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Abstract

The speed of convergence of the R-linear GMRES method is bounded in terms of a polynomial approxi-
mation problem on a finite subset of the spectrum. This result resembles the classical GMRES convergence
estimate except that the matrix involved is assumed to be condiagonalizable. The bounds obtained are appli-
cable to the CSYM method, in which case they are sharp. Then a new three term recurrence for generating a
family of orthogonal polynomials is shown to exist, yielding a natural link with complex symmetric Jacobi
matrices. This shows that a mathematical framework analogous to the one appearing with the Hermitian
Lanczos method exists in the complex symmetric case. The probability of being condiagonalizable is esti-
mated with random matrices.
© 2012 Elsevier Inc. All rights reserved.

Keywords: R-linear GMRES; Condiagonalizable; Three term recurrence; Orthogonal polynomial; Jacobi matrix;
Spectrum; Polynomial approximation; CSYM; Random matrix

1. Introduction

Suggested in [9], there exists an R-linear GMRES (generalized minimal residual) method for
solving a large real linear system of equations of the form

KZ+ Myz =b (1.1
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fork € C,My € C*"" and b € C". Systems of this type appear regularly in applications.
This is manifested by the complex symmetric case which corresponds to k = 0 and My! = My.
(For its importance in applications, such as the numerical solution of the complex Helmholtz
equation, see [11].) Then the R-linear GMRES method reduces to the CSYM method [5].
We have k # 0, e.g., in an approach to solve the electrical conductivity problem [2] which
requires solving an R-linear Beltrami equation [19]. For a wealth of information regarding real
linearity, see [20,7]. Although the R-linear GMRES method is a natural scheme, its properties
are not well understood. Assuming My to be condiagonalizable, in this paper a polynomial
approximation problem on the plane is introduced for assessing its speed of convergence. In
the complex symmetric case a new three term recurrence for generating orthogonal polynomials
arises, leading to a natural link with complex symmetric Jacobi matrices.

The bounds obtained are intriguing by the fact that they show that the convergence depends
on the spectrum of the real linear operator involved. So far it has not been clear what is the
significance of the spectrum in general and for iterative methods in particular [16,9]. Here it is
shown to play a role similar to what the spectrum does in the classical GMRES bounds [28]. A
striking difference is that the bounds reveal a strong dependence of the speed of convergence on
the vector.

Moreover, with any natural Krylov subspace method there exists a connection between the
iteration and orthogonal functions. As a rule, these are associated with normality. The Hermitian
Lanczos method is related with a three term recurrence for generating orthogonal polynomials;
see [14] and references therein. For unitary matrices the corresponding length of recurrence
is five [27]; see also [29]. These are special instances of the general framework for normal
matrices! described in [17,18]. In this paper an analogous connection is established in the
complex symmetric case to orthogonalize monomials

Lo, A2 A2 I A, (1.2)

with a three term recurrence. This gives rise to polynomials of the form

i
> (e + azr 1) AP
=0

with o € C and, for j even oj 1 = 0, whose union we denote by P(r2) by the fact that the
related family of functions can be viewed to extend radial functions in a natural way. This connec-
tion is not entirely unexpected since antilinear operators involving a complex symmetric matrix
My have been regarded as yielding an analogue of normality [16, p. 250]. As opposed to the
Hermitian Lanczos method, the structure is richer now as orthogonality based on a three term
recurrence and respective rapid least squares approximation is possible not just on subsets of R.
In particular, we characterize those curves which admit the associated Weierstrass-type polyno-
mial approximation result for P(r2); see Theorem 4.5.

The polynomial space P(r2) can also be used to analyze the speed of convergence of the
R-linear GMRES method in the condiagonalizable case. Unlike diagonalizability in the complex
linear case, condiagonalizability is a more intricate structure. Random matrix theory is invoked
to assess how likely it is to have a condiagonalizable operator in (1.1). In this manner we end

! The length of recurrence depends on what is the least possible degree for an algebraic curve to contain the
eigenvalues.
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up touching many aspects of the theory that has been linked by the classical Hermitian Lanczos
method in recent years [6].

Finally, for practical computations, in terms of finite complex symmetric matrices, we provide
numerically stable linear algebra methods to generate orthogonal polynomials for the discrete
version of P(r2). These polynomials can be used in the corresponding discrete least squares
approximation and interpolation. In particular, the construction provides a natural link between
finite complex Jacobi matrices and orthonormal bases.

The paper is organized as follows. In Section 2 bounds on the R-linear GMRES convergence
are derived in the condiagonalizable case. The probability of a matrix being condiagonalizable is
assessed in Section 3. Section 4 is concerned with the theory of orthogonal polynomials related
with the R-linear Arnoldi method. It is shown that complex symmetry is naturally treated within
antilinear structure. Only then its rich properties become visible. In Section 5 some preliminary
numerical experiments are presented.

2. Condiagonalizability and the convergence of the R-linear GMRES

Condiagonalizability means that the real linear operator appearing on the left-hand side of
(1.1) is diagonalizable. Before deriving the bounds, we first recall how Krylov subspaces are
generated with an R-linear operator in (1.1) by executing the R-linear Arnoldi method.

2.1. Krylov subspaces of the R-linear GMRES

When C” is regarded as a vector space over C, any real linear operator can be presented as
2> Mz =(M+ Myt)z = Mz + Myz (2.1)

with matrices M, My € C"*". Here t denotes the conjugation operator on C". The set of
eigenvalues, i.e., the spectrum of a real linear operator M = M + Myt is defined as

{r € C| Mz = Az for some z # 0}.

The spectrum is an algebraic set of degree 2n at most. For more details on the real linear
eigenvalue problem, see [9,21].

In this paper we are interested in having M = « [ for a scalar k € C. Then the real linear
operator is denoted by M. In this case the spectrum possesses a relatively simple structure as
follows.

Proposition 2.1. The spectrum of M, consists of circles centered at k.

The eigenvalues of My, i.e., the elements of circles centered at the origin, are also called the
coneigenvalues of the matrix My [16].

To describe methods to compute Krylov subspaces with R-linear operators, we follow [9,
Section 3.1]. Executing the iteration with M, starting from a vector b € C”", we obtain the
Krylov subspace

Kj(M,; b) = span{b, Myb, ..., MI~'b} = span{b, Myb, MyMyb, MyMyMyb, . ..}

which is hence independent of «. For this an orthonormal basis can be computed numerically
reliably by invoking the real linear Arnoldi method [9, p. 820]. In particular, if dim C; (M,; b) =
n and Q denotes the respective unitary matrix having the orthonormal basis vectors as its
columns, then Q* My Q1 is the respective representation of Mt in this basis.

The following simple fact is of importance.
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Proposition 2.2. Let X € C"*" be invertible. Then
XU (M b) = K;j(Ny; ©)
with Ne = X 'MuX and ¢ = X~ 1b.

If X is unitary, then the corresponding sequences of Krylov subspaces are indistinguishable in
the standard Euclidean geometry, i.e., all the corresponding inner products computed coincide.

In the R-linear GMRES method for solving (1.1) suggested in [9], at the jth step one imposes
the minimum residual condition

min  [|M,z —b||
zelC;j (M,;b)
for the approximation to satisfy. With appropriate modifications taking into account the real
linearity, the iteration can be implemented to proceed like the classical GMRES [28]. In
particular, if My is either symmetric or skew-symmetric, then the iteration can be realized in
terms of a three term recurrence.

It is noteworthy that the R-linear GMRES converges at least as fast as the standard GMRES
applied to the real system of doubled size obtained by separating the real and imaginary parts in
(1.1). This fact is not surprising. For Krylov subspace methods, not writing complex problems in
a real form has been advocated already in [11, p. 446]. Thereby understanding the convergence
of the R-linear GMRES is of central relevance.

As a final remark of practical importance, to precondition the linear system (1.1) such that the
structure is preserved, see [19, Section 4.2].

2.2. Polynomial approximation problem of the R-linear GMRES convergence
The following notion is needed in what follows.

Definition 2.3. A matrix My € C"*" is said to be condiagonalizable if there exists an invertible
matrix X € C"*" such that
My = XA#X_l (2.2)
with a diagonal matrix Ay.
The diagonal entries of Ay are coneigenvalues of My. They are nonunique, which can be seen
by replacing X by X D and Ag by D~ A4 D, where D is any invertible diagonal matrix.

Analytic polynomials are not sufficient to deal with real linear operators. The following
subclass of (polyanalytic) polynomials? is of central relevance for the R-linear GMRES.

Definition 2.4. Polynomials of the form
i
> (e + azrih) A (2.3)
k=0

with o € C and, for j even aj; = 0, are denoted by P;(r2). Their union U(;-O:o P;(r2) is
denoted by P(r2).

2 Polyanalytic polynomials are polynomials in A and A [3].
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Clearly, P;(r2) is a vector space over C of dimension j + 1. With the restriction A € R we
are dealing with standard analytic polynomials. It is, however, more natural to contrast P;(r2)
with radial functions. This and the notation used will be explained in Section 4.2.

Observe that problems involving the conjugated variable are becoming more common in
applications. Gravitational lensing is one such instance [23].

Like in the standard GMRES polynomial approximation problem, it is critical how well a
nonzero constant can be approximated with the elements of P;(r2). As usual, we denote the
condition number of a matrix X € C™*" by k2(X) = | X||[|IX~!].

Theorem 2.5. Suppose My € C"*" is condiagonalizable and let b € C". Then X and Ay in (2.2)
can be chosen such that X~'b € R", and

min Mz — bl < k(X min max |kpA) +Ap(W) — 1| 11b].
2 j (My;b) 1M | 2 )PG’ijl(FZ))\ea(A#) P) p(*) 121

Proof. Assume (2.2) holds. Then, for an appropriate unitary diagonal matrix D € C"*", the
matrix defined by X = XD satisfies X b = DX~'b € R". Denoting A4 = D/A4D, we

have My = X AsX—! = XAaX~1. We henceforth assume this has been done, i.e., by denoting
r = X~ b we have r € R”. (Observe that in A4 = D AxD the jth diagonal entry of A4 has been
multiplied by e~2% , where €% is the jth diagonal entry of D.)
Recall that C; (M,; b) = K ;(Mo; b) holds for any « € C. Take any z € K;j(Mo; b) and set

w = X~ 'z. By Proposition 2.2, we have X_lle (Mo; b) = Kj(Agt; r). Since the vector r is
real,

j—1 | 5]

w=X""z=) agr)r = > (0o + ong1Ae) (Asdp)*r
k=0 k=0

for some constants o € C with arz|(j—1)/2)+1 = 0 for j odd. This is a polynomial in a diagonal,
L.e., normal matrix and its adjoint. Hence we have obtained a link between polynomials in A and
A. Now we have

Mz —bll = llkz + Myz — bll < [IX] lkw + Apw —r||.
Then again, since the vector r is real,

lkw + Asw — r||

|5 5]

2 2

<« D (e +amri A (AsAp)* + Ay D (oo + azr1 Ap) (g Ak — 1 | r
=0 =0

< max
A€o (Ay)

kpG) +3pG) — 1 | X! 161

where p belongs to P;_1(r2). Since || X|| | X~ = k2(X), the claim follows from this. [
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The key here is the fact that the latter minimization problem is of standard type. Being part of
classical approximation theory of functions, there is no linear algebra involved.? However, unlike
the usual GMRES bound [28, Section 3.4], the point set o (Ax) depends strikingly on the vector b.
(The choice of D to make X ~'b real depends on b.) It is a finite subset of the spectrum consisting
of at most n points, though. Generically these points are unique. (Generic here means that for My,
when condiagonalizable, Ay is assumed to have diagonal entries with distinct moduli.) Moreover,
for an appropriate choice of b, it can be any subset of the spectrum with the restriction that the
number of diagonal entries of Ay of the same modulus does not change.

The bound shows also that the notion of “spectral radius”, the maximal modulus of the
eigenvalues, for a diagonalizable antilinear operator is natural. It tells exactly when the Neumann
series can be used in approximating the solution of (1.1). Observe that, by executing the real
linear Arnoldi method, it is straightforward to estimate the extreme coneigenvalues of a large
(and possibly sparse) My. The rationale is analogous to the way the classical Arnoldi method
yields eigenvalue approximations.

The convergence behavior of the CSYM method has been regarded as somewhat puzzling as
well, partly because of the somewhat inaccessible structure of the appearing Krylov subspaces.
For some comparisons between other iterative methods, see [5,22]. (Lack of understanding the
convergence is not just of theoretical interest. It can prevent efficient preconditioning.) The
following yields a way to look at it.

Corollary 2.6. For the CSYM method we can choose X to be unitary to have

min Moz =bl = _min . max )»p(k)—l‘||b||.

zek;(Mo;b peP;_1(r2) reo(Ay)

These bounds are clearly sharp [15].

Observe that if o (Ay) is on a line through the origin, then the CSYM method reduces to the
MINRES (minimal residual) method [25] for Hermitian matrices. In this case the convergence
can be regarded as well understood. For instance, then the convergence can be expected to be
faster if the origin is not included in the convex hull of the spectrum. The difference can be
dramatic as well.

3. The probability of condiagonalizability

In complex linear matrix analysis, a linear operator is diagonalizable with probability one.
Therefore the analysis of the speed of convergence of iterations based on classical approximation
theory of functions on the spectrum is generically a viable approach. In a typical case it can be
expected to yield good estimates.

Although the set of condiagonalizable matrices includes complex symmetric matrices, a
subspace of C"*" of dimension n(n + 1)/2, assuming condiagonalizability turns out to be much
more restrictive than assuming diagonalizability. Quantitatively this can be expressed in terms of
the following result on random matrices.

Theorem 3.1. Let My € C**" have entries with real and imaginary parts drawn independently

from the standard normal distribution. Then the probability that My is condiagonalizable is
2—n(n—1)/2.

3 A term coined by P. Halmos, noncommutative approximation theory means matrix (operator) approximation
problems in general.
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One should bear in mind that in practice matrices possess a lot of structure (such as complex
symmetry). Thereby, regarding the usage of the bounds of Section 2 in applications, this is
certainly an overly pessimistic result.

The rest of this section is dedicated to the proof of Theorem 3.1. The probability that a real
n-by-n matrix with standard normal entries has only real eigenvalues has been shown to equal
2~n(=D/4 8], From Proposition 3.3 it is easy to see that a real matrix is condiagonalizable
with the same probability. For the complex matrices of Theorem 3.1, our computation of the
probability proceeds similarly to [8].

3.1. Contriangularizable matrices

We start by recalling basic facts on matrices and consimilarity needed in the proof. A standard
reference here is [16, Chapter 4].

Definition 3.2. A matrix My € C"*" is said to be contriangularizable if there exists an invertible
matrix X € C"*" such that

My = XR#X_l (31)
with an upper triangular matrix Ry.

A matrix My is said to be unitarily contriangularizable if My = URyUT with U unitary and
Ry upper triangular.

Proposition 3.3. Suppose My € C"*"*. Then we have the following.

1. My is contriangularizable if and only if My is unitarily contriangularizable if and only if all
the eigenvalues of MyMy are real and nonnegative.

2. If My = URpUT with U unitary and Ry upper triangular, the absolute values of the diagonal
entries of R are always the same, modulo ordering. The diagonal entries of Ry can be
permuted to any order and chosen to be real and nonnegative.

3. If My = URsUT with U unitary and Ry upper triangular, where the absolute values |ri1],

[r22l, ..., |ran| of the diagonal entries of Ry are distinct, then My is condiagonalizable.
Moreover, the set of such matrices My is open in C"*",
4. The set

{M# € O™ | My = URyUT with |ri;| = |r;;| for some i # j]
is of measure zero. Hence almost all contriangularizable matrices are condiagonalizable.

Proof. The item (1) is [16, Theorem 4.6.3] and the other claims follow readily from the results
of [16, Section 4.6]. [

Proposition 3.3(4) combined with Theorem 3.1 yields the corollary that the probability of a
matrix being contriangularizable is 27"*=1D/2,

We next prove a uniqueness result which holds true for almost all contriangularizable matrices.
The following lemma is needed.

Lemma 3.4. Let R, S € C"*" be upper triangular matrices such that |r;;| = |si;| and |ri;| #
lrjjl foralli # j. If U e C"*" is a unitary matrix such that

RU=US (3.2)

then U is a diagonal matrix.
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Proof. By Proposition 3.3(3), R and S are condiagonalizable and we can find upper triangular
invertible matrices X, Y € C"*" such that

R=X"'DX, S=vYDY ',

where D is the real diagonal matrix such that d;; = |r;;|. Substituting into (3.2) we find
DXUY = XUYD.

Denoting E = XUY, we see that £ must be diagonal since d;; are distinct. Hence U =
X~1EY~!is upper triangular and therefore diagonal since U is unitary. [

Proposition 3.5. Let My € C"*" and suppose My = URyUT = VSV, where U,V are uni-
tary, Ry, Sy are upper triangular with the same diagonal consisting of distinct real and positive
entries. Then there exists a diagonal matrix D € R"™" with +1 diagonal entries such that

U=VD,
(3.3)
Ry = DSyD.

Proof. From the assumptions we get RyU*V = U*V S. By Lemma 3.4 the matrix D = U*V
is diagonal and we see that Ry = DSy D. Since Ry and Sy have the same nonzero diagonal, the
diagonal of D must have +1 entries. [

3.2. Proof of Theorem 3.1

Since the manipulations that follow require heavily using matrix indices, we denote the matrix
My of Theorem 3.1 by A.
The computation of the probability involves evaluating the integral

1

P = o

/D e~ 2T g A A JA. (3.4)

where dA = /\21 j=1daij and D is the set of condiagonalizable matrices that possess n positive
and distinct coneigenvalues.

To compute p, we perform the change of variables A = URUT, where U is unitary, R € R
and

R ={R e C"™" | Ris upper triangularand 0 < ri; < -+ < ryn} .

To calculate the corresponding Jacobian we use the notation [d B] to denote the n x n-matrix
of the differential forms db;;. Since only the absolute value of the Jacobian is of interest, in
the following we will ignore inconsequential sign changes due to the anti-commutativity of the
wedge product. Also, we shall ignore the imaginary unit in the volume form, i.e. forz = x + iy
we write dz A dz = 2dx N dy. Then
[dA] = [dUIRUT + U[dRIUT + UR[dU"
= U([dR]+ U*[dUIR + R[AUI"U)U".

Denoting

[dH] = U*[dU]
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we have [d H] skew-Hermitian and therefore
[dA] = U[dMUT, where [dM]=[dR]+ [dH]|R — R[dH].
Hence

dA = det(U)*"dM

and
dANdA=dM ANdM. (3.5)
We now divide the calculation into three cases
dM AdM = |\ (dmij ~dmiy) A \(dmi Adimg) A [\ (@dmij A dingg). (3.6)
i>j i i<j

Suppose first that i > j. Then

dmij = dhijrj; — ridhi; + Y dhiri; — Y ricdhy. (3.7)
k<j k>i
Actually
N\@mij Adimig) = N3 = riddhij A dhij. (3.8)
i>] i>]

To see this, first note that
(dh,'jl’jj — riidﬁj) VAN (dh_,-jrjj — r,-idhij) = (I‘jz-j — rizl-)dhij A\ d% (3.9

That the last two summations in (3.7) make no contribution to (3.8), consider ordering their terms
first by the increasing second index v of dh,,, (and dh,,,) and then by the decreasing first index u.
The elimination starts with d/,,; (and dh,1) and proceeds in the described order. We repeatedly
use the reduction

N\ dmij A dmij) = o1 A (02 + y dhuy) A gy = o) dhuy A dhyy
i>j
= w1 Awy A (r2, — r2)dhy A dhyy,

where w1, w> are some differential forms and y is & some entry of R.
We next consider the case i = j in (3.6). Now

dmi; = drij + 2ridhi; + ) dhixrii — ) rixdhy. (3.10)
k<i k>1i
We get
N\dmij ndimig) A \dmiz ndimig) = \(dmig ~dimgg) A \@rigdhi Adri),
i>] i i>] i
(3.11)

since the terms in the last two summations in (3.10) are eliminated due to (3.8).
The remaining case isi < j. Now

dm;j = drij + Zdhikrkj - Zrikdh_kj- (3.12)
k<j k>i
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All terms in the last two summations are now eliminated due to (3.11) so that we finally get
dM ~dM = 4" [ [ri [ [¢F; = ) \@hij A dhij A drij A dFif) A
i i<j i<j

)\ (dhii A drip). (3.13)

We then use (3.5) to compute the integral (3.4) by integrating over the unitary group and the
upper triangular matrices R

1

Pn = 21 (47"

f e~ 2R R g A g M,
Un)xR

where the factor 2" corresponds to the fact that by Proposition 3.5 integration over U (n) x R
counts all matrices A precisely 2" times.

The volume of the unitary group [1, Proposition 4.1.14] is
" ,
— (2m)/
//\(dhij ~dhip) A \dhii =[] .
i<j i j=1 G — D!
The integral over the strict upper triangular part of R is
/e_é XicjIrijl? /\(drij Adrij) = (4m)" =072,
i<j

The integral over the diagonal of the matrices R can be computed using Selberg’s integral
[24, Formula 17.6.6]

15,2 2 2
/ e zz’r”l_[riil_[(rjj_"il‘)drll"'d”nn
diag(R) i

i<j
1 [ g 2 ) ) n=l
:_’/ / e_jzﬂiil_[riinvjj_riildrll"'drnn:l—lj!
n:Jo 0 i i<j j=1
Hence
Pn 4n(2n)n(n+l)/2(4n)n(n—1)/2 — 2—11(}’1—1)/2.

~ ()

4. Complex symmetry, orthogonal polynomials and three term recurrence

The connection between the Hermitian Lanczos method, Hermitian Jacobi, i.e., Hermitian
tridiagonal matrices and orthogonal polynomials is standard material in numerical linear algebra
and classical analysis; see, e.g., [13,14,31,30].

Condiagonalizability is a special property which implies that a linear algebra problem turns
into a problem in classical approximation theory. In what follows, an analogous connection for
antilinear operators involving a complex symmetric matrix is described. For complex symmetric
matrices, see the classical publications listed in [16, p. 218]. See also [12] and references therein
for complex symmetric operators on separable Hilbert spaces.
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4.1. Construction

For the connection, consider an antilinear operator
Myt

on C" involving a complex symmetric matrix My. (We could equally well consider M, but for
the simplicity of the presentation, we set k = 0.) Take a unit vector b € C". Then executing
the real linear Arnoldi method yields us a tridiagonal complex symmetric matrix, i.e., a complex
symmetric Jacobi matrix because of the following fact.

Proposition 4.1 (/9]). If My = cMy with ¢ = =+1, then the real linear Arnoldi method is
realizable with a three term recurrence.

Because of the way the real linear Arnoldi method proceeds, in the resulting tridiagonal
complex symmetric matrix there can appear complex entries only on the diagonal. In what
follows, when ¢ = 1, the real linear Arnoldi method is called the real linear Lanczos method.

As in the proof of Theorem 2.5, choose a unitary matrix U such that

Ay = U*MyU is diagonal and r = U*b € R" 4.1)

holds. Then K;(Myt; b) is unitarily equivalent to K;(Axt; r) in the sense of Proposition 2.2.
For the latter Krylov subspace, the conjugations affect A4 only, yielding polynomials in Az and
Ay which correspond to elements of P i (2r) in a natural way.

We assume that for any triple of the nonzero coneigenvalues of My, at most two of them can
share the same modulus, and, if zero is a coneigenvalue, it appears just once. This assumption
holds generically. Moreover, we assume the starting vector b € C” to be generic in the sense
that the eigenvalues of Ay are distinct and all the entries of r are strictly positive.

By Proposition 2.2 (and the comment that follows), the Jacobi matrix computed by the real
linear Lanczos method with Myt using the starting vector b yields the same Jacobi matrix as
when executed with Ayt using the starting vector r. (Of course, the orthonormal bases generated
differ according to Proposition 2.2.) Denote the entries of this matrix as

rar fi 0 - 07
B1 0
Jep=1 - . . . . , 4.2)
0o - -1 PBn-1
L0 -+ 0 B—1 oy -

so that the corresponding antilinear operator is J47. The real linear Lanczos method is devised
in such a way that the entries satisfy o; € C and B; > 0 assuming the method does not break
down. (When the classical Hermitian Lanczos method is executed, the respective entries satisfy
o € Randﬂj > 0.)

For the converse, assume given Jy and the task is to construct a diagonal matrix D and a real
vector v giving Jy after executing the real linear Lanczos method. This can be accomplished
by computing a unitary matrix V whose first column v is real such that Jyt = V*DVt with a
diagonal matrix D.

We have lack of uniqueness in the case there appears two coneigenvalues of the same modulus.
In (4.1) this takes place since for any isometric V € C"™? we have VVT = (VR)(VR)T for all
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orthogonal matrices R € R?*2. For the sake of completeness, the following proposition contains
the converse.

Proposition 4.2. Suppose UUT = VVT for two isometric matrices U,V € C*™. Then V =
UR for a unitary matrix R € R™*™,

Proof. We have U*V = U*VVIV = U*UUTV = UTV = U*V. Take R = U*V. [

For orthogonal polynomials, associate with each point A ; € o (Ay) the weight rjz., where r; is
the jth entry of the vector r. Denote by (-, -) the standard Euclidean inner product on C”. Then
an inner product on P;(r2) corresponding to the real linear Lanczos method is defined as

(p.q) = (p(MyT)b, q(MyT)b)

= (p(Uy)r, g(AgT)r) = Y pOa)qi)ri,
k=1

where we used p(My1)b = Y |_jox(Myr)*b = UYI_jou(My0)fr = U Z/ijo(“Zk +
a1 A8)(AgAg)*r and similarly for g (Mat)b.

Consider the (discrete) monomial functions in (1.2). In terms of the Jacobi matrix entries
in (4.2), the three term recurrence for computing the respective orthogonal polynomials can be
expressed as

pod) =1

Bip1(A) = Apo(A) — a1 po()

B2p2(A) = Ap1 (M) — aapi (M) — Bipo(h)
B3p3(L) = Apa(A) — a3pa(r) — Bap1 (V)

and so on. Note that the assumption of A4 having distinct eigenvalues with any triple of them
having at most two values of the same modulus together with rjz. > ( for all j and Proposition 4.3
implies that the real linear Lanczos method does not break down.

A number A € C is called a zero of p € P(r2) if p(A) = 0.

4.3)

Proposition 4.3. Let p € P;(r2) be nonzero. The following claims hold.

1. If p has two distinct zeros of the same modulus, then all numbers of that modulus are zeros.

2. Let m be the number of nonzero moduli for which all numbers of that modulus are zeros and
let s be the number of moduli for which exactly one number is a zero. Then 2m + s < j.

Proof. Let u and v be (ordinary) polynomials of degrees at most L%J and L%J, respectively,
such that

pO) = u(AP) + 2v(JA[%). (4.4)
By the assumption of Item 1, there exist A; and A, such that A1 # A, |A{| = |A2| and
p(A1) = p(r2) = 0. This together with (4.4) implies u(|A1]?) = v(|]A1|>) = 0 proving the
first claim.

Let My, ..., M, be the nonzero moduli for which all numbers of these moduli are zeros. By
factoring, there exist (ordinary) polynomials & and v such that

w(AP) =d(WAD TP = Mp),  v(aD) = TP [ JarP = Mp).
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Note that deg(u) < L%J — m and deg(v) < L%J — m. Let A be a zero of p such that no other
number is a zero of the same modulus. Then #(|A|?) 4+ AT(|A|?) = 0 and

TADEA2) — IMPTAAHTA) = 0,

where the left-hand side is a nonzero (ordinary) polynomial in |A|?> of degree at most j — 2m.
Hences < j —2m. U

Note that p need not have any zeros at all.

If 0 (A4) C R holds, then the conjugations are vacuous and we have the classical symmetric
Lanczos method [26].* And conversely, if o (Ax) ¢ R holds, then we have a natural extension
of the symmetric Lanczos method preserving the length of recurrence. Thereby, the numerical
behavior in finite precision, i.e., the loss of orthogonality among vectors computed can be
expected to be similar to the classical symmetric Lanczos method. See [26, Chapter 13.3] for
the effects of finite precision then.

Certainly, complex symmetric Jacobi matrices can be treated in the C-linear setting [4]. (Then
one has to deal with formal orthogonal polynomials.) However, we do not find it perhaps quite
as natural as through the connection with the real linear Lanczos method prescribed.

4.2. Interpolation and least squares approximation

For the interpolation with the elements of P;(r2), it is straightforward to construct
Vandermonde-type matrices from the monomials (1.2). (Numerically this is not advisable,
though.) For any set of complex interpolation data (A;, w;), [ = 1, ..., j, there exists one and
only one p € P;_1(r2) with p(4;) = w; provided that the interpolation nodes A; are distinct and
at most two out of a triple of them have equal modulus. This follows from Proposition 4.3. For
more explicit understanding of this invertibility, consider the case of having exactly two interpo-
lation nodes for each appearing modulus. That is, assume there are k different moduli ry > r, >

- > rr and 2k nodes in all. Let |A;| = r; for [ = 1, ..., k. Take the Lagrange interpolation
basis polynomials

2 2
|A] -

= [ =

l<m<k,m#l T — I

Hence, [;(]A;|%) = 1 while [;(|A,,|?) = 0 form # 1. Now, for any two distinct interpolation nodes
with modulus 7;, take the unique interpolating polynomial p; (1) = ¢; +djA. Then pyl; € P;(r2)
with j = 2k — 1. Taking the sum of these yields the required interpolant.

Consequently, the notation P(r2) used is explained as follows. With the elements of P;(r2)
we may interpolate at most two points on a circle. Recall that with the radial polynomials
ijzoakl)»lk one can interpolate at most one point on a circle. Repeating this idea, it is clear
how to define P;(rk) in such a way that we may interpolate at most k points on a circle. Hence
we have a natural extension of radial functions.

Since numerically computations involving orthogonal functions are preferable, interpolation
with the elements of P;(r2) should be performed by executing the real linear Lanczos method
just described. (Of course, for the classical symmetric Lanczos method this is a standard approach

4 By the (classical) symmetric Lanczos method we mean the three term recurrence for transforming a real symmetric
matrix into tridiagonal form.
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already from the late 1950s [10,13].) This is straightforward by choosing Ay with the diagonal
entries equaling the interpolation nodes and r any unit vector supported at the nodes.

4.3. Approximation of continuous functions on curves

The interpolation scheme just presented suggests on what kind of curves we can expect the
approximation to be successful. For approximating continuous functions with the elements from
P(r2) we now give a generalization of the Weierstrass approximation theorem. We start with the
following lemma.

Lemma 4.4. Let y C C be a compact simple open curve such that y intersects every origin
centered circle in at most two points. Then y can be extended to a simple closed curve y C C
such that y C ¥ and y intersects every origin centered circle in at most two points.

Proof. Letr; > 0 (and rp > 0) be the supremum (infimum) of the values r such that every origin
centered circle with radius at most (at least) r does not intersect y (if O € y then define r; = 0).
Then the circle of radius r intersects y either in one point or two points. Similarly for the circle
of radius r,. In the case of two intersection points, it is easy to extend y so that without loss of
generality we may assume the circles of radii 71 and r, each intersect y at exactly one point.

Let p; (and p7) be the supremum (infimum) of the values r such that every origin centered
circle with radius p, wherer; < p <r (r < p < rp), intersects y in exactly two points (we may
assume such values r exist since y can be easily extended to accommodate this). It follows that
circles of radius r such that p; < r < p; intersect y at exactly one point which we denote by
z(r). Denote by w; and v; (j = 1, 2) the intersection points of the arc y with the circle of radius
p; and further choose w; as one of the end points of the arc y. Note that |w;| = [v;| = p; and
by defining z(p;) = v; the function r > z(r) becomes continuous in [p1, p2].

Let
1 . w1
€ =—min| [v— — V2|, lwy — vy
2 V1
and (by continuity) choose R such that p;y < R < p> and
|z(r) —vy| <€ forallr > R. 4.5)

We define the extension ¥ as follows. Let

wi
Yo = Z(r)v—llpliriR .

Note that this is a rigid rotation and therefore the simple curve y U yy intersects all circles in at
most two points. Next, let « = z(R)w; /vy and

: p2—r . r—R

Y1 = rexp|iarg(a) + i arg(w2) |R<r=<pa¢.
P2 — R P2 — R

Note that ¥ = y U y9 U y is closed and intersects all circles in at most two points. Due to (4.5)

it is also a simple curve provided the direction of rotation of the spiral is properly chosen either

clockwise or counter-clockwise, i.e. we choose a real number ¢ such that t < arg(w), arg(w;) <

t+2m. [

Theorem 4.5. Let y C C be a compact simple (open or closed) curve such that y intersects
every origin centered circle in at most two points. Let f : y — C be a continuous function and
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suppose € > 0. Then there exists a polynomial p € P(r2) such that
max | f(z) — p(2)| <e. (4.6)
€Y

Proof. By Lemma 4.4 we may assume y is a closed simple curve. Let r; > 0 (and r, > 0)
be the supremum (infimum) of the values r such that every origin centered circle with radius at
most (at least) » does not intersect y (if 0 € y then define r{ = 0). Then the circle of radius
rj (j =1, 2) intersects y at exactly one point which we denote by w ;. Furthermore, every circle
of radius r such that r{ < r < rp intersects y at exactly two points which we denote by z;(r) and
z2(r) chosen in one of the two ways to make r +> z;(r) continuous (j = 1, 2). We also define
z1(r1) = z2(r1) = wy and z1(r2) = 22(r2) = wa.

It is easy to see that there exists a continuous function g : y — C such that g is constant in a
neighborhood of w; and a neighborhood of w; and

max | £(2) — g(2)| < <.
€y 2

We then define the functions ay, as : [r1, r2] — C by

g(za(r)) — g(z1(r))
22(r) —z1(r)

_ 8(z2(r)) — g(z1(r))

) —ar)

The functions a; and a; are continuous since we chose g to be constant near w and w,. Note that

g8(2) = a1(|z]) + a2(|z|)z for all z € y. By the Weierstrass approximation theorem for compact
intervals on the real line, there exist ordinary polynomials pj and p; such that

ay(r) =g(zi1(r)) — z1(r)
4.7)

a(r)

() — pi(r2 € P —
ABE N = I < gy V=L

We then define p(z) = p1(|z|?) + p2(|z|*)z and see that p € P(r2). Also

18(2) — p(@)| < lar1(lz]) — p1(Iz )| + laa(Iz]) — p2(z D] 1z] < %

for all z € y. The estimate (4.6) then readily follows. []

It is noteworthy that compact subsets of R are admissible. This is the case in the Hermitian
Lanczos method.

The exponential function is the most important example of a nonrational (certainly continu-
ous) function. In the present context we obtain it as a limit of elements in P(r2) as follows.

Example 1. Consider a condiagonalizable My € C"*" asin (2.2). The corresponding semigroup
is defined as

00 j
(tMyt)’
etM#‘C — § :

=

for t € R. (Then e'M#7 x( solves the initial value problem x" = MuXx, x(0) = xo.) When applied
to a vector b € C" such that D! X~ 1h = r € R”, we obtain the associated exponential function

i(l TR )I?»Izj (4.8)
—\2j) " @2j+ D! '

Jj=0
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when looking at the problem in the corresponding basis. Of course, this reduces to the standard
exponential function for A € R.

S. Numerical experiments

We now present very preliminary numerical experiments on the relationship between P; (2r)
and the convergence of the R-linear GMRES method. For simplicity, we focus specifically on
the CSYM method. We do not have solutions to the polynomial minimization problems of
Theorem 2.5 and Corollary 2.6. However, numerical results on the respective diagonal linear
systems with a real right-hand side unveil some of the intricacies of the latter problem.

In all the examples given below the CSYM method is thus executed to solve

A#)_C =r,

where Ay € C"*" is a diagonal matrix and r € R” is such that all its entries are ones. The
diagonal entries of Ay are set as

djj = Rje™™?, 5.1)

where Ry = 1 and R, = 10 while the other values of R; are linearly interpolated between
these two extremes. The angles ¢; are specified in each case separately and described below. For
each example we plot the diagonal of A4 and the log, of the relative residual H r— A#x_jH /rll,
where x; € K;_1(Agt; r) is the minimizing vector with the starting vector xo = 0. We used
n = 500 in each problem.

Before describing the examples, we want to mention a feature which we find puzzling.
Namely, the numerical results depend on how accurately the entries (5.1) are generated. This is

T T T T 0 .............................
double—precision D#
- \ high—precision D#
8 ...................... -
©
=}
i)
(%] (%]
= o
©
d 2
g kT
IS “
E S
oF
o
o L L 4
. . . . -9 . . . '
2 4 6 8 0 10 20 30 40
Real axis Number of iterations

Fig. 5.1. Example 1.
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Fig. 5.2. Example 2. The diagonal of A4 in the case N = 2 is plotted on the left panel.

illustrated in the first example below. All the computations were carried out in MATLAB® variable-
precision arithmetic with an accuracy of 30 decimals (recall that double-precision floating point
numbers have approximately 16 decimals). The high-precision arithmetic was chosen in order
to show that the apparent numerical instability of double-precision floating point computations
seems to result from the input Ay itself rather than any serious cancellation effect in the minimal
residual algorithm. There is no qualitative change to the results by using more than 30 decimals
of accuracy. At the moment we do not have an explanation for this behavior.

The actual examples are set up as follows. In the first example we illustrate the comment
made after Corollary 2.6, i.e., when o (Ag) is on a line through the origin, the CSYM method
reduces to the MINRES method. Then in the examples that follow, the line is deformed into
more complicated shapes. The rate of convergence slows down accordingly.

e Example 1. Here we chose ¢; = 1/10 for all j; see the left panel of Fig. 5.1 for o (Ay).
The matrix Ay was first computed in high-precision and in this case the residual dropped
in a straight line. The matrix A4 was then converted to double-precision format and back to
high-precision format. The computation was performed again giving the slower convergence
starting at approximately 107¢. Similar effect would be seen in Example 2 as well if the
precision of the input Ay was lowered.

e Example 2. Here we computed using five different sets of angles. We chose quN) =0, q&,SN) =
N,where N =1, ..., 5, and the rest of ¢§N) were linearly interpolated between the extremes.

See Fig. 5.2. _ N
o Example 3. Let ¢ = 0, ¢, = 1 and the rest of ¢; linearly interpolated between the extremes
(Example 2 case N = 1). Additionally, a random vector p € C" was generated with entries

S Version 7.10.0.499 (R2010a).
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Fig. 5.3. Example 3.
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Fig. 5.4. Example 4.

uniformly distributed between 0 and 10~!°. Given an integer k such that 1 < k < n, we chose
four different sets of angles in (5.1) by ¢>§k) = ¢; + pj for j < k and ¢§k) = ¢; for j > k.
The results are displayed in Fig. 5.3.
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Fig. 5.5. Example 5. Only the diagonal of Ay in the two spirals case is plotted on the left panel.

e Example 4. Let 5 j and p be as in Example 3. Given an integer K such that 1 < K < n, we
now chose four different sets of angles in (5.1) by ¢§.K) = 5 jfor j <n—K and ¢§k) = 5 ito;j
for j > n — K. The results are displayed in Fig. 5.4.

e Example 5. We chose two different sets of angles. For the first set, qﬁ;]) was chosen uniformly

distributed between 0 and 1. For the second set, we chose ¢§2) =0, ¢,(,2) = 1 and for every

odd j the angle ¢§2) is linearly interpolated between the extremes. For even j we linearly

interpolated ¢§2) between 0 and 2. The results in Fig. 5.5 show that the residual makes almost
no progress at every other iteration step. The residual for the second set of angles closely
follows, but makes more even progress at all iteration steps.
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