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In matrix computations, such as in factoring matrices, Hermitian

and, preferably, positive definite elements are occasionally required.

Related problems can often be cast as those of existence of respec-

tive elements in amatrix subspace. For two dimensionalmatrix sub-

spaces, first results in this regard are due to Finsler. To assess positive

definiteness in larger dimensional cases, the task becomes computa-

tional geometric for the joint numerical range in a natural way. The

Hermitian element of the Frobenius norm one with the maximal

least eigenvalue is found. To this end, extreme eigenvalue computa-

tions are combined with ellipsoid and perceptron algorithms.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Appearing in diverse applications, positive definiteness is a central notion for square matrices

and operators; see, e.g. [19,5]. For related computational matters, see [15, Chapter 4.2]. For matrix

subspaces, the concept of positive definiteness is a far more delicate issue. Matrix subspaces with

Hermitian and, preferably, positive definite elements arise in factoring problems and in large scale

numerical linear algebra of preconditioning [21,9]. 3 In both cases, the existence of such elements

reflects fundamental aspects of operators. The challenge with matrix subspaces lies, not least com-

putationally, in the fact that the subset of positive definite matrices can be a tiny, needle-like set.
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This paper is concerned with making this computational geometrically more quantitative. Ways to

locate positive definite elements are devised. In a certain sense the most positive definite element is

found.

Focusing on two dimensional matrix subspaces, first results regarding the existence of positive

definite elements are due to Finsler [12]. (For related computations, see [10,18].) The three dimensional

case is relatedwith the investigations of Binding [6]. Later, in semidefinite programming, a similar task

defines the feasibility problem of semidefinite programs [27]. Quantitatively, for inclusion regions, we

employ strictly positive maps of the simplest possible type. Denote by V a matrix subspace of Cn×n
over R whose elements are Hermitian. In terms of an orthonormal basis V1, . . . , Vk of V , this leads us
to consider the map

x �−→ (x∗V1x, . . . , x
∗Vkx) with ||x|| = 1 (1.1)

whose image, i.e., the joint numerical range, is seemingly the most tangible object to study positive

definiteness of V . Traditionally, its convexity has been an object of interest; see [17] and references

therein. It is noteworthy that the convexity of the image in a basis of V implies convexity in any of its

basis. Thereby we are primarily dealing with a property of the matrix subspace V rather than that of

the map (1.1).

In this paper we devise methods to approximate the joint numerical range with a small number of

half-spaces. 4 In this sense the problem becomes computational geometric. In particular, V possessing

positive definite elements is information expressible in terms of a single half-space whose boundary

contains the origin. This interpretation leads to the notion of most positive definite element of V
expressed by the hyperplane containing the origin which is farthest away from the joint numerical

range. To generate half-spaces, we use the fact that the structure of maps of the form (1.1) is invariant

under orthogonal transformations. This combined with extreme eigenvalue computations to locate

boundary points of the convex hull of the image yields relatively sharp information on the location of

the image.

It is a natural task to find the distance of the joint numerical range from the origin, yielding an

orthogonal invariant of V . We solve the problem for the convex hull of the image. Equivalently, we look

for a positive definite element of V of the Frobenius norm one having the maximal least eigenvalue.

Two algorithms proposed to solve the problem are based on the ellipsoid algorithm used in convex

optimization. These methods allow us to locate the most positive definite element in the prescribed

sense and to compute the distance of the convex hull of the joint numerical range from the origin. For

the easier feasibility problem of locating a positive definite element in V , the perceptron algorithm is

suggested as a simpler alternative.

The paper is organized as follows. In Section 2 fundamentals of Hermitian matrix subspaces are

presented, including examples involving positive definiteness. In Section 3 geometric aspects of lo-

cating positive definite elements of a Hermitian matrix subspace are developed. Algorithms to solve

the maximal least eigenvalue problem for locating positive definite elements are devised in Section 4.

In Section 5 numerical experiments are presented to illustrate the performance of the algorithms. In

Appendix A the classical case of dim V = 2 and Finsler’s result are covered. Related problems involving

positive definite matrices are discussed in Appendix B.

2. Hermitian matrix subspaces and positive definiteness

Denote by V a matrix subspace of Cn×n over R. 5 To avoid confusion, throughout the paper also

Cn×n is regarded as a vector space over R. Then in V the standard inner product

(V,W) = Re trW∗V (2.1)

4 A half-space (open) in Rk is defined as {(t1, . . . , tk) : u1t1 + · · · + uktk > c} for a fixed (u1, . . . , uk) ∈ Rk and c ∈ R.
5 If V is initially a matrix subspace of Cn×n over C, then it can be treated as a matrix subspace over R by doubling the dimension.
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is used. The respective Frobenius norm is denoted by || · ||F . Regarding our interests, the so-called non-

singular matrix subspaces are of central relevance [21,9]. A matrix subspace is said to be nonsingular

if it contains invertible elements. Among matrix subspaces, nonsingularity is a generic property [22].

For additional properties, the set of Hermitian matrices H is of dimension n2 in Cn×n. The notion

of Hermitian matrix subspace is defined in a natural way as follows.

Definition 2.1. A matrix subspace V of Cn×n over R is Hermitian if all its elements are Hermitian.

TheHermitianelementsof amatrix subspaceV canbe readily recoveredbycomputing thenullspace

of the linear map

V �−→ V − V∗ (2.2)

from V to Cn×n. We call this nullspace the Hermitian matrix subspace of V . 6
Equivalence is a fundamental notion for matrix subspaces which can be regarded as a relaxation.

Namely, matrix subspaces V andW are said to be equivalent if there exist invertible matrices X, Y ∈
Cn×n such that

W = XVY−1.
Clearly, the Hermitian structure is preserved in congruence, i.e., when Y−1 = X∗. For a necessary and

sufficient condition on a matrix subspace V to be equivalent to a Hermitian matrix subspace, suppose

V1, . . . , Vk is its basis. Consider theproblemoffindingout,whether thematricesXV1Y
−1, . . . , XVkY

−1
are Hermitian for some invertible matrices X and Y . To solve this, compute the intersection of the

nullspaces of the linear maps

M �−→ VjM − M∗V∗j
on Cn×n, for j = 1, . . . , k. If there exists an invertible elementM in the intersection, then X and Y are

determined by the condition Y−1X−∗ = M.When k = 2, this problem is of interest in the generalized

eigenvalue problem.

Denote by S++ the convex cone of positive definite matrices in Cn×n. (See, e.g. [2, II Sec. 12–15] for
the convexity ofS++.) As iswell-known,S++ and its closure are of importance in convex optimization,

see, e.g. [7].

Definition 2.2. A Hermitian matrix subspace V is said to possess positive definite elements if V ∩
S++ �= ∅.

For a classical two dimensional example, consider the generalized eigenvalue problem. Then it is

of central relevance to know if the associated matrix subspace possesses positive definite elements;

see [25, Chapter 15.3]. Further examples follow.

Example 1. Denote byH the set of Hermitian matrices. An invertible matrix A ∈ Cn×n is the product

of a Hermitianmatrix and a positive definitematrix if and only if the Hermitian subspace of V = A−1H
contains positive definite elements. (Of course, A is Hermitian if and only if V contains the identity.)

This is a classical notion, such a matrix is said to be symmetrizable [4, p. 67].

Example 2. In view of preconditioning very large linear systems, assume having an invertible sparse

matrix A ∈ Cn×n. Consider the homogeneous linear system

AW −W∗A∗ = 0. (2.3)

6 To fully measure how much V deviates from being a Hermitian matrix subspace, inspect the singular values of the linear map

(2.2).
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We are interested in those solutionsW ∈ Cn×n which are sparse. 7 LetW denote their span. Then one

looks for the positive definite elements of thematrix subspace AW by the fact that with the respective

products, the conjugate gradient [15, Chapter 10.2] method can be executed.

It is noteworthy that Hermitian matrix subspaces possessing no positive definite matrices can be

high dimensional. For example, consider a matrix subspace whose everymember has the (1, 1)-entry
equaling zero.

Whenever nonempty, V ∩ S++ is an open subset of V by the fact that if V ∈ V ∩ S++, then
V + E ∈ V ∩ S++ for E ∈ V small enough in norm. 8 Hence the convex cone V ∩ S++ is a submanifold

of V of the same dimension. This is useful, although hardly completely satisfactory information in

practice.

Example 3. The set of diagonal Hermitian matrices in C3×3 is isometrically isomorphic to R3 in a

natural way. The positive definite elements correspond to

{(d1, d2, d3) ∈ R3 : dj > 0, j = 1, 2, 3}. (2.4)

Let V be a two dimensional subspace of R3 (i.e., a plane through the origin) whose intersection with

(2.4) is a sharp needle-like set.

To express this in terms of a volume, on the tangent spaces of V ∩ S++ we employ the standard

inner product (2.1). Thereby V ∩ S++ is regarded as a Riemannian submanifold of Cn×n. 9 Because

the intersection can be a very small set, any purely random process to decide whether V possesses

positive definite elements is highly unlikely to be successful. It is informative, for comparison, to bear

in mind that the set of Hermitian matrices is of dimension n2 in Cn×n of which S++ occupies just a
1
2n

portion.

The question of existence of positive semidefinite elements and estimating their volume can be

turned into a problem in real algebraic geometry. For theminimumdimension of the underlying space,

denote by L the set of lower triangular matrices with real diagonal entries, regarded as a subspace of

Cn×n over R of dimension n2.

Theorem 2.3. To the set of positive semidefinite elements of a Hermitian matrix subspace V ⊂ Cn×n
corresponds a real homogeneous variety of L ⊂ Cn×n.

Proof. By the Cholesky factorization, a Hermitian matrix H is positive definite if and only if H = LL∗
for a lower triangular matrix with a positive diagonal. Moreover, if L is lower triangular, it readily

seen that LL∗ positive definite if and only if L has nonzero diagonal entries. Otherwise LL∗ is positive
semidefinite.

For the construction, with respect to the inner product (2.1), denote by P the orthogonal projector

onH onto V . To characterize the positive semidefinite elements of V , define
L �−→ (I − P)LL∗ (2.5)

from L to H. This equals zero if and only if LL∗, which is positive semidefinite, belongs to V . Let
M1, . . . ,Ml be an orthonormal basis of the orthogonal complement of V in H. Then L is mapped to

zero by (2.5) if and only if

(LL∗,Mj) = 0 for j = 1, . . . , l. (2.6)

7 Clearly, there are sparse solutions asW = A∗ illustrates. Then AA∗ leads to the normal equations which is not attractive because

of the squaring of the condition number. Therefore other sparse solutions are more of interest.
8 For not too large n, to test whether V ∈ V ∩ S++ , it is advisable to attempt to compute a Cholesky factorization [15, p. 146].
9 It is somewhat exceptional to use the inner product (2.1)with themanifold of positive definitematrices. For the usual Riemannian

geometry of nonpositive curvature, see [5, Chapter 6].
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Since these are homogeneous polynomial maps of degree two in the entries of L separated into real

and imaginary parts, to the positive semi-definite elements of V corresponds a homogeneous variety

of L. �

There are n2− dim V equations. (For computational aspects of real algebraic geometry, see [3].) As

an extreme, the corresponding variety is the whole L if and only if V = H. Involving n2 real variables,

solving (2.6) does not appear very realistic unless n is small. On the positive side, though, the degrees

of the polynomial equations are just two.

The construction has the advantage that the elements mapped from this variety according to L �→
LL∗ to the set of positive definite elements are immediately recovered.

Corollary 2.4. V does not possess positive definite elements if and only if the variety contains only singular

elements.

3. Locating positive definite elements geometrically

There are several necessary and sufficient conditions guaranteeing positive definiteness of a Her-

mitian matrix [19, Chapter 7]. For a Hermitian matrix subspace V , an analogous problem consists of

locating positive definite elements, if any. (If V is not Hermitian, then start by computing its Hermitian

matrix subspace.) As just described, withmatrix subspaces the challenge lies in the fact that the subset

of positive definite matrices can be needle-like.

3.1. Positive definiteness and the joint numerical range

To locate possible positive definite elements for k > 2, an approach can be based on polynomial

inequalities. (For k = 2, see Appendix A.) To this end, suppose V1, . . . , Vk is a basis of a Hermitian

matrix subspace V and set

V ≡ V(t1, . . . , tk) = t1V1 + · · · + tkVk (3.1)

with tj ∈ R for j = 1, . . . , k. A Hermitian matrix is positive definite if and only if all its leading

principal minors are positive; see, e.g. [19, p. 404]. 10 This gives rise to n polynomial inequalities in the

parameters t1, . . . , tk for determining V ∩ S++.
Clearly, even for moderate n, dealing with the determinants of large leading principal submatrices

is computationally very unappealing. In particular, it is not the simplest way to inspect the structure

of V ∩ S++.
Regions including V ∩ S++ can be determinedmore economically with the help of strictly positive

maps. For matrix analysis of positive maps, see [5, Chapter 2] and references therein.

Definition 3.1. A linearmap� : Cn×n→ Cl×l is strictly positive if�(A) is positive definitewhenever

A is.

For example, the linear map on Cn×n to any leading principal submatrix is strictly positive.

Combine (3.1) with a strictly positive linear map � and set

(t1, . . . , tk) �−→ det�(V(t1, . . . , tk)). (3.2)

This is a homogeneous polynomial of degree l. For the volumes, it is natural to choose the basis

V1, . . . , Vk to be orthonormal, so that the linear map (3.1) yields an isometric isomorphism between

the parameter space Rk and V . This is assumed in what follows. To have regions including V ∩ S++,
we are interested in those parameter values for which the function (3.2) is positive.

For linear inequalities, inexpensive to generate, consider the strictly positive linear map �x(A) =
x∗Ax for any fixed x ∈ Cn. This inserted into (3.2) gives rise to the open half-space in Rk (through the

origin) defined as

10 Also called Sylvester’s criterion.
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{(t1, . . . , tk) :
k∑

j=1
(x∗Vjx) tj > 0}. (3.3)

For a necessary condition the parameters must satisfy, any intersection of such half-planes yields an

unbounded convex polytope in the parameter space (as long as there are no contradicting inequalities).

What is the best we can do with a small number of half-spaces? With an orthonormal basis

V1, . . . , Vk of V , define
V(x) = (x∗V1x, . . . , x

∗Vkx) (3.4)

for x ∈ S2n−1 = {x ∈ Cn : ||x|| = 1}. Clearly, V is smooth having values in Rk . Without any loss

of generality, we allow only orthonormal bases of V . Then we have orthogonal invariance in the sense

that UV(x), where U ∈ Rk×k is an orthogonal matrix, is of the same form as (3.4) but in another

orthonormal basis of V . And conversely, to any orthonormal basis corresponds such an orthogonal

matrix U.

Example 4. LetVj be simultaneously unitarily diagonalizable. (That is,UVjU
∗ are diagonal for a unitary

matrix U, for j = 1, . . . , k.) Then the image of (3.4) is a convex polytope.

The image of V is called the joint numerical range of the matrices V1, . . . , Vk . With respect to the

image, a single half-space determines the existence of positive definite elements as follows.

Proposition 3.2. A Hermitian matrix subspace V possesses positive definite elements if and only if the

image of (3.4) is contained in an open half-space whose boundary contains the origin.

Proof. Suppose there is a positive definite linear combination
∑k

j=1 ujVj . Assume
∑k

j=1 u2j = 1. Then

consider UV(x) where U ∈ Rk×k is an orthogonal matrix having (u1, . . . , uk) as its first row. This

is just (3.4) represented in another orthonormal basis. By construction, its first component is strictly

positive, so that the image is contained in an open half-space.

For the converse, if the image is contained in an open half-space, then for some unit vector (u1, . . . ,
uk) and for every nonzero x holds

∑k
j=1 uj x∗Vjx > 0. Thereby the linear combination

∑k
j=1 ujVj is

positive definite. �

For a unit vector (u1, . . . , uk), suppose the open half-space

{(t1, . . . , tk) : u1t1 + · · · + uktk > 0}
contains the image of V. Then the positive definite matrix V = ∑k

j=1 ujVj is said to correspond to the

hyperplane {(t1, . . . , tk) : u1t1+· · ·+uktk = 0}. This interpretation yields a way to define themost

positive definite element in terms of the hyperplane farthest away from the joint numerical range.

Definition 3.3. Assume aHermitianmatrix subspaceV possesses positive definite elements. Themost

positive definite element corresponds to the hyperplane containing the origin having the maximum

distance from the image of V. 11

By the fact that the image of V is connected, the hyperplane in question is outside the convex hull

of the image. Thereby the notion is well-defined. Interpreted in terms of the corresponding positive

definite elements, the most positive definite element of the definition is hence defined as being the

one solving the minimization problem

11 This means maximizing minv∈image(V) minh∈H ||v− h|| over hyperplanes H containing the origin.
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max λmin(V)

s.t. V ∈ V
V � 0 (equivalent to λmin(V) � 0)

‖V‖F = 1,

where λmin(V) denotes the smallest eigenvalue of a Hermitian matrix V . Consequently, we can alter-

natively regard our computational geometric problem as a problem in eigenvalue optimization. (For

eigenvalue optimization, see [24].)

In the case of dim V = 2 we are dealing with the numerical range of a matrix. Admitting many

extensions, (3.4) is among them [20, pp. 85–87] being perhaps the most natural one (except that no

assumptions on orthonormality are made). Traditionally, its convexity has been an object of interest,

leading to the respective notion for matrix subspaces.

Definition 3.4. A Hermitian matrix subspace V is said to have convex numerical range if the image of

the map (3.4) is convex.

This is well-defined by the fact that the image of (3.4) being convex in a basis V1, . . . , Vk of V is

necessary and sufficient for being convex in any basis of V . This follows from composing MV(x) with

any invertible matrixM ∈ Rk×k and recovering the corresponding map (3.4).

Establishing convexity is, in general, a tough problem for dim V > 2. In the case of dim V = 3 there

are some results [20, p. 86]. An interesting open problem (not considered here) is to identify cases in

which V having convex numerical range is a generic property among Hermitian subspaces of the same

dimension in Cn×n. The following is a consequence of Proposition 3.2.

Proposition 3.5. Suppose a Hermitian matrix subspace V has convex numerical range. Then vanishing of

(3.4) at a point is a necessary and sufficient condition on V not to possess positive definite elements.

For a Hermitian matrix subspace V , set
v(V) = min||x||=1 ||V(x)||, (3.5)

i.e., the distance of the image of V from the origin requiring the basis be orthonormal. Whether or

not V has convex numerical range, this is certainly a quantity of interest. (The Crawford number12 for

two, not necessarily orthonormal, Hermitian matrices is defined analogously.) In a way, v(V) yields

an opposite of the numerical radius which would correspond to taking the maximum instead. Recall

that the numerical radius of a matrix A ∈ Cn×n is w(A) = maxλ∈F(A) |λ|, where F(A) denotes the

numerical range of A. 13 (For its computation, see [29].)

Aminimizeryields agoodcandidate for constructingapositivedefinite element, yieldinganoptimal

solution in the following case.

Theorem3.6. Suppose a Hermitianmatrix subspace V has convex numerical range. If a unit vector x ∈ Cn

satisfies v(V) = ||V(x)|| > 0, then

k∑
j=1

x∗Vjx

v(V)
Vj (3.6)

is the most positive definite element of V .

12 Called the Crawford number of a Hermitian pair.
13 As a curiosity, a result by T. Ando states w(A) < 1 if and only if the V ∩ S++ �= ∅ for a certain Hermitian matrix subspace. See

[5, Theorem 3.5.1].
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Proof. Take the unit vector with the components uj = x∗Vjx
v(V)

. Then, because of convexity, V(x) is the

nearest point to the hyperplane containing the origin with this normal vector. Consequently, because

of convexity, this hyperplane is farthest away from the joint numerical range. �

In the next section an algorithm for computing the distance of the convex hull of the image of V

from the origin is devised. Thus, v(V) is computable in case V has convex numerical range. Otherwise

we obtain a lower bound which still suffices for locating the most positive definite element.

Let us emphasize that computing values of V at random points of S2n−1 can be expected to ap-

proximate the image poorly. (Numerical experiments support this in the case of numerical range of

a matrix.) The boundary of the image is more accessible. This is due to the fact that for the convex

hull of the image we can find support planes by computing extreme eigenvalues and corresponding

eigenvectors of Hermitian matrices; see Algorithm 1. Recall that a support plane of a closed set has

at least one common point with the set such that the entire set lies in one of the two half-spaces

determined by the plane.

Algorithm 1 Computing a boundary point of the image of V.

1: Choose a unit vector u = (u1, . . . , uk) and set V = ∑k
j=1 ujVj

2: Compute an extreme eigenvalue and respective unit eigenvector x of V

3: Set p = (x∗V1x, . . . , x
∗Vkx)

Observe that the vector p is on that part of the boundary of the image of V which intersects the

boundary of the convex hull of the image of V.

In the algorithm, there are two alternatives for the extreme; either the smallest or the largest

eigenvalue of V . We denote by λ(u) the smallest. (Clearly, λ(u) > 0 if and only if V is positive definite.)

In both cases,⎧⎨⎩(t1, . . . , tk) :
k∑

j=1
uj(tj − pj) = 0

⎫⎬⎭ (3.7)

yields a support plane of the image of V; see Fig. 3.1(a). It is noteworthy that with the Hermitian

Lanczos method, numerical computation of the extreme eigenvalues and corresponding eigenvectors

is inexpensive for sparse matrix subspaces. 14 For the Hermitian Lanczos method, see [25]. These are

readily programmed, e.g. in Matlab.

3.2. Computational geometry for the convex hull of the joint numerical range

Denote by F ⊂ Rk the convex hull of the image of V and by Sk−1
R = {u ∈ Rk : ‖u‖ = 1} the set

of unit vectors in Rk . By executing Algorithm 1, for any u ∈ Sk−1
R we can compute λ(u) ∈ R and a

boundary point p ∈ F such that

λ(u) = uTp = min
t∈F uT t. (3.8)

A graphical illustration of this is given in Fig. 3.1(a). For the compact set F , its dual cone is defined as

F∗ = {t ∈ Rk : pT t � 0 for all p ∈ F}.
Agraphical illustration of a dual cone in twodimensions is given in Fig. 3.1(b). Notice that the boundary

lines of F∗ are perpendicular to the opposite boundary lines of the smallest convex cone containing F .

14 A matrix subspace is sparse if its members are sparse with a common sparsity pattern.
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Fig. 3.1. A k = 2 dimensional F (thick outline). The origin is marked with a circle.

For a Hermitian matrix subspace V , we are interested in solving the minimization problem

max λmin(V)

s.t. V ∈ V
V � 0 (equivalent to λmin(V) � 0)

‖V‖F = 1,

(3.9)

whereλmin(V) denotes the smallest eigenvalue of a Hermitianmatrix V . (The norm constraint ‖V‖F =
1 guarantees that we have a bounded solution.) If V1, . . . , Vk is an orthonormal basis of V , then (3.9)

is equivalent to

max λ(u)

s.t. u ∈ F∗ (equivalent to λ(u) � 0)

‖u‖ = 1

(3.10)

with V = ∑k
i=1 uiVi. The strict feasibility problem (3.9) means locating the most positive definite

matrix in V . The strict feasibility problem (3.10) means locating the element u ∈ Sk−1
R satisfying

vTu > 0 for all v ∈ F , as given in Definition 3.3 in terms of the corresponding hyperplane. Observe

that the latter problem (3.10) can also be seen as a “dual” of the convex optimization problem

min ‖p‖
s.t. p ∈ F

(3.11)

under the assumption 0 /∈ F .

Theorem 3.7. If p′ solves (3.11), then u′ = p′/‖p′‖ solves (3.10) with λ(u′) = ‖p′‖.
Proof. If λ(u′) = pTu′ < ‖p′‖ for some p ∈ F , then there exists a point on the line segment between

p and p′ closer to the origin than p′, which is a contradiction. Therefore λ(u′) = ‖p′‖. In addition, for

any u ∈ Sk−1
R ,

λ(u) = pTu � (p′)Tu � ‖p′‖ = λ(u′),
for some p ∈ F , which proves the claim. �
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From Theorem 3.7 we can conclude that for any feasible u ∈ Sk−1
R and p ∈ F holds

λ(u) � λ(u′) = ‖p′‖ � ‖p‖ (3.12)

and therefore any pair of primal and dual feasible points (p, u) can be used to bound the optimal values

in (3.11) and (3.10).

In the next section we devise methods to so solve the computational geometric problems (3.10)

and (3.11) relying, in essence, only on a “least eigenvalue solver”, i.e., using Algorithm 1 we assume

that for a given u ∈ Sk−1
R we can generate λ(u) and p ∈ F such that λ(u) = pTu.

4. Algorithms

Next algorithms for solving the positive definiteness problems are devised.

4.1. Perceptron algorithm for feasibility

The strict feasibility problem relatedwith (3.10) consists of finding a unit vector u such that pTu > 0

for all p ∈ F . Provided that the problem is strictly feasible, that is, at least one suchu exists (i.e. 0 /∈ F), it

can be found using a simple method known as the perceptron algorithm, which is a general method for

finding a separating hyperplane between two arbitrary subsets of Rk . Algorithm 2 shows one possible

way to solve the strict feasibility problem related with (3.10) using the perceptron algorithm. The

algorithm progresses by repeatedly updating a single vector, ũ which corresponds to the normal of a

hyperplane {t ∈ Rk : tT ũ = λ} that should separate the origin from the set F with some λ > 0. Step

5 of the algorithm finds a point pj ∈ F , that is on the wrong side of the current hyperplane and step 6

corrects this by tilting the hyperplane normal ũj towards pj . Namely,

pTj ũj+1 = pTj (ũj + pj) = pTj ũj + ‖pj‖2 > 0,

where equality pTj ũj+1 = 0 is excluded by the fact that pTu = ‖p‖ if and only if u and p are the

pair of primal and dual solutions. The use of Algorithm 2 is best justified by the following theorem,

establishing the convergence of the algorithm under minimal assumptions. The proof is adapted to

our setting from [14].

Algorithm 2 Perceptron algorithm for finding a unit vector in the interior of F∗.
1: Set j = 0 and ũ1 = V(x) for an arbitrary x ∈ S2n−1

C
2: repeat

3: Increase j

4: Set uj = ũj
‖ũj‖

5: Compute pj ∈ F such that λ(uj) = pTj uj

6: Set ũj+1 = ũj + pj
7: until λ(uj) > 0

8: return uj

Theorem 4.1 (Perceptron Convergence Theorem). Algorithm 2 will converge in at most maxp∈F ‖p‖2/
λ2(u′) steps, where u′ is the solution to (3.10) such that λ(u′) > 0.

Proof. Let u′ be the solution to (3.10) and λ(ui) = pTi ui � 0 for i = 1, . . . , j − 1. Then, for any

i = 2, . . . , j, holds

‖ũi‖2 = ‖ũi−1‖2 + 2ũTi−1pi−1 + ‖pi−1‖2 � ‖ũi−1‖2 +max
p∈F ‖p‖

2
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and hence ‖ũj‖2 � jmaxp∈F ‖p‖2. On the other hand for any i = 2, . . . , j we have

ũTi u
′ = ũTi−1u′ + pTi−1u′ � ũTi−1u′ + λ(u′)

which yields ũTj u
′ � jλ(u′). Thereby√

jmax
p∈F ‖p‖ � ‖ũj‖ � ũTj u

′ � jλ(u′),

that is, j � maxp∈F ‖p‖2/λ2(u′). �

Let us mention that the perceptron algorithm is used, in a bit different manner, to locate a positive

definite element in Hermitian matrix subspaces in [28]. This subject has also been studied in [30].

4.2. Ellipsoid algorithm

The problem (3.10) is an optimization problem on the (k− 1)-sphere Sk−1
R and thereby not as such

a convex optimization problem in Rk . However, some standard convex optimization techniques may

still be applied to the problem. In what follows, an ellipsoid algorithm is devised to solve the task.

To this end, consider an ellipsoid

E = E(A, t) = {v ∈ Rk : (v− t)TA−1(v− t) � 1},
where A ∈ Rk×k is positive definite and t ∈ Rk is the center of E . Assume that E contains an optimal

point u′ ∈ Rk of an optimization problem. If c ∈ Rk and β ∈ R are such that cTu′ � β , then also

E ∩ Hc,β = E ∩ {v ∈ Rk : cTv � β}
contains the solution. Define

α = β − cT t√
cTAc

. (4.1)

If α = 0, the center of the ellipsoid is on the border of the half-space Hc,β . If α > 1, the intersection

is empty and if α < −1, then E ⊂ Hc,β [13].

For any 1 > α > −1/k, it is possible to construct an updated ellipsoid

E ′ = E(A′, t′),
where

t′ = t − 1+kα
k+1 b, b = −Ac√

cT Ac
,

A′ = k2(1−α2)
k2−1

(
A− 2(1+kα)

(k+1)(1+α)
bbT

)
,

(4.2)

such that E ′ ⊃ E ∩ Hc,β and the volume of E ′ is strictly less than that of E [13]. If α � 0, then

volume(E ′) � e
−1
2k volume(E)

[8]. This leads to the iterative algorithm known as the (deep cut) ellipsoid algorithm [13]. It consists of

finding an initial ellipsoid E0, such that u′ ∈ E0 and then constructing a sequence (Ej) of ellipsoids,

where Ej+1 is constructed from Ej using (4.2). Such an update is possible if, for each Ej , one is able to

find a half-space Hcj,βj
, for which the corresponding αj , as defined in (4.1) satisfies αj > −1/k. If, in

addition, αj � 0 for all j, then the solution u′ is contained in a sequence of ellipsoids Ej whose volume

tends geometrically to zero.
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For the problem (3.10) an ellipsoid algorithm can be devised as follows. Initially, set t0 = 0 and

A0 = I. For any j > 0, set uj = tj/‖tj‖ if ‖tj‖ > 0. Otherwise, pick an arbitrary uj ∈ Sk−1
R . As shown

later, it can be ensured that ‖tj‖ � 1. Let

λbest
j = max({0} ∪ {λ(ui), i = 0, 1, . . . , j}) (4.3)

and pj ∈ F be such that λ(uj) = pTj uj . By setting cj = pj , βj = λbest
j we get

βj − cTj tj = λbest
j − ‖tj‖pTj uj = λbest

j − ‖tj‖λ(uj) � 0,

which means that αj � 0. This corresponds to a valid cut because

cTj u
′ = pTj u

′ � λ(u′) � λbest
j = βj.

One may then construct an ellipsoid E(Ãj+1, t̃j+1) according to (4.2). If ‖t̃j+1‖ � 1, set tj+1 = t̃j+1
and Aj+1 = Ãj+1 and continue.

In case ‖t̃j+1‖ > 1, it one must conduct a norm cut by setting

c̃j = −t̃j+1/‖t̃j+1‖, β̃j = −1 (4.4)

and then cutting the ellipsoid E(Ãj+1, t̃j+1) with the half-space H
c̃j,β̃j

according to (4.2). The norm cut

procedure can be repeated several times, if necessary, in order to have ‖tj+1‖ < 1.

Regarding the relative error of the solution, the error bounds given in [13] cannot be used since

the value λ(uj) is not an evaluation of the objective function at the center tj of the ellipsoid. For the

problem (3.10), strict error bounds are given by

λbest
j =: λ(ubestj ) � λ(u′) � Pbestj := min

0�i�j
‖pi‖. (4.5)

Another upper bound is 15

λ(u′) � pTu′ = pT t + pT (u′ − t) � pT t +
√
pTAp

for any p ∈ F and E(A, t) � u′. Therefore set

λmax
j = min(pTj tj +

√
pTj Ajpj, ‖pj‖, λmax

j−1 ), (4.6)

where λmax
0 = ∞. With these, the resulting ellipsoid algorithm is summarized as Algorithm 3.

Algorithm 3 Deep cut ellipsoid algorithm to solve (3.10).

1: Set j = 0, A0 = I, t0 = 0, pick u1 ∈ Sk−1
R

2: repeat

3: Increase j

4: Compute pj ∈ F such that λ(uj) = pTj uj
5: Compute tj, Aj from (4.1) and (4.2), applying norm cuts (4.4) if necessary

6: Update λbest
j , λmax

j and ubestj according to (4.3), (4.5) and (4.6)

7: Set uj+1 = tj/‖tj‖
8: until λmax

j − λbest
j < ε (or some other stopping criterion is satisfied)

9: return ubestj

15 If v = arg maxv∈E(A,0) pT v, then∇v(p
T v− μvTA−1v) = 0 ⇔ v = 1

2μ
Ap, and from vA−1v � 1 we get pT v =

√
pTAp.
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4.3. Accelerated ellipsoid algorithm

The principles described in Section 4.2 can be used to construct other cutting-plane-basedmethods

to solve the problem (3.10). For instance, the ellipsoid method may be sped up by storing multiple

points pj computed so far. Namely, for any p ∈ F and j � 0 holds

pTu′ � λbest
j . (4.7)

If
λbest
j −pT tj√

pTAjp
> −1/k, then (4.7) defines a cut which can be used to decrease the volume of the ellipsoid

when updated according to (4.2). In theory, an ellipsoid E(A, t) may be cut during the same iteration

until it satisfies

λbest
j − pTi t√

pTi Api

� −1/k, ∀0 � i � j and
‖t‖2 − ‖t‖√

tTAt
� −1/k.

It may not be feasible to find such an ellipsoid exactly, but an approximation may be computed by

iterating and cutting over all pi, i = 0, 1, . . . , j multiple times.

Algorithm 5 describes a relatively straightforward multiple cutting-plane scheme that can be used

to speed up the ellipsoid algorithm if the execution time is dominated by the eigenvalue computations.

It works as Algorithm 3, except that the ellipsoid is also cut with (at most M2) constraints from the

previous eigenvalue computation rounds. As in the initialization phase, the cutting is repeated over

multiple (M1) rounds. On lines 18–19 the stored constraints are pruned so that only the ones that

contributed with the deepest cuts (greatest α) remain. The upper bound λmax is updated whenever

possible.

A way to further speed up the method is to use additional inequalities (3.3) to construct an initial

ellipsoid. For example, a necessary condition for the positive semidefiniteness of a matrix V ∈ V is

that all its diagonal elements are nonnegative. This yields n initial linear constraints in Rk . Algorithm

4 describes a method to compute an initial ellipsoid E(A0, t0) for Algorithms 3 and 5. This method

performsM0 rounds of cutting the ellipsoid by imposing the diagonal positivity requirement.

Algorithm 4 Initialization scheme for ellipsoid algorithms for the problem (3.9).

1: Set A← I, t← 0

2: for i = 1, . . . , n do

3: Define di = [(V1)ii, . . . , (Vk)ii]T
4: end for

5: for j = 1, . . . ,M0 do

6: for i = 1, . . . , n do

7: Calculate α for the diagonal equation dTi t � 0 according to (4.1)

8: Update A and t according to (4.2) if α > −1/k
9: end for

10: Apply a norm cut (4.4) to A and t if ‖t‖ > 1

11: end for

12: return A,t

5. Numerical experiments

The difficulty of the problem (3.10) is closely related to λ(u′), the distance between the origin and

F , and the size of F . With respect to these parameters, we designed easy and challenging experiments.

This makes the construction of matrix subspaces V ⊂ Cn×n somewhat involved.
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Algorithm 5 Accelerated ellipsoid algorithm to solve (3.10).

1: Set A← I, t← 1 or calculate them using Algorithm 4

2: Initialize P← [ ]with an empty matrix

3: repeat

4: Set u← t/‖t‖ if t �= 0 or an arbitrary u ∈ Sk−1
R otherwise

5: Compute p ∈ F such that λ(u) = pTu, store P← [p P]
6: Update λbest, ubest and λmax according to (4.3), (4.5) and (4.6)

7: Let m be the number of columns in P

8: Initialize αi = −1 for i = 1, . . . ,m
9: for j = 1, . . . ,M1 do

10: for i = 1, . . . ,m do

11: Let p be the ith column of P

12: Calculate α for the cutting-plane pT t � λbest

13: If α > −1/k, update A,t and λmax

14: Set αi ← max(αi, α)
15: end for

16: Apply norm cut (4.4) to A and t if ‖t‖ > 1

17: end for

18: Sort the columns of P to descending order of αi’s

19: Drop all i columns with αi < −1/k, keeping at mostM2 columns

20: until λmax − λbest < ε (or some other stopping criterion is satisfied)

21: return ubest

Start with a Hermitian matrix subspace Ṽ spanned by the matrices V̂j = 1
2
(Aj + A∗j ), where each

Aj ∈ Cn×n, j = 1, . . . , k is a randombandmatrixwith normally distributed complex elements having

bandwidth 2j + 1. Band matrices are used because full random Hermitian matrices were observed

to produce V whose range seemed to resemble the k-ball. (This we regard as an unfounded bias.)

Obviously, matrix subspaces constructed in this way are sparse if k � n. These matrix subspaces

typically cannot be expected to contain positive definite elements (based on numerical experiments).

Therefore we translate the basis matrices to have feasible problems.

For any given b � 0, we construct a Hermitian matrix subspace V such that

min
p∈F ‖p‖ = b. (5.1)

First take any Hermitianmatrix subspace Ṽ with an orthonormal basis Ṽ1, . . . , Ṽk . Choose an arbitrary

unit vector u ∈ Rk and calculate a boundary point p corresponding to λ(u) = pTu for the convex hull

F̃ of the image of Ṽ. Then form

V ′j = Ṽj + (buj − pj)I

and orthonormalize to have V = span{V ′1, . . . , V ′k} = span{V1, . . . , Vk}, where the matrices

V1, . . . , Vk are orthonormal and (5.1) holds.

Based on this construction, for various n and k, two types of random problems are generated. The

size of the image of V is approximated by d = ‖p′ − p‖, where p′ is a boundary point corresponding

to λ(−u). Using this number d, easy problems with b = d
10

and challenging problems with b = d
1000

are generated.

The performance of Algorithm 2, Algorithm 3 and our accelerated Algorithm 5, initialized with

Algorithm 4, are compared. The performances are measured in terms of the number of iterations

(or equivalently, the number of eigenvalue computations) required to solve the problems. Each cell

is an average over at least ten runs with different random matrix subspaces V . As the parameters of

Algorithms 4 and 5we used (quite arbitrarily)M0 = 10,M1 = 3,M2 = 50. Algorithm 3was initialized

with u1 = V(x)/‖V(x)‖ for a random x ∈ S2n−1
C .
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Table 5.1

Average number of iterations needed to locate a positive definite matrix.

.

b k n Perceptron Ellipsoid Acc. Ellipsoid

10−1d 5 100 2.0 2.2 1.00

10−1d 5 1000 1.1 1.1 1.00

10−1d 5 5000 1.1 1.1 1.00

10−1d 15 100 5.3 6.1 1.11

10−1d 15 1000 1.1 1.1 1.00

10−1d 15 5000 1.00 1.00 1.00

10−1d 100 100 6.4 8.3 2.1

10−1d 100 1000 5 6 1.5

10−3d 5 100 79 23 8.7

10−3d 5 1000 17 22 8.1

10−3d 5 5000 15 22 8.1

10−3d 15 100 294 92 25

10−3d 15 1000 97 88 23.9

10−3d 15 5000 24 89 24

10−3d 100 100 1041 438 43

10−3d 100 1000 652 370 35

Table 5.2

Average number of iterations needed to solve (3.9) to the relative precision 10−6.

.

b k n Ellipsoid Acc. Ellipsoid

10−1d 5 100 193 30.3

10−1d 5 1000 217 31.2

10−1d 5 5000 223 32

10−1d 15 100 1500 140

10−1d 15 1000 1734 148

10−1d 15 5000 – 149

10−1d 100 100 – 6125

10−1d 100 1000 – 5764

10−3d 5 100 265 41.5

10−3d 5 1000 262 40.7

10−3d 5 5000 258 41

10−3d 15 100 2909 168

10−3d 15 1000 2903 166

10−3d 15 5000 – 166

Table 5.1 compares the performance of all three algorithms on the strict feasibility problem, i.e.,

the problem of locating a positive definite element in a Hermitian subspace. In Algorithms 3 and 5

this is achieved by setting the stopping criterion to λbest > 0. In case b = 10−1d, the initial guess

(calculated with Algorithm 4 or as V(x)/‖V(x)‖) was often enough to have a valid solution and the

corresponding average iteration counts are therefore close to 1. With Algorithm 2, the iteration counts

varied considerably within a class of problems with same parameters (e.g. from 9 to occasionally

hundredswith k = 15, n = 1000, b = 10−3d). The iteration counts for Algorithms 3 and 5weremore

stable in all problems, primarily depending on b and secondarily on k.

Table 5.2 compares the performance of Algorithms 3 and 5 on the least eigenvalue maximization

problem (3.9). A relative stopping criterion λmax−λbest

λmax < ε = 10−6 was used. The problems marked

with a dash took too long to solve. The results indicate that the problem (3.9) can be solved reasonably

efficiently in matrix subspaces with low dimension k, if solving the extremal eigenvalue problems is

feasible. Otherwise the iteration count does not seem to havemuch dependence on n. The difficulty of

solving themaximization problem seems to primarily depend on the dimension k (and not somuch on

b). The average CPU time needed to solve the problemusing Algorithm5with b = 10−3d, k = 15, n =
1000 on the testworkstation16 was 24 s such that 85% of it was spent inside the least eigenvalue solver

routine (Matlab’s eigs function).

16 2.66 GHz Intel Core 2 Quad Q8400, 3.2 GB RAM,Matlab R2010b on Debian GNU/Linux.
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Appendix A. The case dim V = 2

The two dimensional case is instructive, classical and can be solved satisfactorily. For the two

dimensional case, discussed in terms of matrix pairs, see [23]. See also [16].

Denote by F(M) the numerical range of a matrix M ∈ Cn×n.

TheoremA.1 [12,1]. Assume thematrices V1 and V2 span aHermitianmatrix subspace V . Then V contains

possess positive definite if and only if 0 �∈ F(V1 + iV2).
17

The locationof thenumerical rangedetermines thepositivedefinite linear combinations completely

as follows. (Recall that the numerical range is convex.)

Corollary A.2. Let θ1 � θ2 be the angles of the smallest cone centered at the origin containing F(V1+ iV2)

with θ2 − θ1 < π . Then, with γ = θ2+θ1
2

, exactly

cos(γ − θ)V1 + sin(γ − θ)V2 (A.1)

for θ ∈ (− 1
2
(π + θ1 − θ2),

1
2
(π + θ1 − θ2)) are positive definite.

For a graphical illustration, see Fig. 3.1(b), where the dashed lines yield the cone of the corollary.

It is the dual cone in Fig. 3.1(b) which is of importance in quantifying the size of V ∩ S++. For an
isometric isomorphismbetween theparameter spaceR2 andV , assume thatV1 andV2 areorthonormal

with respect to the inner product (2.1). The matrices

cos(θ2 − π/2)V1 + sin(θ2 − π/2)V2 and cos(θ1 + π/2)V1 + sin(θ1 + π/2)V2

determine the boundaries of the cone V ∩ S++. This angle is independent of the matrices V1 and

V2 spanning V , as long as they are orthonormal. Interpreted in terms the dual cone, see Fig. 3.1(b). If

θ2 − θ1 ≈ π , then the dual cone is needle-like. Then and only then positive definite elements occupy

a tiny portion in V .
Hence, analogously, in the general case of dim V = k, the size of the dual cone needs to be compared

against the solid angle of the sphere in Rk which is

kπ k/2


(k/2+ 1)
,

where 
 denotes Gamma function.

Appendix B. Related problems

Locating a positive definite element in a Hermitian matrix subspace resembles a class of convex

optimization problems known as semidefinite programs, which can be formulated as

min cTu

s.t. V0 +∑k
i=1 uiVi � 0,

(B.1)

where V0, . . . , Vk are Hermitian matrices. The feasibility problem of finding a positive semidefinite

matrix from an affine Hermitian subspace is also known as a linear matrix inequality. Semidefinite

programs and linear matrix inequalities for linear subspaces (that is V0 = 0) are not much of interest

since they are either trivially solved by the zeromatrix or unbounded. The problem (3.9) is not a special

case of a semidefinite program, but an optimization problem on Sk−1
R .

17 In [4, p.76] a related result is called Finsler’s theorem.
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