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Stochastic ordering of network flows

Consider two Markov processes and X’ on Z'!, both describing populations of particles
(customers, jobs, individuals) in a network @fnodes. Classical coupling results on the
stochastic ordering ok and_X’ require strong monotonicity assumptions [3, 7, 8] which are
often violated in practice. However, in most real-world bgaiions we care more about what
goes through a network than what sits inside it. This postecrises a new approach for
orderingflows instead of populatiortsy augmenting the network stat&sand X’ with their
associated flow-counting procesgesand I/, and developing order-preserving couplings of
the state—flow processéx’, ') and (X', F").

Population processes on networks

Consider a network consisting of nodads = {1,...,n} where particles randomly move
across directed link& c (N U {0})?, and where nodé represents the outside world. The
network dynamics is presented by a Markov jump process (X (¢), ..., Xp(t))>0 ONZ!}
with transitions

v 1 —e+e; atrateq; j(x), (i,j) € L,
wheree; denotes thé-th unit vector InZ', ande stands as a synonym for zero.
e X;(t) is the number of particles in nodet timet
e o; i(x) fori, j € N is the transition rate from nodeo node;

e o ;(x) anda; o(x) are the arrival and departure rates of node

Redundant state—flow presentation

The state—flow procesassociated tdX is a Markov jump processX, I') on Z! x Zﬁ with
transitions

(z,f) = (x —e; +ej, f+e ;) atrateq; ;(z), (i,7) € L.

e X;(t) is the number of particles in nodet timet
e ['; i(t) is the number of transitions across lifkkj) during (0, ¢].

This process isedundantbecause the second componen{ &f F') may be recovered from
the path ofX by the formula

F;j(t) = F; j(0) = #{s € (0,1]: X(s)— X(s—) = —e;+e¢;},

where X (s—) denotes the left limit ofX at times. Adding this redundancy allows to derive
useful non-Markov couplings oX in terms of Markov couplings afX, F).

Flow balance

Any coupling of state—flow processes always preserves theorela

- Y fii+ Y fi :x—Zf]ﬁZfJ, ieN. (1)

j:(ji)eL j:(i,7)€L 7:(ji)eL J:(i,5)€L
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Ordering flows In closed cyclic networks

Let X and.X’ be population processes on a closed cyclic network gendpgittednsition rates
a; j(x) ando’ Pl 7', respectively.

Theorem 1.Assume that for all € N and allz, 2’ € Z'}:
z; < zpandz >z = ay01(2) < afyyq(2') andaegyg () > ag (@),
Then the associated flow counting processes are orderedlatytw
(Fii1(t) = Fi1,i®))es0 <st (F 1) — Fiyp()e0

for all : € N, wheneverX (0) =y X'(0).
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Marching soldiers coupling

The marching soldiers couplinffl] of state—flow processes(, ') and(X’, ) is a Markov
process oniZ" x Z%)? having the transitions

(Tz,] (z, f), TZ,]( />) at rateq; ; (z) A 04;7]-(:13/>,
((z, f), (', f) = ((z, ), T; (2", ') atrate(a; ;(z) — a; j(x))+,
(T; j(x, f), (2", f))  atrate(q; j(x) — o ;(2"))+,

WhereTZ-,j(:z:, f)=(x—e;+ €5, f+ 67;7]').

Proof of Theorem 1

A state—flow pail(z, f) has asmaller clockwise netflothan(z’, f/) if

/ /
fiit1— fivri < Jiip1 — fiv1a (2)

forall i € N, wherei + 1 := 1 for ¢« = n. The marching soldiers coupling ¢X, ') and
(X', F") preserves the state—flow relation defined by (1) and (2). Annaitive proof can be
obtained by applying the theory of monotone generalized searkb processes developed
by Glasserman and Yao [4].

References

[1] Chen, M.-F. (2005)Eigenvalues, Inequalities, and Ergodic TheoBpringer.

[2] van Dijk, N. M. and van der Wal, J. (1989). Simple boundd amnotonicity results for finite multi-server exponentahdem queueueueing Syst4(1):1-15.
[3] Economou, A. (2003). Necessary and sufficient condgifam the stochastic comparison of Jackson netwdpksbab. Eng. Inform. Sgil7:143-151.

[4] Glasserman, P. and Yao, D. D. (1994)onotone Structure in Discrete-Event Systekivdey.

[5] Leskeh, L. (2010). Stochastic relations of random variables andgssesJ. Theor. Probah.23(2):523-546.

[6] Leskeh, L. (2012). Stochastic ordering of network throughputagifiow couplings.ht t p: // ww. i ki . fi /1l sl / paper016. ht m .

[7] Massey, W. A. (1987). Stochastic orderings for Markowgqasses on partially ordered spaddsith. Oper. Res12(2):350-367.

[8] Whitt, W. (1986). Stochastic comparisons for non-MarkwacessesMath. Oper. Res11(4):608—618.

Stochastic ordering of network throughputs

Ordering flows through open linear clusters

Consider a network consisting of a linear sequence of clus¥rs. . , N,,,) so that only nodes
In the boundary clusterd’; andN,,, have links to the exterior of the network, and within the
network there are links only between nodes in the same ohherghg clusters.
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A state—flow pairz, ) has asmaller netflow throughNy, . . ., Ny,) than(z/, f/) if
S - <Y -6 3)

iEN,, jEN, 1 iEN,, jEN, 1

forallr =0,1,...,m, whereNy := {0}, N;,o1 = {0}.

Theorem 2.There exists a Markov coupling of state—flow process€st’) and (X', F’)
which preserves the relation defined by (1) and (3) if and drflyriall =, 2" € Z'::

(o (z) < o (')
|$N| > ‘wa‘ — {O}>N1 — ;{O}aNl /

- | o, (0}(%) 2 o, (3 (#)
f / /
T, | < ’x;\%‘ . aNkaNkJrl(x) < ka,NkH(x/)
g = ‘leH—l‘ ANy 1, N () 2 Nk+17Nk(x)

r / /

oy, | < oy | = ONu ) S O (o)
mE T gy, @) 2 oy, (@),

wherelz | = ;cr @ anday, N, = X ien, jeN, i

The marching soldiers coupling does not work for provingdreen 2. A proof based on a
general coupling result [5, Thm. 5.6] will be available i1).[6

Application: Product-form throughput estimates

A linear network of two queues with buffer capacitiegsandns is fed by a Poisson process
of rate A and serviced at nondecreasing service ratg¢s;) and us(xy). Arrivals are lost
when buffer 1 is full, and server 1 halts when buffer 2 is fulanvDijk and van der Wal [2]
proved that the stead-state mean throughput rate of the rleban be bounded by using the
following modifications having a product-form equilibriudrstribution:

Modification 1

Original network

Modification 2

ap,1(71, 29)
a (w1, 79)
o o(71, 29)

A (x1<ny, x9<no)
p1(z1)L(zo<ny)
po(z2)(z1<ny)

Al(z1<nq)
p1(z1)1(wo<ny)
po(x2)

Az + 29 < ny + no)
p(x)
pa(w2)

An application of Theorem 2 now yields a stronger restilie flow counting processes are
ordered according to

(FRS ()20 st (FL8 (0)iz0 st (FISR(0)0, i =0,1,2.
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