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1. Introduction

Appearing in diverse applications, positive definiteness is a central notion for square matrices
and operators; see, e.g. [19,5]. For related computational matters, see [15, Chapter 4.2]. For matrix
subspaces, the concept of positive definiteness is a far more delicate issue. Matrix subspaces with
Hermitian and, preferably, positive definite elements arise in factoring problems and in large scale
numerical linear algebra of preconditioning [21,9].% In both cases, the existence of such elements
reflects fundamental aspects of operators. The challenge with matrix subspaces lies, not least com-
putationally, in the fact that the subset of positive definite matrices can be a tiny, needle-like set.
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This paper is concerned with making this computational geometrically more quantitative. Ways to
locate positive definite elements are devised. In a certain sense the most positive definite element is
found.

Focusing on two dimensional matrix subspaces, first results regarding the existence of positive
definite elements are due to Finsler [12]. (For related computations, see [10,18].) The three dimensional
case is related with the investigations of Binding [6]. Later, in semidefinite programming, a similar task
defines the feasibility problem of semidefinite programs [27]. Quantitatively, for inclusion regions, we
employ strictly positive maps of the simplest possible type. Denote by V a matrix subspace of C"*"
over R whose elements are Hermitian. In terms of an orthonormal basis V1, ..., Vi of V, this leads us
to consider the map

x—> (X*Vix, ..., x*Vix) with ||x|]| =1 (1.1)

whose image, i.e., the joint numerical range, is seemingly the most tangible object to study positive
definiteness of V. Traditionally, its convexity has been an object of interest; see [17] and references
therein. It is noteworthy that the convexity of the image in a basis of V implies convexity in any of its
basis. Thereby we are primarily dealing with a property of the matrix subspace V rather than that of
the map (1.1).

In this paper we devise methods to approximate the joint numerical range with a small number of
half-spaces.# In this sense the problem becomes computational geometric. In particular, V possessing
positive definite elements is information expressible in terms of a single half-space whose boundary
contains the origin. This interpretation leads to the notion of most positive definite element of V
expressed by the hyperplane containing the origin which is farthest away from the joint numerical
range. To generate half-spaces, we use the fact that the structure of maps of the form (1.1) is invariant
under orthogonal transformations. This combined with extreme eigenvalue computations to locate
boundary points of the convex hull of the image yields relatively sharp information on the location of
the image.

It is a natural task to find the distance of the joint numerical range from the origin, yielding an
orthogonal invariant of V. We solve the problem for the convex hull of the image. Equivalently, we look
for a positive definite element of V of the Frobenius norm one having the maximal least eigenvalue.
Two algorithms proposed to solve the problem are based on the ellipsoid algorithm used in convex
optimization. These methods allow us to locate the most positive definite element in the prescribed
sense and to compute the distance of the convex hull of the joint numerical range from the origin. For
the easier feasibility problem of locating a positive definite element in V, the perceptron algorithm is
suggested as a simpler alternative.

The paper is organized as follows. In Section 2 fundamentals of Hermitian matrix subspaces are
presented, including examples involving positive definiteness. In Section 3 geometric aspects of lo-
cating positive definite elements of a Hermitian matrix subspace are developed. Algorithms to solve
the maximal least eigenvalue problem for locating positive definite elements are devised in Section 4.
In Section 5 numerical experiments are presented to illustrate the performance of the algorithms. In
Appendix A the classical case of dim V = 2 and Finsler’s result are covered. Related problems involving
positive definite matrices are discussed in Appendix B.

2. Hermitian matrix subspaces and positive definiteness

Denote by V a matrix subspace of C"*" over R.> To avoid confusion, throughout the paper also
C"™ ™ is regarded as a vector space over R. Then in V the standard inner product

(V,W) = Retr W*V (2.1)

4 Ahalf-space (open) in R¥ is defined as {(t1, ..., ty) : ujt; + - - + ugty > c} forafixed (uy, ..., ux) € Rfandc € R.
> If Vs initially a matrix subspace of C"*" over C, then it can be treated as a matrix subspace over R by doubling the dimension.
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is used. The respective Frobenius norm is denoted by || - ||r. Regarding our interests, the so-called non-
singular matrix subspaces are of central relevance [21,9]. A matrix subspace is said to be nonsingular
if it contains invertible elements. Among matrix subspaces, nonsingularity is a generic property [22].

For additional properties, the set of Hermitian matrices # is of dimension n? in C"*™. The notion
of Hermitian matrix subspace is defined in a natural way as follows.

Definition 2.1. A matrix subspace V of C"*" over R is Hermitian if all its elements are Hermitian.

The Hermitian elements of a matrix subspace V can be readily recovered by computing the nullspace
of the linear map

Vi— V—V* (2.2)

from V to C™*". We call this nullspace the Hermitian matrix subspace of 1.%

Equivalence is a fundamental notion for matrix subspaces which can be regarded as a relaxation.
Namely, matrix subspaces V and W are said to be equivalent if there exist invertible matrices X, Y €
C™™ such that

W =Xyy L.

Clearly, the Hermitian structure is preserved in congruence, i.e., when Y~! = X*. For a necessary and
sufficient condition on a matrix subspace V to be equivalent to a Hermitian matrix subspace, suppose
Vi, ..., Viisits basis. Consider the problem of finding out, whether the matrices XV, Y1, . . ., XV, Y1
are Hermitian for some invertible matrices X and Y. To solve this, compute the intersection of the
nullspaces of the linear maps

M —> VJ-M—M*V]-*

on C™" forj =1, ..., k.If there exists an invertible element M in the intersection, then X and Y are
determined by the condition Y~!X~* = M. When k = 2, this problem is of interest in the generalized
eigenvalue problem.

Denote by S the convex cone of positive definite matrices in C"*". (See, e.g. [2, Il Sec. 12-15] for
the convexity of S;4.) Asis well-known, S 4 and its closure are of importance in convex optimization,
see, e.g. [7].

Definition 2.2. A Hermitian matrix subspace V is said to possess positive definite elements if V N
Syt # 0.

For a classical two dimensional example, consider the generalized eigenvalue problem. Then it is
of central relevance to know if the associated matrix subspace possesses positive definite elements;
see [25, Chapter 15.3]. Further examples follow.

Example 1. Denote by 7 the set of Hermitian matrices. An invertible matrix A € C"*" is the product
of a Hermitian matrix and a positive definite matrix if and only if the Hermitian subspace of ¥ = A~
contains positive definite elements. (Of course, A is Hermitian if and only if V contains the identity.)
This is a classical notion, such a matrix is said to be symmetrizable [4, p. 67].

Example 2. In view of preconditioning very large linear systems, assume having an invertible sparse
matrix A € C"*". Consider the homogeneous linear system

AW — W*A* = 0. (2.3)

6 To fully measure how much V deviates from being a Hermitian matrix subspace, inspect the singular values of the linear map
(2.2).
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We are interested in those solutions W € C™*" which are sparse.” Let \’ denote their span. Then one
looks for the positive definite elements of the matrix subspace AW by the fact that with the respective
products, the conjugate gradient [15, Chapter 10.2] method can be executed.

It is noteworthy that Hermitian matrix subspaces possessing no positive definite matrices can be
high dimensional. For example, consider a matrix subspace whose every member has the (1, 1)-entry
equaling zero.

Whenever nonempty, V N S44+ is an open subset of V by the fact that if V € vV N Sy, then
V+E e VNS, forE € Vsmall enough in norm.® Hence the convex cone V N S, | is a submanifold
of V of the same dimension. This is useful, although hardly completely satisfactory information in
practice.

Example 3. The set of diagonal Hermitian matrices in C>*? is isometrically isomorphic to R in a
natural way. The positive definite elements correspond to

{(di,dy,d3) e R’ : d; >0, j=1,2,3}. (2.4)

Let V be a two dimensional subspace of R3 (i.e., a plane through the origin) whose intersection with
(2.4) is a sharp needle-like set.

To express this in terms of a volume, on the tangent spaces of V N Sy we employ the standard
inner product (2.1). Thereby ¥V N S+ is regarded as a Riemannian submanifold of C™n 9 Because
the intersection can be a very small set, any purely random process to decide whether V possesses
positive definite elements is highly unlikely to be successful. It is informative, for comparison, to bear
in mind that the set of Hermitian matrices is of dimension n? in C"™ " of which S, occupies just a
2]—,1 portion.

The question of existence of positive semidefinite elements and estimating their volume can be
turned into a problem in real algebraic geometry. For the minimum dimension of the underlying space,
denote by £ the set of lower triangular matrices with real diagonal entries, regarded as a subspace of

C™" gver R of dimension n?.

Theorem 2.3. To the set of positive semidefinite elements of a Hermitian matrix subspace vV C C"™*"
corresponds a real homogeneous variety of £ C C™*",

Proof. By the Cholesky factorization, a Hermitian matrix H is positive definite if and only if H = LL*
for a lower triangular matrix with a positive diagonal. Moreover, if L is lower triangular, it readily
seen that LL* positive definite if and only if L has nonzero diagonal entries. Otherwise LL* is positive
semidefinite.

For the construction, with respect to the inner product (2.1), denote by P the orthogonal projector
on H onto V. To characterize the positive semidefinite elements of V, define

L+— (I—P)LL* (2.5)

from £ to H. This equals zero if and only if LL*, which is positive semidefinite, belongs to V. Let
Mj, ..., M; be an orthonormal basis of the orthogonal complement of V in H. Then L is mapped to
zero by (2.5) if and only if

(LL*,Mj) =0 forj=1,...,1. (2.6)

7 Clearly, there are sparse solutions as W = A* illustrates. Then AA* leads to the normal equations which is not attractive because
of the squaring of the condition number. Therefore other sparse solutions are more of interest.

8 For not too large n, to test whether V. € v N S+, itis advisable to attempt to compute a Cholesky factorization [15, p. 146].

9 Itis somewhat exceptional to use the inner product (2.1) with the manifold of positive definite matrices. For the usual Riemannian
geometry of nonpositive curvature, see [5, Chapter 6].
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Since these are homogeneous polynomial maps of degree two in the entries of L separated into real
and imaginary parts, to the positive semi-definite elements of V corresponds a homogeneous variety
of £. O

There are n> — dim V equations. (For computational aspects of real algebraic geometry, see [3].) As
an extreme, the corresponding variety is the whole £ if and only if V = H. Involving n® real variables,
solving (2.6) does not appear very realistic unless n is small. On the positive side, though, the degrees
of the polynomial equations are just two.

The construction has the advantage that the elements mapped from this variety according to L +—
LL* to the set of positive definite elements are immediately recovered.

Corollary 2.4. V does not possess positive definite elements if and only if the variety contains only singular
elements.

3. Locating positive definite elements geometrically

There are several necessary and sufficient conditions guaranteeing positive definiteness of a Her-
mitian matrix [19, Chapter 7]. For a Hermitian matrix subspace V, an analogous problem consists of
locating positive definite elements, if any. (If V is not Hermitian, then start by computing its Hermitian
matrix subspace.) As just described, with matrix subspaces the challenge lies in the fact that the subset
of positive definite matrices can be needle-like.

3.1. Positive definiteness and the joint numerical range

To locate possible positive definite elements for k > 2, an approach can be based on polynomial
inequalities. (For k = 2, see Appendix A.) To this end, suppose Vi, ..., Vi is a basis of a Hermitian
matrix subspace V and set

V=V(t, ..., t) =tV + - + Vg (3.1)

with tj € Rforj = 1,..., k. A Hermitian matrix is positive definite if and only if all its leading
principal minors are positive; see, e.g. [19, p. 404]. 10 This gives rise to n polynomial inequalities in the
parameters tq, . .., ty for determining V N S .

Clearly, even for moderate n, dealing with the determinants of large leading principal submatrices
is computationally very unappealing. In particular, it is not the simplest way to inspect the structure
of YN S_|__|_.

Regions including V N S 4 can be determined more economically with the help of strictly positive
maps. For matrix analysis of positive maps, see [5, Chapter 2] and references therein.

Definition 3.1. Alinearmap ® : C™" — C!*!isstrictly positive if ®(A) is positive definite whenever
Ais.

For example, the linear map on C"*" to any leading principal submatrix is strictly positive.
Combine (3.1) with a strictly positive linear map @ and set

(t1, ..., t) —> det ®(V(tq, ..., tr)). (3.2)
This is a homogeneous polynomial of degree I. For the volumes, it is natural to choose the basis
Vi, ..., Vi to be orthonormal, so that the linear map (3.1) yields an isometric isomorphism between

the parameter space R¥ and V. This is assumed in what follows. To have regions including V N S, 4,
we are interested in those parameter values for which the function (3.2) is positive.

For linear inequalities, inexpensive to generate, consider the strictly positive linear map ®,(A) =
x*Ax for any fixed x € C". This inserted into (3.2) gives rise to the open half-space in R¥ (through the
origin) defined as

10" Also called Sylvester's criterion.
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k
{(tr, ..., t) © D (X*Vix) tj > 0}. (3.3)
j=1

For a necessary condition the parameters must satisfy, any intersection of such half-planes yields an
unbounded convex polytope in the parameter space (as long as there are no contradicting inequalities).

What is the best we can do with a small number of half-spaces? With an orthonormal basis
Vi, ..., Vi of V, define

V(x) = X*Vix, ..., x*Vix) (3.4)

forx € S*" 1 = {x € C" : ||x|| = 1}. Clearly, V is smooth having values in R¥. Without any loss
of generality, we allow only orthonormal bases of V. Then we have orthogonal invariance in the sense
that UV(x), where U € RK*¥ is an orthogonal matrix, is of the same form as (3.4) but in another
orthonormal basis of V. And conversely, to any orthonormal basis corresponds such an orthogonal
matrix U.

Example 4. LetV; be simultaneously unitarily diagonalizable. (That s, UV;U* are diagonal for a unitary
matrix U, forj = 1, ..., k.) Then the image of (3.4) is a convex polytope.

The image of V is called the joint numerical range of the matrices Vq, ..., Vi. With respect to the
image, a single half-space determines the existence of positive definite elements as follows.

Proposition 3.2. A Hermitian matrix subspace V possesses positive definite elements if and only if the
image of (3.4) is contained in an open half-space whose boundary contains the origin.

Proof. Suppose there is a positive definite linear combination 211;1 u;Vj. Assume ZJ’-‘:1 uj2 = 1. Then

consider UV(x) where U € R¥*K is an orthogonal matrix having (u1, ..., ux) as its first row. This
is just (3.4) represented in another orthonormal basis. By construction, its first component is strictly
positive, so that the image is contained in an open half-space.
For the converse, if the image is contained in an open half-space, then for some unit vector (uq, .. .,
k L vERY/. . . . k RV
uk) and for every nonzero x holds > i ; ujx*Vjx > 0. Thereby the linear combination > ;_, u;Vj is
positive definite. [J

For a unit vector (uq, ..., ug), suppose the open half-space

{(t1, ..., t) © ugty + - - + ugty > 0}

contains the image of V. Then the positive definite matrix V = Z]’-‘:l u;Vj is said to correspond to the
hyperplane {(t1, ..., ty) : uit; +- - -+ ugty = 0}. This interpretation yields a way to define the most

positive definite element in terms of the hyperplane farthest away from the joint numerical range.

Definition 3.3. Assume a Hermitian matrix subspace V possesses positive definite elements. The most
positive definite element corresponds to the hyperplane containing the origin having the maximum
distance from the image of V. !

By the fact that the image of V is connected, the hyperplane in question is outside the convex hull
of the image. Thereby the notion is well-defined. Interpreted in terms of the corresponding positive
definite elements, the most positive definite element of the definition is hence defined as being the
one solving the minimization problem

1" This means maximizing MiNyeimage(v) MiNpey ||V — h|| over hyperplanes H containing the origin.
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max Amin(V)
st. Vevy
V > 0 (equivalent to Apjn (V) = 0)
IVIIF =1,

where Amin (V) denotes the smallest eigenvalue of a Hermitian matrix V. Consequently, we can alter-
natively regard our computational geometric problem as a problem in eigenvalue optimization. (For
eigenvalue optimization, see [24].)

In the case of dimV = 2 we are dealing with the numerical range of a matrix. Admitting many
extensions, (3.4) is among them [20, pp. 85-87] being perhaps the most natural one (except that no
assumptions on orthonormality are made). Traditionally, its convexity has been an object of interest,
leading to the respective notion for matrix subspaces.

Definition 3.4. A Hermitian matrix subspace V is said to have convex numerical range if the image of
the map (3.4) is convex.

This is well-defined by the fact that the image of (3.4) being convex in a basis V¢, ..., Vi of Vis
necessary and sufficient for being convex in any basis of V. This follows from composing MV (x) with
any invertible matrix M € R**k and recovering the corresponding map (3.4).

Establishing convexity is, in general, a tough problem for dim V > 2.In the case of dim V = 3 there
are some results [20, p. 86]. An interesting open problem (not considered here) is to identify cases in
which V having convex numerical range is a generic property among Hermitian subspaces of the same
dimension in C"*", The following is a consequence of Proposition 3.2.

Proposition 3.5. Suppose a Hermitian matrix subspace V has convex numerical range. Then vanishing of
(3.4) at a point is a necessary and sufficient condition on V not to possess positive definite elements.

For a Hermitian matrix subspace V, set

v(y) = ||£<r|l|i21 VLT, (3.5)

i.e., the distance of the image of V from the origin requiring the basis be orthonormal. Whether or
not V has convex numerical range, this is certainly a quantity of interest. (The Crawford number '? for
two, not necessarily orthonormal, Hermitian matrices is defined analogously.) In a way, v(V) yields
an opposite of the numerical radius which would correspond to taking the maximum instead. Recall
that the numerical radius of a matrix A € C"™" is w(A) = max;cF(a) |A|, where F(A) denotes the
numerical range of A.> (For its computation, see [29].)

Aminimizer yields a good candidate for constructing a positive definite element, yielding an optimal
solution in the following case.

Theorem 3.6. Suppose a Hermitian matrix subspace V has convex numerical range. If a unit vectorx € C"
satisfies v(V) = ||[V(x)|| > O, then

k X*ij
> ) V; (3.6)

j=1

is the most positive definite element of V.

12 Called the Crawford number of a Hermitian pair.
13" As a curiosity, a result by T. Ando states w(A) < 1 if and only if the V N Sy 4 # ¢ for a certain Hermitian matrix subspace. See
[5, Theorem 3.5.1].
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*\/.
Proof. Take the unit vector with the components u; = );(—‘3; Then, because of convexity, V(x) is the
nearest point to the hyperplane containing the origin with this normal vector. Consequently, because

of convexity, this hyperplane is farthest away from the joint numerical range. [J

In the next section an algorithm for computing the distance of the convex hull of the image of V
from the origin is devised. Thus, v(V) is computable in case V has convex numerical range. Otherwise
we obtain a lower bound which still suffices for locating the most positive definite element.

Let us emphasize that computing values of V at random points of S**~! can be expected to ap-
proximate the image poorly. (Numerical experiments support this in the case of numerical range of
a matrix.) The boundary of the image is more accessible. This is due to the fact that for the convex
hull of the image we can find support planes by computing extreme eigenvalues and corresponding
eigenvectors of Hermitian matrices; see Algorithm 1. Recall that a support plane of a closed set has
at least one common point with the set such that the entire set lies in one of the two half-spaces
determined by the plane.

Algorithm 1 Computing a boundary point of the image of V.

1: Choose a unit vector u = (uq, ..., ux) and setV = Z]’-‘:1 u;V;
2: Compute an extreme eigenvalue and respective unit eigenvector x of V
3: Setp = (x*Vix, ..., x*Vix)

Observe that the vector p is on that part of the boundary of the image of V which intersects the
boundary of the convex hull of the image of V.

In the algorithm, there are two alternatives for the extreme; either the smallest or the largest
eigenvalue of V. We denote by A (u) the smallest. (Clearly, A(u) > 0ifand only if V is positive definite.)
In both cases,

k
(t1, ..., ty) : zu]'(t]' —pj)=0 (3.7)
j=1

yields a support plane of the image of V; see Fig. 3.1(a). It is noteworthy that with the Hermitian
Lanczos method, numerical computation of the extreme eigenvalues and corresponding eigenvectors
is inexpensive for sparse matrix subspaces.® For the Hermitian Lanczos method, see [25]. These are
readily programmed, e.g. in MATLAB.

3.2. Computational geometry for the convex hull of the joint numerical range

Denote by F C R¥ the convex hull of the image of V and by Sﬁ_l = {u € R*: |lu|| = 1} the set

of unit vectors in R¥. By executing Algorithm 1, for any u € S{f{_l we can compute A(u) € Rand a
boundary point p € F such that

AMu) = qu = minu’t. (3.8)
teF
A graphical illustration of this is given in Fig. 3.1(a). For the compact set F, its dual cone is defined as
F*={teR":p't > 0forallp € F}.

A graphicalillustration of a dual cone in two dimensions is given in Fig. 3.1(b). Notice that the boundary
lines of F* are perpendicular to the opposite boundary lines of the smallest convex cone containing F.

14 A matrix subspace is sparse if its members are sparse with a common sparsity pattern.
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COMPUTATIONAL GEOMETRY OF POSITIVITY

(a) The support plane (solid line) and a (b) The boundary lines of the dual cone F*
boundary point p (cross) corresponding to di- (solid lines) and the smallest convex cone con-
rection v (a unit vector such that A(u)u = taining F' (dashed lines).

pTuu = 1 is the dashed line).

Fig. 3.1. A k = 2 dimensional F (thick outline). The origin is marked with a circle.

For a Hermitian matrix subspace V, we are interested in solving the minimization problem

max Amin(V)
st. Vevy
. (3.9)
V > 0 (equivalent to Apin (V) = 0)
IVIIF =1,

where Anin (V) denotes the smallest eigenvalue of a Hermitian matrix V. (The norm constraint ||V || =
1 guarantees that we have a bounded solution.) If V1, ..., V} is an orthonormal basis of V, then (3.9)
is equivalent to

max A(u)
s.t. u € F* (equivalent to A(u) > 0) (3.10)
Jull =1

with V = 2521 u;V;. The strict feasibility problem (3.9) means locating the most positive definite

matrix in V. The strict feasibility problem (3.10) means locating the element u € S{‘R_l satisfying

viu > 0forall v € F, as given in Definition 3.3 in terms of the corresponding hyperplane. Observe

that the latter problem (3.10) can also be seen as a “dual” of the convex optimization problem

min ||p||

31
st. peF ( )

under the assumption 0 ¢ F.
Theorem 3.7. Ifp’ solves (3.11), then v’ = p’/||p’|| solves (3.10) with A (u") = ||p’||.

Proof. If A(u') = p'u’ < ||p’|| for some p € F, then there exists a point on the line segment between
p and p’ closer to the origin than p’, which is a contradiction. Therefore A(u") = ||p’||. In addition, for

any u € Sﬁ‘{l,
2w =plu < @) 'u <P = 2@,
for some p € F, which proves the claim. [J
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From Theorem 3.7 we can conclude that for any feasible u € S’}f{l and p € F holds
Aw) < A@W) = lIp'lE < [l (3.12)

and therefore any pair of primal and dual feasible points (p, u) can be used to bound the optimal values
in (3.11) and (3.10).

In the next section we devise methods to so solve the computational geometric problems (3.10)
and (3.11) relying, in essence, only on a “least eigenvalue solver”, i.e., using Algorithm 1 we assume

that for a given u € S{‘R_l we can generate A(u) and p € F such that A(u) = p'u.

4. Algorithms

Next algorithms for solving the positive definiteness problems are devised.

4.1. Perceptron algorithm for feasibility

The strict feasibility problem related with (3.10) consists of finding a unit vector u such that p’u > 0
forallp € F.Provided that the problem is strictly feasible, that is, at least one such u exists (i.e.0 ¢ F), it
can be found using a simple method known as the perceptron algorithm, which is a general method for
finding a separating hyperplane between two arbitrary subsets of R¥. Algorithm 2 shows one possible
way to solve the strict feasibility problem related with (3.10) using the perceptron algorithm. The
algorithm progresses by repeatedly updating a single vector, i1 which corresponds to the normal of a
hyperplane {t € R¥ : tTii = A} that should separate the origin from the set F with some A > 0. Step
5 of the algorithm finds a point p; € F, that is on the wrong side of the current hyperplane and step 6
corrects this by tilting the hyperplane normal ii; towards p;. Namely,

pjTﬁH_l = pjT(ﬁj +pj) = Pijlj + ||pj||2 > 0,

where equality pjTﬁjH = 0 is excluded by the fact that p’u = ||p|| if and only if u and p are the
pair of primal and dual solutions. The use of Algorithm 2 is best justified by the following theorem,
establishing the convergence of the algorithm under minimal assumptions. The proof is adapted to
our setting from [14].

Algorithm 2 Perceptron algorithm for finding a unit vector in the interior of F*.

1: Setj = 0 and u; = V(x) for an arbitrary x € S?C”_l
2: repeat
3:  Increasej
5
4:  Setu; = m
5. Compute p; € F such that A(u;) = pjTuj
6: Set llj11 = Uj + p;
7. until A(y;) > 0
8: return u;

Theorem 4.1 (Perceptron Convergence Theorem). Algorithm 2 will converge in at most maxper || pl?/
A2 (u') steps, where u’ is the solution to (3.10) such that A(u’) > 0.

Proof. Let u’ be the solution to (3.10) and A(u;) = pl.Tui < Ofori = 1,...,j — 1. Then, for any
i=2,...,j, holds

S 2 m 12 4 on 2 a2 2
il = lti—11* + 20;_ypi—1 + Ipi-1 [I” < [lui—a[I” + max Il
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and hence ||G;]|? < j maxper ||p]|%. On the other hand forany i = 2, ..., j we have

T

~T. ./ _ ~T / T / ~T / /
Uju =u_qu +p_qu =>u_u+ i)

which yields &i u" > jA(u'). Thereby
Jimax Ipll > 151 > alu' > ja).
pEF J ]

that is, j < maxper [Ip|>/A*(W). O

Let us mention that the perceptron algorithm is used, in a bit different manner, to locate a positive
definite element in Hermitian matrix subspaces in [28]. This subject has also been studied in [30].

4.2. Ellipsoid algorithm

The problem (3.10) is an optimization problem on the (k — 1)-sphere S{?R_l and thereby not as such

a convex optimization problem in R¥. However, some standard convex optimization techniques may
still be applied to the problem. In what follows, an ellipsoid algorithm is devised to solve the task.
To this end, consider an ellipsoid

c=cA=veR: v—0TAlv—1) <1},

where A € Rk s positive definite and t € R is the center of £. Assume that £ contains an optimal
point u’ € R¥ of an optimization problem. If c € R¥ and B € R are such that c"u’ > B, then also

ENHep=N{veRN:cTv> B)
contains the solution. Define
B —clt
N

If @ = 0, the center of the ellipsoid is on the border of the half-space H g.If @ > 1, the intersection
isempty and if o < —1,then & C Hc g [13].
Forany 1 > o > —1/k, it is possible to construct an updated ellipsoid

o= (4.1)

g =@, t),
where
/) ¢ 14ka _  —Ac
t_;ﬁ%hb_fﬁ’ (42)
/I 1—x __2(0+ka T
A =0 (A - Eatm’) .

suchthat&’ D &N Hc,ﬁ and the volume of £’ is strictly less than that of £ [13]. If @ > 0, then

volume (&) < e%klvolume(g)

[8]. This leads to the iterative algorithm known as the (deep cut) ellipsoid algorithm [13]. It consists of
finding an initial ellipsoid &, such that u’ € & and then constructing a sequence (&) of ellipsoids,
where &1 is constructed from &; using (4.2). Such an update is possible if, for each &;, one is able to
find a half-space ﬁcj, p;» for which the corresponding o, as defined in (4.1) satisfies «; > —1/k.If, in
addition, oj > 0 for all j, then the solution u’ is contained in a sequence of ellipsoids & whose volume
tends geometrically to zero.
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For the problem (3.10) an ellipsoid algorithm can be devised as follows. Initially, set tp = 0 and
Ap = I.Foranyj > 0,setu; = t;/| || if [|tj|| > 0. Otherwise, pick an arbitrary u; € S’ﬁ{l. As shown
later, it can be ensured that || ;|| < 1. Let

A = max({0} U (A(wy), i =0,1,....j}) (4.3)
and p; € F be such that A(u;) = pjTuj. By setting ¢; = pj, fj = A]'?eSt we get

B — ¢t = 1% — lIgllp]w; = A% — ||| A(y) >0
which means that «; > 0. This corresponds to a valid cut because

chu/ = pjT > AW) > AbeSt = B

One may then construct an ellipsoid S(A]H, t]+1) according to (4.2). If ||t]+1 | < 1,settjq = g+1
and Aj 1 _~AJ+1 and continue.
In case |[tj;1|| > 1, it one must conduct a norm cut by setting

G = —tip1/lGiall, B=—1 (4.4)

and then cutting the ellipsoid &£ (;‘j+1 , fj+1) with the half-space HEJ- 5 according to (4.2). The norm cut

procedure can be repeated several times, if necessary, in order to have [|tj1 1| < 1.

Regarding the relative error of the solution, the error bounds given in [13] cannot be used since
the value A(u;) is not an evaluation of the objective function at the center t; of the ellipsoid. For the
problem (3.10), strict error bounds are given by

APt = A ™) < A) < PP := min |pill. (4.5)
0<i<j
Another upper bound is 1>

Ay <p'u =pTt4+pTW —t) <p't+ /pTAp

forany p € Fand £(A, t) > u'. Therefore set

AT = min(p; t; +/p] Aipy. i, AR, (4.6)
where A5 = oo. With these, the resulting ellipsoid algorithm is summarized as Algorithm 3.

Algorithm 3 Deep cut ellipsoid algorithm to solve (3.10).

1: Setj =0,Ap = I,typ = 0, picku; € S’ﬁ{]

2: repeat

3:  Increasej

Compute p; € F such that A(u;) = pjTuj

Compute tj, Aj from (4.1) and (4.2), applying norm cuts (4.4) if necessary
Update AJI?ESt, A" and u]'?’ESt according to (4.3), (4.5) and (4.6)

7: Set ujr1 =t/

8: until Amax A}?eSt < € (or some other stopping criterion is satisfied)

9: return u]beSt

@ 9ok

5 Ify = arg MmaXyeg(A,0) pTv, then V,(pTv — wvTA™lv) =0 & v = iAp, and from vA~ v < 1 we get pTv = ,/pT Ap.
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4.3. Accelerated ellipsoid algorithm

The principles described in Section 4.2 can be used to construct other cutting-plane-based methods
to solve the problem (3.10). For instance, the ellipsoid method may be sped up by storing multiple
points p; computed so far. Namely, for any p € F and j > 0 holds

plu > A}?e“. (4.7)
If )‘-_;?ESt_thj
A/PTAjp
when updated according to (4.2). In theory, an ellipsoid £(A, t) may be cut during the same iteration
until it satisfies

b T
At —pit o lE]l? — [le]
—— < —1/k, VOKi<j and ———— < —1/k.

p! Ap VAt

It may not be feasible to find such an ellipsoid exactly, but an approximation may be computed by
iterating and cutting over all p;, i = 0, 1, ..., j multiple times.

Algorithm 5 describes a relatively straightforward multiple cutting-plane scheme that can be used
to speed up the ellipsoid algorithm if the execution time is dominated by the eigenvalue computations.
It works as Algorithm 3, except that the ellipsoid is also cut with (at most M) constraints from the
previous eigenvalue computation rounds. As in the initialization phase, the cutting is repeated over
multiple (M7) rounds. On lines 18-19 the stored constraints are pruned so that only the ones that
contributed with the deepest cuts (greatest «) remain. The upper bound A, is updated whenever
possible.

A way to further speed up the method is to use additional inequalities (3.3) to construct an initial
ellipsoid. For example, a necessary condition for the positive semidefiniteness of a matrix V € V is
that all its diagonal elements are nonnegative. This yields n initial linear constraints in R¥. Algorithm
4 describes a method to compute an initial ellipsoid £(Ag, tg) for Algorithms 3 and 5. This method
performs My rounds of cutting the ellipsoid by imposing the diagonal positivity requirement.

> —1/k,then (4.7) defines a cut which can be used to decrease the volume of the ellipsoid

Algorithm 4 Initialization scheme for ellipsoid algorithms for the problem (3.9).

1: SetA < [t < 0

2.fori=1,...,ndo

3:  Defined; = [(V1)i, ..., (Vi)iil”

4: end for

s:forj=1,...,Mydo

6: fori=1,...,ndo

7: Calculate « for the diagonal equation diT t > 0 according to (4.1)
8: Update A and t according to (4.2) ifa > —1/k
9: end for

10:  Apply anorm cut (4.4)toAand tif [|t|| > 1

11: end for

12: return A,t

5. Numerical experiments

The difficulty of the problem (3.10) is closely related to A(u’), the distance between the origin and
F, and the size of F. With respect to these parameters, we designed easy and challenging experiments.
This makes the construction of matrix subspaces V C C"*" somewhat involved.
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Algorithm 5 Accelerated ellipsoid algorithm to solve (3.10).

1: Set A <— I, t < 1 or calculate them using Algorithm 4

2: Initialize P <— [ ] with an empty matrix

3: repeat

4. Setu <—t/||t]| ift # 0or an arbitrary u € Sllﬁ&_l otherwise

5. Compute p € F such that A(u) = p'u, store P <— [p P]
6:  Update APeSt oSt apd AM3X according to (4.3), (4.5) and (4.6)
7. Let m be the number of columns in P

8: Initialize v = —1fori=1,..., m

9. forj=1,...,M;do
10: fori=1,...,mdo
11: Let p be the ith column of P
12: Calculate « for the cutting-plane p't > APest
13: Ifa > —1/k, update At and A
14: Set a; <— max(«;, o)
15: end for
16: Apply norm cut (4.4)toAand t if ||t|| > 1

17 end for

18:  Sort the columns of P to descending order of ¢;'s

19:  Drop all i columns with o; < —1/k, keeping at most My columns
20: until 2™ — APest — ¢ (or some other stopping criterion is satisfied)
21: return uP®st

Start with a Hermitian matrix subspace V spanned by the matrices \A/J = %(Aj —+ AJ’-"), where each

Aj € C™" j=1,..., kisarandom band matrix with normally distributed complex elements having
bandwidth 2j + 1. Band matrices are used because full random Hermitian matrices were observed
to produce V whose range seemed to resemble the k-ball. (This we regard as an unfounded bias.)
Obviously, matrix subspaces constructed in this way are sparse if k < n. These matrix subspaces
typically cannot be expected to contain positive definite elements (based on numerical experiments).
Therefore we translate the basis matrices to have feasible problems.

For any given b > 0, we construct a Hermitian matrix subspace V such that

min ||p|| = b. (5.1)
peF
First take any Hermitian matrix subspace ¥ with an orthonormal basis Vj, . . ., Vi. Choose an arbitrary

unit vector u € R¥ and calculate a boundary point p corresponding to A(u) = p’u for the convex hull
F of the image of V. Then form

V) =V + (by; — py)I

and orthonormalize to have V = span{Vj,...,V;} = span{Vj,..., Vi}, where the matrices
Vi, ..., Vi are orthonormal and (5.1) holds.
Based on this construction, for various n and k, two types of random problems are generated. The

size of the image of V is approximated by d = ||p’ — p||, where p’ is a boundary point corresponding

to A(—u). Using this number d, easy problems with b = 4 and challenging problems with b = ﬁ

are generated. 1

The performance of Algorithm 2, Algorithm 3 and our accelerated Algorithm 5, initialized with
Algorithm 4, are compared. The performances are measured in terms of the number of iterations
(or equivalently, the number of eigenvalue computations) required to solve the problems. Each cell
is an average over at least ten runs with different random matrix subspaces V. As the parameters of
Algorithms 4 and 5 we used (quite arbitrarily) Mg = 10, M1 = 3, My = 50. Algorithm 3 was initialized

with uqy = V(x)/||V(x)|| for a random x € S%C"_l.
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Table 5.1
Average number of iterations needed to locate a positive definite matrix.
b k n Perceptron Ellipsoid Acc. Ellipsoid
10~ 1d 5 100 2.0 2.2 1.00
10~ 1d 5 1000 11 11 1.00
10~ 1d 5 5000 11 11 1.00
10~ 1d 15 100 5.3 6.1 111
10~ 1d 15 1000 11 11 1.00
10~ 1d 15 5000 1.00 1.00 1.00
10~ 'd 100 100 6.4 8.3 2.1
10~ 1d 100 1000 5 6 15
10~3d 5 100 79 23 8.7
103d 5 1000 17 22 8.1
10—3d 5 5000 15 22 8.1
103d 15 100 294 92 25
10~3d 15 1000 97 88 23.9
10~3d 15 5000 24 89 24
10—3d 100 100 1041 438 43
103d 100 1000 652 370 35
Table 5.2
Average number of iterations needed to solve (3.9) to the relative precision 107°.
b k n Ellipsoid Acc. Ellipsoid
10~ 1d 5 100 193 30.3
10~ 'd 5 1000 217 31.2
10~ 1d 5 5000 223 32
10~ 1d 15 100 1500 140
10~ 1d 15 1000 1734 148
10~ 1d 15 5000 - 149
10~ 1d 100 100 - 6125
10~ 'd 100 1000 - 5764
1073d 5 100 265 415
10~3d 5 1000 262 40.7
103d 5 5000 258 41
10—3d 15 100 2909 168
10—3d 15 1000 2903 166
10~3d 15 5000 - 166

Table 5.1 compares the performance of all three algorithms on the strict feasibility problem, i.e.,
the problem of locating a positive definite element in a Hermitian subspace. In Algorithms 3 and 5
this is achieved by setting the stopping criterion to AP®t > 0. In case b = 10~1d, the initial guess
(calculated with Algorithm 4 or as V(x)/||V(x)||) was often enough to have a valid solution and the
corresponding average iteration counts are therefore close to 1. With Algorithm 2, the iteration counts
varied considerably within a class of problems with same parameters (e.g. from 9 to occasionally
hundreds with k = 15, n = 1000, b = 10~3d). The iteration counts for Algorithms 3 and 5 were more
stable in all problems, primarily depending on b and secondarily on k.

Table 5.2 compares the performance of Algorithms 3 and 5 on the least eigenvalue maximization
max bes
problem (3.9). A relative stopping criterion kkm;aﬁt < € = 107° was used. The problems marked

with a dash took too long to solve. The results indicate that the problem (3.9) can be solved reasonably
efficiently in matrix subspaces with low dimension k, if solving the extremal eigenvalue problems is
feasible. Otherwise the iteration count does not seem to have much dependence on n. The difficulty of
solving the maximization problem seems to primarily depend on the dimension k (and not so much on
b). The average CPU time needed to solve the problem using Algorithm 5 withb = 1073d, k = 15, n =
1000 on the test workstation 1® was 24 s such that 85% of it was spent inside the least eigenvalue solver
routine (MATLAB’s eigs function).

16 2,66 GHz Intel Core 2 Quad Q8400, 3.2 GB RAM, MATLAB R2010b on Debian GNU/Linux.
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Appendix A. The case dimy = 2

The two dimensional case is instructive, classical and can be solved satisfactorily. For the two
dimensional case, discussed in terms of matrix pairs, see [23]. See also [16].
Denote by F(M) the numerical range of a matrix M € C"*",

Theorem A1 [12,1]. Assume the matrices V1 and V, span a Hermitian matrix subspace V. Then V contains
possess positive definite if and only if 0 & F(Vq + iVy). V7

The location of the numerical range determines the positive definite linear combinations completely
as follows. (Recall that the numerical range is convex.)

Corollary A.2. Let6; < 0, be the angles of the smallest cone centered at the origin containing F(V, +iV3)
with 6, — 61 < m. Then, with y = %, exactly

cos(y — 0)Vq +sin(y — 0)V, (A1)
for@ € (—%(n + 61 — 6,), %(TL’ + 61 — 6,)) are positive definite.

For a graphical illustration, see Fig. 3.1(b), where the dashed lines yield the cone of the corollary.

It is the dual cone in Fig. 3.1(b) which is of importance in quantifying the size of V N S 4. For an
isometricisomorphism between the parameter space R? and V, assume that V; and V, are orthonormal
with respect to the inner product (2.1). The matrices

cos(6, — /2)V1 + sin(6, — /2)V, and cos(6y + 7 /2)Vq + sin(6y + 7 /2)V,

determine the boundaries of the cone V N Sy . This angle is independent of the matrices V; and
V5 spanning V, as long as they are orthonormal. Interpreted in terms the dual cone, see Fig. 3.1(b). If
6, — 61 = m, then the dual cone is needle-like. Then and only then positive definite elements occupy
a tiny portion in V.

Hence, analogously, in the general case of dim V = k, the size of the dual cone needs to be compared
against the solid angle of the sphere in RK which is

krrk/2

rk/2+1)’

where I" denotes Gamma function.

Appendix B. Related problems

Locating a positive definite element in a Hermitian matrix subspace resembles a class of convex
optimization problems known as semidefinite programs, which can be formulated as

T

min c'u
‘ (B.1)
s.t. VO + z,’=1 uiVi > 09
where V), ..., Vi are Hermitian matrices. The feasibility problem of finding a positive semidefinite

matrix from an affine Hermitian subspace is also known as a linear matrix inequality. Semidefinite
programs and linear matrix inequalities for linear subspaces (that is Vo = 0) are not much of interest
since they are either trivially solved by the zero matrix or unbounded. The problem (3.9) is not a special

case of a semidefinite program, but an optimization problem on S’ﬁ{l.

17 In [4, p.76] a related result is called Finsler's theorem.
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