Gibbs sampler for random hardcore configurations

Let G = (V, E) be a graph with nodes $V = \{v_1, \ldots, v_n\}$ and edges $E = \{e_1, \ldots, e_\ell\}$. Denote by $\{0, 1\}^V$ the set of functions from V into $\{0, 1\}$. An element $x \in \{0, 1\}^V$ is called a *configuration*, and we say that a vertex v is occupied if x(v) = 1 and vacant otherwise. An element $x \in \{0, 1\}^V$ is called a feasible hardcore configuration on G if no neighboring vertices of G are occupied. We denote the set of feasible configurations by

 $\Omega = \{ x \in \{0,1\}^V : x(v) + x(w) \le 1 \text{ for all } \{v,w\} \in E \}.$

Construct a Markov chain (X_t) on Ω recursively by letting X_0 be an arbitrary feasible configuration on G, and at each integer time t + 1:

- 1. Pick a vertex $v \in V$ uniformly at random.
- 2. Toss a fair coin.
- 3. If the coin comes up heads, and all neighbors of v take value 0 in X_t , then let $X_{t+1}(v) = 1$; otherwise let $X_{t+1}(v) = 0$.
- 4. For all nodes w other than v, leave the value at w unchanged, i.e., let $X_{t+1}(w) = X_t(w)$.
- **5.1** Write down the transition matrix P of the Markov chain (X_t) .
- **5.2** Show that the uniform distribution on Ω is reversible for *P*. Can you find a simple proof of this fact using a simple structural property of *P*?
- **5.3** Show that *P* is aperiodic. (**Hint:** Show that $1 \in \mathcal{T}(x)$ for all *x*, where $\mathcal{T}(x)$ denotes the set of possible return times to configuration *x* as defined in [LPW08, Sec 1.3].)
- **5.4** Show that P is irreducible. (**Hint:** Show first that the empty configuration can be reached from any feasible configuration in a finite number of steps.)
- **5.5** Compute the transition matrix Q of the Glauber dynamics for π described in [LPW08, Sec 3.3.2], when π is the uniform distribution on Ω . In what way (if any) the matrix Q differs from P?

References

[LPW08] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times. American Mathematical Society, 2008.