map (3.4) is convex.
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This is well-defined by the fact that the image of (3.4) being convex in a basis
V1, . . . , Vk of V is necessary and sufficient for being convex in any basis of V. This
follows from composing MV(x) with any invertible matrix M ∈ Rk×k and recovering
the corresponding map (3.4).

Regarding convexity, in general it is a tough problem for dimV > 2. In the case
dimV = 3 there are some results [20, p. 86]. An interesting open problem (not
considered here) is to identify cases in which V having convex numerical range is a
generic property among Hermitian subspaces of the same dimension in Cn×n.

Proposition 3.5. Suppose a Hermitian matrix subspace V has convex numerical
range. Then vanishing of (3.4) at a point is a necessary and sufficient condition on
V not to possess positive definite elements.

To deal with any Hermitian matrix subspace V, set

v(V) = min
||x||=1

||V(x)||, (3.5)

i.e., the distance of the image of V from the origin. Whether or not V has convex
numerical range, this is certainly a quantity of interest. (The Crawford number9 for
two, not necessarily orthonormal, Hermitian matrices is defined analogously.) In a
way, v(V) yields an opposite of the numerical radius which would correspond to taking
the maximum instead. Recall that the numerical radius of a matrix A ∈ Cn×n is

w(A) = max
λ∈F (A)

|λ|,

where F (A) denotes the numerical range of A.10 (For its computation, see [31].)
A minimizer yields a good candidate for constructing a positive definite element,

yielding an optimal solution in the following case.
Theorem 3.6. Suppose a Hermitian matrix subspace V has convex numerical

range. If a unit vector x ∈ Cn satisfies v(V) = ||V(x)|| > 0, then
k∑
j=1

(x∗Vjx)Vj (3.6)

is the most positive definite element of V.
Proof. Clearly, V(x) is a boundary point of the image of V. Take the half-

space T = {(t1, . . . , tk) :
∑k
j=1(x∗Vjx) tj < 0}. Then, by the convexity assumption,

V(x) + T does not intersect the image of V. This proves the claim.
In the next section an algorithm for computing the distance of the convex hull of

the image of V from the origin is devised. Thus, v(V) is computable in case V has
convex numerical range. Otherwise we obtain a lower bound which still suffices for
locating the most positive definite element.

Generating uniformly random points of the image of V seems quite hopeless by
the fact that computing values of V at random points of S2n−1 is not a good idea.
(Numerical experiments support this in the case of numerical range of a matrix.) The
boundary of the image is more accessible. This is due to the fact that for the convex
hull of the image we can find support planes by computing extreme eigenvalues and
corresponding eigenvectors of Hermitian matrices. Recall that a support plane of a
closed set has at least one common point with the set such that the entire set lies in
one of the two half-spaces determined by the plane.

9Called the Crawford number of a Hermitian pair.
10As a curiosity, a result by T. Ando states w(A) < 1 if and only if the V ∩S++ 6= ∅ for a certain

Hermitian matrix subspace. See [5, Theorem 3.5.1].
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Algorithm 1 Computing a boundary point of the image of V.

1: Choose a unit vector u = (u1, . . . , uk) and set V =
∑k
j=1 ujVj .

2: Compute an extreme eigenvalue and respective unit eigenvector x of V .
3: Set p = (x∗V1x, . . . , x

∗Vkx).

(a) The support plane (solid line) and a
boundary point p (cross) corresponding to di-
rection u (an unit vector such that λ(u)u =
pTuu = ũ is the dashed line).

(b) The boundary lines of the dual cone F ∗

(solid lines) and the smallest convex cone con-
taining F (dashed lines).

Fig. 3.1. A k = 2 dimensional F (thick outline). The origin is marked with a circle.

Observe that the vector p is on that part of the boundary of the image of V which
intersects the boundary of the convex hull of the image of V.

In the algorithm, there are two alternatives for the extreme; either the smallest
or the largest eigenvalue of V . We denote by λ(u) the smallest. (Clearly, λ(u) > 0 if
and only if V is positive definite.) In both cases,

{(t1, . . . , tk) :
k∑
j=1

uj(tj − pj) = 0} (3.7)

yields a support plane of the image of V. It is noteworthy that with the Hermitian
Lanczos method, numerical computation of the extreme eigenvalues and corresponding
eigenvectors is inexpensive for sparse matrix subspaces.11 For the Hermitian Lanczos
method, see [27]. These are readily programmed, e.g., in Matlab.

When the unit vector u is randomly chosen in Algorithm 1, we expect V to be
indefinite, i.e., the hyperplane

{(t1, . . . , tk) :
k∑
j=1

ujtj = 0} (3.8)

intersects the image of V.

3.2. Computational geometry for the convex hull of the joint numerical
range. Denote by F ⊂ Rk the convex hull of the image of V and by Sk−1

R = {u ∈ Rk :
‖u‖ = 1} the set of unit vectors in Rk. By executing Algorithm 1, for any u ∈ Sk−1

R
we can compute λ(u) ∈ R and a boundary point p ∈ F such that

λ(u) = uT p = min
t∈F

uT t. (3.9)

11A matrix subspace is sparse if its members are sparse with a common sparsity pattern.
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A graphical illustration of this is given in Figure 3.1(a). For the compact set F , its
dual cone is defined as

F ∗ = {t ∈ Rk : pT t ≥ 0 for all p ∈ F}.

A graphical illustration of a dual cone in two dimensions is given in Figure 3.1(b).
Notice that the boundary lines of F ∗ are perpendicular to the opposite boundary lines
of the smallest convex cone containing F .

For a Hermitian matrix subspace V, we are interested in solving the minimization
problem

max λmin(V )
s.t. V ∈ V

V ≥ 0 (equivalent to λmin(V ) ≥ 0)
‖V ‖F = 1,

(3.10)

where λmin(V ) denotes the smallest eigenvalue of a Hermitian matrix V . (The norm
constraint ‖V ‖F = 1 guarantees that we have a bounded solution.) If V1, . . . , Vk is an
orthonormal basis of V, then (3.10) is equivalent to

max λ(u)
s.t. u ∈ F ∗ (equivalent to λ(u) ≥ 0)

‖u‖ = 1
(3.11)

with V =
∑k
i=1 uiVi. The strict feasibility problem (3.10) means locating a positive

definite matrix in V. The strict feasibility problem (3.11) means locating an element
u ∈ Sk−1

R satisfying vTu > 0 for all v ∈ F , as given in Definition 3.3 in terms of the
corresponding hyperplane. Observe that the latter problem (3.11) can also be seen as
a “dual” of the convex optimization problem

min ‖p‖
s.t. p ∈ F (3.12)

under the assumption 0 /∈ F .
Theorem 3.7. If p′ solves (3.12), then u′ = p′/‖p′‖ solves (3.11) with λ(u′) =

‖p′‖
Proof. If λ(u′) = pTu′ < ‖p′‖ for some p ∈ F , then there exists a point on the

line segment between p and p′ closer to the origin than p′, which is a contradiction.
Therefore λ(u′) = ‖p′‖. In addition, for any u ∈ Sk−1

R ,

λ(u) = pTu ≤ (p′)Tu ≤ ‖p′‖ = λ(u′),

for some p ∈ F , which proves the claim.
From Theorem 3.7 we can conclude that for any feasible u ∈ Sk−1

R and p ∈ F
holds

λ(u) ≤ λ(u′) = ‖p′‖ ≤ ‖p‖ (3.13)

and therefore any pair of primal and dual feasible points (p, u) can be used to bound
the optimal values in (3.12) and (3.11).

In the next section we devise methods to so solve the computational geometric
problems (3.11) and (3.12) relying, in essence, only on a “least eigenvalue solver”, i.e.,
using Algorithm 1 we assume that for a given u ∈ Sk−1

R we can generate λ(u) and
p ∈ F such that λ(u) = pTu.
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4. Algorithms. Next algorithms for solving the positive definiteness problems
are devised.

4.1. Perceptron algorithm for feasibility. The strict feasibility problem re-
lated with (3.11) consists of finding a unit vector u such that pTu > 0 for all p ∈ F .
Provided that the problem is strictly feasible, that is, at least one such u exists (i.e.
0 /∈ F ), it can be found using a simple method known as the perceptron algorithm,
which is a general method for finding a separating hyperplane between two arbitrary
subsets of Rk. Algorithm 2 shows one possible way to solve the strict feasibility
problem of (3.11) using the perceptron algorithm. The algorithm progresses by re-
peatedly updating a single vector, ũ which corresponds to the normal of a hyperplane
{t ∈ Rk : tT ũ = λ} that should separate the origin from the set F with some λ > 0.
Step 5 of the algorithm finds a point pj ∈ F , that is on the wrong side of the current
hyperplane and step 6 corrects this by tilting the hyperplane normal ũj towards pj .
Namely,

pTj ũj+1 = pTj (ũj + pj) = pTj ũj + ‖pj‖2 > 0,

where equality pTj ũj+1 = 0 is excluded by the fact that pTu = ‖p‖ if and only if u and
p are the pair of primal and dual solutions. The use of Algorithm 2 is best justified by
the following theorem, establishing the convergence of the algorithm under minimal
assumptions. The proof is adapted to our setting from [14].

Algorithm 2 Perceptron algorithm for finding a unit vector in the interior of F ∗

1: Set j = 0 and ũ1 = V(x) for an arbitrary x ∈ S2n−1
C .

2: repeat
3: Increase j.
4: Set uj = ũj

‖ũj‖ .
5: Compute pj ∈ F such that λ(uj) = pTj uj .
6: Set ũj+1 = ũj + pj
7: until λ(uj) > 0
8: return uj .

Theorem 4.1 (Perceptron Convergence Theorem). Algorithm 2 will converge
in at most maxp∈F ‖p‖2/λ2(u′) steps, where u′ is the solution to (3.11) such that
λ(u′) > 0.

Proof. Let u′ be the solution to (3.11) and λ(ui) = pTi ui ≤ 0 for i = 1, . . . , j − 1.
Then, for any i = 2, . . . , j, holds

‖ũi‖2 = ‖ũi−1‖2 + 2ũTi−1pi−1 + ‖pi−1‖2 ≤ ‖ũi−1‖2 + max
p∈F
‖p‖2

and hence ‖ũj‖2 ≤ jmaxp∈F ‖p‖2. On the other hand for any i = 2, . . . , j we have

ũTi u
′ = ũTi−1u

′ + pTi−1u
′ ≥ ũTi−1u

′ + λ(u′)

which yields ũTj u
′ ≥ jλ(u′). Thereby√

jmax
p∈F
‖p‖ ≥ ‖ũj‖ ≥ ũTj u′ ≥ jλ(u′),

that is, j ≤ maxp∈F ‖p‖2/λ2(u′).
Let us mention that the perceptron algorithm is used, in a bit different manner, to

locate a positive definite element in Hermitian matrix subspaces in [30]. This subject
has also been studied in [32].
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4.2. Ellipsoid algorithm. The problem (3.11) is an optimization problem on
the (k − 1)-sphere Sk−1

R and thereby not as such a convex optimization problem in
Rk. However, some standard convex optimization techniques may still be applied to
the problem. In what follows, an ellipsoid algorithm is devised to solve the task.

To this end, consider an ellipsoid

E = E(A, t) = {v ∈ Rk : (v − t)TA−1(v − t) ≤ 1},

where A ∈ Rk×k is positive definite and t ∈ Rk is the center of E . Assume that E
contains an optimal point u′ ∈ Rk of an optimization problem. If c ∈ Rk and β ∈ R
are such that cTu′ ≥ β, then also

E ∩Hc,β = E ∩ {v ∈ Rk : cT v ≥ β}

contains the solution. Define

α =
β − cT t√
cTAc

. (4.1)

If α = 0, the center of the ellipsoid is on the border of the half-space Hc,β . If α > 1,
the intersection is empty and if α < −1, then E ⊂ Hc,β . [13]

For any 1 > α > −1/k, it is possible to construct an updated ellipsoid

E ′ = E(A′, t′)

where

t′ = t− 1+kα
k+1 b, b = −Ac√

cTAc
,

A′ = k2(1−α2)
k2−1

(
A− 2(1+kα)

(k+1)(1+α)bb
T
)
,

(4.2)

such that E ′ ⊃ E ∩ Hc,β and the volume of E ′ is strictly less than that of E [13]. If
α ≥ 0, then

volume(E ′) ≤ e
−1
2k volume(E)

[8]. This leads to the iterative algorithm known as the (deep cut) ellipsoid algorithm
[13]. It consists of finding an initial ellipsoid E0, such that such that u′ ∈ E0 and
then constructing a sequence (Ej) of ellipsoids, where Ej+1 is constructed from Ej
using (4.2). Such an update is possible if, for each Ej , one is able to find a half-space
Hcj ,βj

, for which the corresponding αj , as defined in (4.1) satisfies αj > −1/k. If,
in addition, αj ≥ 0 for all j, then then the solution u′ is contained in a sequence of
ellipsoids Ej whose volume tends geometrically to zero.

For the problem (3.11) an ellipsoid algorithm can be devised as follows. Initially,
set t0 = 0 and A0 = I. For any j > 0, set uj = tj/‖tj‖ if ‖tj‖ > 0. Otherwise, pick
an arbitrary uj ∈ Sk−1

R . As shown later, it can be ensured that ‖tj‖ ≤ 1. Let

λbest
j = max({0} ∪ {λ(ui), i = 0, 1, . . . , j}) (4.3)

and pj ∈ F be such that λ(uj) = pTj uj . By setting cj = pj , βj = λbest
j we get

βj − cTj tj = λbest
j − ‖tj‖pTj uj = λbest

j − ‖tj‖λ(uj) ≥ 0,
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which means that αj ≥ 0. This corresponds to a valid cut because

cTj u
′ = pTj u

′ ≥ λ(u′) ≥ λbest
j = βj .

One may then construct an ellipsoid E(Ãj+1, t̃j+1) according to (4.2). If ‖t̃j+1‖ ≤ 1,
set tj+1 = t̃j+1 and Aj+1 = Ãj+1 and continue.

In case ‖t̃j+1‖ > 1, it one must conduct a norm cut by setting

c̃j = −t̃j+1/‖t̃j+1‖, β̃j = −1 (4.4)

and then cutting the ellipsoid E(Ãj+1, t̃j+1) with the half-space H c̃j ,β̃j
according to

(4.2). The norm cut procedure can be repeated several times, if necessary, in order
to have ‖tj+1‖ < 1.

Regarding the relative error of the solution, the error bounds given in [13] cannot
be used since the value λ(uj) is not an evaluation of the objective function at the
center tj of the ellipsoid. For the problem (3.11), strict error bounds are given by

λbest
j =: λ(ubest

j ) ≤ λ(u′) ≤ P best
j := min

0≤i≤j
‖pi‖. (4.5)

Another upper bound is12

λ(u′) ≤ pTu′ = pT t+ pT (u′ − t) ≤ pT t+
√
pTAp

for any p ∈ F and E(A, t) 3 u′. Therefore set

λmax
j = min(pTj tj +

√
pTj Ajpj , ‖pj‖, λ

max
j−1 ), (4.6)

where λmax
0 = ∞. With these, the resulting ellipsoid algorithm is summarized as

Algorithm 3.

Algorithm 3 Deep cut ellipsoid algorithm to solve (3.11)

1: Set j = 0, A0 = I, t0 = 0, pick u1 ∈ Sk−1
R

2: repeat
3: Increase j
4: Compute pj ∈ F such that λ(uj) = pTj uj .
5: Compute tj , Aj from (4.1) and (4.2), applying norm cuts (4.4) if necessary.
6: Update λbest

j , λmax
j and ubest

j according to (4.3), (4.5) and (4.6).
7: Set uj+1 = tj/‖tj‖
8: until λmax

j − λbest
j < ε (or some other stopping criterion is satisfied)

9: return ubest
j .

4.3. Accelerated ellipsoid algorithm. The principles described in Section
4.2 can be used to construct other cutting-plane-based methods to solve the problem
(3.11). For instance, the ellipsoid method may be sped up by storing multiple points
pj computed so far. Namely, for any p ∈ F and j ≥ 0 holds

pTu′ ≥ λbest
j . (4.7)

12If v = arg maxv∈E(A,0) p
T v, then ∇v(pT v−µvTA−1v) = 0 ⇔ v = 1

2µ
Ap, and from vA−1v ≤ 1

we get pT v =
p
pTAp.
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If λ
best
j −pT tj√
pTAjp

> −1/k, then (4.7) defines a cut which can be used to decrease the volume

of the ellipsoid when updated according to (4.2). In theory, an ellipsoid E(A, t) may
be cut during the same iteration until it satisfies

λbest
j − pTi t√
pTi Api

≤ −1/k, ∀0 ≤ i ≤ j and
‖t‖2 − ‖t‖√

tTAt
≤ −1/k.

It may not be feasible to find such an ellipsoid exactly, but an approximation may be
computed by iterating and cutting over all pi, i = 0, 1, . . . , j multiple times.

Algorithm 5 describes a relatively straightforward multiple cutting-plane scheme
that can be used to speed up the ellipsoid algorithm if the execution time is dominated
by the eigenvalue computations. It works as Algorithm 3, except that the ellipsoid
is also cut with (at most M2) constraints from the previous eigenvalue computation
rounds. As in the initialization phase, the cutting is repeated over multiple (M1)
rounds. On lines 18–19 the stored constraints are pruned so that only the ones that
contributed with the deepest cuts (greatest α) remain. The upper bound λmax is
updated whenever possible.

A way to further speed up the method is to use additional inequalities (3.3) to
construct an initial ellipsoid. For example, a necessary condition for the positive
semidefiniteness of a matrix V ∈ V is that all its diagonal elements are nonnegative.
This yields n initial linear constraints in Rk. Algorithm 4 describes a method to
compute an initial ellipsoid E(A0, t0) for Algorithms 3 and 5. This method performs
M0 rounds of cutting the ellipsoid by imposing the diagonal positivity requirement.

Algorithm 4 Initialization scheme for ellipsoid algorithms for the problem (3.10)
1: Set A← I, t← 0.
2: for i = 1, . . . , n do
3: Define di = [(V1)ii . . . (Vk)ii]T

4: end for
5: for j = 1, . . . ,M0 do
6: for i = 1, . . . , n do
7: Calculate α for the diagonal equation dTi t ≥ 0 according to (4.1)
8: Update A and t according to (4.2) if α > −1/k
9: end for

10: Apply a norm cut (4.4) to A and t if ‖t‖ > 1.
11: end for
12: return A,t

5. Numerical experiments. The difficulty of the problem (3.11) is closely re-
lated to λ(u′), the distance between the origin and F , and the size of F . With respect
to these parameters, we designed easy and challenging experiments. This makes the
construction of matrix subspaces V ⊂ Cn×n somewhat involved.

Start with a Hermitian matrix subspace Ṽ spanned by the matrices V̂j = 1
2 (Aj +

A∗j ), where each Aj ∈ Cn×n, j = 1, . . . , k is a random band matrix with normally
distributed complex elements having bandwidth 2j + 1. Band matrices are used
because full random Hermitian matrices were observed to produce V whose range
seemed to resemble the k-ball. (This we regard as an unfounded bias.) Obviously,
matrix subspaces constructed in this way are sparse if k � n. These matrix subspaces
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Algorithm 5 Accelerated ellipsoid algorithm to solve (3.11)
1: Set A← I, t← 1 or calculate them using Algorithm 4
2: Initialize P ← [ ] with an empty matrix
3: repeat
4: Set u← t/‖t‖ if t 6= 0 or an arbitrary u ∈ Sk−1

R otherwise
5: Compute p ∈ F such that λ(u) = pTu, store P ← [p P ].
6: Update λbest, ubest and λmax according to (4.3), (4.5) and (4.6).
7: Let m be the number of columns in P .
8: Initialize αi = −1 for i = 1, . . . ,m.
9: for j = 1, . . . ,M1 do

10: for i = 1, . . . ,m do
11: Let p be the ith column of P
12: Calculate α for the cutting-plane pT t ≥ λbest

13: If α > −1/k, update A,t and λmax

14: Set αi ← max(αi, α)
15: end for
16: Apply norm cut (4.4) to A and t if ‖t‖ > 1.
17: end for
18: Sort the columns of P to descending order of αi’s
19: Drop all i columns with αi < −1/k, keeping at most M2 columns
20: until λmax − λbest < ε (or some other stopping criterion is satisfied)
21: return ubest

typically cannot be expected to contain positive definite elements (based on numerical
experiments). Therefore we translate the basis matrices to have feasible problems.

For any given b ≥ 0, we construct a Hermitian matrix subspace V such that

min
p∈F
‖p‖ = b. (5.1)

First take any Hermitian matrix subspace Ṽ with an orthonormal basis Ṽ1, . . . , Ṽk.
Choose an arbitrary unit vector u ∈ Rk and calculate a boundary point p correspond-
ing to λ(u) = pTu for the convex hull F̃ of the image of Ṽ. Then form

V ′j = Ṽj + (buj − pj)I

and orthonormalize to have V = span{V ′1 , . . . , V ′k} = span{V1, . . . , Vk}, where the
matrices V1, . . . , Vk are orthonormal and (5.1) holds.

Based on this construction, for various n and k, two types of random problems
are generated. The size of the image of V is approximated by d = ‖p′ − p‖, where
p′ is a boundary point corresponding to λ(−u). Using this number d, easy problems
with b = d

10 and challenging problems with b = d
1000 are generated.

The performance of Algorithm 2, Algorithm 3 and our accelerated Algorithm 5,
initialized with Algorithm 4, are compared. The performances are measured in terms
of the number of iterations (or equivalently, the number of eigenvalue computations)
required to solve the problems. Each cell is an average over at least ten runs with
different random matrix subspaces V. As the parameters of Algorithms 4 and 5 we
used (quite arbitrarily) M0 = 10, M1 = 3, M2 = 50. Algorithm 3 was initialized with
u1 = V(x)/‖V(x)‖2 for a random x ∈ S2n−1

C .
Table 5.1 compares the performance of all three algorithms on the strict feasibil-

ity problem, i.e., the problem of locating a positive definite element in a Hermitian
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Table 5.1
Average number of iterations needed to solve the strict feasibility problem of (3.10)

b k n Perceptron Ellipsoid Acc. Ellipsoid
10−1d 5 100 2.0 2.2 1.00
10−1d 5 1000 1.1 1.1 1.00
10−1d 5 5000 1.1 1.1 1.00
10−1d 15 100 5.3 6.1 1.11
10−1d 15 1000 1.1 1.1 1.00
10−1d 15 5000 1.00 1.00 1.00
10−1d 100 100 6.4 8.3 2.1
10−1d 100 1000 5 6 1.5
10−3d 5 100 79 23 8.7
10−3d 5 1000 17 22 8.1
10−3d 5 5000 15 22 8.1
10−3d 15 100 294 92 25
10−3d 15 1000 97 88 23.9
10−3d 15 5000 24 89 24
10−3d 100 100 1041 438 43
10−3d 100 1000 652 370 35

subspace. In Algorithms 3 and 5 this is achieved by setting the stopping criterion to
λbest > 0. In case b = 10−1d, the initial guess (calculated with Algorithm 4 or as
V(x)/‖V(x)‖2) was often enough to have a valid solution and the corresponding av-
erage iteration counts are therefore close to 1. With Algorithm 2, the iteration counts
varied considerably within a class of problems with same parameters (e.g. from 9 to
occasionally hundreds with k = 15, n = 1000, b = 10−3d). The iteration counts for
Algorithms 3 and 5 were more stable in all problems, primarily depending on b and
secondarily on k.

Table 5.2 compares the performance of Algorithms 3 and 5 on the least eigenvalue
maximization problem (3.10). A relative stopping criterion λmax−λbest

λmax < ε = 10−6 was
used. The problems marked with a dash took too long to solve. The results indicate
that the problem (3.10) can be solved reasonably efficiently in matrix subspaces with
low dimension k, if solving the extremal eigenvalue problems is feasible. Otherwise the
iteration count does not seem to have much dependence on n. The difficulty of solving
the maximization problem seems to primarily depend on the dimension k (and not
so much on b). The average CPU time needed to solve the problem using Algorithm
5 with b = 10−3d, k = 15, n = 1000 on the test workstation13 was 24 seconds such
that 85% of it was spent inside the least eigenvalue solver routine (Matlab’s eigs
function).

Appendix A: The case dimV = 2. The two dimensional case is instructive,
classical and can be solved satisfactorily. For the two dimensional case, discussed in
terms of matrix pairs, see [24]. See also [16].

Denote by F (M) the numerical range of a matrix M ∈ Cn×n.
Theorem 5.1. [12, 1] Assume the matrices V1 and V2 span a Hermitian matrix

subspace V. Then V contains possess positive definite if and only if 0 6∈ F (V1+iV2).14

132.66GHz Intel Core 2 Quad Q8400, 3.2GB RAM, Matlab R2010b on Debian GNU/Linux
14In [4, p.76] a related result is called Finsler’s theorem.
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Table 5.2
Average number of iterations needed to solve (3.10) to relative precision 10−6

b k n Ellipsoid Acc. Ellipsoid
10−1d 5 100 193 30.3
10−1d 5 1000 217 31.2
10−1d 5 5000 223 32
10−1d 15 100 1500 140
10−1d 15 1000 1734 148
10−1d 15 5000 - 149
10−1d 100 100 - 6125
10−1d 100 1000 - 5764
10−3d 5 100 265 41.5
10−3d 5 1000 262 40.7
10−3d 5 5000 258 41
10−3d 15 100 2909 168
10−3d 15 1000 2903 166
10−3d 15 5000 - 166

The location of the numerical range determines the positive definite linear com-
binations completely as follows. (Recall that the numerical range is convex.)

Corollary 5.2. Let θ1 ≤ θ2 be the angles of the smallest cone centred at the
origin containing F (V1 + iV2) with θ2 − θ1 < π. Then, with γ = θ2+θ1

2 , exactly

cos(γ − θ)V1 + sin(γ − θ)V2 (5.2)

for θ ∈ (− 1
2 (π + θ1 − θ2), 1

2 (π + θ1 − θ2)) are positive definite.
For a graphical illustration, see Figure 3.1(b), where the dashed lines yield the

cone of the corollary.
It is the dual cone in Figure 3.1(b) which is of importance in quantifying the size

of V ∩ S++. For an isometric isomorphism between the parameter space R2 and V,
assume that V1 and V2 are orthonormal with respect to the inner product (2.1). The
matrices

cos(θ2 − π/2)V1 + sin(θ2 − π/2)V2 and cos(θ1 + π/2)V1 + sin(θ1 + π/2)V2

determine the boundaries of the cone V ∩ S++. This angle is independent of the
matrices V1 and V2 spanning V, as long as they are orthonormal. Interpreted in terms
the dual cone, see Figure 3.1(b). If θ2 − θ1 ≈ π, then the dual cone is needle-like.
Then and only then positive definite elements occupy a tiny portion in V.

Hence, analogously, in the general case of dimV = k, the size of the dual cone
needs to be compared against the solid angle of the sphere in Rk which is

kπk/2

Γ(k/2 + 1)
,

where Γ denotes Gamma function.

Appendix B: Related problems. Locating a positive definite element in a
Hermitian matrix subspace resembles a class of convex optimization problems known
as semidefinite programs, which can be formulated as

min cTu

s.t. V0 +
∑k
i=1 uiVi ≥ 0,

(5.3)
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where V0, . . . , Vk are Hermitian matrices. The feasibility problem of finding a positive
semidefinite matrix from an affine Hermitian subspace is also known as a linear matrix
inequality. Semidefinite programs and linear matrix inequalities for linear subspaces
(that is V0 = 0) are not much of interest since they are either trivially solved by the
zero matrix or unbounded. The problem (3.10) is not a special case of a semidefinite
program, but an optimization problem on Sk−1

R .
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