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Abstract. A generic matrix A ∈ Cn×n is shown to be the product of circulant and diagonal
matrices with the number of factors being 2n−1 at most. The demonstration is constructive, relying
on first factoring matrix subspaces equivalent to polynomials in a permutation matrix over diagonal
matrices into linear factors. For the linear factors, the sum of two PD matrices is factored into the
product of two diagonal matrices and a circulant matrix. Extending the monomial group, low degree
polynomials in a permutation matrix over diagonal matrices and their permutation equivalences
constitutes a fundamental sparse matrix structure. Matrix analysis gets largely done in terms of
permutations only.
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1. Introduction. There exists an elegant result, motivated by applications in
optical image processing, stating that any matrix A ∈ Cn×n is the product of circulant
and diagonal matrices [14, 16].1 In this paper it is shown that, generically, 2n − 1
factors suffice. (For various aspects of matrix factoring, see [12].) The demonstration
is constructive, relying on first factoring matrix subspaces equivalent to polynomials
in a permutation matrix over diagonal matrices into linear factors. Located on the
borderline between commutative and noncommutative algebra, such subspaces are
shown to constitute a fundamental sparse matrix structure of polynomial type. Then
for the linear factors, a factorization result for the sum of two PD matrices is derived.

A scaled permutation, also called a PD matrix, is the product of a permutation
and a diagonal matrix. In the invertible case we are dealing with the monomial group,
giving rise to the sparsest possible nonsingular matrix structure. A way to generalize
this is to allow more nonzero entries per line by considering sums of PD matrices.
The sum of two PD matrices can be analyzed in terms of permutation equivalence
which turns out to be instrumental for extending the structure. Although the notion
of permutation equivalence is graph theoretically nonstandard, combinatorial linear
algebraically it is perfectly natural [2, p. 4]. There arises a natural concept of cycles
which can be used to show that the inverse of a nonsingular sum of two PD matrices
carries a very special structure and can be inexpensively computed.

To extend the set of sums of two PD matrices in a way which admits factoring, a
polynomial structure in permutations is suggested. That is, let P be a permutation
matrix and denote by p a polynomial over diagonal matrices. Define matrix subspaces
of Cn×n as

P1

{
p(P )

∣∣deg(p) ≤ j
}
P2 (1.1)

with fixed permutations P1 and P2. This provides a natural extension by the fact
that the case j = 0 corresponds to PD matrices while j = 1 yields the sums of
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two PD matrices. The case j = 2 covers, e.g., finite difference matrices, including
periodic problems. In this manner, whenever j � n, the sparsity pattern of such a
matrix subspace carries an intrinsic polynomial structure which can be used to analyze
sparsity more generally in terms of the so-called polynomial permutation degree. In
particular, now matrix analysis gets largely done in terms of permutations. Namely,
completely analogously to univariate complex polynomials, these subspaces admit
factoring. To factor (1.1) into linear factors, it turns out that it suffices to consider
the problem of factoring polynomials in the cyclic shift2 over diagonal matrices.

Let P thus be the cyclic shift and set P1 = P2 = I. Then for any A ∈ Cn×n there
exists a unique polynomial p over diagonal matrices of degree n− 1 at most such that
p(P ) = A. With this representation, the problem of factoring A into the product of
circulant and diagonal matrices converts into the problem of factoring p into linear
factors. For a generic matrix this is possible; see Theorem 4.3. Quite intriguingly,
this allows regarding matrices as polynomials which have been factored. In particular,
a linear factor is, generically, the product of two diagonal matrices and a circulant
matrix. Consequently, once this factoring process has been completed, we have

A = D1C2D3 · · ·D2n−3C2n−2D2n−1 (1.2)

with diagonal and circulant matrices D2j−1 and C2j .
The paper is organized as follows. Section 2 is concerned with the set of sums

of two PD matrices. Their inversion is considered. A link with the so-called DCD
matrices is established. In Section 3, polynomials in a permutation matrix over diag-
onal matrices are introduced, to extend the set of the set of sums of two PD matrices.
Section 4 is concerned with factoring polynomials in a permutation over diagonal ma-
trices into first degree factors. Factorization algorithms are devised. A solution to the
problem of factoring into the product of circulant and diagonal matrices is provided.

2. The sum of two PD matrices. This section is concerned with extending
diagonal matrices to PD matrices, the set of scaled permutations PD. Once done,
we consider matrices consisting of the sum of two PD matrices. Here P denotes the
set of permutations and D the set of diagonal matrices. In the invertible case we are
dealing with the following classical matrix group.

Definition 2.1. By monomial matrices is meant the group consisting of matrix
products of permutation matrices with nonsingular diagonal matrices.

The group property is based on the fact that if P is a permutation and D a
diagonal matrix, then

DP = PDP , (2.1)

where DP = PTDP is a diagonal matrix as well. It turns out that this “structural”
commutativity allows doing practically everything the usual commutativity does. In
applications, monomial matrices appear in representation theory [5, 17] and in nu-
merical analysis of scaling and reordering linear equations [9]. See also [6, Chapter
5.3] for a link with circulant matrices. It is noteworthy that the monomial group is
maximal in the general linear group of Cn×n [8]. The following underscores that we
are dealing with a natural extension of diagonal matrices.

Definition 2.2. [1] A generalized diagonal of A ∈ Cn×n is obtained by retaining
exactly one entry from each row and each column of A.

2The cyclic shift of size n-by-n has ones below the main diagonal and at the position (1, n).
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To put this into perspective in view of normality, observe that PD is closed under
taking the Hermitian transpose. Thereby, conforming with Definition 2.2, its unitary
orbit {

UPDU∗ ∣∣UU∗ = I
}

(2.2)

leads to the respective notion of generalized normality. This is supported by the fact
that, like for normal matrices, the eigenvalue problem for PD matrices can be regarded
as being completely understood; see [6, Chapter 5.3]. To actually recover whether a
given matrix A ∈ Cn×n belongs to (2.2), compute the singular value decomposition
A = UΣV ∗ of A and look at V ∗U .3

PD matrices can be regarded as belonging to the more general sparse matrix
hierarchy defined as follows.

Definition 2.3. A matrix subspace V of Cn×n is said to be standard if it has a
basis of consisting standard basis matrices.4

There is a link with graph theory. That is, standard matrix subspaces of Cn×n
are naturally associated with the adjacency matrices of digraphs with n vertices.

The following bears close resemblance to complete matching, underscoring the
importance of PD matrices in linear algebra more generally through the determinant.
A matrix subspace is said to be nonsingular if it contains invertible elements.

Proposition 2.4. A matrix subspace V of Cn×n is nonsingular if and only if
its sparsity pattern contains a monomial matrix.

Proof. If A ∈ Cn×n is invertible, then by expanding the determinant using the
Leibniz formula, one term in the sum is necessarily nonzero. The term corresponds
to a monomial matrix.

Let us now focus on the sum of two PD matrices. A monomial matrix is read-
ily inverted by separately inverting the factors of the product. For the sum of two
PD matrices, a rapid application of the inverse is also possible, albeit with different
standard techniques.

Proposition 2.5. Suppose a nonsingular A ∈ Cn×n is the sum of two PD
matrices. Computing a partially pivoted LU factorization of A costs O(n) operations
and requires O(n) storage.

Proof. Any row operation in the Gaussian elimination removes one and brings
one element to the row which is being operated. Performing a permutation of rows
does not change this fact. Thus, in U there are two elements in each row at most. By
the symmetry, there are at most two elements in each column of L.

Monomial matrices have a block analogue. By a block monomial matrix we mean
a nonsingular matrix consisting of a permutation matrix which has in place of ones
nonsingular matrices of the same size. Zeros are replaced with block zero matrices of
the same size. By similar arguments, Proposition 2.5 has an analogue for the sum of
two block PD matrices.5

The set of sums of two PD matrices, denoted by PD+PD, is no longer a group.
We argue that is has many fundamental properties, though.

3This approach certainly works in the generic case of D having differing diagonal entries in the
absolute value. In this paper we do not consider the numerical recovering of whether A belongs to
(2.2) in general.

4A standard basis matrix of Cn×n has exactly one entry equaling one while its other entries are
zeros.

5Block diagonal matrices are used, e.g., in preconditioning. Thereby the sum of two block PD
matrices is certainly of interest by providing a more flexible preconditioning structure.
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Proposition 2.6. PD + PD is closed in Cn×n. Moreover, any A ∈ Cn×n is
similar to an element of PD + PD.

Proof. With fixed permutations P1 and P2, the matrix subspace

V = DP1 +DP2. (2.3)

is closed. Being a finite union of closed sets (when P1 and P2 vary among permuta-
tions), the set PD + PD is closed as well.

For the claim concerning similarity, it suffices to observe that PD+PD contains
Jordan matrices.

Suppose A ∈ Cn×n is large and sparse. The problem of approximating A with
an element of PD+PD is connected with preprocessing. There the aim is at finding
two monomial matrices so as to make D1P1AD2P2 more banded than A; see, e.g.,
[7], [4] and [3, p.441].6 Now the permutations P1 and P2 in should be picked in such
a way that a good approximation to A in (2.3) exists. The reason for this becomes
apparent in connection with Theorem 2.7 below.

We have a good understanding of the singular elements of the matrix subspace
(2.3). To see this, recall that two matrix subspaces V andW are said to be equivalent
if there exist nonsingular matrices X,Y ∈ Cn×n such that W = XVY −1. This is a
fundamental notion. In particular, if X and Y can be chosen among permutations,
then V and W are said to be permutation equivalent. In what follows, by the cyclic
shift we mean the permutation

S =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . · · ·

...
0 0 · · · 1 0

 (2.4)

of unspecified size. When n = 1 we agree that S = I. The following result, which
turns out to be of central relevance in extending PD+PD, should be contrasted with
(0, 1)-matrices whose line sum equals 2; see [2, Chapter 1]. Observe that, due to (2.1),
PD + PD is invariant under permutation equivalence.

Theorem 2.7. Let V be the matrix subspace defined in (2.3). Then

V = P̂1(D +DP )P̂2 (2.5)

for permutations P̂1, P̂2 and P = S1 ⊕ · · · ⊕ Sk, where Sj denotes a cyclic shift of
unspecified size for j = 1, . . . , k.

Proof. Start by performing the permutation equivalence

VPT2 = {DP1P
T
2 +D}.

Then there are cycles associated with the matrix subspace VPT2 once we represent
P1P

T
2 by its cycles as P1P

T
2 = QPQT with a permutation Q. Thereby V = Q{DP +

D}QTP2.
Regarding preprocessing, observe that D+DP in (2.5) can be regarded as essen-

tially possessing a banded structure.

6The aim of preprocessing depends, to some degree, on whether one uses iterative methods or
sparse direct methods; see [3, p.438].
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The dimension of (2.5) is 2n if and only if all the cyclic shifts are of size larger
than one. These matrix subspaces are sparse which is instrumental for large scale
computations. In particular, it is a natural question to ask how many permutations a
matrix subspace with a prescribed sparsity pattern contains. It reflects the minimum
number of terms in the Leibnitz formula for determinants; see Proposition 2.4. As
two extremes, in PD with a fixed permutation P , there is just one. And, of course,
in Cn×n there are n! permutations.

Corollary 2.8. There are 2l permutations in (2.3), where l is the number of
cyclic shifts in (2.5) of size larger than one.

Proof. The problem is invariant under a permutation equivalence, i.e., we may
equally well consider D +DP . Let P̂ ∈ W be a permutation. When there is a cyclic
shift of size one, P̂ must have the corresponding diagonal entry. Consider the case
when the cyclic shift Sj is of size larger than one. Each row and column ofW contains
exactly two nonzero elements, i.e., we must consider D + DSj . There, by exclusion

principle, P̂ coincides either with Sj or the unit diagonal. Since P̂ can be chosen
either way, the claim follows.

In general, determining the singular elements of a matrix subspace is a tremendous
challenge already when the dimension exceeds two [18].7 By using the equivalence
(2.5), the singular elements of V can be readily determined as follows. If D1 =
diag(z1, z2, . . . , zkj ) and D2 = diag(zkj+1, zkj+2, . . . , z2kj ), the task consists of finding
the zeros of the multivariate polynomial

pj(z1, z2, . . . , z2kj ) = det(D1 +D2Sj) =

kj∏
l=1

zl + (−1)kj−1

2kj∏
l=kj+1

zl, (2.6)

i.e., having
∏kj
l=1 zl = (−1)kj

∏2kj
l=kj+1 zl corresponds to a singular block.

Consider a nonsingular block D1 + D2Sj under the assumption that the first
(equivalently, the second) term in (2.6) is nonzero. Then its inverse can be given in a
closed form with the help of the following result.

Theorem 2.9. Assume S ∈ Cn×n is the cyclic shift and D = diag(d1, . . . , dn).

If I +DS is nonsingular, then (I +DS)−1 =
∑n−1
j=0 DjS

j with the diagonal matrices

D0 = 1
(−1)n−1

∏n
j=1 dj+1I and

Dj+1 = (−1)j+1D0

j∏
k=0

DSkT

for j = 0, . . . , n− 2. (2.7)

Proof. It is clear that the claimed expansion exists since any matrix A ∈ Cn×n
can be expressed uniquely as the sum

A =

n−1∑
j=0

DjS
j , (2.8)

i.e., the diagonal matrices Dj are uniquely determined. To recover the diagonal
matrices of the claim for the inverse, consider the identity

(I +DS)

n−1∑
j=0

DjS
j =

n−1∑
j=0

DjS
j +

n−1∑
j=0

DDST

j Sj+1 = I,

7When the dimension is two, one essentially deals with a generalized eigenvalue problem. For
solving generalized eigenvalue problems there are reliable numerical methods.
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where we denote SDjS
T by DST

j as in (2.1). The problem separates permutationwise,

yielding D0 +DDST

n−1 = I for the main diagonal and the recursion

Dj+1 +DDST

j = 0 for j = 0, . . . , n− 2 (2.9)

otherwise. This can be explicitly solved for D0 = ((−1)n−1(DS)n + I)−1. Thereby
D0 is the claimed translation of the identity matrix. Thereafter we may insert this
into the recursion (2.9) to have the claim.

If actually both terms on the right-hand side in (2.6) are nonzero, i.e., we are
dealing with the sum of two monomial matrices, then we have a so-called DCD matrix,
where C denotes the set of circulant matrices. For applications, see [14, 10] how such
matrices appear in diffractive optics.

Theorem 2.10. Assume D1 +D2S, where S ∈ Cn×n is the cyclic shift and D0

and D1 are invertible diagonal matrices. Then there exist diagonal matrices D̂1 and
D̂2 such that

D0 +D1S = D̂1(I + αS)D̂2 (2.10)

for a nonzero α ∈ C.
Proof. Clearly, by using (2.1), we may conclude that the left-hand side is of more

general type, including all the matrices of the type given on the right-hand side. Sup-
pose therefore that D0 = diag(a1, a2, . . . , an) and D1 = diag(b1, b2, . . . , bn) are given.
Denote the variables by D̂1 = diag(x1, x2, . . . , xn) and D̂2 = diag(y1, y2, . . . , yn).
Imposing the identity (2.10) yields us the equations

x1y1 = a1
x2y2 = a2

...
xn−1yn−1 = an−1

xnyn = an

and



αx2y1 = b1
αx3y2 = b2

...
αxnyn−1 = bn−1

αx1yn = bn

.

Solving yj in terms of xj from the first set of equations and inserting them into

the second one yields the condition αn =
∏n

j=1 bj∏n
j=1 aj

for the parameter α to satisfy.

This is necessary and sufficient for the existence of a solution, obtained now by a
straightforward substitution process once, e.g., the value of x1 has been assigned.

The existence of factoring (2.10) can hence be generically guaranteed in the fol-
lowing sense.

Corollary 2.11. D(I + CS)D contains an open dense subset of D +DS.
Consider the equivalence (2.5). In a generic case, using (2.10) with the blocks

yields the simplest way to compute the inverse of the sum of two PD matrices.

3. Extending the sum of two PD matrices: polynomials in permutation
matrices over diagonal matrices. By the fact that we have a good understanding
of matrices representable as the sum of two PD matrices, we aim at extending this
structure. The equivalence (2.5) provides an appropriate starting point to this end.
There the canonical form consists of first degree polynomials in a permutation matrix
P over diagonal matrices. More generally, define polynomials over the ring D with
the indeterminate being an element of P as follows.

Definition 3.1. Let P be a permutation and Dk ∈ D for k = 0, 1, . . . , j. Then

p(P ) =

j∑
k=0

DkP
k, (3.1)
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Fig. 3.1. On the left the sparsity pattern in (3.2) corresponding to P = S, P1 = P2 = I for
n = 103 and j = 200. On the right the corresponding symmetric sparsity pattern.

is said to be a polynomial in P over D.
Due to (2.1), in terms of this representation these matrices behave in essence

like standard polynomials. To avoid redundancies, we are interested in polynomials p
whose degree does not exceed deg(P ). Then the degree of the matrix p(P ) is defined
to be the degree of p. For algebraic operations, the sum of polynomials p1(P ) and
p2(P ) is obvious. Whenever deg p1+deg p2 < deg(P ), the product behaves essentially
classically, i.e., the degree of the product is the sum of the degrees of the factors.

Again, bearing in mind the equivalence (2.5), there is a need to relax Definition
3.1. For this purpose, take two permutations P1 and P2 and consider matrix subspaces
of the form

P1

{
p(P )

∣∣ deg(p) ≤ j
}
P2. (3.2)

Since P1 and P2 can be chosen freely, by using (2.1) and (2.5) we may assume that
P = S1⊕· · ·⊕Sk with cyclic shifts S1, . . . , Sk. Consequently, the degrees of freedom lie
in the choices of P1 and P2 and in the lengths of the cycles and j. Observe that (2.3)
is covered by the case j = 1. Moreover, the sparsity structure can be made symmetric

when j is even by choosing P1 = P
j
2T and P2 = I. (This sparsity structure obviously

contains band matrices of bandwidth j + 1.) This gives rise to the respective notion
of “bandwidth”; see Figure 3.1.

Let us make some related graph theoretical remarks. It is natural to identify the
sparsity structure of (3.2) with the (0, 1)-matrix having the same sparsity structure.8

Namely, there are many decomposition results to express a (0, 1)-matrix as the sum
of permutation matrices; see [2]. In this area of combinatorial matrix theory, we
are not aware of any polynomial expressions of type (3.2).9 In particular, it does not
appear straightforward to see when a (0, 1)-matrix is a realization of such a polynomial

8Since the study of matrix subspaces is operator space theory [15], this provides a link between
analysis and discrete mathematics.

9It would be tempting to call such a (0, 1)-matrix a polynomial digraph. It has, however, another
meaning [2, p. 157].
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structure. For example, by (2.8) we know that the matrix of all ones is. In particular,
for any sparse standard matrix subspace this leads to the following notion of “graph
bandwidth” in accordance with regular graphs.

Definition 3.2. Let V be a standard matrix subspace of Cn×n. The polynomial
permutation degree of V is the smallest possible j allowing V to be included in (3.2)
for permutations P , P1 and P2.

Clearly, the polynomial degree is at most n− 1.
The prescribed polynomial structure arises in connection with finite difference

matrices with small values of j.

Example 1. The set of tridiagonal matrices (and any of their permutation
equivalences) is a matrix subspace of polynomial degree two. To see this, let P be the
cyclic shift and set j = 2, P1 = PT and P2 = I. Then V includes tridiagonal matrices.
In this manner, finite difference matrices including periodic problems [9, p.159] are
covered by the structure (3.2).

4. Factoring polynomials in a permutation matrix over diagonal ma-
trices. To demonstrate that the structure (3.2) extending PD + PD is genuinely
polynomial, we want perform factoring. In forming products, we are concerned with
the following algebraic structure.

Definition 4.1. Suppose V1 and V2 are matrix subspaces of Cn×n over C (or
R). Then

V1V2 =
{
V1V2

∣∣V1 ∈ V1 and V2 ∈ V2
}

is said to be the set of products of V1 and V2.
A matrix subspace V is said to be factorizable if, for some matrix subspaces V1

and V2, there holds

V1V2 = V, (4.1)

i.e., the closure of V1V2 equals V, assuming the dimensions satisfy 1 < dimVj < dimV
for j = 1, 2. As illustrated by the Gaussian elimination applied to band matrices,
taking the closure may be necessary. For a wealth of information on computational
issues related with band matrices, see [9, Chapter 4.3]. For the geometry of the set of
products more generally, see [11].

Factoring in the case j = 2 in (3.2) is handled as follows.

Example 2. This is Example 1 continued. Let V1 = D+DP and V2 = D+DPT .
Then (4.1) holds. Namely, to factor an element in a generic case, the problem reduces
into solving a system of equations of the form

x1 + a1
xn

= b1
x2 + a2

x1
= b2

x3 + a3
x2

= b3
...

...
xn + an

xn−1
= bn

(4.2)

with aj 6= 0 and bj 6= 0 for j = 1, . . . , n given. From the first equation x1 can
be solved in terms of xn and substituted into the second equation. Thereafter x2
can be solved in terms of xn and substituted into the third equation. Repeating
this, the system eventually turns into a univariate polynomial in xn. Solving this
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combined with back substitution yields a solution. Computationally a more practical
approach is to execute Newton’s method on (4.2). Solving linear systems at each step
is inexpensive by implementing the method of Proposition 2.5. Consequently, under
standard assumptions on the convergence of Newton’s method, finding a factorization
is an O(n) computation.

With these preparations, consider the problem of factoring a matrix subspace
(3.2) into the product of lower degree factors of the same type. As described, it
suffices to consider factoring a given polynomial p of degree j ≤ n− 1 in a cyclic shift
S ∈ Cn×n into linear factors. That is, assume having

p(S) =

j∑
k=0

FkS
k (4.3)

with diagonal matrices Fk given, for k = 0, . . . , j. Then the task is to find diagonal
matrices D0 and D1 and E0, . . . , Ej−1 such that

(D0 +D1S)

j−1∑
k=0

EkS
k =

j∑
k=0

FkS
k (4.4)

holds. This can then be repeated. To this end, there are several ways to proceed.

Certainly, by using (2.1), the problem separates into D0E0 = F0 and D1E
ST

j−1 = Fj
and

D0Ek+1 +D1E
ST

k = Fk+1 (4.5)

for k = 0, . . . , j − 2.
There are, however, redundancies. These can be removed so as to attain maximal

simplicity in terms of a univariate polynomial-like factorization result. In order to
formulate a precise statement for performing this, let us invoke the following lemma.

Lemma 4.2. Let f : Cn → Ck be a polynomial function. If there exists a point
x ∈ Cn such that the derivative Df(x) has full rank, then f(Cn) contains an open
set whose complement is of zero measure. In particular, the open set is dense and
f(Cn) contains almost all points of Ck (in the sense of Lebesgue-measure.)

Proof. This follows from [13, Theorem 10.2].
Theorem 4.3. There exists an open dense set G ⊂ Cn×n containing almost all

matrices of Cn×n (in the sense of Lebesgue-measure) such that if A ∈ G, then

A = (S −D1)(S −D2) · · · (S −Dn−1)Dn (4.6)

for diagonal matrices Di, i = 1, . . . , n.
Proof. For 1 ≤ j ≤ n, define the following nj-dimensional subspaces of Cn×n

Aj =

{
A ∈ Cn×n

∣∣A =

j−1∑
k=0

EkS
k for some diagonal Ek ∈ Cn×n

}
.

Consider the polynomial functions fj : A1 ×Aj−1 → Aj defined by

fj(D,E) = (S −D)E.

After differentiating, we have

Dfj(D,E)(∆D,∆E) = (S −D)(∆E) + (−∆D)E.
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Now choose D = 0, E = I to obtain

Dfj(0, I)(∆D,∆E) = S(∆E)−∆D.

Hence Dfj(0, I) is of full rank. By Lemma 4.2 it follows that the equation

fj(D,E) = F

is solvable for D and E for almost all matrices F ∈ Aj . Denote the subset of those

matrices F by Bj = fj(A1 ×Aj−1). Define B̃2 = B2 and, furthermore, define

B̃j = Bj ∩ fj(A1 × B̃j−1), j = 3, . . . , n.

Then Aj \ B̃j is of measure zero (in Aj) and it follows that when A ∈ B̃n we can solve
for D1, . . . , Dn in (4.6) by successively solving the equations (where E1 = A)

fj(Dj , Ej+1) = Ej , j = 1, 2, . . . , n− 1

and finally setting Dn = En. Hence almost all matrices A ∈ Cn×n have a factorization
(4.6). That the set of these matrices contains an open set with complement of zero
measure follows by applying [13, Theorem 10.2].

The identity (4.6) allows regarding matrices as polynomials which have been
factored. With these polynomials the indeterminate is a permutation (now S) while
the role of C is taken by D. Moreover, the representation is optimal in the sense that
the number of factors (and diagonal matrices) cannot be reduced further in general.
Of course, if Dk = αkI with αk ∈ C, then we are dealing with circulant matrices, a
classical polynomial structure among matrices [6].

Like with polynomials, this gives rise to a notion of degree.
Definition 4.4. The polynomial permutation degree of A ∈ Cn×n is the smallest

possible j admitting a representation A = P1

∑j
k=0DkP

kP2 for permutations P , P1

and P2 and diagonal matrices Dk for k = 0, . . . , j.
To compute the diagonal matrices Di in (4.6) for a matrix A ∈ Cn×n, the

equations (4.4) hence simplify as follows. Let j = n − 1 and A =
∑j
k=0 FkS

k,
where Fk are diagonal. For an integer i, define [i] = 1 + ((i − 1) mod n). Denote
Dn−j = diag(x1, x2, . . . , xn). Then eliminating the diagonal matrices Ek by imposing

(S −Dn−j)

j−1∑
k=0

EkS
k = A (4.7)

we obtain the following system of polynomial equations

a[1],1 + a[2],1x[1] + a[3],1x[1]x[2] + · · · + a[j+1],1x[1]x[2] · · ·x[j] = 0,
a[2],2 + a[3],2x[2] + a[4],2x[2]x[3] + · · · + a[j+2],2x[2]x[3] · · ·x[j+1] = 0,

...
a[n],n + a[n+1],nx[n] + a[n+2],nx[n]x[n+1] + · · · + a[j+n],nx[n]x[n+1] · · ·x[n+j−1] = 0.

After this system has been solved, the diagonal matrices Ek can be computed by
the substitutions

Ej−1 = FSj ,

Ek = (Fk+1 +Dn−jEk+1)S , k = j − 2, j − 3, . . . , 0.
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We can then let A =
∑j−1
k=0EkS

k, decrease j by one and repeat the solving of (4.7)
accordingly.

Let us now return to our original problem of factoring into the product of circulant
and diagonal matrices. Certainly, Theorem 2.10 can be combined with Theorem 4.3
to have a factorization after completing the prescribed computations. For another
approach, to directly factor a matrix A = p(S) into the product of circulant and
diagonal matrices, the following approach allows ignoring Ek’s completely. Namely,
assuming D0 and D1 to be invertible, use Theorem 2.10 to have

j−1∑
k=0

ÊkS
k = (I + αS)−1D̃1p(S) (4.8)

with Êk = D̂2Ek, α ∈ C and D̃1 = D̂−1
1 . Clearly, D̂2 is redundant. Thereby the

task reduces to choosing α and D̃1 = diag(d1, d2, . . . , dn) in such a way that the right-
hand side of the identity attains the zero structure imposed by the left-hand side.
Any solution is homogeneous in D̃1. Therefore we can further set d1 = 1 to reduce
the problem to n free complex parameters. Once the equations are solved, Êk’s are
determined by α and D̃1 without any further effort.

To factor by using (4.8), let j = n − 1, i.e., consider the first factorization step.
Then zeros on the left-hand side of (4.8) appear at the positions where Sn−1 = ST

has ones. To have the functions on right-hand size at these positions, the inverse of
I + αS is the circulant matrix with the first row

1

1 + (−1)n−1αn
(1, (−1)n−1αn−1, (−1)n−2αn−2, . . . , α2,−α) (4.9)

by Theorem 2.9. In the arising polynomial equations the factor 1
1+(−1)n−1αn can be

ignored. (In the equations of interest, the denominator multiplies zeros.) Thereby
we have n polynomial equations in which the highest power of α is n − 1 while dj ’s
appear linearly. These equations are readily written down.

Once the factorization is completed we have (1.2). The number of free parameters
is n2 +n− 1 by the fact that the circulant matrices Ck appearing in the factorization
are of the form I + αkS for αk ∈ C. Hence this leaves us only n − 1 “excess” free
parameters.

Example 3. The matrix p(S) in (4.3) is doubly stochastic if Fk = fkI with

fk ≥ 0 such that
∑j
k=0 fk = 1. Regarding the degrees of freedom, it might be of

interest to factor p(S) into the product of doubly stochastic matrices of lower order.
For the factors I + αkS this can be readily done.

Let us end the paper with a speculative deliberation on the optimal number of
factors. Regarding the factorization problem of a generic matrix into the minimal
number of circulant and diagonal factors, we make the following conjecture.

Conjecture 1. There exists an open dense set G ⊂ Cn×n containing almost
all matrices of Cn×n (in the sense of Lebesgue-measure) such that if A ∈ G, then

A = B1B2 · · ·Bn+1,

where Bi ∈ Cn×n is circulant for odd i and diagonal for even i.

This is supported by calculations. That is, we have verified the conjecture for
the dimensions n satisfying 2 ≤ n ≤ 20 by computer calculations utilizing Lemma
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4.2 (with randomly chosen integer coordinates for the point x resulting in an integer
matrix for the derivative). Observe that, by a simple count of free parameters, no
lower number of factors can suffice.
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with complex entries, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., II 195 (1986),
no. 1-3, pp. 175–178.


