SIAM J. Sc1. COMPUT. (© 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. A88-A104

PRECONDITIONING WITH DIRECT APPROXIMATE FACTORING
OF THE INVERSE*

MIKKO BYCKLING' AND MARKO HUHTANEN#

Abstract. To precondition a large and sparse linear system, two direct methods for approximate
factoring of the inverse are devised. The algorithms are fully parallelizable and appear to be more
robust than the iterative methods suggested for the task. A method to compute one of the matrix
subspaces optimally is derived. Possessing a considerable amount of flexibility, these approaches
extend the approximate inverse preconditioning techniques in several natural ways. Numerical ex-
periments are given to illustrate the performance of the preconditioners on a number of challenging
benchmark linear systems.

Key words. preconditioning, approximate factoring, parallelizable, sparsity pattern, approxi-
mate inverse

AMS subject classifications. 65F05, 65F10

DOI. 10.1137/12088570X

1. Introduction. Approximate factoring of the inverse means parallelizable al-
gebraic techniques for preconditioning a linear system involving a large and sparse
nonsingular matrix A € C"*™. The idea is to multiply A by a matrix W from the
right (or left) with the aim of having a matrix AW which can be approximated with
an easily invertible matrix.! As opposed to the usual paradigm of preconditioning,
iterations are not expected to converge rapidly for AW. Instead, the task can be
interpreted as that of solving

; -1
(1.1) WevlafVGVHAWV — 1|,
approximately by linearizing the problem appropriately [16, 4]. Here W and V are
nonsingular sparse standard matrix subspaces of C"*" with the property that the
nonsingular elements of V are assumed to allow a rapid application of the inverse.
Approximate solutions to this problem can be generated with the power method as
suggested in [4]. In this paper, direct methods are devised for optimal approximate
factoring based on solving
(1.2) wein AW = Vilp
with the columns of either W or V' being constrained to be of fixed norm. These two
approaches allow, once the matrix subspace W has been fixed, choosing the matrix
subspace V in an optimal way.

The first algorithm solves (1.2) when the columns of V are constrained to be of
fixed norm. Then the matrix subspaces AW and V are compared as such while other

*Submitted to the journal’s Methods and Algorithms for Scientific Computing section July 23,
2012; accepted for publication (in revised form) November 27, 2013; published electronically January
16, 2014.

http://www.siam.org/journals/sisc/36-1/88570.html

TCSC - IT Center for Science, P.O. Box 405, 02101 Espoo, Finland (Mikko.Byckling@csc.fi).

fMathematics Division, Department of Electrical and Information Engineering, University of
Oulu, P.O. Box 4500, FIN-90401 Oulu, Finland (Marko.Huhtanen@oulu.fi).

IDirect methods are typically devised in this way, i.e., both the LU and QR factorizations can
be interpreted such that the purpose is to multiply A with a matrix from the left so as to have an
upper triangular, i.e., an easily invertible matrix.

A88

DIRECT APPROXIMATE FACTORING A89

properties of A are largely overlooked. The second algorithm solves the problem when
the columns of W are constrained to be of fixed norm, allowing taking properties of
A more into account. In [4] the approach to this end was based on approximating the
smallest singular value of the map

(1.3) W — (I — Py)AW

from W to C™*™ with the power iteration. Here Py denotes the orthogonal projector
on C™*"™ onto V. The second algorithm devised in this paper is a direct method for
solving the task.

The algorithms proposed extend the standard approximate inverse computational
techniques in several ways. (For sparse approximate inverse computations, see [1,
section 5], [13] and [17, Chapter 10.5] and references therein.) First of all, our ap-
proximations to the inverse need not be sparse. Moreover, aside from possessing an
abundance of degrees of freedom, we have an increased amount of optimality if we
suppose the matrix subspace W to be given. Then computable conditions can be
formulated for optimally choosing the matrix subspace V. This is achieved without
any significant increase in the computational cost. In particular, only a columnwise
access to the entries of A is required.?

We aim at maximal parallelizability by solving the minimization problem (1.2)
columnwise. The cost of such a high parallelism is the need to have a mechanism
to somehow control the conditioning of the factors. After all, parallelism means
performing computations locally and independently. Also this can be achieved without
any significant increase in the computational cost.

Although the choice of the matrix subspace W is apparently less straightforward,
some ideas are suggested to this end. Here we cannot claim achieving optimality,
except that once done, thereafter V can be generated in an optimal way. In particular,
because there are so many alternatives to generate matrix subspaces, many ideas
outlined in this paper are certainly not fully developed and need to be investigated
more thoroughly.

Finally, regarding related work, the idea of improving a computed precondi-
tioner by computing another least squares approximation can be found in [17, Chap-
ter 10.5.8]. The techniques are, by and large, the same as in the standard approximate
inverse computations; see, e.g., [7, section 5.2] and [15]. In [14, section 3] there are
techniques more related to the ones presented in this paper. There, the authors
suggest constraining the diagonal entries in V to be 1, so that the construction of
matrices is done simultaneously. However, the optimality is lost in solving the local
subproblems. The optimal choice of V is not discussed.

The paper is organized as follows. In section 2 two algorithms are devised for
approximate factoring of the inverse. Section 3 is concerned with ways to choose
the matrix subspace V optimally. Related stabilization schemes are suggested. In
section 4 heuristic schemes are suggested for constructing the matrix subspace W. In
section 5 numerical experiments are conducted. The toughest benchmark problems
from [3] are used in the tests.

2. Direct approximate factoring of the inverse. In what follows, two algo-
rithms are devised for computing matrices W and V to have an approximate factor-
ization

(2.1) At 2wy !

2 Accessing the entries of the adjoint can be costly in parallel computations.

A90 MIKKO BYCKLING AND MARKO HUHTANEN

of the inverse of a given sparse nonsingular matrix A € C"*". The factors W and V
are assumed to belong to given sparse standard matrix subspaces YW and V of C"*™.
A matrix subspace is said to be standard if it has a basis consisting of standard ba-
sis matrices.? This allows maximal parallelizability by the fact that then the arising
computational problems can be solved columnwise independently. Of course, paral-
lelizability is imperative to fully exploit the processing power of modern computing
architectures.

2.1. First basic algorithm, DIAF-Q. Consider the minimization problem
(1.2) under the assumption that the columns of V' are constrained to be unit vectors,
i.e., of norm one. Based on the sparsity structure of W and the corresponding columns
of A, the aim is at first choosing V' optimally. Thereafter W is determined optimally.

To describe the method, denote by w; and v; the jth columns of W and V. The
column v; is computed first as follows. Assume there can appear k; < n nonzero
entries in w; at prescribed positions and denote by A; € C™**i the matrix with the
corresponding columns of A extracted. Compute the sparse QR factorization

(22) Aj = Q;R,

of Aj. (Recall that the sparse QR factorization is also needed in sparse approximate
inverse computations.) Assume there can appear [; < n nonzero entries in v; at
prescribed positions and denote by M; € CF*li the matrix with the corresponding
columns of @] extracted. Then v;, regarded as a vector in Cl, of unit norm is
computed satisfying

(2.3) [[Mjv;]] = ||Mj]],

i.e., vj is chosen in such a way that its component in the column space of A; is as
large as possible. This can be found by computing the singular value decomposition
of M;. (Its computational cost is completely marginal by the fact that M; is only a
k;-by-l; matrix.)

Suppose the column v; has been computed as just described for j = 1,...,n.
Then solve the least squares problems

(2.4) min ||A;w; — vl
wj€ Chi
to have the column w; of W.

For each pair v; and w; of columns, the computational cost consists of computing
the sparse QR factorization (2.2) and, by using it, solving (2.3) and (2.4). For the
sparse QR factorization there are codes available [8]. (Now A; has the special property
of being very “tall and skinny.”)

The constraint of requiring the columns of V' to be unit vectors is actually not
a genuine constraint. That is, the method is scaling invariant from the right and
thereby any nonzero constraints are acceptable in the sense that the condition (2.3)
could equally well be replaced with ||M;v;|| = r;||M;||. Let us formulate this as
follows.

THEOREM 2.1. Assume A € C™*" is nonsingular. If V and W are standard
matriz subspaces of C"*™, then the factorization (2.1) computed as described is in-
dependent of the fized column constraints ||vj|lo =1; >0 for j=1,...,n.

3 Analogously to the standard basis vectors of C", a standard basis matrix of C"*™ has exactly
one entry equaling one while its other entries are zeros.

DIRECT APPROXIMATE FACTORING A91

Proof. Let W and V_ be the matrices computed with the unit norm constraint for
the columns of V. Let W and V' be computed with other strict positivity constraints
for the columns of V, i.e., (2.3) is replaced with the condition

(2.5) [[Mjv;]| = rj [|Mj]].

Then we have V = VD and W = WD for a diagonal matrix D with nonzero entries.
Consequently, WV ~! = WV ~! whenever the factors are invertible. 0
COROLLARY 2.2. If a matriz V' solving

(2.6) AW = V|

min
Wew, VeV, ||V||r=1

is nonsingular, then the factorization (2.1) coincides with the one computed to satisfy
(2.3) and (2.4).

Proof. Suppose W and V solve (2.6). Since V' is invertible, we have ||v;||, = r; >
0. Using these constraints, compute W and V' to satisfy (2.5) and (2.4). This means
solving (2.6) columnwise and thereby the corresponding factorizations coincide. O

It is instructive to see how the computation of an approximate inverse relates
with this. (For sparse approximate inverses and their historical development, see [1,
section 5].)

Example 2.1. In approximate inverse computations, the matrix subspace V is as
simple as possible, i.e., the set of diagonal matrices. Regarding the constraints, the
columns are constrained to be unit vectors. Therefore one can replace V with the
identity matrix, as is customary. See also Example 3.2 below.

2.2. Second basic algorithm, DIAF-S. Consider the minimization problem
(1.2) under the assumption that the columns of W are constrained to be unit vectors
instead. Based on the sparsity structure of W and the corresponding columns of A,
the aim now is at first choosing W optimally. Thereafter V' is determined optimally.
The resulting scheme yields a direct analogue of the power method suggested in [4].
However, the method proposed here has at least three advantages. First, being direct,
it seems to be more robust since there is no need to tune parameters used in the
power method. Second, the Hermitian transpose of A is not needed. Third, the
computational cost is readily predictable by the fact that, in essence, we only need to
compute sparse QR factorizations.

To describe the method, denote by w; and v; the jth columns of W and V. The
column wj is computed first as follows. Assume there can appear k; < n nonzero
entries in w; at prescribed positions and denote by A; € C™**i the matrix with the
corresponding columns of A extracted. Assume there can appear [; < n nonzero
entries in v; at prescribed positions and denote by A; € C~4)*%5 the matrix with
the corresponding rows of A; removed. Then take w; to be a right singular vector
corresponding to the smallest singular value of A;.

To have w; inexpensively, compute the sparse QR factorization

Aj =Q;R;

of A;. (Here it might be wise to compute a QR factorization with column pivoting.)
Then compute the singular value decomposition of R;. Of course, its computational
cost is completely negligible. (However, do not form the arising product to have the
SVD of flj explicitly.) Then take w; from the singular value decomposition of R;.

A92 MIKKO BYCKLING AND MARKO HUHTANEN

Suppose the column w; has been computed as just described for j = 1,...,n.
Then, to have the columns of V', set

V = PpAfw; - wy),

i.e., nonzero entries are accepted only in the prescribed sparsity structure of v; for
j=1...,n.

For an analogue of Corollary 2.2 we have the following proposition corresponding
to these computations.

PROPOSITION 2.3. Assume A € C"*" is nonsingular. If a matrix W solving
(2.7) min [|[AW — V||

Wew, ||W||lp=1, VEV

is nonsingular, then the factorization (2.1) coincides with the one corresponding to

the smallest singular value of the linear map (1.3).
Proof. We have

min AW — V|5
Wew, ||W||lp=1, VEV

. 2 2
= o0 (I = R)AWI + [[Po(AW = V).
The second term can always be made zero, regardless of how W is chosen. Therefore
the minimum on the left correponds to the smallest singular value of the linear map
(1.3). Since A is nonsingular, so is V' whenever W is nonsingular. O

Since W and V are assumed to be standard matrix subspaces, the computations
can be performed columnwise. (The corresponding constraint ||W||p = y/n is just a
matter of scaling.) If there exists a nonsingular solution W, each column is necessarily
nonzero and a diagonal scaling of W from the right gets canceled in the factorization.

2.3. Some general remarks. In approximate inverse preconditioning, it is well
known that it can make a difference whether one computes a right or left approximate
inverse [1, pp. 449-450]. As we have generalized this technique, this is the case
with the approximate factoring of the inverse also. Here we have considered only
preconditioning from the right.

The usage of standard matrix subspaces leads to maximal parallelizability. In
view of approximating the inverse, this means that computations are done locally
(columnwise) and independently, i.e., without any global control. To compensate for
this, with an eye to improving the conditioning of the factors, it seems advisable to
impose additional constraints. This is considered in section 3.

The simultaneous (somehow optimal) choice of the matrix subspaces W and V
is a delicate matter. In [4] we gave a rule of thumb according to which the sparsity
structures of the matrix subspaces should differ as much as possible in approximate
factoring of the inverse. (This automatically holds in computing approximate inverses
and ILU factorizations.) Numerical experiments seem to support this. Although we
do not quite understand the reasons for this, it is partially related to the fact that
then there are very few redundancies in the factorizations (2.1) as follows.

PROPOSITION 2.4. Let V and W be standard nonsingular matriz subspaces of
C™ "™ containing the identity. If in the complement of the diagonal matrices the
intersection of V and W is empty, then the maximum rank of the map

(2.8) (V,W) — WV
onV x WNGL(n, C) is dimV + dim W — n.

DIRECT APPROXIMATE FACTORING A93

Proof. Linearize the map (2.8) at (V, W) for both V and W invertible. Using the
Neumann series yields the linear term

WWw=tw - v vyl

At (V,W) = (I,1) the rank is dimV + dim W — n. It is the maximum by the fact
that for any nonsingular diagonal matrix D we have (VD, WD) — WV ! ie., the
map (2.8) can be regarded as a function of dim V + dim W — n variables. O

Aside from this basic principle, more refined techniques are devised for simulta-
neously choosing the matrix subspaces W and V in the sections that follow. Most
notably, optimal ways of choosing V' are devised.

3. Optimal construction of the matrix subspace V and imposing con-
straints. For the basic algorithms introduced, a method for optimally choosing the
matrix subspace V is devised under the assumption that the matrix subspace W has
been given. Moreover, mechanisms are introduced into the basic algorithms that allow
for stabilizing the scheme for better conditioned factors. (In approximate inverse pre-
conditioning the latter task is accomplished in the simplest possible way: the subspace
V is simply CI, i.e., scalar multiples of the identity.)

3.1. Optimally constructing the matrix subspace V. Suppose the matrix
subspace W has been given. Then the condition (2.3) yields a columnwise criterion
for optimally choosing the sparsity structure of the matrix subspace V. (Recall that
it must be assumed that the nonsingular elements of V allow a rapid application of
the inverse.) Once done, proceed by using one of the basic algorithms to compute the
factors.

Consider (2.3). It is beneficial to choose the sparsity structure of v; in such a way
that the norm of M is as large as possible, with the constraint that in the resulting
V the nonsingular elements are readily invertible. In other words, among admissible
columns of @7, take I; columns which yield M; with the maximal norm. This means
that for the optimization problem (1.2), with a fixed matrix subspace W, the matrix
subspace V is constructed in an optimal way.

Certainly, the problem of choosing /; columns to maximize the norm is combina-
torial and thereby rapidly finding a solution does not appear to be straightforward. A
suboptimal choice for the matrix M; can be readily generated by taking /; admissible
columns of Q; with largest norms. When done with respect to the Euclidean norm,
the Frobenius norm of the submatrix is maximized instead. This can be argued, of
course, by the fact that

1

holds.

This approach starts with W and then yields V (sub)optimally. This process can
be used to assess how W was initially chosen. Let us illustrate this with the following
example.

Ezample 3.1. The choice of upper (lower) triangular matrices for V has the advan-
tage that then we have a warning signal in case WV is poorly chosen. Namely, suppose
V has been (sub)optimally constructed as just described. If the factor V' computed to
satisfy (1.2) is poorly conditioned, one should consider updating the sparsity structure

A94 MIKKO BYCKLING AND MARKO HUHTANEN

of W to have a matrix subspace which is better suited for approximate factoring of
the inverse of A.*

In this optimization scheme, let us illustrate how the matrix subspace W actually
could be poorly chosen. Namely, the way the above optimization scheme is set up
means that the sparsity structure of YW should be such that no two columns share the
same sparsity structure. (Otherwise V' will have equaling columns.) Of course, this
may be too restrictive. In the section that follows, a way to circumvent this problem
is devised by stabilization.

3.2. Optimizing under additional constraints. There are instances which
require imposing additional constraints on computing the factors. Aside from the
problems described above, in tough problems the approximate factors may be poorly
conditioned of even singular.® Because there holds

[|[AW V=t —1||

(3.1) el

< AW — V|| < |[AWVt =T [|V]],

this certainly cannot be overlooked. To overcome this, it is advisable to stabilize the
computations by appropriately modifying the optimality conditions in computing the
factors.

For the first basic algorithm this means a refined computation of V. Thereafter
the factor W is computed columnwise as before to satisfy the conditions (2.4). For
a case in which the conditioning is readily controlled, consider a matrix subspace V
belonging to the set of upper (or lower) triangular matrices. Then, suppose the jth
column v; computed to satisfy (2.3) results in a tiny jth component. To stabilize
the computations for the first basic algorithm, we replace v; by first imposing the jth
component of v; to equal a constant 7; > 0. For the remaining components, let M ; be
a submatrix consisting of the /; —1 largest columns of)] among its first j—1 columns.
Denote the jth column of Q; by p;. Then consider the optimization problem

(3.2) max HT‘jpj + Mj’f}jH2 .

[19;]]2=1

By invoking the singular value decomposition M = U i 3 jVj* of M. 7, this is equivalent
to solving

(33) max ’I“jﬁj + ij’[)j H y
[19;]]2=1 2
where p; = UJ’-*pj and 0; = \7j*17j. Consequently, choose 7; = (¢?,0,0,...,0), where

6 is the argument of the first component of p;. (If the first component is zero, then
any 6 will do.) Set the column v; to be the sum of rje; and the vector obtained after
putting the entries of V;#; at the positions where the corresponding I; — 1 largest
columns of Q7 appeared. (Here e; denotes the jth standard basis vector of C".)
Observe that the solution does not depend on the value of r; > 0. In particular,
it is not clear how large r; should be.
Again it is instructive to contrast this with the approximate inverse computations.

4This is actually the case in the (numerically) exact factoring: To recover whether a matrix
A € C™*™ is nonsingular, it is advisable to compute its partially pivoted LU factorization, i.e., use
a numerically reliable algorithm.

5This is a well-known phenomenon in preconditioning. For ILU factorization there are many
ways to stabilize the computations [1]. Stabilization has turned out to be indispensable in practice.

DIRECT APPROXIMATE FACTORING A95

Ezxample 3.2. The sparse approximate inverse computations yield the simplest
case of imposing additional constraints as just described. That is, the sparse approx-
imate inverse computations can be interpreted as having I; = 1 for every column,
combined with imposing r; = 1.

The LU factorization and thereby triangular matrices are extensively used in
preconditioning. Because the LU factorization without pivoting is unstable, some kind
of stabilization is needed. It is clear that the QR factorization also gives reasons to look
at triangular matrices. The approach differs from that of using the LU factorization
in that its computation does not require a stabilization, i.e., nothing like partial
pivoting is needed. Of course, our intention is not to propose computing the full QR
factorization. Understanding the Q factor is critical as follows.

Ezxample 3.3. The QR factorization A* = QR of the Hermitian transpose of A can
be used as a starting point to construct matrix subspaces for approximate factoring
of the inverse. Namely, we have AQ = R*. Therefore V belonging to the set of lower
triangular matrices is a natural choice. For VW one needs to generate an approximation
to the sparsity structure of @. For this there are many alternatives.

Aside from upper (lower) triangular matrices, there are, of course, completely
different alternatives. Consider, for example, choosing V' among diagonally dominant
matrices. Since the set of diagonally dominant matrices is not a matrix subspace,
dealing with this structure requires using constraints. It is easy to see that the problem
can be tackled completely analogously, by imposing r; > #nz, where #nz denotes
the number of nonzero elements outside the diagonal in v;. Thereafter (3.2) is solved
for having the other components in the column. The inversion of V' can be performed
by simple algorithms such as the Gauss—Seidel method.

4. Constructing the matrix subspace W. Optimally constructing the ma-
trix subspace W for approximate factoring of the inverse appears seemingly challeng-
ing. Some ideas are suggested in what follows, although no claims concerning the
optimality are made. We suggest starting the process by taking an initial standard
matrix subspace Vy which precedes the actual V. Once W has been constructed,
then Vg should be replaced with ¥V computed with the techniques introduced in sec-
tion 3.

It is noteworthy that SPAT [13] can also be regarded as an algorithm that generates
W (as well as computes W € W). So SPAI could be used in generating W from which
V is then generated for DIAF-Q and DIAF-S.

4.1. The Neumann series constructions. For approximate inverse compu-
tations the selection of an a priori sparsity pattern is a well-known problem [6, 2].
Good sparsity patterns are, at least in some cases, related to the transitive closures
of subsets of the connectivity graph of G(A) of A. This can also be interpreted as
computing level set expansions on the vertices of a sparsified G(A).

In [6] numerical dropping is used to sparsify G(A) or its level set expansions.
Denote by v € C" a vector with entries v;. To select the relatively large entries of
v numerically, entries are dropped by relative tolerance 7 and by count p, i.e., only
those entries of v; of v for which it holds |vj| > 7||v|| with the restriction of p
largest entries at most are stored. (Note that the diagonal elements are not subjected
to numerical dropping.) In what follows, these rules are referred to as numerical
dropping by tolerance and count.

The dropping can be performed on an initial matrix or during the intermediate
phases of the level set expansion. Thus we have two sets of parameters (7;,p;) con-
trolling the initial sparsification and (7, p;) controlling the sparsification during level

A96 MIKKO BYCKLING AND MARKO HUHTANEN

set expansion. In addition, we adopt the convention that setting any parameter as
zero implies that the dropping parameter is not used.

With these preparations for approximate factoring of the inverse, take an ini-
tial standard matrix subspace 1y and consider generating a sparsity pattern for W.
Assuming Vp = Py, A € Vy is invertible, we have

A=Vo(I —Vy (I — Py)A) = Vo(I - S).

Whenever || 5]| < 1, there holds A~ = (I + Y222, 57)V;™' = WV; ! by invoking the
Neumann series. Therefore then

(4.1) W:I+§:Sj.

J=1

Although the assumption ||S]| < 1 is generally too strict in practice, we may formally
truncate the series (4.1) to generate a sparsity pattern. To make this economical and
to retain W sparse enough, compute powers of S only approximately by using sparse-
sparse operations combined with numerical dropping and level of fill techniques.

Observe that, to operate with the series (4.1) we need S = V; '(I — Py,)A. Tt is
this which requires setting an initial standard matrix subspace V.

Ezample 4.1. For S = Vo_l(I — Py,)A we need to set an initial standard matrix
subspace. The most inexpensive alternative is to take Vy to be the set of diagonal
matrices. Then Vo = Py, A is immediately found.

There are certainly other inexpensive alternatives for 1y, such as block diagonal
matrices. Once fixed, thereafter the scheme can be given as Algorithm 1 below.

ALGORITHM 1. SPARSIFIED POWERS FOR CONSTRUCTING W.
: Set a truncatlon parameter k
Compute Vy*
Compute S = V(I — Py,)A
Apply numerical dropping by tolerance 7; and count p; to columns of S
for columns j in parallel do
Set S; = tj =€
fori=1,...,k do
Compute t; = St;
Apply numerical dropping by tolerance 7; and count p; to t;
Compute s; = s; +t;
end for
Set sparsity structure of w; to be the sparsity structure of s;
: end for

Set W =W\ (Vo \ T}

e el e
Ll I T

Note that final step of Algorithm 1 is to keep the intersection of W and Vy empty
apart from the diagonal; see section 2.3. After the sparsity structure for a matrix
subspace W has been generated, the sparsity structure of V) can be updated to be V
by using W.

4.2. Algebraic constructions. Next we consider some purely algebraic argu-
ments which might be of use in constructing WW. Again start with an initial standard
matrix subspace Vy. Take the sparsity structure of the jth column of Vy and consider

DIRECT APPROXIMATE FACTORING A97

the corresponding rows of A € C"*™. Choose the sparsity structure of the jth column
of W to be the union of the sparsity structures of these rows. This is a necessary (but
not sufficient) condition for AW to have an intersection with V. This simply means
choosing W to have the sparsity structure of A*V.

Most notably, the process is very inexpensive and can be executed in parallel.
One only needs to control that the columns of W remain sufficiently sparse. With
probability one, the following algorithm yields the desired sparsity structure.

ALGORITHM 2. COMPUTING A SPARSITY STRUCTURE FOR W.
Require: A sparse matrix A € C"*" and a random column v; € V.
Ensure: Sparsity structure of the column w;.
Compute w = A*v;
2: if w is not sparse enough then
Sparsify w to have the sparsity structure of w;.
4: end if
Take the sparsity structure of w; to be the sparsity structure of w.

Observe that we do not have A*Vy = W since the computation is concerned with
sparsity structures.

Approximate inverse preconditioning corresponds to choosing Vy to be the set of
diagonal matrices. Then the sparsity structure of W equals that of A*. The following
two examples illustrate two extremes cases of this choice.

Ezxample 4.2. Take V), to be the set of diagonal matrices. Then the first basic
algorithm reduces to the approximate inverse preconditioning. Algorithm 2 yields
now a standard matrix subspace VW whose sparsity structure equals that of A*. This
can yield very good results. If A has orthogonal rows (equivalently, columns) then
and only then does this give exactly a correct matrix subspace W for factoring the
inverse of A as AWV ™! = I when V is taken to be V.5

Having identified an ideal structure for the approximate inverse preconditioning
when W is constructed with Algorithm 2, how about when A is far from being a
scaled unitary matrix? An upper (lower) triangular matrix is a scaled unitary matrix
only when it reduces to a diagonal matrix.

Example 4.3. Take again Vy to be the set of diagonal matrices. Then the basic
algorithm reduces to the approximate inverse preconditioning. Algorithm 2 yields a
standard matrix subspace YW whose sparsity structure equals that of A*. This yields
very poor results if A is an upper (lower) triangular matrix. Namely, then its inverse
is also upper (lower) triangular.

Algorithm 2 is set up in such a way that if Vo C V,, then W C W. Thereby
matrix subspaces can be constructed to handle the two extremes of Examples 4.2 and
4.3 simultaneously.

In practice Vy should be more complex, i.e., the set of diagonal matrices is a too
simple structure. One option is to start with 1y having the sparsity structure of the
Gauss—Seidel preconditioner.

DEFINITION 4.1. A standard matrixz subspace V of C™"*™ is said to have the spar-
sity structure of the Gauss—Seidel preconditioner of A € C"*" if the nonzero entries
in'V appear on the diagonal and there where the strictly lower (upper) triangular part
of A has nonzero entries.

6In view of this, it seems like a natural problem to ask how well A can be approximated with
matrices of the form DU with D diagonal and U unitary.

A98 MIKKO BYCKLING AND MARKO HUHTANEN

TABLE 5.1
Matrices of the experiments, their application area, size, number of nonzeros, and density.

Problem Area n nz(A) | k1 =nz(A)/n
west1505 | Chemical engineering 1505 5414 3.6
west2021 Chemical engineering 2021 7310 3.62
1hr02 Chemical engineering 2954 36875 12.5
bayer10 Chemical engineering | 13436 71594 5.33
sherman2 PDE 1080 23094 21.4
gemat1l Linear programming 4929 33108 6.72
gemat12 Linear programming 4929 33044 6.7
utmb5940 PDE 5940 83842 14.1
€20r1000 PDE 4241 131430 31

5. Numerical experiments. The purpose of this final section is to illustrate,
with the help of five numerical experiments, how the preconditioners devised in sec-
tions 2 and 3 perform in practice. Since there is an abundance of degrees of freedom
to construct matrix subspaces for approximate factoring of the inverse, only a very
incomplete set of experiments can be presented. In particular, we feel that there is a
lot of room for new ideas and improvements.

In choosing the benchmark sparse linear systems, we used the University of
Florida collection [9]. The problems were selected to be the most challenging ones
to precondition among those tested in [3]. For the matrices used and some of their
properties, see Table 5.1. Assuming the reader has access to [3], the comparison be-
tween the methods proposed here and the diagonal Jacobi preconditioning, ILUT(0),
ILUT(1), ILUT, and AINV can be readily made. Just in case the reader does not
have access to these publications, a comparison with ILUT is made in Example 5.5.
For a comparision between ILUs and AINV, see, e.g., [5].

Regarding preprocessing, in each experiment the original matrix has been initially
permuted to have nonzero diagonal entries and scaled with MC64. (See [10] for MC64.)
It is desirable that the matrix subspace V contains hierarchically connected parts of
the graph of the matrix. To this end we use an approach to find the strongly connected
subgraphs of the matrix; see Duff and Kaya [11]. We then obtain a permutation P
such that after the permutations, the resulting linear system can be split as

(5.1) Az =(L+D+U)x =b,

where LT and U are strictly block upper triangular and D is a block diagonal matrix.
The construction of this permutation consumes at most O(nlog (n)) operations.”

In the experiments, the right-hand side b € C™ in (5.1) was chosen in such a way
that the solution of the original linear system was always z = (1,1,...,1). As in [3],
we used BICGSTAB [20] as a linear solver. The iteration was considered converged
when the initial residual had been reduced by eight orders of magnitude.

The numerical experiments from Example 5.1 to Example 5.4 were carried out
with MATLAB.® The experiments of Example 5.5 were carried out with a very pre-
liminary implementation of the developed algorithms in FORTRAN 90.

Ezample 5.1. We compare the minimization algorithm presented in [4], PAIF,
with the QR factorization based minimization algorithm of section 2.1 (DIAF-Q). We

"Preprocessing is actually a part of the process of constructing the matrix subspaces WW and V.
That is, it is insignificant whether one orders correspondingly the entries of the matrix or the matrix
subspaces.

8VersionR2010a.

DIRECT APPROXIMATE FACTORING A99

TABLE 5.2
Comparison of PAIF and DIAF-Q algorithms.

PAIF DIAF-Q

Problem | |Dj|a | #Dj P (V) nrm its (V) nrm its
west1505 50 34 2.75 | 3.1TE404 3.59 18 1.85E+03 3.49 18
west2021 50 47 2.69 | 5.53E+03 3.84 23 3.33E4-03 3.53 26
1hr02 50 66 1.11 | 1.65E4-03 6.69 24 9.05E+-02 7.01 32
bayer10 250 67 2.56 | 8.00E+05 | 22.27 56 2.50E+05 | 14.27 | 36
sherman?2 50 24 1.05 | 4.32E+02 | 2.45 5 3.7T7TE+02 | 1.84 5
gematll 50 115 1.91 | 2.28E4-05 3.58 109 | 1.50E4-05 2.79 68
gemat12 50 114 1.91 | 5.96E+06 6.87 77 | 4.58E4-06 5.20 7
utmb5940 250 29 1.73 | 3.91E406 | 14.66 | 295 | 1.84E406 | 12.86 | 221
e20r1000 200 27 4.23 | 3.22E406 | 13.67 | 465 | 4.44E+03 8.82 364

construct W with the heuristic Algorithm 1 of section 4.1. For all test matrices, we
use k=3 and 7, =1F -1, p;, =0, 7 =0, and p; = 0 as parameters. For PAIF, 40
refinement iterations were always used which is somewhat more than what we have
found to be necessary in practice. However, we want to be sure that the comparison
is descriptive in terms of the quality of the preconditioner.

We choose V to be the subspace of block diagonal matrices with block bounds and
sparsity structure chosen according to the block diagonal part of A, i.e., the matrix
D in (5.1). Then in the heuristic construction of W with Algorithm 1, V; is taken to
be a diagonal matrix.

We denote by |Dj|ar the maximum blocksize of V and by #D; the number of
blocks in V in total. Density of the preconditioner, denoted by p, is computed as
p = (nz(W) + nz(Ly) + nz(Uy)) /nz(A), where nz(A), nz(W), nz(Ly), and nz(Uy)
denote the number of nonzeroes in A, W, and the LU decomposition of V. For both
PAIF and DIAF-Q, we also compute the condition number estimate (V') and norm
of the minimizer ||AW — V||, denoted by nrm. Finally, its denotes the number of
BiCGSTAB iterations. By t we denote no convergence of BICGSTAB within 1000
iterations. Breakdown of BICGSTAB is denoted by {. Table 5.2 shows the results.

Results very similar to those seen in Table 5.2 were also observed in other nu-
merical tests that were conducted. As a general remark, the iteration counts with
BiCGSTAB when preconditioned with DIAF-Q are not dramatically different from
those achieved with PAIF. The main benefits of DIAF-Q are that neither the Her-
mitian transpose of A is required in the computations nor an estimate for the norm
of A. Moreover, DTIAF-Q is a direct method, so that its computational cost is easily
estimated, while it is not so clear when to stop the iterations with PAIF.

The computational cost and parallel implementation of DIAF-Q are very similar
to the established preconditioning techniques based on norm minimization for sparse
approximate inverse. (For these issues, see [6].) That is, DIAF-Q scales essentially in
terms of the computational cost and parallelizability properties.

Example 5.2. Next we compare PATF with the SVD based algorithm of section 2.2
(DIAF-S). Again W is constructed with the heuristic Algorithm 1 of section 4.1.
All the parameters were kept the same as in the previous example, i.e., k = 3 and
=1FE—-1,p;, =0, 77 =0, and p; = 0. Also, 40 refinement steps were again used
in the power method, so that the results for PAIF are identical to those presented in
Example 5.1.

Table 5.3 shows the results.

The results of Table 5.3 with DIAF-S are very similar to those in Table 5.2. The
only notable exception is the matrix utm5940, for which no convergence was achieved

A100 MIKKO BYCKLING AND MARKO HUHTANEN

TABLE 5.3
Comparison of PAIF and DIAF-S algorithms.
PAIF DIAF-S

Problem | |Dj|a | #Dj P (V) nrm its (V) nrm its
west1505 50 34 2.75 | 3.17TE+04 | 3.59 18 | 4.06E+03 | 3.04 14
west2021 50 47 2.69 | 5.53E+03 | 3.84 23 | 8.31E403 | 3.26 27

lhr02 50 66 1.11 | 1.65E403 | 6.69 24 | 1.90E4+03 | 5.68 55
bayer10 250 67 2.56 | 8.00E+05 | 22.27 | 56 | 9.50E+05 | 11.68 | 46
sherman2 50 24 1.05 | 4.32E+02 2.45 5 4.33E4-02 1.67 5
gemat1l 50 115 1.91 | 2.28E4+05 | 3.58 | 109 | 2.28E405 | 2.90 113
gemat12 50 114 1.91 | 5.96E+06 6.87 7 1.51E+408 3.72 201
utm5940 250 29 1.73 | 3.91E4+06 | 14.66 | 295 | 3.91E406 | 7.43 1
€20r1000 200 27 4.23 | 3.22E406 | 13.67 | 465 | 1.96E+04 | 10.37 | 444

with DIAF-S. With the metrics used, we do not quite understand why DIAF-S fails
to produce a good preconditioner for this particular problem. The computed norm
[|AW — V|| ¢ is smaller than the one attained with DIAF-Q and the condition number
estimate is only slightly worse. The reason is most likely related to the fact that the
bound (3.1) cannot be expected to be tight enough when (V) is large.

The following example illustrates how the matrix subspace V can be optimally
constructed with the techniques of section 3.

Example 5.3. In this example we consider an optimal construction of V. To this
end, we first construct W with the heuristic Algorithm 1 presented in section 4.1.
Then, to construct V, we apply the techniques presented in section 3. After the spar-
sity structures of the subspaces have been fixed, the resulting minimization problem
is solved with DIAF-Q.

Consider the minimization problem (2.4). If no restrictions on the number of
nonzero entries in a matrix subspace V are imposed, the norm |[|AW — V||r can be
decreased by choosing as many entries as possible from the sparsity structure of AW
to be in the sparsity structure of V.7 To illustrate this, we take V to be a subspace
of block diagonal matrices by allowing only certain degree of sparsity ky per column.
The nonzero entries are chosen with the techniques of section 3.

We againset k=3 and , =1E — 1, p;, =0, 7 = 0, and p; = 0 as parameters for
all test matrices. To have the locations for the entries in the diagonal blocks of V, we
then apply the method presented in section 3. Subspace W is constructed with the
heuristic Algorithm 1 by setting My to be a subspace of block diagonal matrices with
full blocks. This is to ensure that intersection of the final V and W is empty.

Table 5.3 shows the results, where at most k) entries in each column of the
sparsity pattern of V have been allowed. For each test problem we have used the
same block structure as in Examples 5.1 and 5.2, only the locations of the nonzero
entries in W and V is varied.

As seen in Table 5.4, choosing more entries in V), i.e., increasing ky always im-
proves the norm of the minimizer, which is well supported by the theory. Allowing
more entries in V generally produces a better preconditioner. In a few cases where a
slightly worse convergence can be observed, we also observe a slightly worse condition
number estimate for the computed V.

The following example illustrates the optimal selection of a block upper triangular
subspace V as well as optimization under additional constraints.

9For example, V can never be the full set of upper triangular matrices since it would require stor-
ing O(n2?) complex numbers. The problem is, then, how to choose a subspace V of upper triangular
matrices.

DIRECT APPROXIMATE FACTORING A101

TABLE 5.4
Adaptive selection of V for different values of ky.

Ey =10 Ey =30 %y = 50
Problem | p k(V) nrm | its | p k(V) nrm | its | p k(V) nrm | its
west1505 | 2.81 | 2.24E+03 | 3.54 | 20 | 2.83 |4.57TE+03 | 3.36 | 20 | 2.83|4.57E+03 | 3.36 | 20
west2021 [2.75|5.11E404 | 3.70 | 30 |2.76 | 5.67E+04 | 3.46 | 31 |2.76|5.6TE4-04 | 3.46 | 31
Thr02 1.15{1.07TE404| 6.95 | 47 [1.17|1.2TE404| 6.92 | 43 |1.17|1.2TE404| 6.92 | 43
bayer10 |2.68|6.72E4-07|13.83|104|2.75 | 1.86E+05|13.42| 29 |2.76 | 1.86E4-05 | 13.42 | 31
sherman2|1.01 |1.49E402| 1.88 | 7 |1.11|3.77E4+02| 1.82 | 5 |1.11|3.77TE+02| 1.82 | 5
gematll |2.14 | 1.50E4-05| 2.84 | 81 |2.24|1.50E4-05| 2.75 | 68 |2.24| 1.50E4-05| 2.75 | 69
gematl2 [2.09 [4.24E+06| 5.21 | 80 (2.17 [4.58E+06| 5.13 | 71 |2.17 [4.58E+406 | 5.13 | 70
utmb940 |2.11 | 1.82E406 | 13.12| § |2.49|2.09E4+06|12.72|209 | 2.51|2.11E4-06 | 12.71 | 201
€20r1000 |3.77 | 2.16E406 | 20.66 | [4.99 |1.01E405|11.76 | § |5.49|6.6TE404| 8.77 |418

TABLE 5.5
Adaptive selection of V for different values of ky.

Ty = 10 Ty = 30 y = 100
Problem | p (V) nrm | its | p k(V) nrm | its | p k(V) |nrm| its
west1505 | 2.37 | 4.45E4-06 | 4.79 | 860 | 2.68 | 1.88E+06 | 2.52 | 78 |2.75|6.95E4-04 | 2.42 | 24
west2021 | 2.31 | 1.66E+4+11 | 5.34 | 1 |[2.57|8.30E+05| 2.53 | 67 |2.66 | 3.25E405 | 2.27| 23
1hr02 1.03 | 2.45E+03 | 4.22 | 36 |1.40 | 4.89E+03 | 3.21 | 22 | 1.46 |4.93E+03 | 3.18 | 21
bayer10 |2.09|3.74E+09 | 11.76 | 963 | 2.42 | 2.90E+4-06 | 8.19 [390 |2.49 | 3.39E+06 | 8.10 | 16
sherman2|0.89 | 1.61E+02 | 0.89 | 6 |1.24|4.66E+02| 0.63 | 3 |1.24|4.66E+02|0.63| 3
gematll |1.84|1.50E+05| 2.37 | 55 |1.96 | 1.60E4-05 | 1.74 | 32 |1.97 | 1.60E+05|1.74 | 32
gematl2 |1.82|1.45E409| 3.37 [160(1.95|1.99E409| 2.38 | 39 |1.96 | 2.03E4-09 | 2.37| 38
utmb5940 | 1.60 | 5.29E407 | 9.16 | 653 |2.07 | 1.12E+09 | 8.17 | 141|2.18 | 8.56E+08 | 8.14 | 165
e20r1000 | 1.90 | 2.00E+11|22.32| t |2.77|6.59E4+10|12.48| 1 |3.85|2.52E+09|6.05 | 792

Ezxample 5.4. We consider optimal construction V in the case where V is block
upper triangular. As parameters we again use k = 3 and ;, = 1E — 1, p; = 0,
71 =0, and p; = 0 and use the strongly connected subgraph approach to have a block
structure for the subspace V.

To have locations for the entries in the block upper triangular V', we apply the
method presented in section 3. As in Example 5.3, we construct W with Algorithm 1
by setting V, as a subspace of block upper triangular matrices with full blocks. The
resulting W is a lower triangular matrix subspace consisting of a diagonal part and
a strictly block lower triangular part. The resulting minimization problem is solved
with DIAF-Q. Note that by the structure of such a subspace, the conditioning of
W € W can be readily verified.

Table 5.5 shows the results, where at most &y entries in each column in the block
upper triangular part of Vy have been allowed. The used block structure is the same
as in Examples 5.1, 5.2, and 5.3, only the locations and the number of the nonzero
entries is varied in W and V.

The results of Table 5.5 are very similar to those of Table 5.4. Again, allowing
more entries in V always improves the norm of the minimizer and usually also produces
a better preconditioner.

Similarly to Example 5.2, it is again hard to understand why ky, = 100 produces
a worse preconditioner than ky = 30 for utm5940. We attribute this behavior to the
looseness of the bound (3.1), i.e., when (V) is large, the minimization of ||AW —V ||
may not compensate sufficiently for this in these cases.

To improve the conditioning of V' € V', we now consider the same problems using
the technique of imposing constraints as described in section 3. As a constraint we

A102 MIKKO BYCKLING AND MARKO HUHTANEN

TABLE 5.6
Constrained selection of V for ky = 100.

Problem P (V) nrm | stab | its
west1505 | 2.75 | 6.16E4-04 | 3.06 1 25
west2021 | 2.66 | 1.63E405 | 2.92 1 21
1hr02 1.46 | 4.93E403 | 3.18 0 21
bayer10 2.49 | 3.39E+06 | 8.10 0 16
sherman2 | 1.24 | 4.66E4-02 | 0.63 0 3
gematll 1.97 | 1.60E405 | 1.74 0 32
gemat12 1.96 | 2.03E+09 | 2.37 0 38
utmb5940 2.18 | 7.56E406 | 8.24 1 113
e20r1000 | 3.85 | 8.66E+09 | 6.27 3 738

require that for the diagonal entries v;; of V' it holds |vj;| > le — 2. In case the
requirement is not met, we impose a constraint with » = 2. Table 5.6 describes the
results for ky = 100, where the number of constrained columns is denoted by stab.

As seen in Table 5.6, if only a small number of columns have to be constrained, the
technique is effective. In other numerical experiments not reported here we observed
that if too many columns have to be constrained, the norm of the minimizer || AW —
V||F tends to increase. An approach to find the right balance is needed then.

In this final example PAIF, DIAF-Q, and DIAF-S are compared with ILUT. Here
one should bear in mind that these methods really belong to different categories by
the fact that ILUT is a sequential algorithm. In a sense, this means comparing “apples
and oranges.” Moreover, these algorithms are implemented in FORTRAN 90.

Example 5.5. We compare PAIF, DIAF-Q, and DIAF-S with ILUT with RCM
preprocessing. For all matrices, we use k =4 and 7, = 1EF — 2, p;, =0, 7 = 0. For
most matrices we set p; = 20, except for bayer1l0 and e20r1000, where we set p; = 40
and p; = 50, respectively. For PAIF 40 refinement iterations were taken to compute
a preconditioner. For ILUT, we choose drop tolerance as 7 = 1E — 2 and level of fill
as p = 10. Again the exceptions are bayerl0 and e20r1000, where we use p = 20 and
p = 75, respectively.

The sparsity structures for subspaces W and V were chosen as in Examples 5.1
and 5.2, i.e., we construct WW with the heuristic Algorithm 1 and choose V to be the
subspace of block diagonal matrices with sparsity structure chosen according to the
block diagonal part of A.

We use a very preliminary implementation of the algorithms with FORTRAN 90.
With PAIF, DIAF-Q, and DIAF-S we treat the small system A; or Aj as a dense
matrix after the nonzero indices have been locally renumbered. With them we use
standard BLAS and LAPACK routines taken from the Intel Math Kernel Library.'?
For an implementation of ILUT, we use Sparskit [18]. For BiCGSTAB and block
linear system solution with V, we use routines MI26 and MA48 from the Harwell
Subroutine Library [12].

To compile the codes, we use the Intel Fortran compiler,!! with flags -03 -fp-model
precise.

We denote by ¢, the preconditioning time and ¢, the solution time of BICGSTAB.
Both ¢, and t, are in seconds on a single core of Intel Xeon E5-2670 processor. As
in the previous examples, its denotes the number of BICGSTAB iterations. Prepro-

10Version 11.
HVersion 13.

DIRECT APPROXIMATE FACTORING A103

TABLE 5.7
Comparison of PAIF, DIAF-Q, DIAF-S, and ILUT algorithms.

PAIF DIAF-Q DIAF-S ILUT
Problem ty ts its ty ts its ty ts its ty ts its
west1505 | 3.80E-02 [6.00E-03| 21 | 3.50E-02 {4.00E-03| 25 | 5.20E-02 {4.00E-03| 28 |1.00E-03|7.00E-03]| 33
west2021 | 3.10E-02 |7.00E-03| 26 | 3.10E-02 |6.00E-03| 32 | 5.40E-02 |6.00E-03| 26 |1.00E-05|2.00E-03| 28
1hr02 1.44E-01 |1.60E-02| 33 | 1.26E-01 |1.60E-02| 43 | 3.15E-01 |1.20E-02| 35 [1.00E-03|7.00E-03| 30
bayer10 | 7.33E-01 |1.08E-01| 66 | 9.36E-01 |6.20E-02| 39 |3.02E+00|8.20E-02| 51 |6.00E-03|2.50E-02| 22
sherman2| 6.10E-02 [1.00E-05| 5 [8.30E-02 |1.00E-05| 3 |1.45E-01 |1.00E-05| 3 [9.90E-05[1.00E-05| 5
gematll | 1.44E-01 [5.50E-02| 79 | 1.78E-01 |3.10E-02| 45 | 4.25E-01 [5.20E-02| 74 |1.00E-03|2.00E-02| 46
gematl2 | 1.34E-01 [1.09E-01|156| 1.71E-01 |7.20E-02(102| 4.03E-01 {4.40E-02| 63 |1.00E-03|2.00E-02| 46
utm5940 | 4.07E-01 |3.95E-01|432| 4.82E-01 |1.53E-01|{166|1.07E+00|2.27E-01|247|9.00E-03|3.13E-01|521
e20r1000 [2.50E400|5.40E-01{393(4.34E+00(6.87E-01|499|6.96 E4+00 - T |9.20E-02 - T

cessing times were not taken into account. (For the preprocessing times of MC64, see
[10].) Table 5.7 shows the results.

As can be seen, the performance of the PAIF, DTIAF-Q, and DIAF-S precondition-
ers is quite similar to the ILUT preconditioner, when only iteration counts are taken
into account. As for the computing times, the construction times for the precondi-
tioner can be one or two order of magnitudes smaller for ILUT than for those of PAIF,
DIAF-Q, or DIAF-S. This is something to be expected in a sequential environment;
see, e.g., [19]. The iteration times are generally of the same order of magnitude when
the number of iterations is roughly the same.

The parameters of the numerical dropping were chosen such that the relative
densities of the preconditioners were roughly equal for PAIF, DIAF-Q, DIAF-S, and
ILUT. With the selected parameters, the mean relative density was p = 2.6 for our
approximate inverse preconditioners. To guarantee that the computations were not
biased in favor of our algorithms, for ILUT we allowed it to be p = 3.7, mainly due
to the high relative density of the ILUT preconditioner for the matrix bayer10.

Let us emphasize that the main advantage of PAIF, DIAF-Q, and DIAF-S is
parallelism, available both in the construction and application phases of the precon-
ditioner, which is not reflected in these single core experiments. By our experience
treating the small systems as dense matrices is rather inefficient and generally not
recommended for a production code. For instance, for the matrix e20r1000 the local
matrices A; were quite large in size but sparse, having only 9.8 nonzeroes per row
on average. Treating the local systems as full matrices raised the relative density to
about 86.1. Thus it is reasonable to expect the computation times to be lower if the
systems are treated as sparse. It is nevertheless useful to have a worst case complex-
ity for the algorithms in order to make comparison with the established techniques
easier.

To sum up these numerical experiments, the iteration counts obtained with
DIAF-Q and DIAF-S (which are fully parallelizable) seem to be competitive with
the iteration counts obtained with the standard algebraic (sequential) preconditioning
techniques. Moreover, a good problem specific tuning of matrix subspaces possesses
a lot of potential for significantly speeding up the iterations.

Acknowledgments. The authors would like to thank Kamer Kaya and Iain Duff
for their strongly connected components code and the reference [11]. A large part of
this work was done when the first author was a postdoc researcher in CERFACS and
would like to thank the ALGO group for hospitality and a nice atmosphere.

We also thank the referees for useful remarks and for bringing up many relevant
references.

Al104 MIKKO BYCKLING AND MARKO HUHTANEN

REFERENCES

M. BENz1, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.,
182 (2002), pp. 418-477.

M. BENzI, L. GIRAUD, AND G. ALLEON, Sparse approrimate inverse preconditioning for dense
linear systems arising in computational electromagnetics, Numer. Algorithms, 16 (1997),
pp. 1-15.

M. Benzi, J. C. HAws, AND M. TuUMA, Preconditioning highly indefinite and monsymmetric
matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333-1353.

M. BYCKLING AND M. HUHTANEN, Approzimate factoring of the inverse, Numer. Math., 117
(2011), pp. 507-528.

M. BOLLHOFER AMD Y. SAAD, On the relations between ILUs and factored approzimate in-
verses, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 219-237.

E. Cuow, A priori sparsity patterns for parallel sparse approzimate inverse preconditioners,
SIAM J. Sci. Comput., 21 (2000), pp. 1804-1822.

E. CHOW AND Y. SAAD, Approzimate inverse preconditioners via sparse-sparse iterations,
SIAM J. Sci. Comput., 19 (1998), pp. 995-1023.

T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.

T. A. DAvVIs AND Y. Hu, The University of Florida sparse matriz collection, ACM Trans. Math.
Software, 38 (2011), 1.

I. S. Durr AND J. KOSTER, On algorithms for permuting large entries to the diagonal of a
sparse matriz, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973-996.

1. S. DUrF AND K. KAYA, Preconditioners based on strong components, Electron. Trans. Numer.
Anal., 40 (2013), pp. 225-248.

HSL, HSL 2013: A Collection of Fortran Codes for Large Scale Scientific Computation, http://
www.hsl.rl.ac.uk (2013).

M. J. GROTE AND T. HUCKLE, Parallel preconditioning with sparse approzimate inverses, SIAM
J. Sci. Comput., 18 (1997), pp. 838-853.

R. M. HoLLAND, A. J. WATHEN, AND G. J. SHAW, Sparse approzimate inverses and target
matrices, STAM J. Sci. Comput., 26 (2005), pp. 1000-1011.

T. HUCKLE AND A. KALLISCHKO, Frobenius norm minimization and probing for precondition-
ing, Int. J. Comput. Math., 84 (2007), pp. 1225-1248.

M. HUHTANEN, Factoring matrices into the product of two matrices, BIT, 47 (2007), pp. 793—
808.

Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.

Y. Saap, SPARSKIT: A Basic Tool Kit for Sparse Matriz Computations, http://www-
users.cs.umn.edu/“saad /software/SPARSKIT/.

N. I. M. GouLD AND J. A. ScoTT, Sparse approrimate-inverse preconditioners using norm-
minimization techniques, SIAM J. Sci. Comput., 19 (1998), pp. 605-625.

H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631-644.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

