Exercise 2 11–12.11.2013 L. Leskelä / M. Kuronen

- **2.1** Same birthday. The are 23 student in a class. Let X_i be a number which tells on which day of the year the student is born, when the days are numbered from 1 to 365. Let us assume that the X_1, \ldots, X_{23} are independent uniformly distributed random variables in $\{1, 2, \ldots, 365\}$. What is the probability that some of the students in the class share the same birthday?
- **2.2** Sum and product of random bits. Let $\theta_1, \ldots, \theta_n$ be independent Bernoulli distributed random variables with parameter $p \in (0, 1)$, so that $\mathbb{P}(\theta_i = 1) = p$ and $\mathbb{P}(\theta_i = 0) = 1 p$ for all *i*. Find out the distributions of the following random variablest:
 - (a) $X = \theta_1 + \theta_2$,
 - (b) $Y = \theta_1 \theta_2$,
 - (c) $Z = \theta_1 + \dots + \theta_n$,
 - (d) $W = \theta_1 \cdots \theta_n$.
- **2.3** Max ja min of random bits. Let B_1 ja B_2 be independent uniformly distributed random variables in $\{0, 1\}$. Define $X = \min\{B_1, B_2\}$ and $Y = \max\{B_1, B_2\}$. Are X and Y dependent or independent? Explain your answer carefully.
- **2.4** Conditional probabilities. A symmetric die is thrown twise and the outcomes are denoted by X_1 and X_2 . Then X_1 and X_2 are independent uniformly distributed random integers in $\{1, 2, \ldots, 6\}$. Write down examples of events A ja B in terms of X_1 and X_2 , where
 - (a) $\mathbb{P}(A \mid B) < \mathbb{P}(A),$
 - (b) $\mathbb{P}(A \mid B) = \mathbb{P}(A),$
 - (c) $\mathbb{P}(A \mid B) > \mathbb{P}(A)$.
- **2.5** Independent triplets and pairs. Let X_1, X_2, X_3 be random integers in a discrete probability space (Ω, P) Are the following statements true or false? Prove them true or show them false by giving a counterexample.
 - (a) If the random variables X_1, X_2, X_3 are mutually independent, then also the random variables X_i, X_j are mutually independent for all $i \neq j$.
 - (b) If X_i, X_j are mutually independent for all $i \neq j$, then also X_1, X_2, X_3 are mutually independent.