Stochastic relations of random variables and processes

Definition

Given a closed relatiol® C S; x S5 between Polish spacés and.Ss,
denote

e © ~ y for nonrandom elements, (it, y) € R

e X ~, Y forrandom elements, if there exists a couplig Y) of X and
Y such thatX ~ Y almost surely

e 11 ~y v for probability measures, If there exists a coupligf 1 andv
such that\(R) = 1

The relationRy = {(u,v) : n ~y v} is called thestochastic relatiorgen-
erated byR.

Remark. For Dirac measures; ~g 9, If and only if x ~ .

Functional characterization

Theorem. The following are equivalent:
(1) ft ~s v
(i) u(B) < v(B7) for all compactB C 9.

() fq fdu < [g f7 dv for all positive upper semicontinuoyson S,
with compact support.

The relational conjugatesof
sets and functions are defined

by B~
B7 =Ugep{y € Sy x ~ y},

f7y)= sup f(z).

rES1:x~Y

Examples

e Stochastic equalityor the stochastic relation generated by the equality,

we haveX =, Y if and only if X andY have the same distribution.

e Stochastie-distance Definex ~ y on the real line, ifx — y| < e. Then
X =~ Y if and only if the corresponding c.d.f’s satisfyy (xr — ¢) <
Fx(x) < Fy(xz + ¢) for all x.

e Stochastic orderFor a stochastic relation generated by an order (reflex-

ive and transitive) relationX <y Y ifandonlyifE f(X) < E f(Y) for
all positive increasing on S.

e Stochastic induced order[1] Given real functionsf on S; and g on
S,, definex </9 y by f(z) < g(y). Thenp <7 v if and only if

—st

w(f (o, 00))) < v(g (e, 00))) for all real numbersr.

Lasse Leskal
Helsinki University of Technology

Preservation of stochastic relations

Two Markov processed’; and X, are said tastochastically preserva re-
lation R, If for all initial statesz andy:

v~y = Xi(x,t) ~¢ Xo(y,t) forallt.

Theorem. Two nonexplosive Markov jumps processgsand.X, stochas-
tically preserve a relatio® if and only if the corresponding rate kernels
()1 and(), satisfy

Qi(z,B) — qi(z)d(z, B) < Qa(y, B) — qa(y)o(y, B)

for all z ~ y and all compacB C S; such thab(x, B) = d(y, B™).

Remark. For order relations, the above result reduces to Masseyn[b\¥hitt [7]. LOpez
and Sanz have an alternate characterization in terms oftie sulder construction [4].

Bounds for stationary distributions

Problem. How to show that the stationary distributions of irredueipbsi-
tive recurrent Markov process&s and.X, with values on an ordered space
satisfy

M1 Sst Ha, (1)
without explicitly knowingp:,?

A well-known sufficient condition for (1) is thakX’, and X, stochastically
preserve the order, that Is,

Qi(z,B) — qi(x)d(z, B) < Qa(y, B) — ¢2(y)d(y, B)

for all x < y and upper set® such thav(x, B) = i(y, B) [2, 6, 7].

Key observation. A less stringent sufficient condition for (1) is th'at and
X, stochastically preserve some (not necessarily symmatii@nsitive)
subrelationof the order.

Subrelation algorithm

Theorem. A pair (P, P») of continuous probability kernels stochastically
preserves a subrelation &fif and only if

R*= (" R"™ #0,
n=>0

where the sequende™ is defined byR”) = R, and
R ={(z,y) € R : (Pi(z,"), P(y,")) € R}

In this caseR* Is the maximal subrelation ok that is stochastically pre-
served by( P, P).

Remark. An analogous result holds for rate kernels of Markov jumpcpsses.

Application: Load balancing

Xi(t) X15(t)
A1
o p o
A+ Ao ,//
Xo(1) X55(t)

Common sense suggests that load balancing reduces theenet lgmgth:
E(X75(t) + X57(t) < E(X(t) + Xo(t)),

but X'® and X do notstochastically preserve the coordinatewise oraer
the orderR™™ = {(z,y) : |z| < |y|} onz*, where|z| = z; + z».

Theorem. Starting fromR\”) = R*"™, the subrelation algorithm applied to
(Q"B, Q) produces the relations

R™ = {(z,y): |z| < |Jylandzy Vs <y Vo + (11 Ay —n) '},

l
R =A(x,y): |x| < l|ylandzy Vxs <y V.

The relation?* is known as theveak majorization ordeon z*, usually
denoted byr <"™ y [5]. As a conseguence,

XMB(0) =" X(0) = X"P(t) <™ X(¢) forallt.
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