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Definition
Given a closed relationR ⊂ S1 × S2 between Polish spacesS1 andS2,
denote

• x ∼ y for nonrandom elements, if(x, y) ∈ R

•X ∼st Y for random elements, if there exists a coupling(X̂, Ŷ ) of X and
Y such thatX̂ ∼ Ŷ almost surely

•µ ∼st ν for probability measures, if there exists a couplingλ of µ andν

such thatλ(R) = 1

The relationRst = {(µ, ν) : µ ∼st ν} is called thestochastic relationgen-
erated byR.

Remark. For Dirac measures,δx ∼st δy if and only if x ∼ y.

Functional characterization
Theorem. The following are equivalent:

(i) µ ∼st ν.

(ii) µ(B) ≤ ν(B→) for all compactB ⊂ S1.

(iii)
∫

S1
f dµ ≤

∫

S2
f→ dν for all positive upper semicontinuousf on S1

with compact support.

The relational conjugatesof
sets and functions are defined
by

B→ = ∪x∈B{y ∈ S2 : x ∼ y},

f→(y) = sup
x∈S1:x∼y

f(x).

S1

S2

B

B→ R

Examples
•Stochastic equality. For the stochastic relation generated by the equality,

we haveX =st Y if and only if X andY have the same distribution.

•Stochasticǫ-distance. Definex ≈ y on the real line, if|x− y| ≤ ǫ. Then
X ≈st Y if and only if the corresponding c.d.f.’s satisfyFY (x − ǫ) ≤
FX(x) ≤ FY (x + ǫ) for all x.

•Stochastic order. For a stochastic relation generated by an order (reflex-
ive and transitive) relation,X ≤st Y if and only if E f(X) ≤ E f(Y ) for
all positive increasingf onS.

•Stochastic induced order. [1] Given real functionsf on S1 and g on
S2, definex ≤f,g y by f(x) ≤ g(y). Thenµ ≤f,g

st ν if and only if
µ(f−1((α,∞))) ≤ ν(g−1((α,∞))) for all real numbersα.

Preservation of stochastic relations
Two Markov processesX1 andX2 are said tostochastically preservea re-
lationR, if for all initial statesx andy:

x ∼ y =⇒ X1(x, t) ∼st X2(y, t) for all t.

Theorem. Two nonexplosive Markov jumps processesX1 andX2 stochas-
tically preserve a relationR if and only if the corresponding rate kernels
Q1 andQ2 satisfy

Q1(x, B) − q1(x)δ(x,B) ≤ Q2(y, B→) − q2(y)δ(y, B→)

for all x ∼ y and all compactB ⊂ S1 such thatδ(x,B) = δ(y, B→).

Remark. For order relations, the above result reduces to Massey [6] and Whitt [7]. López
and Sanz have an alternate characterization in terms of a subtle order construction [4].

Bounds for stationary distributions
Problem. How to show that the stationary distributions of irreducible posi-
tive recurrent Markov processesX1 andX2 with values on an ordered space
satisfy

µ1 ≤st µ2, (1)

without explicitly knowingµ1?

A well-known sufficient condition for (1) is thatX1 andX2 stochastically
preserve the order, that is,

Q1(x,B) − q1(x)δ(x,B) ≤ Q2(y, B) − q2(y)δ(y, B)

for all x ≤ y and upper setsB such thatδ(x,B) = δ(y,B) [2, 6, 7].

Key observation. A less stringent sufficient condition for (1) is thatX1 and
X2 stochastically preserve some (not necessarily symmetric or transitive)
subrelationof the order.

Subrelation algorithm
Theorem. A pair (P1, P2) of continuous probability kernels stochastically
preserves a subrelation ofR if and only if

R∗ =
∞
⋂

n=0

R(n) 6= ∅,

where the sequenceR(n) is defined byR(0) = R, and

R(n+1) =
{

(x, y) ∈ R(n) : (P1(x, ·), P2(y, ·)) ∈ R
(n)
st

}

.

In this caseR∗ is the maximal subrelation ofR that is stochastically pre-
served by(P1, P2).

Remark. An analogous result holds for rate kernels of Markov jump processes.

Application: Load balancing
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Common sense suggests that load balancing reduces the net queue length:

E(XLB
1 (t) + XLB

2 (t)) ≤ E(X1(t) + X2(t)),

butXLB andX donotstochastically preserve the coordinatewise ordernor
the orderRsum = {(x, y) : |x| ≤ |y|} on Z

2
+, where|x| = x1 + x2.

Theorem. Starting fromR(0) = Rsum, the subrelation algorithm applied to
(QLB, Q) produces the relations

R(n) = {(x, y) : |x| ≤ |y| andx1 ∨ x2 ≤ y1 ∨ y2 + (y1 ∧ y2 − n)+} ,

↓

R∗ = {(x, y) : |x| ≤ |y| andx1 ∨ x2 ≤ y1 ∨ y2} .

The relationR∗ is known as theweak majorization orderon Z
2
+, usually

denoted byx �wm y [5]. As a consequence,

XLB(0) �wm X(0) =⇒ XLB(t) �wm
st X(t) for all t.
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