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Abstract. For a large indefinite linear system, there exists the option to directly precondition
for the normal equations. Matrix nearness problems are formulated to assess the attractiveness of
this alternative. Polynomial preconditioning leads to polynomial approximation problems involv-
ing lemniscate-like sets, both in the plane and in Cn×n. A natural matrix analytic extension for
lemniscates is introduced. Operator theoretically one is concerned with polynomial unitarity and
associated factorizations for the inverse. For the speed of convergence and lemniscate asymptotics,
the notion of quasilemniscate arises. In the L2-norm algorithms for solving the problem are devised.
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1. Introduction. Iterative methods of numerical linear algebra for solving large
linear systems and eigenvalue problems are connected with classical approximation
theory in many ways [24, 11, 6, 21, 17]. In this paper an attempt is made to do this for
indefiniteness. A large linear system involving a matrix A ∈ Cn×n can be regarded as
being indefinite if one is close to solving the normal equations with iterative methods
which try to avoid using them; see [2] for indefinite problems and [29, Chapter 8] on
using the normal equations. This is a well-known manifestation of indefiniteness, at
least for Hermitian problems. The so-called generalized saddle point problems provide
a large pool of non-Hermitian indefinite problems; see [2, p.4] and references therein.
In deciding whether one actually should consider using the normal equations, one is
led to inspect the matrix nearness problem

min
M∈V, B∈Uk

‖AM −B‖

for k � n.1 Here the matrix subspace V of Cn×n models a chosen preconditioning
strategy while Uk denotes the rank-k neighborhood of unitary matrices. This paper
is concerned with polynomial preconditioning and k = 0 corresponding to unitary
matrices U .

In polynomial preconditioning V consists of polynomials in A of degree j − 1 at
most, so that the problem becomes that of finding

lj(A) = min
p∈Pj−1, U∈U

‖Ap(A)− U‖,

where Pj−1 denotes the set of polynomials of degree j − 1 at most. To analyze
this, denote by Λ the spectrum of A. To optimally form the normal equations, one
invariably ends up studying the polynomial approximation problem

lj(Λ) = min
p∈Pj−1

max
λ∈Λ
| |λp(λ)| − 1| ; (1.1)
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see [10, Section 5] for the Hermitian indefinite case. To contrast this with the polyno-
mial approximation problem of the GMRES (generalized minimal residual) method,
obviously

lj(Λ) ≤ min
p∈Pj−1

max
λ∈Λ
|λp(λ)− 1| (1.2)

holds. Plane geometrically lj(Λ) can be interpreted as describing how well Λ can be
“circled” under a polynomial map of degree j having a zero at the origin. Attaining
zero corresponds to Λ being a subset of a lemniscate with a locus at the origin. Of
course, study of lemniscates and associated extremal problems is part of classical
polynomial analysis and potential theory [30, 9, 3]. See also [4].

Here it is shown that lemniscate-like sets appear naturally in matrix (operator)
and spectral theory as well. The so-called polynomial unitarity leads to an extension
of the notion of algebraic operator and related factorizations for the inverse; see Defi-
nition 2.3 for the notion of polynomially unitary. The concept of lemniscate turns out
have an obvious matrix theoretic extension to Cn×n, reducing to the classical planar
lemniscate in the scalar case n = 1. Then the associated “lemniscate asymptotics”
is concerned with the decay of lj(Λ) as j grows. In particular, it is shown that there
holds lj(Λ) ≤ lj(A). It is also shown that

lj(A) = min
p∈Pj−1

max
‖x‖=1

|‖Ap(A)x‖ − 1|, (1.3)

providing an alternative way of measuring the deviation of A from being polynomially
unitary of degree j. The quantity lj(A) is unitarily invariant such that if A is normal,
then lj(Λ) = lj(A) holds.

Since the spectrum is rarely known exactly, or the dimension n is not known in
advance, assume Λ ⊂ C is compact containing the spectrum of A. Bearing in mind
that the GMRES method is well-suited for definite problems (in some sense), the
inequality (1.2) yields a way to quantify indefiniteness. The difference between these
two scalars can be arbitrarily wide while varying between zero and one. The GMRES
method, when analyzed based on Λ, can be guaranteed to converge only if 0 is not
in the polynomial convex hull of Λ. However, having 0 in the polynomial convex hull
is not an obstruction as such for lj(Λ) to attain zero. That is, now the situation is
far from being so clear cut and it is an intriguing problem to provide conditions on Λ
under which limj→∞ lj(Λ) vanishes. There arises a link with the Riemann mapping
theorem and its extensions; see Theorem 3.3. If the convergence is rapid enough, the
notion of quasilemniscate arises. For the converse, if limj→∞ lj(Λ) > 0, then Λ is
called severely indefinite. Also for this sufficient conditions are given.

To numerically solve the problem (1.1) in the L2-norm, an algorithm to satisfy
necessary orthogonality conditions for the solution is devised. Resulting in a dif-
ferential equation and a descend method, the associated flow moves points towards
polynomials satisfying these orthogonality conditions. Being straightforward to im-
plement, a numerical experiment is given to illustrate its performance.

The paper is organized as follows. Section 2 is concerned with matrix analysis of
preconditioning for the normal equations. Polynomial unitarity is defined and associ-
ated with notions such as that of algebraic operator. In this connection, lemniscates
replace the role of the exact location of the spectrum. Section 3 is concerned with
lemniscates having a locus at the origin, their extensions and related (asymptotic)
approximation problems. The notion of quasilemniscate is introduced. In Section 4
algorithms for computing polynomials in the L2-norm are described.
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2. Indefiniteness, polynomial unitarity and lemniscates. In what follows,
indefiniteness is addressed in terms of whether preconditioning for the normal equa-
tions is an attractive alternative for iteratively solving a linear system.

2.1. Idefiniteness and the normal equations. Consider iteratively solving a
large linear system

Ax = b (2.1)

with a nonsingular A ∈ Cn×n and b ∈ Cn. If one is close to solving the normal
equations with methods which try to avoid using them, the problem can be regarded as
being indefinite. Although not a rigorous definition, this is a well-known manifestation
of indefiniteness, at least for Hermitian problems. Dating from the early days of
analysis, indefiniteness was originally designed for classifying quadratic forms [13,
p.112]. Modern iterative methods, however, require more flexible notions. For more
rigor and flexibility, denote by U ⊂ Cn×n the set of unitary matrices.

Definition 2.1. The set

Uk = {U + F ∈ Cn×n : U ∈ U , rank(F ) ≤ k}

is said to be the rank-k neighborhood of unitary matrices.2

Whether one actually should consider using the normal equations, there exist the
alternatives to precondition either A∗A or A. Even though A∗A has the pleasant
property of being positive definite, the former option leads to a considerable loss of
information. For the latter option, to model a preconditioning strategy, denote by V
a matrix subspace of Cn×n. Then consider the matrix nearness problem

min
M∈V, B∈Uk

‖AM −B‖ (2.2)

for k � n. Motivated by direct methods, the case k = 0 was studied in [18] where it
was shown that any solution in the operator norm yields the best conditioned element
of the matrix subspace AV. For the other extreme, the case dimV = 1 has been
completely solved (together with numerically stable algorithms) in [16].

In view of choosing an iterative method for solving the linear system (2.1), the
magnitude of (2.2) is of interest. Whenever moderate for k � n, an arguable alterna-
tive is to apply the CG method on the normal equations for the preconditioned linear
system

AMy = b. (2.3)

Namely, as an extreme, suppose (2.2) equals zero with a nonsingular matrix AM =
U + F . Then we have

(AM)∗AM = I + U∗F + F ∗(AM),

i.e., a small rank perturbation of the identity matrix. In this case the CG method
consumes at most 2 rank(F ) iterates for the exact solution.

Regarding preconditioning, there are many n2/2 dimensional alternatives for V
to attain zero in (2.2). Of course, a realistic assumption is to accept at most O(n) free

2This can be regarded as providing a finite dimensional analogue of the essential untarity for
Hilbert space operators [23, 5].



4 M. HUHTANEN AND O. NEVANLINNA

parameters. For a classical option, consider the case of V being the Krylov matrix
subspace

Kj(A; I) = span{I, A, . . . , Aj−1}

corresponding to polynomial preconditioning the original linear system. Then (2.2)
transforms into

min
p∈Pj−1, B∈Uk

‖Ap(A)−B‖. (2.4)

For a realistic number of free parameters, in practice j � n is assumed.

2.2. Polynomial unitarity and lemniscates. In what follows, we are con-
cerned with

lj(A) = min
p∈Pj−1, U∈U

‖Ap(A)− U‖ (2.5)

which corresponds to choosing k = 0 in (2.4). Then we are measuring how close to U
one can polynomial precondition the matrix A. Although not entirely satisfactory in
assessing whether one should consider preconditioning for the normal equations, this
problem is involved with fundamental properties of A. First of all, when j is allowed
to grow, we have a measure of nonsingularity in the following sense.

Proposition 2.2. A matrix A ∈ Cn×n is invertible if and only if

min
p∈Pj−1, U∈U

‖Ap(A)− U‖ = 0

for some j.
Proof. If A is singular and

∑j
k=1 αkA

k is unitary for some j, then A
∑j
k=1 αkA

k−1

is nonsingular. Thereby so is A, leading to a contradiction.
For the converse, suppose A is invertible and take the minimal polynomial p(λ) =∑j

k=0 ckλ
k, with cj = 1, of A, i.e.,

∑j
k=0 ckA

k = 0. Now A is invertible if and only if

c0 6= 0. Thereby −1
c0

∑j
k=1 ckA

k = I is unitary.
With obvious changes, the claim of this proposition holds when (2.5) is replaced

with the so-called ideal GMRES approximation problem

min
p∈Pj−1

‖Ap(A)− I‖, (2.6)

i.e., A is invertible if and only if zero is attained for some j. The ideal GMRES
approximation problem has received a lot of attention; see [11, 6] and references
therein.3 It aims at assessing how attractive iterative solving of (2.1) is by executing
the GMRES method. Regarding our problem, (2.6) obviously yields an upper bound
on (2.5) by the fact that our purpose now is to reach the set of unitary matrices and
not just the identity matrix in particular. It is noteworthy that if (2.5) decays slowly
while j grows, then the GMRES method can be expected to be a poor choice for
solving linear systems involving A. A rapid decay of (2.5) means that using the CG
method on the normal equations for Ap(A) is an attractive choice.

Let us now consider (2.5) when zero is attained.

3The ideal GMRES approximation problem is closely connected with the Chebyshev approxima-
tion problem which is concerned with minimizing ||p(A)|| over the monic polynomials p of degree
j.
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Definition 2.3. A matrix A ∈ Cn×n is said to be polynomially unitary of degree
j if Ap(A) is unitary for a polynomial p of the least possible degree j − 1.

The more general notion of polynomial normality is defined in an analogous way
[20, 15].

Definition 2.4. A matrix A ∈ Cn×n is polynomially normal of degree j if there
exists a (nonzero) polynomial p of the least possible degree j − 1 such that Ap(A) is
normal.

These are both unitarily invariant notions. They are related by the fact there
exists an algorithm for computing a (nonzero) polynomial p of the least possible
degree such that Ap(A) is normal [15, Section 5.]. Then, to make Ap(A) unitary, find
a polynomial q with a vanishing constant term such that the spectrum of q(Ap(A))
is a subset of the unit circle. Of course, although straightforward, this construction
cannot be expected to be optimal.

If A is polynomially unitary of degree j, then its inverse can be explicitly factored
as

A−1 = p(A)U∗, (2.7)

where Ap(A) = U is unitary for some p ∈ Pj−1. Being somehow able to explicitly
represent the inverse is exceptional. In this sense polynomially unitary matrices of
degree j generalize the set of invertible algebraic matrices of degree j corresponding to
the special case of U = I.4 (Bear in mind that the success of the GMRES method is
based on an inexpensive construction of a low degree polynomial in A approximating
the inverse of A, possibly locally in a Krylov subspace.) For the latter, the spectrum
consists of at most j distinct points whereas for polynomially unitary operators we
have the following relaxation.

Theorem 2.5. Let A ∈ Cn×n. Then for any eigenvalue λ of A and any polyno-
mial p there holds

||λp(λ)| − 1| ≤ min
U∈U
‖Ap(A)− U‖ = max

‖x‖=1
|‖Ap(A)x‖ − 1|. (2.8)

Proof. The distance of a matrix M ∈ Cn×n to the set of unitary matrices is given
by max{|σ1 − 1|, |σn − 1|}, where σj denote the singular values of M ; see, e.g., [14,
p.454]. Let M = Ap(A) with the singular value decomposition M = Q1ΣQ∗2, where
Q1 and Q2 are unitary. Then max‖x‖=1 |‖Ap(A)x‖ − 1| = max‖x‖=1 |‖Σx‖ − 1|. This
equals max{|σ1 − 1|, |σn − 1|}, yielding the claim concerning the equality.

The inequality follows from the singular value inequalities for the eigenvalues, i.e.,
there holds σn ≤ |λp(λ)| ≤ σ1.

Consequently, if (2.7) holds, we may only conclude that the spectrum of A is a
subset of the lemniscate

{λ ∈ C : |λp(λ)| = 1},

i.e., a continuum.
The equality in (2.8) allows us to alternatively define lj(A) according to (1.3). It

is attractive since, being exclusively based on the usage of norm, it extends to Banach
spaces in a natural way.

4An invertible matrix (operator) A is algebraic of degree j if and only if q(A) = 0 for a monic
polynomial q(λ) = λj + cj−1λ

j−1 + · · · + c0 with c0 6= 0. Whence A−1 = p(A) with p(λ) =
−1
c0λ

(q(λ)− c0).
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Corollary 2.6. Denote by Λ the spectrum of A. Then

lj(Λ) ≤ lj(A) (2.9)

such that equality holds if A is normal.
Proof. For any U ∈ U , there exists a polynomial p realizing minp∈Pj−1

‖Ap(A)−
U‖. By compactness of U , there exists U realizing (2.5). Consequently, the minimum
in (2.5) is attained for some p ∈ Pj−1 and U ∈ U . Then we have

lj(Λ) = min
q∈Pj−1

max
λ∈Λ
||λq(λ)| − 1| ≤ max

λ∈Λ
||λp(λ)| − 1| ≤ min

U∈U
‖Ap(A)− U‖ = lj(A).

Suppose A is normal with a unitary diagonalization A = V ΛV ∗. For any p ∈
Pj−1, let λ be such that |λp(λ)| − 1| = maxλ∈Λ |λp(λ)| − 1|. Then equality holds in
(2.8) by the fact that Σ is given by taking the absolute values of the entries of p(Λ).

In the nonnormal case the gap between lj(Λ) and lj(A) can be wide.

Example 1. Let A ∈ Cn×n be a nonsingular Jordan block. Since the spectrum
consists of a single point, we have lj(Λ) = 0 already for j = 1. Now the spectrum
of Ap(A) consists of a single point for any polynomial p. This means attaining a
unitary matrix only when Ap(A) = I, i.e., when q(λ) = λp(λ)− 1 is a multiple of the
characteristic polynomial of A. Therefore ln−1(A) > 0.

Although the gap can be wide, the location of spectrum retains its importance.
For this, consider a nonnormal but diagonalizable case. If the eigenvalues are located
on the unit circle, a mere triangular similarity suffices to transform such matrices to
unitary.

Proposition 2.7. Suppose the eigenvalues of M ∈ Cn×n are located on the unit
circle. If M is diagonalizable, then there exists a lower triangular matrix L ∈ Cn×n
such that LML−1 is unitary.

Proof. By the assumptions, there exists an invertible matrix X ∈ Cn×n such that
XMX−1 is unitary. Thus X−∗M∗X∗XMX−1 = I, i.e., M∗HM = H for a positive
definite matrix H = X∗X. Compute the Cholesky factorization H = LL∗ of H. Then
repeat the steps backwards with the Cholesky factor L replacing X∗.

Triangular matrices are perfectly suited for preconditioning by the fact that ap-
plying the inverse is inexpensive depending, of course, on the sparsity. Suppose thus
lj(Λ) = 0 for A. Then how to inexpensively compute L approximately so as to reduce
the conditioning of M = Ap(A) is a natural problem not considered here.

A necessary condition for being polynomially unitary of degree j is hence the exis-
tence of a polynomial q(λ) = λp(λ) of degree j such that the (polynomial) lemniscate

{λ ∈ C : |q(λ)| = 1} (2.10)

contains the spectrum. These are intriguing sets. By the open mapping theorem, a
lemniscate cannot possess interior points. In particular, a classical extremal problem
is concerned with maximizing the arc length of a lemniscate over Pj(∞), the set of
monic polynomials of prescribed degree j; see [3]. See also [8] for other motivations.
Of course, in connection with analyzing lemniscates, it makes no difference whether
one considers monic polynomials or Pj(0), the set polynomials of degree j at most
vanishing at the origin. After a simple affine change of variables, the problems are
equivalent. However, a notable difference between these two normalizations is that
with (2.10) the arc length is not bounded (as a function of the degree); see Proposition
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3.1. This is important since in discretizing, e.g., PDE, the eigenvalues can be very
widely spread.

In a certain sense, also monic polynomials can be used to represent the inverse.

Example 2. Consider the identity (2.7). By replacing the unitary matrix with
a translation of a unitary matrix allows using monic polynomials to factor the inverse.
Namely, suppose U = q(A) is unitary for a monic polynomial q(λ) = λj + cj−1λ

j−1 +
· · ·+ c0. If |c0| 6= 1, then

A−1 = p(A)M

with M given by the Neumann series expansion for the inverse of U − c0I.

Altogether, lemniscates in the complex plane immediately lead to the following
matrix analytic extension. Here, analogously to the polar decomposition of a matrix,
the role of the complex sign5 is naturally taken over by unitary matrices.

Definition 2.8. Let p be a polynomial. Then

p−1(U) = {M ∈ Cn×n : p(M) is unitary}

is said to be a matrix lemniscate.
Of course, this equals {M ∈ Cn×n : max‖x‖=1 |‖p(M)x‖ − 1| = 0}.6 In par-

ticular, the dimension n = 1 corresponds to the classical notion of lemniscate such
that the problems in [9] can be accordingly posed for matrix lemniscates. (For a less
algebraic, somewhat immediate dimensional extension, see [26].)

3. Lemniscate asymptotics and quasilemniscates. Since in practice the
dimensions are large, it is not so easy to determine how lj(A) behaves while j grows.
Because of this, and in analyzing iterative methods in general, it is customary to
turn the attention to the spectrum to make judgments on how to proceed. Of course,
because of Corollary 2.6, in the nearly normal case this is an entirely valid approach.
Since the spectrum is rarely available, one typically takes a compact set Λ known to
include the eigenvalues. In our case this leads us to study lemniscates and associated
asymptotics with respect to Λ.

For a polynomial q(λ) = αj
∏j
k=1(λ − λj), its zeros are called the loci of the

corresponding lemniscate

{λ ∈ C : |q(λ)| = 1}. (3.1)

(For basic facts about lemniscates, see [30, p.19].) In what follows, we are concerned
with extending the notion of lemniscates having one locus at the origin, so that we have
q(λ) = λp(λ). As opposed to monic polynomials, asymptotically to these correspond
a natural limiting family of functions, i.e., functions f analytic in a neighborhood of
0 satisfying the normalization f(0) = 0.

Example 3. For a famous family of lemniscates having a locus at the origin, set
q0(λ) = λ and define qj(λ) = qj−1(λ)2 + λ for j = 1, 2, . . .. Then the corresponding
lemniscates (called the Mandelbrot curves) have the boundary of the Mandelbrot set
as the limit set; see, e.g., [19, p.492].

This example illustrates well the flexibility of lemniscates. In particular, see [30,
p.248] for Hilbert’s theorem on approximating boundaries of compact sets having

5If z ∈ C is nonzero, its complex sign is defined as z
|z| .

6The case p(λ) = λ corresponds to the unitary group and is hence the best understood matrix
lemniscate. See [32, p.428] for a collection of basic facts concerning its structure.
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connected complement with lemniscates. For the speed of convergence of such ap-
proximations, see [1].

As opposed to this, assume a compact Λ ⊂ C is given. Approximation theoret-
ically now the task in (1.1) is to find a polynomial, with vanishing constant term,
whose image of Λ is as close to a subset of the unit circle as possible. Since any
positive power of the absolute value of an analytic function is subharmonic, we are
concerned with approximating by subharmonic functions. (See [31] for approximat-
ing by subharmonic functions.) In particular, it is customary to connect polynomial
approximations on the plane with potential theory. For us this means taking the
logarithm yielding

max
λ∈Λ
| log |p(λ)|+ log |λ|| (3.2)

which should be minimized over polynomials of degree j − 1 at most. Algebraically
stated, the aim is to minimize

max
λ∈Λ

min
θ∈[0,2π)

|q(λ)− eiθ| = max
λ∈Λ
|q(λ)− q(λ)

|q(λ)|
| (3.3)

over the subspace of polynomials q of degree j at most having a zero at the origin.
Consider (1.1). Clearly, if Λ and Λ̂ are compact such that Λ ⊂ Λ̂, then

lj(Λ) ≤ lj(Λ̂) (3.4)

holds.
Proposition 3.1. Let Λ ⊂ C be compact. Then lj(zΛ) = lj(Λ) for any nonzero

z ∈ C.
Proof. Let λp(λ) =

∑j
k=1 akλ

k be the polynomial realizing (1.1). For zΛ take

zλp̃(zλ) =
∑j
k=1 ãkz

kλk. Therefore choose the coefficients of p̃ according to ãkz
k =

ak, yielding the claim.
For any solution, the following holds for the width of the origin centered annulus

containing the image of Λ.
Proposition 3.2. Let Λ ⊂ C be compact and assume q(λ) = λp(λ) solves (1.1).

Then minλ∈Λ |q(λ)|+ maxλ∈Λ |q(λ)| = 2. Moreover, lj(Λ) = 1 if and only if 0 ∈ Λ.
Proof. This is a matter of scaling, i.e., p must be chosen such that the distances

1−minλ∈Λ |q(λ)| and maxλ∈Λ |q(λ)|−1 equal. (Otherwise the solution is not optimal.)
If 0 ∈ Λ, then lj(Λ) = 1. Suppose 0 6∈ Λ. Then take p which is nonzero on Λ.

Scale with r > 0 such that |λrp(λ)| < 2 for any λ ∈ Λ. This implies lj(Λ) < 1.
The width of the annulus is zero if Λ is a subset of a lemniscate having a locus

at the origin. Otherwise, the limiting behavior of this width is of interest. First of
all, if 0 is not in the polynomially convex hull of Λ, then limj→∞ lj(Λ) = 0 by the
fact that 1

λ can be approximated with polynomials uniformly on Λ by Mergelyan’s
theorem. This assumption guarantees the success of the GMRES method. (Hence,
the polynomially convex hull of Λ can be regarded to yield the “spectrum” of the
GMRES method.)

For the converse, having 0 in the polynomially convex hull of Λ is not an obstruc-
tion for us as such. For example, any lemniscate (3.1) having a locus at the origin
satisfies this property automatically. However, now the situation is far from being so
clear cut.

Theorem 3.3. Let U ⊂ C be an open bounded simply connected set such that
its Riemann map has a continuous extension to its boundary Λ1. Let Λ2 be compact
such that Λ2 ∩ U = ∅. If 0 6∈ Λ = Λ1 ∪ Λ2, then limj→∞ lj(Λ) = 0.
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Proof. Suppose first that Λ2 = ∅. We only need to consider the case of U
containing 0. In this case, let us choose the Riemann map f of U onto the open
unit disk D satisfying f(0) = 0. Then by Mergelyan’s theorem, f can be uniformly
approximated by polynomials in the closure of U . These polynomials are of the form
εj + λpj−1(λ) with εj → 0 as j →∞. The polynomials λpj−1(λ) yield the claim.

For the general case, set f(λ)
λ on U and 1

λ on Λ2. This function satisfies the
assumptions of the Mergelyan’s theorem and can hence be uniformly approximated
with polynomials pj−1 on Λ1 ∪ Λ2. Consider now λpj−1(λ) which yield the claim.

Carathédeory’s theorem gives sufficient conditions on the Riemann map to have
a continuous extension to the boundary. For instance, if Λ1 is a Jordan curve, then
the Riemann map has a continuous extension to the boundary. Operators with the
spectrum satisfying such an inclusion relationship are classical [7, Chapter 4].

Theorem 3.3 can to some extent be extended to allow non-intersecting Jordan
arcs to stretch out from the boundary of Λ1. On these arcs, extend f continuously to
have (unit) constant value. The proof goes analogously.

Definition 3.4. A compact set Λ ⊂ C not containing 0 is said to be severely
indefinite if limj→∞ lj(Λ) > 0. The set of severe indefiniteness of Λ consists of those
µ ∈ C for which Λ− µ is severely indefinite.

By Proposition 3.2, the set of severe indefiniteness of Λ includes Λ. We conjecture
that a component of Λc either belongs to the set of severe indefiniteness of Λ or has
an empty intersection with it.7

For its full applicability, the following (negative) result should be combined with
(3.4) for compact sets Λ̂ containing Λ as a subset.

Theorem 3.5. For a compact Λ ⊂ C, suppose the component of Λc containing
0 is bounded and not simply connected. Then Λ is severely indefinite.

Proof. Assume first Λ = T ∪ ν with |ν| < 1, where T denotes the unit circle
centered at the origin. For pj solving (1.1), let maxλ∈T |λpj(λ)| = 1 + εj with εj ≥ 0.
Then the Schwarz lemma yields

|νpj(ν)|
1 + εj

≤ |ν|. (3.5)

Therefore if εj converges to zero, limj→∞ lj(Λ) ≥ 1− |ν|.
To prove the general case, let U be the smallest open simply connected set con-

taining the component of Λc containing 0. Suppose maxλ∈Γ |λpj(λ)| = 1 + εj , where
Γ denotes the boundary of U . Let f be the biholomorphic map of from the open
unit disk D onto U provided by the Riemann mapping theorem such that f(0) = 0.
Consider rD for 0 < r < 1. Assume ν ∈ U ∩ Λ and denote z = f−1(ν). The function

λ 7→ f(rλ)pj(f(rλ))

1 + εj

satisfies the assumption of the Schwarz lemma. At λ = z/r the Schwarz lemma yields
|νpj(ν)|

1+εj
≤ |z/r|. Therefore if εj converges to zero, limj→∞ lj(Λ) ≥ 1 − |z/r|. Choose

now 0 < r < 1 such that |z/r| < 1 to have the claim.

Example 4. Let Λ be the boundary of the Mandelbrot set. By Example 3, we
know it can be approximated with lemniscates having a locus at the origin. However,

7Respective claim for operators would yield a spectral inclusion set analogously, e.g., to the
polynomial convex hull of the spectrum.
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here Theorem 3.3 cannot be applied since we cannot establish that the Riemann map
in this case has a continuous extension to the boundary. In fact, we do not know what
limj→∞ lj(Λ) is. Since the Hausdorff dimension of Λ is two, it is not inconceivable
either that the limit be strictly positive.

Theorem 3.5 certainly has implications for iterative methods, underscoring that it
is not sufficient to concentrate on (2.5) because of the apparent rigidity of polynomial
preconditioning for the normal equations. The problems (2.4) and (2.2) are, for mod-
erate values of k, better suited for choosing a preconditioning strategy. Moreover, the
GMRES method is a hopeless alternative for solving a linear system with the spec-
trum including (approximately) a set in Theorem 3.5; preconditioning is absolutely
necessary then.

Example 5. Theorem 3.5 is also perturbation theoretically striking in terms of
adjoining points. Namely, denote by Λ a lemniscate (3.1) with a locus at the origin.
If its complement has a bounded component U containing 0, then take ν1 ∈ U . Then
the union Λ∪ ν1 is far from being a lemniscate with a locus at the origin in the sense
that we have limj→∞ lj(Λ ∪ ν1) > 0, i.e., a severely indefinite set.

In particular, respective bounds for the GMRES method are far more robust
under perturbations of this type [25].

As opposed to Theorem 3.3, the following yields tools for more concrete estimates.

Theorem 3.6. Assume Λ is a lemniscate with a locus at the origin and let νk,
for k = 1, . . . , n, be in the unbounded component of Λc. If Λ̂ = Λ∪ ν1 ∪ · · · ∪ νn, then
limj→∞ lj(Λ̂) = 0.

Proof. Consider first the case Λ = T. Then we have Λ̂ = T ∪ ν1 ∪ · · · ∪ νn with
|νk| > 1 for k = 1, . . . , n. By interpolation, let P (λ) be the polynomial of degree n−1
attaining values 1

νk
at the points νk. Let Q(λ) =

∏n
k=1(λ−νk). Consider then finding

a function R satisfying

|P (λ) +Q(λ)R(λ)| = 1 (3.6)

for λ ∈ T, so that |λ(P (λ) + Q(λ)R(λ))| = 1 for λ ∈ Λ̂. Certainly, (3.6) holds if

R(λ) = 1−P (λ)
Q(λ) for λ ∈ T. Thereafter R should be approximated with polynomials.

To this end, the poles of R are located outside the unit disk and are determined by
Q. We have the Maclaurin series expansion

1

Q(λ)
=

n∏
k=1

(
−1

νk

∞∑
l=0

(
λ

νk
)l) (3.7)

converging uniformly in a neighborhood of the unit disk. Truncate 1
Q to have polyno-

mials Qj−1. Consequently, the polynomials λ(P (λ) + Q(λ)(1 − P (λ))Qj−1(λ)) yield
the required approximation.

To deal with the general case, assume Λ to be given by (3.1). Consider

λ 7−→ ω = λp(λ). (3.8)

Then the image of Λ̂ under this map is the union of T and the points µk = νkp(νk) for
k = 1, . . . , n. Hence repeat the previous construction in the ω-plane to get polynomials
proving the claim by the fact that (3.8) has a zero at 0.

The following should be contrasted with Example 5.
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Example 6. Assume Λ is a lemniscate with a locus at the origin given by (3.1)
and ν1 is in the unbounded component of Λc. Let Λ̂ = Λ ∪ ν1. Then

l(2+m+1)j−1(Λ̂) ≤ max
λ∈Λ
|Q(λp(λ))(1− P (λp(λ))| 1

|ν1p(ν1)|m+1|ν1p(ν1)− 1|
.

Asymptotically we have limm→∞ l(2+m+1)j−1(Λ)1/((2+m+1)j−1) ≤ 1
|ν1p(ν1)|j .

This brings up a natural manner to measure how fast the width of the annulus
decreases while the degree of the polynomials increases. We also want to have an
opposite for being severely indefinite, i.e., we look for a notion of indefiniteness which
is far from being severe. When the speed is measured geometrically, we arrive at

η(Λ) = lim inf
j→∞

lj(Λ)1/j .

The following definition corresponds to the so-called superlinear convergence of the
GMRES method [24, Chapter 5].

Definition 3.7. A compact set Λ ⊂ C is said to be a quasilemniscate with a
locus at the origin if η(Λ) = 0.8

A compact set Λ is a quasilemniscate with a locus at the origin if and only zΛ is
for any nonzero z ∈ C. (See the proof of Proposition 3.1.)

Let us make some potential theoretic remarks. First of all, if the capacity of Λ is
zero and 0 6∈ Λ, then it follows that Λ is a quasilemniscate. Moreover, assuming Λ does
not contain zero, the fact that (2.6) bounds (2.5) gets now expressed as η(Λ) ≤ e−gΛ(0),
where gΛ(z) denotes the Green function for Λ; see [24, Chapter 3] or [21].

Theorem 3.8. Let Λ = [a, b] ⊂ R with 0 ≤ a < b <∞. Then(√
b−
√
a√

b+
√
a

)2

≤ η(Λ) ≤
√
b−
√
a√

b+
√
a
.

Proof. For any polynomial p of degree j − 1 we have∣∣|λp(λ)|2 − 1
∣∣ = ||λp(λ)| − 1| ||λp(λ)|+ 1| .

Since λ ∈ R, we have |λp(λ)|2 = λ2r(λ) for a polynomial r of degree 2j − 2 with real
coefficients. Therefore, letting λr(λ) to be any complex polynomial of degree 2j − 1
yields

min
p∈P2j−1

max
λ∈Λ
|λp(λ)− 1| ≤ 2 min

p∈Pj−1

max
λ∈Λ
||λp(λ)| − 1| .

Taking the jth root and limits on both sides yields the claim. Then use the fact that

now gΛ(0) = log
√
b+
√
a√

b−
√
a
; see, e.g., [21, p.33].

Corollary 3.9. If a compact set Λ ⊂ C contains an interior point, then η(Λ) >
0.

Proof. Multiply Λ by eiθ with θ ∈ [0, 2π) such that the interior of eiθΛ intersects
the real axis. Then use the invariance of η(Λ) under such rotations.

8For the terminology, in operator theory the so-called quasialgebraic operators generalize alge-
braic operators [12]. Here, spectrally, this corresponds to an analogous generalization for (2.7).
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Regarding the terminology, the preceding and the following properties appear
natural for (not being) a quasilemniscate.

Theorem 3.10. A quasilemniscate Λ with a locus at the origin does not contain
a continuum of a line.

Proof. Suppose Λ contains a line segment with the end points λ1 and λ2. The
segment cannot contain the origin since it would imply η(Λ) = 1. For any polynomial
p we have

∣∣|λp(λ)|2 − 1
∣∣ = ||λp(λ)| − 1| ||λp(λ)|+ 1| Therefore

min
deg(p)≤j

max
t∈[−1,1]

∣∣∣∣|1− t2
λ1 +

(1 + t)

2
λ2|2|p(

1− t
2

λ1 +
1 + t

2
λ2)|2 − 1

∣∣∣∣
≤M min

deg(p)≤j
max

t∈[−1,1]

∣∣∣∣|1− t2
λ1 +

1 + t

2
λ2||p(

1− t
2

λ1 +
1 + t

2
λ2)| − 1

∣∣∣∣
for some 0 < M < ∞. Now |p( 1−t

2 λ1 + 1+t
2 λ2)|2 is a real polynomial in t of degree

2j. Consequently,

m min
deg(p)≤2j

max
t∈[−1,1]

∣∣∣∣p(t)− 1

| 1−t2 λ1 + 1+t
2 λ2|2

∣∣∣∣
≤M min

deg(p)≤j
max

t∈[−1,1]

∣∣∣∣|1− t2
λ1 +

1 + t

2
λ2||p(

1− t
2

λ1 +
1 + t

2
λ2)| − 1

∣∣∣∣
for some 0 < m <∞. Now the denominator of 1

|tλ1+(1−t)λ2|2 is a two degree polyno-

mial in t and can be analytically extended to the complement of the interval [−1, 1].
The extended rational function is not entire. Therefore 1

|tλ1+(1−t)λ2|2 can be approx-

imated with polynomials on [−1, 1] with a speed which is slower than required for a
quasilemniscate, see [28, Theorem 3.10]. This yields a strictly positive lower bound.

So far we have lacked any algebraic structure associated with these extended
notions of lemniscates. The following allows us to look at a subalgebra of entire
functions yielding quasilemniscates.

Theorem 3.11. Suppose Λ is compact and Λ ⊂ f−1(T) for an entire function f
with f(0) = 0. Then Λ is a quasilemniscate with a locus at the origin.

Proof. Take any function f analytic in a neighborhood of the origin such that
f(0) = 0. Expand f into its Maclaurin series as f(λ) =

∑∞
k=1 dkλ

k having R as a

radius of convergence. Then for λ ∈ Λ with |λ| < R we have with p(λ) =
∑j
k=1 dkλ

k

||p(λ)| − 1| = ||p(λ)| − |f(λ)|| ≤ |p(λ)− f(λ)| = |
∞∑

k=j+1

dkλ
k| ≤

( 1
R + εj+1)j+1|λ|j+1

1− ( 1
R + εj+1)|λ|

(3.9)
for εj+1 ≥ 0 converging to zero as j → ∞. Consequently, assuming f to be entire
yields the claim by the fact that R can be arbitrarily large.

See [22, p. 521] for a plot in the case of f(z) = sin z. Of course, then the
complement of f−1(T) has infinitely many components.

Corollary 3.12. Suppose f is an entire function with f(0) = 0. Then f−1(T)
does not contain a continuum of a line.

Without the restriction f(0) = 0, the set f−1(T) can contain an entire line as the
entire function f(λ) = eλ illustrates. Then the imaginary axis is mapped onto T.
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Occasionally f−1(T) for an analytic function f is called a generalized lemniscate;
see [22]. If f is analytic but not necessarily entire, then (3.9) yields a bound on the
speed of convergence in case Λ ⊂ f−1(T) such that Λ is located in a disk where the
Maclaurin series of f converges.

Example 7. If f is not entire, then f−1(T) can contain a continuum of line.
To see this, consider f(λ) = λ

2−λ . Then f−1(T) contains the vertical line intersecting
the real axis at 1. Since f has a pole at 2, the speed of convergence can be bounded
by using (3.9)

The behavior of η(Λ) is not continuous.
Proposition 3.13. Assume Λ = T ∪ t with t > 1. Then 1

t2 ≤ η(Λ) ≤ 1
t .

Proof. We only need to show that the lower bound holds since the upper bound
follows from Example 6. Suppose λp(λ) realizes (1.1). Denote by λk the zeros of p
with |λk| < 1. Then p(λ) = r(λ)λl

∏ λ−λk

1−λkλ
with a polynomial r without zeros inside

the unit disk. We have |r(eiθ)| = |p(eiθ)| for any θ ∈ R and |r(λ)| ≤ |p(λ)| for |λ| > 1.
Consequently,

|r(t)| ≤ 1

t
(1 + lj(Λ)). (3.10)

By the maximum modulus principle, 1− lj(Λ) < |r(λ)| < 1 + lj(Λ) for |λ| ≤ 1. Let us
decompose r(λ) = c+ r̂(λ) with with a constant |c| = 1. Using these inequalities, we
have max|λ|≤1 |r̂(λ)| ≤ lj(Λ) + 2

t

√
j − 1lj(Λ)1/2 obtained by integrating |r(λ)|2 over

T. Therefore

|r̂(t)| ≤ max
|λ|≤1

|r̂(λ)|tj−1 ≤ (lj(Λ) + 2
√
j − 1lj(Λ)1/2)tj−1.

Because of (3.10), we have |r̂(t)| ≥ 1− 1
t (1 + lj(Λ)). Thus

1− 1

t
(1 + lj(Λ)) ≤ (lj(Λ) + 2

√
j − 1lj(Λ)1/2)tj−1,

so that t−1
tj ≤ 4

√
j − 1lj(Λ)1/2 which yields the claim.

To end this section, if Λ is a rectifiable curve, then we have

min
p∈Pj−1

(

∫
||λp(λ)| − 1|2dλ)1/2 ≤ L(Γ)1/2lj(Λ) (3.11)

which thus can be used to bound η(Λ) from below. How to numerically solve the
respective Hilbert space minimization problem is studied in the section that follows.

4. Computing polynomials for mapping sets into an origin centered
annulus. This section is concerned with ways to compute polynomials for mapping
a given compact set Λ to be near the unit circle, i.e., into an origin centered annulus
possessing a small width. In doing so, Theorem 3.5 cannot be ignored in the sense
that if Λ surrounds 0, then the corresponding component must in any event be simply
connected. Bearing in mind our original problem (2.2), in this connection there are
good reasons to allow appropriate relaxations such as the following.

Definition 4.1. A compact set Λ ⊂ C is said to be an essential lemniscate if it
is a union of a lemniscate and a finite set.

Let us next derive orthogonality conditions for approximating lj(Λ) in the L2-
norm. Assume the set Λ is finite consisting of points λl for l = 1, . . . , n. Hence, if Λ



14 M. HUHTANEN AND O. NEVANLINNA

originally contains, e.g., a continuum, it must be appropriately discretized first, pos-
sibly taking into account Definition 4.1 through ignoring some points of Λ. Consider
then the Hilbert space minimization problem

min
q∈Pj(0)

|||q| − 1||2 (4.1)

with respect to the discrete measure
∑n
j=1 δλj

on Λ. Like in the max-norm case, the

set of solutions is invariant under multiplications by a constant eiθ with θ ∈ [0, 2π).
Instead of applying the gradient method, the following necessary geometric con-

dition can be used in devising a descent method. We find it attractive because it links
our problem with orthogonal polynomials. As is well-known, orthogonal polynomials
play a central role in iterative methods.

Theorem 4.2. Suppose q(λ) = λp(λ) solves (4.1). Then p(λ)(1 − 1
|λp(λ)| ) is

orthogonal against Pj−1 with respect to the discrete measure
∑n
j=1 |λj |2δλj

on Λ.
Proof. It is immediate that (4.1) is equivalent to solving

min
q∈Pj(0), g∈G

||q − g||2, (4.2)

where G denotes the group (under multiplication) of continuous functions on Λ having
values in the unit circle. Hence we are looking at the distance between a j dimensional
polynomial subspace and an infinite group. Moreover, for any fixed polynomial q(λ) =

λp(λ) the nearest g ∈ G is given by q(λ)
|q(λ)| . For q(λ) to be optimal, i.e., to solve (4.1),

the difference λp(λ)
|λp(λ)|−λp(λ) must be orthogonal against Pj(0). Consequently, for any

polynomial r ∈ Pj−1 necessarily

(λr(λ),
λp(λ)

|λp(λ)|
− λp(λ))2 = 0

holds, yielding the claim by the fact that (λr(λ), λp(λ)
|λp(λ)|−λp(λ))2 = (r(λ), |λ|2( p(λ)

|λp(λ)|−
p(λ)))2.

It is instructive to bear in mind that standard orthogonal polynomials result
from orthogonalizing a polynomial p of degree j against Pj−1 for j = 1, 2, . . .. (See,
e.g., [29, p. 400].) Theorem 4.2 yields a geometric analogy for this. That is, a
polynomial q(λ) = λp(λ) solving (4.1) is such that in the orthogonality condition
one missing degree in p is replaced with the multiplying rational function 1− 1

|λp(λ)| .

Algorithmically finding this is achieved through converting an infinite dimensional
optimization problem (4.2) into a finite dimensional one for which we can compute
critical points.

For a descent method, there is a way to find polynomials of Theorem 4.2 by
solving differential equations. To this end, equip Pj−1 with the inner product with
respect to the measure

n∑
j=1

|λj |2δλj (4.3)

on Λ. Then consider the vector field on Pj−1 by defining V||(p) at p to be the com-
ponent of

p(λ)(
1

|λp(λ)|
− 1) = V||(p) + V⊥(p) (4.4)
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Fig. 4.1. On the left Λ. In the middle, the image of Λ with q of degree 30. On the right, the
image of Λ with q of degree 60.

in Pj−1 while V⊥(p) is the orthogonal component with respect to the inner product
used. The respective flow moves points towards polynomials satisfying the orthogo-
nality condition of Theorem 4.2. Once reached, such a point yields a local minimum
for (4.1), by construction. (Clearly, if the points belong to the lemniscate determined
by λp(λ), we are at a critical point.) In particular, if the step length is maximally
determined by the condition (4.4), we obtain the following iteration with an initial
guess p0 ∈ Pj−1.

for k = 1, 2, . . .
computeV||(pk−1)
set pk = pk−1 + V||(pk−1)

end

(4.5)

Clearly, this is straightforward to implement such that each step is very inexpensive.
(With obvious changes, everything can be repeated to solve mindeg(q)≤j |||q| − 1||2.)

Example 8. In this numerical example, solved by using Matlab, Λ con-
sisted of 600 randomly generated points produced by setting Λ̃ = randn(600, 1) +
i∗ randn(600, 1) and then Λ = Λ̃ + 2∗ones(200, 1). As can be seen from the left panel
in Figure 4.1, it appears challenging to map such a clustered set to be near the unit
circle. We executed the iteration (4.5) to have q of various degrees by taking k = 60
iterates. The constant polynomial p0(λ) = 1 was used as an initial guess. See Figure
4.1 for Λ and its image under q with deg(q) = 30 and deg(q) = 60.
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There are other computational approaches for constructing polynomials to map
compact sets into an annulus. Let us outline some ideas.

Example 9. If Λ is a Jordan curve surrounding the origin, an obvious option
is based on approximating the Riemann map. By invoking the proof of Theorem 3.3
with Λ2 = ∅, approximating the Riemann map f with polynomials leads to a method
for computing polynomials of interest. However, f is typically not available. There
exists the so-called interpolating polynomial method [27] which can then be applied.
It consists of interpolating points of Λ to be on the unit circle. Of course, the critical
ingredient of this approach is to cleverly choose the interpolating points. This may
not be straightforward.

With the help of the formulation (4.2), the problem can also be converted into
first finding g such that thereafter p is determined. To this end, assume the set Λ
is finite consisting of points λl for l = 1, . . . , n. Set qk(λ) = λk for k = 1, . . . , j. In
terms of the respective discrete formulation of (4.2), consider solving for (α1, . . . , αk)
the system

j∑
k=1

αkgk(λl) = eiθl . (4.6)

Assuming j ≤ n, the task is to choose the angles θl ∈ [0, 2π), for l = 1, . . . , n, so as to
attain as small error as possible.

The problem of optimally choosing the angles is nonlinear. To solve it in the least
squares sense, form the n-by-j Vandermonde matrix V = V (λ1, . . . , λn) = {vlk} =
{gk(λl)} and compute its QR factorization V = QR. Now the columns of Q yield
an orthonormal basis of the columns space of V . Therefore the optimal solution
corresponds to maximizing the Fourier coefficients as

max
θl∈[0,2π) l=1,...,n

||Q∗

 eiθ1

...
eiθn

 ||2 (4.7)

which is bounded from above by n. Equality holds in (4.6) if and only if n is at-
tained. Now (4.7) is an unconstrained optimization problem solvable, e.g, by Newton’s
method. Of course, it suffices to restrict to [0, 2π)n.

Example 10. The same optimization problem (4.7) can be used to check
whether given n points λl belong to a lemniscate {λ ∈ C : |p(λ)| = 1} for some monic
polynomial p(λ) = λj−1 + αj−2λ

j−2 + · · · + α0. One simply uses gk(λ) = λk−1, for

k = 1, . . . , j, in computing V = QR. Then replace

 eiθ1

...
eiθn

 with

 eiθ1 − λj−1
1

...
eiθn − λj−1

n

 .
Acknowledgments. We are very grateful to the referees for the pertinent re-

marks.
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