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Abstract

These lectures notes contain material that was used in Fall 2018 during the
course MS-E1603 Random graphs and network statistics at Aalto University.
Many chapters are still under construction, and the notes are subject to
updates in the future. The current version also contains several missing
references which will be added later.
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Chapter 1

Random and nonrandom
graphs

1.1 Introduction

1.1.1 Graph statistics

Graphs are mathematical structures consisting of nodes (vertices, actors,
points) and links (edges, dyads, arcs, ties, bonds, lines) between them. In
addition, the nodes and the links of a graph are often associated with some
attributes (weights, labels, features, categories). Commonly observed graph
data include various types of measurements related to biological networks,
information networks, financial networks, and social networks. A basic sta-
tistical task related to graphs is the following:

• Describe relevant features of a large graph in a compact form using a
small set of human-readable numbers, tables, or figures. This type of
descriptive statistical tasks are very common in today’s society, and
might often require a considerable amount of raw computing power, a
sophisticated computational algorithm, or advanced visualization tech-
niques.

Instead of merely describing data, statistics can be used for much more.
Statistical inference refers to making predictions and decisions based on par-
tially observed and noisy data. Typical statistical inference tasks associated
with graphs are:

• Learning global graph features from a partially observed graph. For
example, estimate the relative proportion of nodes having an excep-
tionally large number of neighbors, or predict the frequency of large
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cliques. This type of techniques can be applied for example to detect
anomalies in a noisy data set, or to predict how likely a disease or a
rumor is to spread in a large population of animals or in an online social
messaging platform.

• Learning node attributes from an observed graph. Based on an ob-
served graph structure (which node pairs are linked and which are not),
try to infer the unknown attribute of each node. When a collection of
nodes having a common attribute value is identified as a community,
this task corresponds to learning the hidden community structure from
the graph.

• Learning a graph from observed node attributes. Based on observed
measurements of node attribute values, try to infer the unknown graph
structure. This type of techniques are widely used in medical studies
for example in discovering hidden interactions between different bio-
chemical compounds.

• Learning node attributes from an observed graph and partially observed
attributes. This type of problems are typical in phylogenetics, where
nodes correspond to individuals or groups of living organisms and node
attributes to heritable traits. The goal is to infer attributes of unob-
served nodes based on observations of the end nodes of in evolutionary
tree graph.

To make learning possible, the unknown variables must somehow be re-
lated to the observed variables. Such relations can be analyzed by using a
statistical graph model. In case there are no attributes (or they are ignored),
then a relevant statistical model is a probability distribution x 7→ pθ(x) on
the space of all graphs under study, where θ contains the parameters char-
acterizing the model. In contexts with node attributes, a relevant model is
a joint probability distribution (x, z) 7→ pθ(x, z) where x refers to a graph
structure and z to a list of node attributes.

Because the set of all graphs on a finite node set is finite, computing
probabilities and expectations related to a statistical graph model can in
principle done by counting sums over finite sets. However, such brute force
computing is only feasible for very small graphs, because for example, the set

of all undirected graphs on 10 nodes contains 2(10
2 ) ≥ 3×1013 elements. This

is why we need to work with good statistical graph models and mathematical
approximations to handle big data sets.
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1.2 Graphs

For most parts, the terminology and notations follow those in [Die17, vdH17].
In these notes, a graph is a pair G = (V,E) where V is a finite set of elements
called nodes (vertices, points), and E is a set of unordered node pairs called
links (edges, lines, arcs, bonds). Hence there are no loops, no parallel links,
nor directed links. The node set of graph G is denoted by V (G) and the link
set by E(G). Nodes i and j such that {i, j} ∈ E(G) are called adjacent. The
adjacency matrix of graph G is the square matrix with entries

Gij =

{
1, if {i, j} ∈ E(G),

0, else.

Every adjacency matrix is symmetric and has zero diagonal, and the collec-
tion such matrices is in one-to-one correspondence with the set of all graphs
on node set V . For this reason we will employ the same symbol G both for
the graph G = (V,E) and its adjacency matrix G = (Gij). See Figure 1.1
for an example.


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0


●

●

●

●

1

2

3

4

Figure 1.1: The adjacency matrix and a visualization of a graph with node
set V = {1, 2, 3, 4} and link set E = {{1, 4}, {2, 3}, {2, 4}, {3, 4}}.

The degree of node i, denoted degG(i), is the number of nodes adjacent
to i. The degrees are obtained as rows sums of the adjacency matrix accord-
ing to

degG(i) =
n∑
j=1

Gij.

In Figure 1.1, node 1 has degree one and the other nodes degree two.

1.3 Random graphs

A random graph is a random variable G whose realizations are graphs. Usu-
ally the node set is assumed to be nonrandom, in which case a random graph
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on node set V is a random variable whose realizations belong to the finite set
G(V ) of all graphs on node set V . In this case the probability distribution
of the random graph G is characterized by the probabilities

P(G = g), g ∈ G(V ).

Here P refers to a probability measure defined on some measurable space
on which the random variables under study are defined. The underlying
measurable space is usually hidden from the notation, and the reader is
expected to recognize from the context which graphs (numbers, vectors, . . . )
are random and which are nonrandom. A random graph on node set [n] =
{1, 2, . . . , n} can be identified as a collection of n(n − 1)/2 binary random
variables Gij ∈ {0, 1} indexed by 1 ≤ i < j ≤ n, which constitute the upper
diagonal of the adjacency matrix.

Example 1.1 (Bernoulli random graph). Let (pij) be a symmetric n-by-n
matrix with [0, 1]-valued entries and zero diagonal, and let G be a random
graph on node set [n] = {1, . . . , n} in which every node pair {i, j} is linked
with probability pij, independently of all other node pairs. The probability
distribution of G can be written as

P(G = g) =
∏

1≤i<j≤n

(1− pij)
1−gijp

gij
ij , g ∈ Gn, (1.1)

where Gn denotes the set of all graphs g on node set [n]. A random graph
with probability distribution (1.1) is called a Bernoulli random graph with
rate matrix (pij). The link indicator Gij of a node pair {i, j} is a binary
random variable which follows a Bernoulli distribution with rate parameter
pij, so that

P(Gij = x) =

{
1− pij, x = 0,

pij, x = 1.

A Bernoulli random graph is called homogeneous when all nonzero entries of
the rate matrix have the same value, and inhomogeneous otherwise.

Example 1.2 (Uniform random graphs). Let G be a random graph dis-
tributed according to

P(G = g) =
1

|A|
, g ∈ A,

where A is a subset of the set Gn of all graphs on node set [n] = {1, 2, . . . , n}.
The following two cases have received the most attention in the literature:
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(i) A uniform random graph with m links is obtained by setting

A =
{
g ∈ Gn : |E(g)| = m

}
.

For this graph model, all realizations with the same number of links are
equally likely.

(ii) A uniform random graph with degree list (d1, . . . , dn) is obtained by
setting

A =
{
g ∈ Gn : degg(i) = di for all i = 1, . . . , n

}
,

where d1, . . . , dn are nonnegative integers such that A is nonempty.
When all entries of the degree list are equal, this model is called a
random regular graph.

The homogeneous Bernoulli graph and the uniform random graph with a
given link count are two of the most studied random graphs. Both are often
called Erdős–Rényi random graphs after Pál Erdős and Alfred Rényi who
in 1959 published a famous article [ER59] on the connectivity of the latter
model. Edgar Gilbert published a similar connectivity analysis [Gil59] in the
same year, but for some reason his name has not become as well known in
this context.

1.4 Latent position graph models

Let (pij) be a symmetric n-by-n matrix with entries in [0, 1]. An inhomo-
geneous Bernoulli graph G on node set [n] with link rate matrix (pij) is the
one where each unordered node pair {i, j} is linked with probability pij, in-
dependently of other node pairs. The probability distribution of the graph
is then given by

P(G = g) =
∏

1≤i<j≤n

(1− pij)1−gijp
gij
ij , g ∈ Gn.

This is an extremely flexible model, but in practice the number of model
parameters n(n − 1)/2 is way too large to do feasible inference. A feasible
approach is to consider a model where each node i is assigned an attribute
(type, mark, label, weight) zi which is an element in a set S, and assume
that

pij = ρK(zi, zj)

8



for some symmetric function K : S × S → [0, 1] called a kernel and some
constant ρ ∈ [0, 1] which controls the overall link density. Then we get
a random graph model on node set [n] parametrized by the attribute list
z = (z1, . . . , zn), the kernel K, and the constant ρ. Such a model is called a
latent position graph in the statistics literature. This model generalizes the
Erdős–Rényi model to an inhomogeneous setting and is still rich enough to
contain lots of different models as special cases, summarized in Table 1.1.

Nickname Label space Kernel

Erdős–Rényi graph {1} Constant
Stochastic block model {1, . . . ,m} Symmetric K : [m]2 → [0, 1]
Rank-1 inhomogeneous graph [0,∞) K(zi, zj) = φ(zizj)
Multiplicative attribute graph

∏
r{1, . . . ,mr} K(zi, zj) =

∏
rKr(zir, zjr)

Random intersection graph {0, 1}m K(zi, zj) = min{〈zi, zj〉, 1}
Random dot product graph Rd K(zi, zj) = φ(〈zi, zj〉)
Random geometric graph Rd K(zi, zj) = φ(‖zi − zj‖)
Graphon [0, 1] Symmetric K : [0, 1]2 → [0, 1]

Table 1.1: Latent position graph models. Here φ : [0,∞)→ [0, 1] truncates
positive real numbers into probability values in [0, 1].

1.5 Notes and further reading

Statistical estimation of latent position graph models are discussed in [AFT+18].
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Chapter 2

Connectivity

2.1 Connectivity probability

A graph is connected if between any two nodes there exists a path connecting
them. In this section we will investigate the probability that G is connected,
where G is a homogeneous Bernoulli graph on node set [n] = {1, . . . , n}
where every node pair is linked with probability p, independently of other
node pairs. In principle, we can write this probability using the density (??)
as

P(G connected) =
∑
g∈Gcon

n

∏
1≤x<y≤n

(1− p)1−gxypgxy

where Gcon
n denotes the set of all connected graphs on node set [n]. Although

the above formula provides an exact answer to our question, as such it is
not very useful in practice because the number of summands on the right is
astronomical even for small graphs (for n = 10 the sum contains 34 496 488
594 816 terms1). Moreover, the above formula does not reveal much insight
on whether or not the probability is small or large for a given value of p.

2.2 Number of isolated nodes

A node in a graph is isolated if it has no neighbors. The following result
shows that the value logn

n
is a sharp threshold for the existence of isolated

nodes in large Bernoulli graphs. Here ωn is thought to be a function having
an arbitrarily slow growth to infinity, for example, ωn = log log n. The proof
technique based on applying Markov’s and Chebyshev’s inequalities analyze

1This is the integer sequence A001187 in the On-Line Encyclopedia of Integer Sequences
http://oeis.org/A001187.
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the probability of a random nonnegative integer being nonzero is called as
the second moment method.

Theorem 2.1. The probability that a homogeneous Bernoulli graph Gn on
node set [n] with link probability pn contains isolated nodes satisfies

P(∃ isolated nodes) →

{
0, if pn ≥ logn+ωn

n
for some ωn →∞,

1, if pn ≤ logn−ωn
n

for some ωn →∞.

Proof. Denote byAi the event that node x is isolated, and let Yn =
∑n

i=1 1(Ai)
be the number of isolated nodes in Gn. Because P(Ai) = (1− pn)n−1 for all
x, we see that the expectation of Yn is

EYn =
n∑
i=1

E1(Ai) =
n∑
i=1

P(Ai) = n(1− pn)n−1. (2.1)

To analyze how this expectation behaves for large n, let us first analyze the
function f(t) = log(1 − t) on the interval (−1, 1). The derivatives of f are
given by f (k)(t) = −(k − 1)!(1 − t)−k and hence we obtain a Taylor series
representation

log(1− t) = −
∞∑
k=1

1

k
tk.

The above formula implies that

log(1− t) ≤ −t for all 0 ≤ t < 1. (2.2)

We may also note that for 0 ≤ t ≤ 1
2
,

0 ≤
∞∑
k=2

1

k
tk ≤ 1

2

∞∑
k=2

tk =
1

2

t2

1− t
≤ t2,

which yields a a lower bound

log(1− t) ≥ −t− t2 for all 0 ≤ t ≤ 1

2
. (2.3)

(i) Assume that pn ≥ logn+ωn
n

for some ωn → ∞. Then with the help of
(2.1) and (2.2) we see that

EYn = elogn+(n−1) log(1−pn) ≤ elogn−(n−1)pn = epnelogn−npn ≤ epne−ωn .

Because pn ≤ 1 and ωn →∞, we may conclude by Markov’s inequality that

P(∃ isolated nodes) = P(Yn ≥ 1) ≤ EYn → 0,
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which confirms the first part of the claim.
(ii) Assume next that pn ≤ logn−ωn

n
for some ωn → ∞. Then pn ≤ 1

2
for

all large enough n, and with the help of (2.1) and (2.3),

EYn = elogn+(n−1) log(1−pn) ≥ elogn−(n−1)(pn+p2
n) ≥ elogn−npn−np2

n .

Now npn ≤ log n − ωn and np2
n = n−1(npn)2 ≤ n−1(log n)2 ≤ 1 for all large

values of n, so that

EYn ≥ eωn−1 →∞ as n→∞.
Hence we conclude that the expected number of isolated nodes converges to
infinity, but this is not yet sufficient to conclude that P(Yn = 0)→ 0 (finding
a counterexample is a good exercise). One way to arrive at the desired
conclusion is to show that the the probability mass of Yn is sufficiently well
concentrated around its mean, and Chebyshev’s inequality then is the easiest
way to do this. In our current case where EYn ≥ 0 we may apply Chebyshev’s
inequality to conclude that

P(Yn = 0) ≤ P(Yn ≤ 0) ≤ P(|Yn − EYn| ≥ EYn) ≤ Var(Yn)

(EYn)2
. (2.4)

To analyze the variance above, note that

E(Y 2
n ) = E

n∑
i=1

n∑
j=1

1(Ai)1(Aj) =
n∑
i=1

n∑
j=1

P(Ai, Aj).

Hence by recalling that EYn =
∑n

i=1 P(Ai), it follows that

Var(Yn) = E(Y 2
n )− (EYn)2 =

n∑
i=1

n∑
j=1

(
P(Ai, Aj)− P(Ai)P(Aj)

)
.

Observe next that for x 6= y, the conditional probability that y is isolated
given that x is isolated equals (1− pn)n−2, so that

P(Ai, Aj) = P(Ai)P(Aj |Ai) = (1− pn)n−1(1− p)n−2 = (1− pn)2n−3.

By recalling that P(Ai) = (1− pn)n−1 for all i, we find that

Var(Yn) = n
(
P(A1)− P(A1)2

)
+ n(n− 1)

(
P(A1, A2)− P(A1)2

)
≤ nP(A1) + n2

(
P(A1, A2)− P(A1)2

)
= n(1− pn)n−1 + n2

(
(1− pn)2n−3 − (1− pn)2n−2

)
= n(1− pn)n−1 + n2(1− pn)2n−2 pn

1− pn
= EYn + (EYn)2 pn

1− pn
.
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Figure 2.1: Simulated realizations of homogeneous Bernoulli graphs with
n = 500 nodes and link rate p = 0.5 logn

n
(left) and p = 1.5 logn

n
(right).

Because pn → 0 and EYn →∞, we conclude using (2.4) that

P(Yn = 0) ≤ Var(Yn)

(EYn)2
≤ 1

EYn
+

pn
1− pn

→ 0,

and hence the probability that Gn contains isolated nodes tends to one.

2.3 Connectivity threshold

The following striking result shows that for a large graph (with n large) there
is a sharp transition from a disconnected graph to a connected one as the
link probability pn crosses the critical value logn

n
. This type of result was first

discovered by Erdős and Rényi in 1959 for the uniform random graph with
a given link count [ER59]. The sharp threshold is illustrated in Figure 2.1.

Theorem 2.2. For a sequence of homogeneous Bernoulli graphs Gn on node
set [n] with link rate pn,

P(Gn is connected) →

{
0, if pn ≤ logn−ωn

n
for some ωn →∞,

1, if pn ≥ logn+ωn
n

for some ωn →∞.

Remark 2.3. The proof of Theorem 2.2 below shows that

P(Gn is disconnected) ≤ 3e4elogn−np

13



whenever np ≥ 9e∨ log n. This upper bound can be applied2 in the case with
pn ≥ (1 + ε) logn

n
for some ε > 0 to conclude that

P(Gn is disconnected) = O(n−ε)

or
P(Gn is disconnected) = O(e−δnp)

for δ = ε
1+ε

.

The proof is based on counting arguments related to the components of
the graph. A set of nodes C in a graph G is called isolated the graph G
contains no links between C and its complement, and a component of G is a
connected isolated node set. The components of a graph form a partition of
its node set, and a connected graph only has one single component containing
all its nodes. An important fact related to connectivity is that any connected
component in G contains a spanning tree as a subgraph, see Figure 2.2.

●

●

●

●
●

●

● ●

●

●

●●
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●
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●

●
●

●

●

●

●

●
●

●

●

●

●

Figure 2.2: A spanning tree (red) of the smallest component of a discon-
nected graph having three components.

Proof. If pn ≤ logn−ωn
n

for some ωn → ∞, then by Theorem 2.1 it follows
that

P(Gn is connected) ≤ P(Gn contains no isolated nodes) → 0.

Assume next that pn ≥ logn+ωn
n

for some ωn →∞. In this case Theorem 2.1
states that, with high probability there are no isolated nodes, but of course
this does not yet imply that Gn is connected. Instead, we also need to verify
that the graph does not contain larger sets of isolated nodes. Denote3 by

2exercise
3For clarity, we omit the subscript n from p = pn and some other variables where the

dependence on n is clear from the context.
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Y (k) = Y
(k)
n be the number of components of size k in graph Gn. If the graph

is disconnected, then Y (k) > 0 for some 1 ≤ k ≤ n/2. Therefore, Markov’s
inequality implies that

P(Gn disconnected) ≤ P
( ∑
k≤n/2

Y (k) ≥ 1
)

=
∑
k≤n/2

EY (k). (2.5)

Hence for proving that the graph is connected with high probability, it suffices
to show that the sum on right of (2.5) converges to zero as n→∞.

Note that Y (1) equals the number isolated nodes, and we already saw in
the proof of Theorem 2.1 that

EY (1) = n(1− p)n−1 ≤ ne−(n−1)p = ep−ωn ≤ e1−ωn → 0. (2.6)

The random variable Y (2) equals the number isolated links, and

EY (2) =

(
n

2

)
p(1− p)2(n−2),

because any particular node pair is linked with probability p, and the node
pair is isolated from all other nodes with probability (1−p)2(n−2). By applying
the inequalities

(
n
2

)
≤ n2 and 1− t ≤ e−t, it follows that

EY (2) ≤ n2pe−2(n−2)p = pe4pe−2(np−logn) ≤ e4−2ωn → 0. (2.7)

We could continue this way to verify that EY (k) → 0 for larger values of k as
well. However, this approach has the problem that the range of summands
in (2.5) grows as n grows. To overcome this, we will next derive a generic
upper bound of Y (k).

We get an upper bound by noting that any connected set of nodes in a
graph contains a spanning tree (see Figure 2.2), and that any component C
is isolated from the rest of the nodes in the graph. Therefore,

Y (k) =
∑
C

1(C is a connected component)

≤
∑
C

∑
T

1(T is a subgraph of G) 1(C is isolated),

where C ranges over all node sets of size k, and T ranges over all trees on C.
By taking expectations and noting that the events {T is a subgraph of G}
and {C is isolated} are independent, we find that

EY (k) ≤
∑
C

∑
T

P(T is a subgraph of G)P(C is isolated). (2.8)

15



By noting that any tree T with k nodes has precisely k − 1 links4, and that
between any k-element set C and its complement there are precisely k(n−k)
node pairs, we see that

P(T is a subgraph of G) = pk−1

and
P(C is isolated) = (1− p)k(n−k).

Moreover, by Cayley’s theorem [vdH17, Theorem 3.17], the number of trees
on a set of k nodes equals kk−2. Hence the inequality (2.8) can be written as

EY (k) ≤
(
n

k

)
kk−2pk−1(1− p)k(n−k). (2.9)

The binomial coefficient above can be bounded by applying a Stirling lower
bound k! ≥ kke−k according to(

n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
≤ nk

kk
ek.

For the probability that a set of k nodes is isolated we get an upper bound
using 1− t ≤ e−t in the form

(1− p)k(n−k) ≤ e−k(n−k)p ≤ e−knp/2, k ≤ n/2.

By plugging in these bounds into (2.9) we obtain

EY (k) ≤ nk

k2
ekpk−1e−knp/2 =

1

pk2

(
enp e−np/2

)k
, k ≤ n/2.

Now et ≥ 1
2
t2 implies that an := enp e−np/2 ≤ 8e(np)−1, and hence an ≤ 8

9

whenever np ≥ 9e. Therefore, we find that

∑
3≤k≤n/2

EY (k) ≤
∑

3≤k≤n/2

1

pk2
akn ≤

1

9p

∞∑
k=3

akn =
1

9p

a3
n

1− an
≤ 1

p
a3
n.

Also, es ≥ s + 1
2
s2 + 1

6
s3 = 4s + (s − 3)(s + 6) ≥ 4s for s ≥ 3 implies that

log np ≤ 1
4
np for all np ≥ e3, and hence∑

3≤k≤n/2

EY (k) ≤ 1

p
a3
n = e3+logn+2 log(np)− 3

2
np ≤ e3+logn−np ≤ e3−ωn

4This is a good exercise to verify independently.
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whenever np ≥ 9e. By combining this inequality with the bounds (2.5)–(2.7),
we conclude that

P(Gn disconnected) ≤ EY (1) + EY (2) +
∑

3≤k≤n/2

EY (k)

≤ e1−(np−logn) + e4−2(np−logn) + e3−(np−logn)

≤ e4e−2(np−logn) + 2e3e−(np−logn).

whenever np ≥ 9e. The right side tends to zero because np− log n ≥ ωn →
∞.
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Chapter 3

Coupling and stochastic
ordering

3.1 Stochastic coupling method

Stochastic coupling is a powerful general method for analyzing probability
distributions of random variables defined via nonlinear interactions related
to graphs and more general random structures. Among other things, this
method can be used to show that:

• The cumulative distribution functions two random variables are or-
dered.

• Two probability distributions are close to each other with respect to a
suitable metric.

• A stochastic process mixes rapidly and approaches its statistical equi-
librium.

In the sequel, the probability distribution of a random variable X is
denoted by Law(X). In general, a coupling of random variables X1 and
X2 is a pair of random variables

(X̂1, X̂2)

defined on a common probability space, such that Law(X̂1) = Law(X1) and
Law(X̂2) = Law(X2). The requirement of a common probability space im-
plies that X̂1 and X̂2 are usually dependent. For any two random variables
there exists an unlimited number of couplings, and the key idea is to

define a coupling with a suitable dependence structure
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which can reveal useful relationships between the probability distributions
of X1 and X2. Algorithmically, this corresponds to constructing a simulator
which outputs random variables that are distributed according to Law(X1)
and Law(X2), which are suitably dependent when generated using a com-
mon seed as input. The general ideas underlying this abstract principle are
perhaps best illustrated by the following example.

Example 3.1. Consider random integers X1 and X2 such that Law(Xi) =
Bin(ni, p) for some positive integers n1 ≤ n2 and some p ∈ [0, 1]. Because
the binomial distribution Bin(ni, p) represents the number of successes in ni
independent trials with success probability p, intuition suggests that

P(X1 ≥ k) ≤ P(X2 ≥ k) (3.1)

for all k. But how can we verify this claim mathematically? Note that (3.1)
is equivalent to∑

`≥k

(
n1

`

)
(1− p)n1−`p` ≤

∑
`≥k

(
n2

`

)
(1− p)n2−`p`,

so that in principle it should be possible to prove (3.1) using combinato-
rial techniques. The stochastic coupling method provides an alternative,
perhaps more intuitive way. It aims at producing replicas of X1 and X2

using a carefully designed simulation algorithm which produces suitably cor-
related samples when run using a common seed as input. In this exam-
ple we may select the seed to be a sequence (B1, B2, . . . ) of independent
Ber(p)-distributed random variables, and we define our algorithm as the map
(B1, B2, . . . ) 7→ (N1, N2) where

N1 =

n1∑
i=1

Bi and N2 =

n2∑
i=1

Bi. (3.2)

To verify that the above algorithm produces proper replicas of X1 and
X2, note that N1 = k if and only if precisely k out of the n1 random variables
(B1, . . . , Bn1) equal one, so that

P(N1 = k) =

(
n1

k

)
(1− p)n1−kpk

for all k. Analogously, a similar statement holds for N2, and we may conclude
that

Law(N1) = Law(X1) and Law(N2) = Law(X2) (3.3)
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as desired. Hence (N1, N2) constitutes a coupling of X1 and X2. Among the
unlimited choices of such couplings, this coupling based on algorithm (3.2)
has by design one special feature, namely N1 ≤ N2 holds for every possible
realization of the seed, and hence

P(N1 ≤ N2) = 1. (3.4)

As a consequence of (3.3) and (3.4), it follows that

P(X1 ≥ k) = P(N1 ≥ k)

= P(N1 ≥ k, N1 ≤ N2)

≤ P(N2 ≥ k)

= P(X2 ≥ k).

This concludes a pure probabilistic proof of (3.1) where we did not need to
work out any formulas for binomial coefficients, or invoke any other combi-
natorial principles.

Comment on coupling of distributions

Exercise: Show using the coupling method that Ber(p) ≤st Ber(q) for p ≤ q.

Extend this to Bin(n, p) ≤st Bin(n, q) for p ≤ q.

3.2 Coupling and stochastic ordering

3.2.1 Real line

This

subsection

could be

skipped.

Example 3.1 provided an ordered coupling of two binomially distributed
random variables. As it turns out, this is an example of a strong stochastic
ordering between two random variables. In general, for real-valued random
variables we say thatX1 is less thanX2 in the strong stochastic order, denoted

X1 ≤st X2,

if Ef(X1) ≤ Ef(X2) for all increasing1 functions f : R→ R+.

Theorem 3.2. The following are equivalent for any real-valued random vari-
ables with cumulative distribution functions Fi(t) = P(Xi ≤ t), i = 1, 2:

(i) X1 ≤st X2

1Here a function is called increasing if x ≤ y =⇒ f(x) ≤ f(y). Any increasing function
is Borel-measurable.
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(ii) 1− F1(t) ≤ 1− F2(t) for all t.

(iii) There exists a coupling (X̂1, X̂2) of X1 and X2 for which X̂1 ≤ X̂2 with
probability one.

Proof. (i) =⇒ (ii). Assume that X1 ≤st X2, and observe that the function
ft defined by ft(x) = 1(x > t) is increasing for any t. Hence it follows that

P(X1 > t) = Eft(X1) ≤ Eft(X2) = P(X2 > t).

(ii) =⇒ (iii). We construct a coupling using a generic method used
to generate samples from a given distribution, using a uniformly distributed
random number U ∈ (0, 1) as input. Assume for simplicity2 that the cumu-
lative distribution functions F1(t) = P(X1 ≤ t) and F2(t) ≤ P(X2 ≤ t) are
invertible, and define a pair of random variables by

(X̂1, X̂2) = (F−1
1 (U), F−1

2 (U)). (3.5)

Then

P(X̂i ≤ t) = P(F−1
i (U) ≤ t) = P(U ≤ Fi(t)) = Fi(t) = P(Xi ≤ t)

implies3 that Law(X̂i) = Law(Xi) for i = 1, 2, and hence (3.5) is a coupling
of X1 and X2. Moreover, assumption (ii) implies that

1− F1(t) ≤ 1− F2(t)

for all t. Applying this to t = F−1
1 (u) shows that F2(F−1

1 (u)) ≤ u, and
the fact that the inverse of a cumulative distribution function is increasing
implies F−1

1 (u) ≤ F−1
2 (u). This fact together with definition (3.5) implies

that X̂1 ≤ X̂2 with probability one.
(iii) =⇒ (i). Assume that (X̂1, X̂2) is a coupling of X1 and X2 such that

P(X̂1 ≤ X̂2) = 1. Then for any increasing function f : R→ R+,

Ef(X1) = Ef(X̂1) = Ef(X̂1)1(X̂1 ≤ X̂2)

≤ Ef(X̂2)1(X̂1 ≤ X̂2) ≤ Ef(X̂2) = Ef(X2).

2The general case may proved by using the right-continuous generalized inverse Qi(u) =
inf{t ∈ R : Fi(t) > u} in place of F−1

i .
3The fact that the cumulative distribution of X fully determines the whole distribution

Law(X) is proved in MS-E1600.
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3.2.2 Partially ordered sets

A partial order on a set S is a binary relation ≤ which is:

(i) reflexive: x ≤ x for all x ∈ S,

(ii) transitive: x ≤ y and y ≤ z =⇒ x ≤ z, and

(iii) antisymmetric: x ≤ y and y ≤ x =⇒ x = y.

Elements x and y are called comparable if x ≤ y or y ≤ x. If all pairs of
elements are comparable, the partial order is called a total order. Any set
with at least two elements has several partial orders, but usually the context
makes it clear which partial order is meant. A real function f defined on a
partially ordered set S is called increasing if x ≤ y =⇒ f(x) ≤ f(y). A set
U ⊂ S is called upper when x ∈ U and x ≤ y imply y ∈ U .

Example 3.3 (Coordinatewise order). The coordinatewise order on Rn is a
partial order defined by denoting (x1, . . . , xn) ≤ (y1, . . . , yn) if xi ≤ yi for all
i = 1, . . . , n. For n = 1 this reduces to the natural total order of the real
numbers. In higher dimensions the coordinatewise order is not total because
for example the unit vectors of different coordinate axes are not comparable.
The coordinatewise order on the space Rm×n of all m-by-n real matrices is
defined similarly by denoting (xij) ≤ (yij) if xij ≤ yij for all i and j.

Example 3.4 (Subset order). The relation A ⊂ B is a partial order on the
collection of all subsets of a set S, called the subset order. Note that for any
set A we can associate an indicator function 1A : S → {0, 1} such that

1A(x) =

{
1, x ∈ A,
0, else.

For a finite set S = {s1, . . . , sn}, such indicator functions can be viewed as
vectors 1A = (1A(s1), . . . , 1A(sn)) ∈ {0, 1}n, and these vectors are in one-to-
one correspondence with the subsets of S. Moreover, A ⊂ B if and only if
1A ≤ 1B in the coordinatewise order on {0, 1}n.

The following remarkable result, sometimes known as Strassen’s coupling
theorem, extends Theorem 3.2 to general partial orders. For random variables
X1 and X2 defined on a partially ordered space S, we denote

X1 ≤st X2

and say that X1 is less than X2 in the strong stochastic order on (S,≤), if
Ef(X1) ≤ Ef(X2) for all increasing f : S → R+.
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Theorem 3.5. The following are equivalent for random variables with values
in a partially ordered space4 (S,≤):

(i) X1 ≤st X2.

(ii) P(X1 ∈ A) ≤ P(X2 ∈ A) for all upper sets A ⊂ S.

(iii) X1 and X2 admit a coupling (X̂1, X̂2) for which X̂1 ≤ X̂2 with proba-
bility one.

Proof. (i) =⇒ (ii). Assume that X1 ≤st X2. Because the indicator 1A of any
upper set A ⊂ S is increasing, it then follows that

P(X1 ∈ A) = E1A(X1) ≤ E1A(X2) = P(X2 ∈ A).

(ii) =⇒ (i). Let f : S → R+ be increasing. Then the level set A = {x :
f(x) > t} is upper for all real numbers t, and it follows that

P(f(X1) > t) = P(X1 ∈ A) ≤ P(X2 ∈ A) = P(f(X2) > t).

By integrating both sides of the above inequality we find that

Ef(X1) =

∫ ∞
0

P(f(X1) > t) dt ≤
∫ ∞

0

P(f(X2) > t) dt = Ef(X2).

(iii) =⇒ (i). The argument used in proving (iii) =⇒ (i) of Theorem 3.2
extends directly to this setting

(i) =⇒ (iii). This part requires techniques of convex duality and is omit-
ted here, see the original article of Volker Strassen [Str65]. When S is finite,
this can be proved by applying the max-flow min-cut theorem [Pre74].

3.2.3 Random graphs

For graphs g, h ∈ Gn on node set [n] we denote g ≤ h if g is a subgraph of h,
or equivalently, if the corresponding adjacency matrices satisfy gij ≤ hij for
all i, j. This means that every node pair that is linked in g is also linked
in h. This relation is a partial order on Gn called the subgraph order. A
real function φ on Gn is increasing if the value of φ(g) increases or remains
constant when new links are added to g. Upper sets with respect to the
subgraph order are those A ⊂ Gn for which the property

g belongs to A

4If S is uncountably infinite, then we need to assume that S is a Polish topological
space, the set {(x, y) : x ≤ y} is a closed subset of S × S, and that the upper sets and
increasing functions are measurable.

23



remains valid whenever new links are added to g. Such a property is called5

monotone graph property. Table 3.1 illustrates this.

Upper set A Monotone property

{g ∈ Gn : gij = 1} i is linked to j in g
{g ∈ Gn : degg(i) ≥ 3} i has at least 3 neighbors in g

{g ∈ Gn :
∑

1≤i<j<k≤n gijgikgjk > 0} g contains a triangle

{g ∈ Gn : g is connected} g is connected

Table 3.1: Upper sets of graphs.

The stochastic order of random graphs on (Gn,≤) is defined by denoting
G ≤st H if Eφ(G) ≤ Eφ(H) for all increasing functions φ : Gn → R+. When
we apply Theorem 3.5 for the subgraph order, we find that the following are
equivalent:

(i) G ≤st H.

(ii) P(G has property A) ≤ P(H has property A) for any monotone graph
property A.

(iii) G and H admit a coupling (Ĝ, Ĥ) for which Ĝ is a subgraph of Ĥ with
probability one.

Here the rate matrices must have zero diagonal.

Theorem 3.6. Let G and H be Bernoulli random graphs on node set [n]
with rate matrices (pij) and (qij). Then G ≤st H if and only if pij ≤ qij for
all node pairs {i, j}.

Proof. (i) Assume that G ≤st H. Fix a node pair {i, j}. Let A = {g ∈ Gn :
gij = 1} be set of graphs on [n] in which i and j are linked. Then A is an
upper set and its indicator 1A is increasing. Hence

pij = P(Gij = 1) = E1A(G) ≤ E1A(H) = P(Hij = 1) = qij.

(ii) As input to our coupling construction, we will choose the graph G
itself and another Bernoulli random graph D with rate matrix (dij), where

dij = 1− 1− qij
1− pij

if pij < 1,

5Some authors require that a graph property is invariant with respect to graph isomor-
phisms.
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and dij = 0 otherwise. Moreover, we will assume that D is sampled indepen-
dently of G. Using the pair (G,D) as input, we define a new pair of random
graphs (Ĝ, Ĥ) by setting

Ĝij = Gij and Ĥij = max{Gij, Dij}.

The above construction guarantees that Ĝ ≤ Ĥ for all realizations of the
random graphs. Hence it remains to verify that (Ĝ, Ĥ) is a coupling of G
and H. Obviously,

Law(Ĝ) = Law(G).

To study the distribution of Ĥ, note first that a node pair {i, j} is linked in
Ĥ if and only if it is linked in G or D, or both. Therefore, the probability
that {i, j} is not linked in Ĥ equals

P(Ĥij = 0) = (1− pij)(1− dij) = 1− qij = P(Hij = 0).

This implies that
Law(Ĥij) = Law(Hij)

for all i, j. Because the random variables Ĥij are independent, and so are
the random variables Hij, this implies that

Law(Ĥ) = Law(H).

Hence the pair (Ĝ, Ĥ) gives the desired coupling.

Theorem 3.7. For a sequence of Bernoulli graphs Gn on node set [n] with

rate matrices p
(n)
ij , and for any ωn →∞,

P(Gn is connected) →

{
0, if max1≤i<j≤n p

(n)
ij ≤

logn−ωn
n

,

1, if min1≤i<j≤n p
(n)
ij ≥

logn+ωn
n

.

Proof. Denote

pn = min
1≤i<j≤n

p
(n)
ij and qn = max

1≤i<j≤n
p

(n)
ij .

Assume first that qn ≤ logn−ωn
n

, and let Hn be a homogeneous Bernoulli
graph on node set [n] with link rate qn. Then by Gn ≤st Hn by Theorem 3.6.
Because being connected is a monotone graph property (the set of connected
graphs on Gn is an upper set), it follows by Theorem 3.5 that

P(Gn is connected) ≤ P(Hn is connected).

Moreover, by Theorem 2.2, the probability on the right converges to zero.
Hence the first claim follows.

Assume next that pn ≥ logn+ωn
n

. Then an analogous argument can be
used to prove the second statement. This is left as an exercise.
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Exercise. Stochastic block model with n nodes and m communities. Assume

that a particular community k contains nε nodes, and that Qk,k = nα. For which

values of ε and α does it hold that all nodes in community k are connected to each

other via paths inside community k?
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Chapter 4

Giant components

4.1 Branching processes

4.1.1 Description

A branching process is a stochastic model for a population where each indi-
vidual lives for one time unit and upon death produces a random number of
children, independently of other individuals. The model is parametrized by
an offspring distribution p on the nonnegative integers so that p(x) equals
the probability that an individual produces x children. The process started
with one individual is a random sequence defined recursively by Z0 = 1 and

Zt =

Zt−1∑
i=1

Xt,i, t = 1, 2, . . . , (4.1)

where Xt,i, t, i ≥ 1, are independent p-distributed random integers. The
random variable Zt describes the size of the population after t time units, and
Xt,i is the number of children produced by the i-th individual in generation t.

The recursive structure (4.1) of the branching process implies that (Zt) is
a Markov chain for which state 0 is an absorbing: If Zt = 0 for some t, then
also Zt+1 = Zt+2 = · · · = 0. The event that the process hits zero is called an
extinction, and the extinction probability is defined by

η = P(Zt = 0 for some t ≥ 0). (4.2)

Fundamental questions related to this model are:

• What is the extinction probability; is it less than one?

• Can the population grow infinitely large?
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• Can the population remain bounded without eventually going extinct?

Because the model is entirely determined by the offspring distribution p,
the shape and characteristics of p must contain answers to all of the above
questions. This model is often called a Galton–Watson process after Francis
Galton and Henry William Watson who developed this model in 1875 [WG75]
to analyze the survival of surnames in England.

4.1.2 Population size distribution

The probability distribution of the population size Zt at time t is not easy
to compute directly due to the highly nonlinear structure of the recursive
definition (4.1). A feasible way to get a handle on the population size process
is via generating functions.

The generating function of a probability distribution p on the nonnegative
integers Z+ = {0, 1, 2, . . . } is defined by

Gp(s) =
∞∑
x=0

sxpx (4.3)

for those real numbers s at which the series on right converges. The gen-
erating function of a nonnegative random integer X is defined by the same
formula with px = P(X = x), so that

GX(s) = EsX .

Because
∑

x px = 1, the series on right side of (4.3) converges absolutely
for s ∈ (−1, 1), and Abel’s theorem for power series implies that Gp(s) is
infinitely differentiable on the interval (−1, 1). Especially, it follows that the
probability distribution p can be uniquely recovered from the derivatives of
its generating function via the formula

px =
G

(x)
p (0)

x!
, x = 0, 1, . . .

Generating functions are good tools for analyzing sums of independent
random numbers, because GX+Y (s) = GX(s)GY (s) whenever X and Y are
independent. This property extends to multiple independent summands, and
also to the form

G∑N
i=1 Xi

(s) = GN(GX1(s)), (4.4)

when N,X1, X2, . . . are independent, and summands Xi are identically dis-
tributed. An application of the above formula allows to derive a formula for
the generating function of Zt in a branching process, stated next.
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Theorem 4.1. The generating function of the population size Zt at time
instant t ≥ 1 is given by the t-fold composition of Gp with itself, so that

GZt(s) = Gp ◦ · · · ◦Gp︸ ︷︷ ︸
t

(s), |s| ≤ 1.

Proof. The claim is true for t = 1 because Z1 = X1,1 is distributed according
to p. Assume next that the claim is true for some time index t− 1. Then by
definition

Zt =

Zt−1∑
i=1

Xt,i,

where the random integers Zt−1, Xt,1, Xt,2, . . . are all mutually independent,
and the summands Xt,i are all distributed according to p. Hence by apply-
ing (4.4) we find that GZt(s) = GZt−1(Gp(s)). The claim now follows by
induction.

4.1.3 Extinction probability

The following result tells how the extinction probability of the branching
process defined in (4.2) can be determined from the offspring distribution p.

Theorem 4.2. The extinction probability η is the smallest fixed point of Gp

on the interval [0, 1].

Proof. (i) Let us first verify that η is a fixed point of Gp. The monotone
continuity of probability measures together with the fact that ∪ts=1{Zs =
0} = {Zt = 0} shows that

η = P

(
∞⋃
t=1

{Zt = 0}

)
= lim

t→∞
P

(
t⋃

s=1

{Zs = 0}

)
= lim

t→∞
ηt

where ηt = P(Zt = 0) is the probability that the population has become
extinct by time t. Observe next that we can write P(Zt = 0) = GZt(0), and
by Theorem 4.1,

GZt(0) = Gp(GZt−1(0)),

so that
ηt = Gp(ηt−1) (4.5)

for all t ≥ 1. Because η ja ηt are probabilities, they belong to the inter-
val [0, 1]. Moreover, the function Gp, being a convergent power series, is
continuous on [0, 1]. Therefore,

η = lim
t→∞

ηt = lim
t→∞

Gp(ηt−1) = Gp( lim
t→∞

ηt−1) = Gp(η)
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shows that η is a fixed point of Gp.
(ii) Assume next that r ∈ [0, 1] is an arbitrary fixed point of Gp. We will

show that η ≤ r. Observe first that because Gp is increasing on [0, 1], and
Z1 is distributed according to p,

η1 = P(Z1 = 0) = Gp(0) ≤ Gp(r) = r.

Hence η1 ≤ r. Next, by applying (4.5) and the monotonicity of Gp, we see
that

η2 = Gp(η1) ≤ Gp(r) = r.

Hence also η2 ≤ r. By repeating this we conclude that ηt ≤ r for all t ≥ 1,
and therefore

η = lim
t→∞

ηt ≤ r.

4.1.4 Sure extinction

The population is sure to go extinct when η = 1. The following result gives a
simple criterion for sure extinction in terms of the expectation of the offspring
distribution p.

Theorem 4.3. For any branching process with offspring distribution p having
mean µ =

∑
x≥0 xpx ∈ [0,∞], the extinction probability η satisfies

(i) η = 0 for p0 = 0.

(ii) η ∈ (0, 1) for p0 > 0 and µ > 1

(iii) η = 1 for p0 > 0 and µ ≤ 1.

Proof. (i) This is left as an exercise to verify.
(ii) Observe that the power series Gp(t) =

∑
k≥0 t

kpk converges at t = 1 Shorten

thisand hence Gp can be differentiated term by term infinitely many times on
(−1, 1). Especially, for any t ∈ (0, 1),

G′p(t) =
∞∑
k=1

ktk−1pk.

By Lebesgue’s monotone convergence theorem, this implies

lim
t↑1

G′p(t) =
∞∑
k=1

kpk = µ. (4.6)

30



When µ > 1, the convergence in (4.6) implies that there exists t0 ∈ (0, 1)
such that G′p(t) ≥ 1 + µ−1

2
for all t ∈ (t0, 1). Hence

1−Gp(t) = Gp(1)−Gp(t) =

∫ 1

t

G′p(u) du ≥
(

1 +
µ− 1

2

)
(1− t) > 1− t

implies Gp(t) < t for all t ∈ (t0, 1). Because Gp(0) = p0 > 0, we conclude
that Gp(t)− t is strictly positive for t = 0 and strictly negative for t ∈ (t0, 1).
Because t 7→ Gp(t)− t is continuous, we conclude that Gp has a fixed point in
(0, t0), and hence the smallest fixed point of Gp in [0, 1] belongs to (0, t0) ⊂
(0, 1). Hence η ∈ (0, 1) by Theorem 4.2.

(iii) Assume now that p0 > 0 and µ ≤ 1. Note that Gp(0) = p0 > 0 and
Gp(1) = 1. Therefore zero is not a fixed point of Gp but one is. Hence by
Theorem 4.2 it is sufficient to show that Gp has no fixed points in (0, 1). We
consider two cases separately.

(a) If p` = 0 for all ` ≥ 2, Gp(t) = p0 +p1t > p0t+p1t = t for all t ∈ (0, 1)
shows that there are no fixed point in the interval (0, 1).

(b) If p` > 0 for some ` ≥ 2, then

G′′p(u) =
∞∑
k=2

k(k − 1)uk−2pk ≥ ct`−2 (4.7)

for all 0 < t ≤ u < 1, where c = `(`− 1)p` > 0. Now fix some 0 < t < t1 < 1,
and note that

Gp(t) = Gp(t1)−
∫ t1

t

G′p(s) ds

= Gp(t1)−G′p(t1)(t1 − t) +

∫ t1

t

(G′p(t1)−G′p(s)) ds

= Gp(t1)−G′p(t1)(t1 − t) +

∫ t1

t

∫ t1

s

G′′p(u) du ds.

Hence by (4.7) it follows that

Gp(t) ≥ Gp(t1)−G′p(t1)(t1 − t) +
c

2
(t1 − t)2

for all 0 < t < t1 < 1. By letting t1 ↑ 1 and applying (4.6), it follows that

Gp(t) ≥ 1− µ(1− t) +
c

2
(1− t)2 ≥ 1− (1− t) +

c

2
(1− t)2

for all 0 < t < 1. Because c > 0, we conclude that Gp(t) > t for all t ∈ (0, 1),
so there are no fixed points in (0, 1).
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4.2 Components of sparse Bernoulli graphs

4.2.1 Emergence of a giant

For a random or nonrandom graph G we denote x
G
! y if G contains a path

from node x to node y, and we denote the component x by

CG(x) = {y : x
G
! y}.

Understanding the sizes of components in a graph is important in statistical
models of social sciences because the component CG(x) gives an upper limit
on how far a virus or rumor initiated at x can spread.

The following is the main result about the component structure of sparse
Bernoulli graphs. Below λ represents the average degree of the graph. When
λ > 1, the theorem implies that there exists a component which contains a
positive fraction of all nodes in the graph, see Figure 4.1. Such a component
is called a giant component. When λ < 1, all components are small, of size
at most a constant in log n. The proof the theorem is long, and is presented
in detail in [vdH17, Section 4]. Some ideas related to the proof are presented
in the subsections below.

Theorem 4.4. Let Gn be a homogeneous Bernoulli graph with n nodes and
with link probability pn = λn−1.

(i) If λ > 1, then the relative size of the largest component satisfies

n−1 max
1≤x≤n

|CGn(x)| P−→ 1− η

as n → ∞, where η is the extinction probability of a branching process with
Poi(λ)-distributed offspring distribution.

(ii) If λ < 1, then there exists a constant a > 0 such that

max
1≤x≤n

|CGn(x)| ≤ a log n with high probability.

4.2.2 Component exploration process

The component of node x may be discovered recursively by the following
graph exploration algorithm which keeps track of two node sets: the set of
explored nodes Vt and the set of discovered nodes Wt after t steps. The evo-
lution of the algorithm is a set-valued sequence (Vt,Wt)t≥0 defined as follows:
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Figure 4.1: Simulated realizations of homogeneous Bernoulli graphs with
n = 500 nodes and link rate p = 0.9 × n−1 (left) and p = 1.1 × n−1 (right).
The giant component of the latter graph is displayed in red.

Step 0: Initialize (V0,W0) = (∅, {x}), so that all nodes are initially unex-
plored, and node x is declared to be discovered.

Step t: If the set of discovered and yet unexplored nodes Wt−1 \ Vt−1 is
nonempty, select node xt = min(Wt−1 \ Vt−1) to be explored, de-
note by ∆Wt = NG(xt) \Wt−1 the set of yet undiscovered nodes
adjacent to xt, and update the sets of explored and discovered
nodes according to

(Vt,Wt) = (Vt−1 ∪ {xt}, Wt−1 ∪∆Wt),

Otherwise do nothing and set (Vt,Wt) = (Vt−1,Wt−1).

To get an intuitive picture on how this algorithm works, the reader is recom-
mended to run it by pen and paper for some small disconnected graph, for
example a union of two 5-cycles.

The above definitions imply that Vt and Wt are increasing sequences with
Vt ⊂ Wt for all t. The exploration halts at the time when the set of explored
nodes Vt reaches the set of discovered nodes Wt. This time instant is called
the halting time and denoted by

T = min{t ≥ 0 : St = 0}, (4.8)

where St = |Wt \ Vt| denotes the size of the exploration queue, that is the
number of discovered nodes waiting to be explored.
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A crucial property of the exploration is that for any t ≥ 0, the set of
discovered nodes Wt equals the set of nodes reachable from x by a path of
length at most t. Hence at the halting time the algorithm has explored and
discovered all nodes in the component of x, so that VT = WT = CG(x). We
also see that the number of explored nodes grows by one at every time step
t = 1, . . . , T , and we conclude that

|CG(x)| = |VT | = T. (4.9)

This key formula allows us to reduce the analysis of the exploration process
(on a very high-dimensional state space) to a one-dimensional process.

Remark. In the definition of the exploration process, we can select the node
xt from Wt−1 \Vt−1 in an arbitrary fashion. This allows to do a breadth-first
search or depth-first search if we wish.

Exercise 4.5. Denote by CG = {CG(x) : x ∈ V (G)} the set of components
in a graph G with n nodes. Show that

(a) x
G
! y is an equivalence relation on V (G).

(b) The size of CG equals n if and only if all nodes are isolated.

(c) The size of CG equals 1 if and only if G is connected.

(d) There exists a node x such that |CG(x)| ≥ n/2 if G is disconnected.

4.2.3 Heuristic description of the exploration queue in
a large sparse graph

Consider now a homogeneous Bernoulli graph on node set [n] with link prob-
ability pn = λn−1, and let us inspect how the exploration behaves. We start
with some node x and S0 = 1. In the first exploration step exploration queue
becomes

S1 = S0 − 1 +X1,

where X1 is distributed according to Bin(n−1, pn) ≈ Poi(λ). The exploration
halts after the first step with probability

P(X1 = 0) = (1− pn)n−1 ≈ e−λ.

Given that the exploration did not halt and S1 = s1 for some s1 > 0, then
during the second step the exploration queue becomes

S2 = S1 − 1 +X2,
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where now X2 is distributed according to Bin(n − 2 − s1, pn) which is still
approximately Poi(λ), and X2 is independent of the past given the current
state. This why during the initial phases of the exploration, the exploration
queue is close in distribution to a random walk (S ′t) defined by S ′0 = 1 and

S ′t+1 = S ′t − 1 +X ′t+1,

where X ′1, X
′
2, . . . are independent Poi(λ)-distributed random integers. De-

note by
T ′ = min{t ≥ 0 : S ′t = 0}

the first hitting time into zero of the random walk (with T ′ =∞meaning that
the random walk never hits zero). The one can show that (draw a picture,
see [vdH17, Chap 4]) T ′ has the same distribution as the total progeny of a
branching process (Zt) with offspring distribution Poi(λ), especially

P(T ′ <∞) = ηλ

where the extinction probability ηλ is the smallest fixed point of the gener-
ating function GPoi(λ)(s) = eλ(s−1). This is why we expect that

P(|CG(x)| is large) ≈ P(T ′ =∞) = 1− ηλ.

More precisely, it can be shown that for a suitably chosen a > 0,

lim
n→∞

P(|CG(x)| > a log n) = P(T ′ =∞) = 1− ηλ.

When the limiting average degree of the graph λ > 1, we have ηλ ∈ (0, 1),
so that large components may exist. When λ < 1, it follows that with high
probability, all components are of size at most a log n.

Proving these things rigorously is done in [vdH17, Chap 4], by a careful
coupling of the three processes:

1. Graph exploration queue St

2. Random walk S ′t with Poisson (resp. Bin) step sizes. (If we declare 0
as absorbing state for this random walk, then (S ′t) has the same distri-
bution as the exploration queue of the branching tree; the exploration
process can also be defined for potentially infinite random graphs.)

3. Branching process Zt with Poisson offspring.
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Chapter 5

Coupling and stochastic
similarity

Assume that we have observed two large graphs such that one is a realization
of an ER graph with link probability p, and the other is a realization of an
ER graph with link probability q. Can we identify which one is which? If the
distributions of the data sources are sufficiently different from each other, we
should be able to find a decision rule to detect this. Otherwise not. Here we
will analyze this type of questions in detail.

Todo:

Converge

in distri-

bution iff

dtv → 0

Todo: tv

vs.

Wasser-

stein

5.1 Total variation distance

Recall from Section 3.1 that a coupling of random variables X1 and X2 is
a bivariate random variable (X̂1, X̂2) such that Law(X̂1) = Law(X1) and
Law(X̂2) = Law(X2). Besides stochastic ordering, the stochastic coupling
method is also well suited for analyzing how close to each other two prob-
ability distributions are. For simplicity, we will restrict here to probability
distributions on finite and countably infinite spaces.

A probability density on a finite or countably infinite set S is a function
x 7→ p(x) on S such that p(x) ≥ 0 for all x and

∑
x∈S p(x) = 1. We

write p(A) =
∑

x∈A p(x) and note that in this way we may associate each
probability density x 7→ p(x) a unique probability measure A 7→ p(A). With
this convention we write Law(X) = p when P(X = x) = p(x) for all x.
Table 5.1 lists the most important discrete probability densities.

A coupling of discrete probability densities p1(x) and p2(y) is a probability
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Abbreviation Name S p(x)

Uni([n]) Uniform {1, . . . , n} 1
n

Ber(p) Bernoulli {0, 1} (1− p)1−xpx

Bin(n, p) Binomial {0, 1, . . . , n}
(
n
x

)
(1− p)n−xpx

Poi(λ) Poisson {0, 1, 2, . . . } e−λ λ
x

x!

Table 5.1: Discrete probability densities.

density (x, y) 7→ p̂(x, y) such that∑
y

p̂(x, y) = p1(x) for all x,∑
x

p̂(x, y) = p2(y) for all y.

Then for discrete random variables we see that (X̂1, X̂2) is a coupling of
X1 and X2 if and only if the density p̂ = Law(X̂1, X̂2) is a coupling of the
densities p1 = Law(X1) and p2 = Law(X2).

To study how similar two probability distributions, we need a concept of
distance. Two natural metrics are the following. The total variation distance
between probability measures p and q on S is defined1 by

dtv(p, q) = max
A⊂S
|p(A)− q(A)|, (5.1)

and the L1-distance between probability densities p and q on a countable
set S by

‖p− q‖1 =
∑
x∈S

|p(x)− q(x)|.

The result below summarizes the key facts about total variation distance.
Inequality (5.2) below shows that the total variation distance between two
probability distributions can be bounded by finding a coupling (X̂, Ŷ ) for
which X̂ = Ŷ occurs with large probability. The proof of the theorem is
deferred to Section 5.4.

Theorem 5.1. Let X and Y be random variables on S with probability den-
sities p and q. Then

(i) dtv(p, q) = 1
2
‖p− q‖1.

1It can be shown that the maximum on the right side of (5.1) is always well defined,
and it makes sense to write ‘max’ instead of ‘sup’.
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(ii) For any coupling (X̂, Ŷ ) of X and Y ,

dtv(p, q) ≤ P(X̂ 6= Ŷ ). (5.2)

(iii) There exists a coupling for which the above inequality holds as equality.

The following example illustrates the total variation distance of coin flips.

Example 5.2. The total variation distance between Bernoulli distributions
Ber(p) and Ber(q) can be computed as half the L1-distance between the
corresponding densities fp and fq according to

dtv(Ber(p),Ber(q)) =
1

2

1∑
x=0

|fp(x)− fq(x)|

=
1

2
(|(1− p)− (1− q)|+ |p− q|)

= |p− q|.

If p ≤ q, then the probability density

f̂(x, y) =


1− q, (x, y) = (0, 0),

q − p, (x, y) = (0, 1),

0, (x, y) = (1, 0),

p, (x, y) = (1, 1).

is a coupling of the densities fp and fq which is minimal in the sense that if

(X̂, Ŷ ) is f̂ -distributed, then

P(X̂ 6= Ŷ ) =
∑

(x,y):x 6=y

f̂(x, y) = f̂(0, 1)+f̂(1, 0) = q−p = dtv(Ber(p),Ber(q)).

Let us illustrate the application of the above theorem by computing the
total variation distance between a Bernoulli distribution and a Poisson dis-
tribution.

Example 5.3. Compute the total variation distance between probability
distribution Ber(p) and Poi(p), where p ∈ [0, 1].

We extend the probability density f = Ber(p), originally defined on {0, 1},
to the set of all nonnegative integers by setting f(x) = 0 for x ≥ 2. Then by
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noting that 1−p ≤ e−p, we see that the L1-distance between f and g = Poi(p)
equals

‖f − g‖1 =
∞∑
x=0

|f(x)− g(x)|

= |f(0)− g(0)|+ |f(1)− g(1)|+
∞∑
x=2

g(x)

= |f(0)− g(0)|+ |f(1)− g(1)|+ 1− g(0)− g(1)

= |1− p− e−p|+ |p− pe−p|+ 1− e−p − pe−p

= e−p − (1− p) + p(1− e−p) + 1− e−p − pe−p

= 2p(1− e−p).

Then by applying Theorem 5.1 we conclude that

dtv(Ber(p),Poi(p)) = p(1− e−p). (5.3)

Lemma 5.4. The total variation distance between two Poisson distributions
with means λ1, λ2 ≥ 0 is bounded by

dtv(Poi(λ1),Poi(λ2)) ≤ 1− e−|λ1−λ2|.

Proof. Exercise. (Hint: The sum of independent Poisson-distributed random
integers is again Poisson distributed.)

5.2 Total variation and hypothesis testing

Statistical hypothesis testing concerns the inference of an unknown parameter
θ of a statistical model Pθ based on an observed data sample x. In the
simplest case it is a priori known that there are only two options: a random
data source output a random variable X distributed either according to Pθ1 or
Pθ2 , and the problem is solved using a decision rule x 7→ ψ(x) ∈ {θ1, θ2}
indicating the decision maker’s guess of the unknown parameter.

Bear in mind that here the decision maker knows the distributions Pθ1 and
Pθ2 precisely, which is usually in practice a rather strong assumption. Nev-
ertheless, in certain cases there could be strong reasons to expect that, for
example, both distributions are approximately Poisson, just with an unknown
mean.

Let X be a random variable describing the output of the data source
before observing the data. The probability of making an error equals{

Pθ1(ψ(X) = θ2), if the true parameter equals θ1,

Pθ2(ψ(X) = θ1), if the true parameter equals θ2,
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and the average error probability of the decision rule ψ equals

pe(ψ) =
1

2

(
Pθ1(ψ(X) = θ2) + Pθ2(ψ(X) = θ1)

)
.

In a setting where the decision maker needs to solve the hypothesis testing
problem in a large collection of cases where θ1 and θ2 are equally prevalent,
then the best decision rule in the long run is a function ψ which minimizes
the average error probability pe(ψ).

How well can the decision maker do when the best decision rule is in use?
If the distributions Pθ1 and Pθ2 produce very similar samples, then it is hard
to do well. The following result, sometimes attributed to Le Cam, shows
that the total variation distance precisely characterizes the smallest possible
error rate.

Theorem 5.5. The average error probability of the best possible decision rule
equals

min
ψ
pe(ψ) =

1

2
(1− dtv(Pθ1 , Pθ2)) .

Proof. For an upper bound, let first show that no decision rule can do better
than what is stated. Fix any decision rule (measurable function) x 7→ ψ(x) ∈
{θ1, θ2}. Denote B = {x : ψ(x) = θ1}. Then

pe(ψ) =
1

2
(Pθ1(Bc) + Pθ2(B))

=
1

2
(1− (Pθ1(B)− Pθ2(B)))

≥ 1

2

(
1− sup

A
|Pθ1(A) + Pθ2(A)|

)
=

1

2
(1− dtv(Pθ1 , Pθ2)) .

For a lower bound, we show that there exists an optimal decision rule.
Namely, fix a set A for which dtv(Pθ1 , Pθ2) = Pθ1(A) − Pθ2(A) (such a set
always exists, see Section 5.4). Then define a decision rule as

ψ(x) =

{
θ1, x ∈ A,
θ2, x ∈ Ac.

Then

dtv(Pθ1 , Pθ2) = Pθ1(A)− Pθ2(A)

= Pθ1(ψ(X) = θ1)− Pθ2(ψ(X) = θ1)

= 1− Pθ1(ψ(X) = θ2)− Pθ2(ψ(X) = θ1)

= 1− 2pe(ψ),
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so that pe(ψ) = 1
2

(1− dtv(Pθ1 , Pθ2)).

Indeed, it can be shown that when Pθ1 and Pθ2 have densities fθ1 and
fθ2 , then the set A = {x : fθ1(x) ≥ fθ2(x)} is an optimal set. When both
densities are strictly positive, an optimal decision rule can be written as

ψ(x) =

{
θ1,

fθ1 (x)

fθ2 (x)
≥ 1,

θ2, else.

This is known as the likelihood ratio test, and the average error rate of this test
is the best possible 1

2
(1− dtv(Pθ1 , Pθ2)). In the worst case where Pθ1 = Pθ2

the error rate is 1
2
, the same as obtained by blind guessing. In the best case

where the two measures have disjoint support, the error rate is zero.

5.3 Stochastic similarity of Bernoulli graphs

5.3.1 Hellinger distance

As a preliminary, we will discuss the following distance between probability
measures. Let f and g be probability distributions on a finite or countable
infinite space S. The Hellinger distance2 between f and g is defined by

dH(f, g) =

√
1

2

∑
x∈S

(√
f(x)−

√
g(x)

)2

.

This distance is closely connected to the total variation distance via the
inequalities [vdH17, Exercise 6.32]

dH(f, g)2 ≤ dtv(f, g) ≤ 21/2dH(f, g). (5.4)

Also, the Hellinger distance satisfies the formula

dH(f, g)2 = 1−
∑
x∈S

f(x)1/2g(x)1/2.

An important feature of the Hellinger distance is that it behaves well
with product distributions. Assume that S = S1 × · · · × Sm for some finite
or countably infinite spaces Si, and

f(x) =
∏
i

fi(xi), g(x) =
∏
i

gi(xi).

for some probability distributions fi, gi on Si. Then (exercise)

1− dH(f, g)2 =
m∏
i=1

(
1− dH(fi, gi)

2
)
. (5.5)

2Named after the German mathematician Ernst Hellinger (1883–1950).
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5.3.2 Asymptotic equivalence

The goal of this section is to show that Bernoulli random graphs G(p) and
G(q) are statistically similar when the entries of the link probability matrices
p = (pij) and q = (qij) are close to each other. We measure the difference
using the total variation distance3

dtv(Law(G(p)),Law(G(q))) =
1

2

∑
g∈Gn

|P(G(p) = g)− P(G(q) = g)|.

Theorem 5.6. Assume that pij ≤ 1− ε for all i, j. Then the total variation
distance between the distributions on G(p) and G(q) is bounded by

dtv(G(p), G(q))2 ≤ (1 + ε−1)
∑

1≤i<j≤n

(pij − qij)2

pij
.

Proof. Observe that the probability distribution of G(p) factorizes according
to

P(G(p) = g) =
∏

1≤i<j≤n

fpij(gij),

where fpij(x) = (1 − pij)1−xpxij denotes the Bernoulli density with mean pij,
and a similar factorization is valid also for G(q). Therefore, by (5.5),

1− dH(G(p), G(q))2 =
∏

1≤i<j≤n

(
1− dH(fpij , fqij)

2
)
.

Because
∏

k(1 − tk) ≥ 1 −
∑

k tk for any tk ∈ [0, 1] (you may interpret this
inequality as an union bound of some events of probability tk), it follows that

1− dH(G(p), G(q))2 ≥ 1−
∑

1≤i<j≤n

dH(fpij , fqij)
2,

so that
dH(G(p), G(q))2 ≤

∑
1≤i<j≤n

dH(fpij , fqij)
2. (5.6)

Observe next that

(
√
a−
√
b)2 =

(a− b)2

(
√
a+
√
b)2
≤ (a− b)2

a+ b
,

3For convenience, we sometimes use the shorthand dtv(X,Y ) = dtv(Law(X),Law(Y )).
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and that 1− pij ≥ ε ≥ εpij when pij ≤ 1− ε. By applying these inequalities,
we find that

dH(fpij , fqij)
2 =

1

2
(
√
pij −

√
qij)

2 +
1

2
(
√

1− pij −
√

1− qij)2

≤ 1

2

(pij − qij)2

pij + qij
+

1

2

(pij − qij)2

(1− pij) + (1− qij)

≤ 1

2

(pij − qij)2

pij
+

1

2

(pij − qij)2

1− pij

≤ 1

2
(1 + ε−1)

(pij − qij)2

pij
.

Now by (5.6) it follows that

dH(G(p), G(q))2 ≤ 1

2
(1 + ε−1)

∑
1≤i<j≤n

(pij − qij)2

pij
,

so that by (5.4),

dtv(G(p), G(q))2 ≤ 2dH(G(p), G(q))2 ≤ (1 + ε−1)
∑

1≤i<j≤n

(pij − qij)2

pij
.

Hence the claim follows.

5.3.3 Application: 2-community SBM

Consider a SBM G which is a Bernoulli random graph with pij = ρnKzi,zj ,
where z1, . . . , zn ∈ {1, . . . ,m} and K is a symmetric m-by-m matrix with
nonnegative entries. The probability that a uniformly randomly chosen node
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pair {i, j} is linked in a SBM equals(
n

2

)−1 ∑
1≤i<j≤n

ρnKzi,zj =

(
n

2

)−1
1

2

∑
i

∑
j 6=i

ρnKzi,zj

= ρn

(
n

2

)−1
1

2

(∑
i

∑
j

Kzi,zj −
∑
i

Kzi,zi

)

= ρn

(
n

2

)−1
1

2

(
n2
∑
s

∑
t

µsKs,tµt − n
∑
s

µsKs,s

)

= ρn
n

n− 1

(∑
s

∑
t

µsKs,tµt − n−1
∑
s

µsKs,s

)
= (1 +O(n−1))ρn

∑
s

∑
t

µsKs,tµt

= (1 +O(n−1))ρn(µTKµ).

We compare a Bernoulli graph with link rates pij to an ER graph with
constant link rate p = ρn(µTKµ). Then Theorem 5.6 gives an upper bound
(we omit the 1 + ε−1 constant)

dtv(G,ER(p))2 ≤
∑

1≤i<j≤n

(p− pij)2

p
≤

∑
1≤i,j≤n

(p− pij)2

p

= n2
∑
s

∑
t

µsµt
(ρn(µTKµ)− ρnKs,t)

2

ρn(µTKµ)

= n2ρn

∑
s

∑
t µsµt(Ks,t − µTKµ)2

µTKµ

Note that
µTKµ =

∑
s

∑
t

Ks,tµsµt = EKS,T

is the expected link rate between communities S and T chosen uniformly at
random and independently of each other according to community frequencies
(µs), and ∑

s

∑
t

µsµt(Ks,t − µTKµ)2 = Var(KS,T ).

Hence the upper bound can be written as

dtv(G,ER(p))2 ≤ n2ρn
Var(KS,T )

EKS,T

.
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In the special case with m = 2 communities, and µ1 = µ2 = 1
2
, and with

K11 = K22 = a and K12 = K21 = b, it follows that EKS,T = 1
2
(a+ b). Also

EK2
S,T =

1

2
(a2 + b2),

so that

Var(KS,T ) =
1

2
(a2 + b2)−

(
1

2
(a+ b)

)2

=
1

4
(a− b)2.

And hence the bound becomes

dtv(G,ER(p))2 ≤ n2ρn

1
4
(a− b)2

1
2
(a2 + b2)

= n2ρn
(a− b)2

2(a+ b)
.

For example, for ρn = n−1, we see that |a− b| � n−1/2 is sufficient to
conclude that dtv(G,ER(p)) is near zero. Mossel et al. [MNS15] have a more
detailed analysis for the 2-community case where they find that

(a− b)2

2(a+ b)
< 1

is a critical condition, under which the SBM cannot be distinguished from
an ER graph with the same mean degree. The above inequality is known as
the Kesten–Stigum condition.

5.4 Proof of Theorem 5.1

Proof. As preliminaries, denote a ∧ b = min{a, b} and a+ = max{a, 0}, and
set I0 =

∑
x(px ∧ qx) and

Ip =
∑
x

(px − px ∧ qx) =
∑
x

(px − qx)+,

Iq =
∑
x

(qx − px ∧ qx) =
∑
x

(qx − px)+.

Then one can show (see Figure 5.1) that I0 + Ip = 1, I0 + Iq = 1, and
Ip + Iq = ‖p− q‖1, from which we find that

1− I0 = Ip = Iq =
1

2
‖p− q‖1.
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I0

Ip Iq

p q

Figure 5.1: Partition of the region below densities p and q into three parts.

(i) To prove the first statement, denote Ap = {x : px > qx} and Aq = {x :
qx > px}. Because∑

x∈Ap

(px − qx) =
∑
x∈S

(px − px ∧ qx) = Ip =
1

2
‖p− q‖1,

it follows that

p(A)−q(A) =
∑
x∈A

(px−qx) ≤
∑

x∈A∩Ap

(px−qx) ≤
∑
x∈Ap

(px−qx) ≤
1

2
‖p− q‖1

for all A ⊂ S. By symmetry, the same upper bound holds for q(A) − p(A),
and we conclude that

dtv(p, q) = sup
A⊂S
|p(A)− q(A)| ≤ 1

2
‖p− q‖1.

For the opposite direction, note that

1

2
‖p− q‖1 =

1

2

∑
x∈Ap

(px − qx) +
∑
x∈Aq

(qx − px)

 =
1

2
(Ip + Iq) = Ip,

and

Ip =
∑
x∈Ap

(px − qx) = p(Ap)− q(Ap) ≤ |p(Ap)− q(Ap)| ≤ dtv(p, q).
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Hence also 1
2
‖p− q‖1 ≤ dtv(p, q) and we are done with the first claim.

(ii) Fix a coupling (X̂, Ŷ ) of X and Y , and note that for all x,

X̂ = Ŷ ≤ P(X̂ = x) = px

and
P(X̂ = Ŷ = x) ≤ P(Ŷ = x) = qx.

This implies that

P(X̂ = Ŷ ) =
∑
x∈S

P(X̂ = Ŷ = x) ≤
∑
x∈S

(px ∧ qx) = I0 = 1− 1

2
‖p− q‖1.

Hence the second claim follows by applying (i).
(iii) We will construct a coupling for which the inequality holds as equal-

ity. Assume that p 6= q (otherwise we can construct a trivial coupling, can
you figure out which one?), and let c = dtv(p, q) > 0. Define a function
` : S × S → R by

`x,y = 1(x = y)(px ∧ qx) + c−1(px − px ∧ qx)(py − py ∧ qy).

We will show that this is what we want. Observe first that because c = Iq,∑
y

`x,y = px ∧ qx + c−1(px − px ∧ qx)
∑
y

(py − py ∧ qy)

= px ∧ qx + c−1(px − px ∧ qx)Iq
= px

for all x, so that ∑
x

∑
y

`x,y =
∑
x

px = 1.

Because ` ≥ 0, this shows that ` is a probability density on S × S. By
symmetry, the above computation also shows that

∑
x `x,y = py for all y, and

we conclude that ` is a coupling of p and q. Now let (X̂, Ŷ ) be a random
variable in S × S with (joint) probability distribution `. Then (X̂, Ŷ ) is a
coupling of X and Y , and

P(X̂ = Ŷ ) =
∑
x

P(X̂ = Ŷ = x) =
∑
x

`x,x =
∑
x

(px ∧ qx) = I0.

Because I0 = 1− dtv(p, q), it follows that (5.2) holds as equality.

5.5 Remarks

Theorem 5.6 is due to Svante Janson [Jan10]. Mossel, Neeman, and Sly have
sharp analysis of SBMs with two communities [MNS15].
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Chapter 6

Degree distributions

6.1 Average degrees in stochastic block mod-

els

In this section we will study a stochastic block model with n nodes and
m communities, having density parameter ρ and community link matrix K.
This is a Bernoulli random graph G on node set [n] where the link probabil-
ities are of the form

pij = ρKzi,zj ,

where ρ > 0 is scalar, z = (z1, . . . , zn) is a list of node attributes with values
in [m], and K is a symmetric nonnegative m-by-m matrix. Here we denote
by

µs =
1

n

n∑
i=1

1(zi = s)

the relative frequency of nodes in community s. The vector (µs)
m
s=1 is a

probability distribution on [m] called the empirical community distribution.
The following result show that the in a large stochastic block model where
all community frequencies are bounded away from zero, the mean degree is
described by the community frequencies.

Theorem 6.1. Assume that min1≤s≤m µs ≥ ε. Then the expected degree of
any node i community s equals

E degG(i) ∼ nρn

m∑
t=1

Ks,tµt,
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and the expected average degree equals

E degG(U) ∼ nρn

m∑
s=1

m∑
t=1

µsKs,tµt.

Proof. The degree of node i may be written as degG(i) =
∑

j 6=iGij where
Gij are independent Ber(pij)-distributed random variables. By denoting the
community of node i by s = zi, we see that the expected degree of node i
equals

E degG(i) =
∑
j 6=i

pij =
∑
j 6=i

ρnKzi,zj = ρn

n∑
j=1

Kzi,zj − ρnKzi,zi

Observe next that the number of nodes in community t equals nµt, and
therefore

n∑
j=1

Kzi,zj =
m∑
t=1

Kzi,tnµt,

so that

E degG(i) = nρn

m∑
t=1

Ks,tµt − ρnKs,s.

Because 1 ≤ ε−1µs, the last term on the right is bounded by

Ks,s ≤ ε−1Ks,sµs ≤ ε−1

m∑
t=1

Ks,tµt, (6.1)

and hence we obtain

E degG(i) = (1 +O(ε−1n−1)nρn

m∑
t=1

Ks,tµt.

For the expected average degree, by a similar argument we find that

E

(
n−1

n∑
i=1

degG(i)

)
= nρn

m∑
s=1

m∑
t=1

µsKs,tµt − ρn
m∑
s=1

µsKs,s.

By multiplying both sides of (6.1) by µs and summing over s, we find that∑
s

µsKs,s ≤ ε−1
∑
s

∑
t

µsKs,sµt,

so that we obtain

E degG(U) = (1 +O(ε−1n−1))nρn

m∑
s=1

m∑
t=1

µsKs,tµt.
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Exercise 6.2. Verify that under same the assumptions of Theorem 6.1, for
a node in community s, the mean number of neighbors in community t is
approximately nρnKs,tµt. See Table 6.1.

ρ Average degree Regime

ρ� n−1 dave � 1 Very sparse
ρ ≈ cn−1 dave ≈ c Sparse with bounded degree
n−1 � ρ� 1 1� dave � n Sparse with diverging degree
ρ ≈ c dave ≈ cn Dense

Table 6.1: Different regimes of large graph models.

6.2 Poisson approximation

The following result, sometimes called Le Cam’s inequality after a famous
statistician Lucien Le Cam, illustrates how to apply the stochastic coupling
method to get an upper bound on the distance between a sum of independent
{0, 1}-valued random variables and a Poisson distribution.

Theorem 6.3. Let Ai be independent {0, 1}-valued random variables such
that EAi = ai and

∑
i ai <∞. Then

dtv

(
Law(

∑
i

Ai), Poi(
∑
i

ai)
)
≤
∑
i

a2
i .

Proof. By applying (5.3) and Theorem 5.1, we see that for every i there
exists a coupling (Âi, B̂i) of Xi and a Poi(ai)-distributed random integer Bi,
so that

P(Âi 6= B̂i) ≤ ai(1− e−ai). (6.2)

By a standard technique of probability theory, it is possible to construct all
of the bivariate random variables (Âi, B̂i), i ∈ I, on a common probability
space and in such a way that these bivariate random variables are mutu-
ally independent (nevertheless, Âi and B̂i are dependent for each i). Then
define Â =

∑
i Âi and B̂ =

∑
i B̂i. Then Law(Â) = Law(

∑
iAi). More-

over, because the sum of independent Poisson-distributed random integers
is Poisson-distributed, it follows that (Â, B̂) is a coupling of

∑
iAi and a

Poi(
∑

i ai)-distributed random integer B. By applying (6.2) and the union
bound, this coupling satisfies

P(Â 6= B̂) = P(∪i∈I{Âi 6= B̂i}) ≤
∑
i∈I

P(Âi 6= B̂i) ≤
∑
i∈I

ai(1− e−ai).
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By applying Theorem 5.1, it now follows that

dtv(
∑
i

Ai,Poi(
∑
i

ai)) ≤ P(Â 6= B̂) ≤
∑
i∈I

ai(1− e−ai).

This implies the claim after noting that 1− e−ai ≤ ai.

Exercise 6.4. For a sequence of probability distributions we denote µn
tv−→ µ

when dtv(µn, µ)→ 0.

(a) Apply Le Cam’s inequality to show that when pn � n−1/2,

dtv

(
Bin(n, pn), Poi(npn)

)
→ 0.

(b) As a consequence, derive Poisson’s law of small numbers:

Bin

(
n,
λ

n

)
tv−→ Poi(λ).

6.3 Model degree distributions in sparse SBMs

6.3.1 Degree of a node in a given community

Theorem 6.5. In a stochastic block model with density ρn � n−1/2, the
degree distribution of any node i in community s is approximately Poisson
according to

dtv

(
Law(degG(i)), Poi(nρnλs)

)
→ 0,

where λs =
∑

tKs,tµt.

Proof. The degree of node i may be written as degG(i) =
∑

j 6=iGij where
Gij are independent Ber(pij)-distributed random variables. By denoting the
community of node i by s = zi, we see that the expected degree of node i
equals λ′i =

∑
j 6=i pij, which can be also written as

λ′i =
∑
j

ρnKzi,zj − ρnKs,s = nρn
∑
t

Ks,tµt − ρnKs,s = nρnλs − ρnKs,s.

By Le Cam’s inequality (Theorem 6.3), it follows that

dtv

(
Law(degG(i)), Poi(λ′i)

)
≤
∑
j 6=i

p2
ij = ρ2

n

∑
j 6=i

(Kzi,zj)
2 ≤ nρ2

n‖K‖
2
∞,

where ‖K‖∞ = maxs,t |Ks,t|.
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Now by Lemma 5.4 and the inequality 1−t ≤ e−t, it follows that it follows
that

dtv

(
Poi(λ′i), Poi(nρnλs)

)
≤ 1− e−|nρnλs−λ′i| ≤ |nρnλs − λ′i| = ρnKs,s.

In light of the above observations, the claim follows by the triangle inequality
for the total variation distance:

dtv

(
Law(degG(i)), Poi(nρnλs)

)
≤ dtv

(
Law(degG(i)), Poi(λ′i)

)
+ dtv

(
Poi(λ′i), Poi(nρnλs)

)
≤ nρ2

n‖K‖
2
∞ + ρnKs,s.

The right side above tends to zero when ρn � n−1/2.

6.3.2 Overall degree distribution (Degree of a typical
node)

By a typical node of a graph G we mean a node U sampled uniformly at
random from the node set of the graph. When the graph is random, the
degree of a typical node degG(U) involves two sources of randomness: the
randomness associated with the graph G, and the randomness associated
with the sampling of U .

A mixed Poisson distribution with mixing distribution f is the probability
distribution MPoi(f) on the nonnegative integers with probability density

Ee−Λ Λx

x!
, x = 0, 1, . . . ,

where Λ is a random variable distributed according to f , a probability dis-
tribution on R+. Samples from MPoi(f) can be generated by first sampling
a random variable Λ from f , and conditionally on Λ = λ, sampling from a
Poisson distribution with mean λ. We might denote this by

∫
Poi(s)f(s) ds.

Theorem 6.6. In a stochastic block model with density ρn � n−1/2, the
degree distribution of a typical node is approximately mixed Poisson according
to

dtv

(
Law(degG(U)),

m∑
s=1

Poi(nρnλs)µs

)
→ 0,

where λs =
∑

tKs,tµt. Especially, for ρn = n−1, the expected relative fre-
quency of nodes of degree x satisfies

E

(
1

n

n∑
i=1

1(degG(i) = x)

)
= P(degG(U) = x) →

m∑
s=1

e−λs
λxs
x!
µs.
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Proof. Denote by f (n)(x) = P(degG(U) = x) the typical node degree distri-
bution. By conditioning on U we find that

P(degG(U) = x) =
1

n

n∑
i=1

P(degG(i) = x),

and then by conditioning on the community of node i, we find that

f (n)(x) =
m∑
s=1

f (n)
s (x)µs,

where
f (n)
s (x) = P(degG(i) = x), zi = s,

the degree distribution of nodes in community s. By Theorem 6.5 (or actually
its proof),

dtv

(
f (n)
s , g(n)

s

)
≤ nρ2

n‖K‖
2
∞ + ρnKs,s.

where g
(n)
s = Poi(nρnλs). Then (use the L1-distance representation of the

total variation distance and triangle inequalities for the norm),

dtv

(
f (n), g(n)

)
= dtv

(∑
s

f (n)
s µs,

∑
s

g(n)µs

)
≤
∑
s

µsdtv

(
f (n)
s , g(n)

)
.

6.4 Joint degree distribution

Many results related to large random graph rely on the fact that several
local characteristics of the graph are approximately independent for large n.
In statistics it is important to quantify how close certain observables are to
being fully independent. Here we discuss the case of degrees.

Let G(p) be a Bernoulli random graph on node set [n] where each un-
ordered node pair {i, j} is connected by a link with probability pij, indepen-
dently of other node pairs. Denote by

Law(Di : i ∈ I)

the joint distribution of the degrees Di = degG(i) for a set of nodes I ⊂ [n].
The degrees Di are not independent, but the dependence is not strong in
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large sparse random graphs. We may quantify this by measuring how much
the joint degree distribution deviates from the product distribution∏

i∈I

Law(Di)

which represents the joint distribution of independently sampled random in-
tegers from the distributions Law(Di).

A collection of random variables (Xi :∈ I) whose joint distribution de-
pends on a scale parameter n, is called asymptotically independent if

dtv

(
Law(Xi : i ∈ I),

∏
i∈I

Law(Xi)

)
→ 0 as n→∞.

Theorem 6.7. The joint degree distribution of an arbitrary set of nodes I
in a Bernoulli random graph with link probabilities pij satisfies

dtv

(
Law(Di : i ∈ I),

∏
i∈I

Law(Di)

)
≤ 4

∑
i,j∈I:i<j

(1− pij)pij.

As an immediate application of the above theory, we obtain the following
result for sparse SBMs.

Proposition 6.8. For a sparse stochastic block model with density param-
eter ρn � 1 and community link matrix K, the degrees of any set of n0 �
ρ
−1/2
n nodes are asymptotically independent.

Proof. For any node set I of size n0,

4
∑

i,j∈I:i<j

(1− pij)pij ≤ 4
∑

i,j∈I:i<j

pij ≤ 4ρn‖K‖∞n
2
0

The right side tends to zero when ρnn
2
0 → 0 (and the community link matrix

K does not depend on the scale parameter, which we implicitly assume here
throughout).

Proof of Theorem 6.7. The proof is based on a coupling argument described
in [vdH17, Theorem 6.7(b)]. After relabeling the node set if necessary, we
may and will assume that I = {1, 2, . . . ,m}. Let G the adjacency matrix
of the random graph, and let Ĝ be an independent copy of G. That is, we
sample Ĝ from the same distribution as G, independently. Then we define

D̃i =
∑
j:j<i

Ĝij +
∑
j:j>i

Gij. (6.3)
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The random integers D̃i are not degrees of G nor Ĝ. Nevertheless, we see that
Law(D̃i) = Law(Di) because all random variables on the right side above are
independent. Note that

D̃1 = G12 +G13 +G14 + · · ·
D̃2 = Ĝ12 +G23 +G24 + · · ·
D̃3 = Ĝ13 + Ĝ23 +G34 + · · ·

and so on. Because all terms in the three above sums are independent, it
follows that D̃1, D̃2, D̃3 are independent. In fact, one may verify by induction
that D̃1, . . . , D̃n are all mutually independent. Hence so is the sublist D̃I =
(D̂i : i ∈ I), and the distribution of the list D̃I equals

∏
i∈I Law(Di). Now the

pair (DI , D̃I) constitutes a coupling of Law(DI) and
∏

i∈I Law(Di). Hence

dtv

(
Law(Di : i ∈ I),

∏
i∈I

Law(Di)

)
≤ P(DI 6= D̃I)

= P
(⋃
i∈I

{Di 6= D̃i}
)

≤
∑
i∈I

P(Di 6= D̃i).

From (6.3) we see that D̃i −Di =
∑

j:j<i(Ĝij −Gij). Hence Di = D̃i unless

Gij 6= Ĝij for one or more indices j < i. Therefore

P(Di 6= D̃i) ≤ P(∪j:j<i{Gij 6= Ĝij}) ≤
∑
j:j<i

P(Gij 6= Ĝij).

Because

P(Gij 6= Ĝij) = P(Gij = 0, Ĝij = 1) + P(Gij = 1, Ĝij = 0)

= 2(1− pij)pij,

we conclude that

dtv

(
Law(Di : i ∈ I),

∏
i∈I

Law(Di)

)
≤ 2

∑
i∈I

∑
j∈I:j 6=i

(1− pij)pij,

and the claim follows.

Exercise 6.9. If D1 and D2 are asymptotically independent, show that
cov(φ(D1, φ(D2))→ 0 for any bounded function φ.
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6.5 Empirical degree distributions

6.5.1 Empirical distributions of large data sets

To obtain a tractable sparse graph model, we need to impose some regularity
assumptions on the behavior of node attributes. We will denote the empirical
distribution of the list x(n) by

µn(B) =
1

n

n∑
i=1

1(x
(n)
i ∈ B)

returns the relative frequency of node attributes with values in B ⊂ R. Al- example

ternatively, µn is the probability distribution of random variable Xn obtained
by picking an element of the list uniformly at random. We assume that for
large graphs, the distribution of attributes can be approximated by a lim-
iting probability distribution µ on (0,∞). More precisely, we assume that
µn → µ weakly, that is,

Eφ(Xn)→ Eφ(X)

for any continuous and bounded function φ : (0,∞) → R and random vari-
ables Xn distributed according to µn and X distributed according to µ. We
also say that µn → µ weakly with k-th moments if in addition EXk

n → EXk

and EXk
n, EXk are finite1. For a thorough treatment of the aspects of weak

convergence of probability measures, see for example [Kal02, Section 4]. The
main fact is that when the limiting distribution has a continuous cumulative
distribution F , then µn → µ weakly if and only if Fn(t) → F (t) for all t,

where Fn(t) = 1
n

∑n
i=1 1(x

(n)
i ≤ t) is the empirical cumulative distribution of

the list x(n).

Example 6.10 (Random attribute lists). A fundamental example is the
following setting. Assume that X1, X2, . . . are independent random numbers
sampled from a probability distribution µ which has a finite k-th moment.
Then the empirical distribution µn of the listX(n) = (X1, . . . , Xn) is a random
probability distribution. As consequence of the strong law of large numbers
and the Glivenko–Cantelli theorem it follows that with probability one, µn →
µ weakly with k-th moments.

Here, as elsewhere, we denote fn � gn or fn = o(gn) when fn/gn → 0.

Lemma 6.11. Assume the empirical distribution of x(n) converges weakly
and with first moments to a probability distribution µ. Then maxi∈[n] x

(n)
i �

n.

1This corresponds to convergence of probability measure in the Wasserstein-k metric.
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Proof. Let Xn be a µn-distributed random number for each n. Then by
Lemma A.5, the sequence (Xn) is uniformly integrable, and for any ε > 0, it
follows that

nP(Xn > εn) = ε−1Eεn1(Xn > εn) ≤ ε−1EXn1(Xn > εn)

≤ ε−1 sup
m

EXm1(Xm > εn) → 0.

But this means that
n∑
i=1

1(x
(n)
i > εn) = n

1

n

n∑
i=1

1(x
(n)
i > εn) = nP(Xn > εn) → 0.

Because the left side above is integer-valued, we conclude that exists n0 such
that

∑n
i=1 1(x

(n)
i > εn) = 0 for all n > n0. This implies that n−1x

(n)
i ≤ ε for

all i ∈ [n], or equivalently, n−1 maxi∈[n] x
(n)
i ≤ ε for all n > n0, and the claim

follows.

6.6 Product-form kernels (not part of Fall 2018

course)

Recall from Section 1.4 the definition of inhomogeneous Bernoulli graphs and
latent position graphs. Many real-world data sets have highly varying degree
distributions, where most nodes have a relatively small degree and a few hub
nodes have an extremely high degree. Such data sets can be modeled as large
inhomogeneous random graphs where the attribute space is S = [0,∞) and
the attributes are considered weights. A natural idea is the multiplicative
model where the probability that i and j establish a link is an increasing
function of the product xixj of their weights. Because probabilities are at
most one, the product is truncated using

φ(zi, zj) = φ0(czizj) (6.4)

where φ0 : [0,∞) → [0, 1] is a monotone function such that φ0(0) = 0 and
limt→∞ φ0(t) = 1, and where the constant c controls the overall link density
of the model. Three alternative versions of this model are obtained by the
following three truncations described in Table 6.2.

Sparse large graphs with a bounded average degree are obtained using
rank-1 models when the normalizing constant in (6.4) is of the order n−1.
This can be obtained by setting c = n−1 or c = ‖z‖−1 where ‖z‖1 = |z1| +
· · ·+|zn|, under appropriate scaling assumptions on the labels zi. This models
are analyzed in [vdH17, Chap 6] and [vdH18, Chap 2].
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Nickname Truncation function φ0

Beta model, generalized random graph φ0(t) = t
1+t

Chung–Lu model φ0(t) = min{t, 1}
Norros–Reittu model φ0(t) = 1− e−t

Table 6.2: Rank-1 graph models. The beta model is usually parametrized

using βi = log zi, in which case φ(zi, zj) = ceβi+βj

1+ceβi+βj
.

Theorem 6.12 (Expected link count, product-form kernel). Assume that Ok in

wider

generality,

see

[BJR07,

Lemma

8.1]

µn → µ weakly and with first moments, where the limiting distribution has
a finite nonzero mean. Then the number of links e(Gn) = |E(Gn)| in the
random graph Gn = Gn(x(n)) converges according to

1

n
e(Gn)

P−→ 1

2
E(X),

where X denotes a random number distributed according to µ.

BJR assume that the kernel is of the form K(zi, zj) = min{n−1κ(zi, zj), 1}
where κ : S2 → R+ is symmetric, the attribute space is (separable?) metric.
The call things a vertex space when the empirical attribute distribution µn
converges to a limit µ weakly in probability. They require that the kernel
is continuous, and integrable with respect to the product of the limiting
attribute distribution. A key condition is that the kernel is “graphical” in
that the expected average degree2 scales as

E
2e(Gn)

n
→

∫∫
κ(z, w)µ(dz)µ(dw).

The analysis in BJR is first done in the SBM case. The setting is as
follows. Node attributes take values in a finite set [m]. They can be non-
random or random. It is assumed that the empirical attribute distribution
converges weakly to a limiting distribution µ on [m]. The kernel is of the
form K(zi, zj) = min{n−1κ(zi, zj), 1} where the normalized kernel κ is auto-
matically continuous. Now the kernel is also bounded. The one can show
that the mean average degree is approximated by

2

n
Ee(Gn) →

m∑
s=1

m∑
t=1

κs,tµsµt = µTκµ.

Later we

write

in (8.4)

that

K(n)(u, v) =

ρnK(u, v)∧

1

2Recall that
∑
i degG(i) = 2e(G), so that the average degree equals 2e(G)

n .
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Proof. (i) We will first show that the expected average degree satisfies

E
2e(Gn)

n
→ E(X). (6.5)

For this, observe first that (we omit the superscript n below)

Ee(Gn) =
1

2

∑
(i,j)∈[n]26=

xixj
‖x‖1 + xixj

≤ 1

2

∑
(i,j)∈[n]2

xixj
‖x‖1

=
‖x‖1

2
.

Hence

E
2e(Gn)

n
≤ n−1‖x‖1 = EXn, (6.6)

where Xn is a random variable distributed according to µn.
We will next derive a matching lower bound. We do this by truncating

the attributes by some sequence ωn which grows to infinity at a suitable rate
when n → ∞. The analysis below shows a suitable rate3. Now we define
the truncated attributes as x̃

(n)
i = x

(n)
i ∧ ωn where a ∧ b = min{a, b}. Again,

we omit the superscript n for convenience. Because t 7→ t/(‖x‖1 + t) is
increasing, it follows that

Ee(Gn) ≥ 1

2

∑
(i,j)∈[n]26=

x̃ix̃j
‖x‖1 + x̃ix̃j

.

so that

‖x̃‖2
1

‖x‖1

− 2Ee(Gn) ≤ ‖x̃‖
2
1

‖x‖1

−
∑

(i,j)∈[n]26=

x̃ix̃j
‖x‖1 + x̃ix̃j

=
∑
i∈[n]

x̃2
i

‖x‖1 + x̃2
i

+
∑

(i,j)∈[n]2

x̃ix̃j

(
1

‖x‖1

− 1

‖x‖1 + x̃ix̃j

)

=
∑
i∈[n]

x̃2
i

‖x‖1 + x̃2
i

+
∑
i∈[n]

∑
j∈[n]

x̃2
i x̃

2
j

‖x‖1(‖x‖1 + x̃ix̃j)

≤
∑
i∈[n]

x̃2
i

‖x‖1

+
∑
i∈[n]

∑
j∈[n]

x̃2
i x̃

2
j

‖x‖2
1

=
∑
i∈[n]

x̃2
i

‖x‖1

1 +
∑
i∈[n]

x̃2
i

‖x‖1

 .

3In real analysis we learn to choose a small ε > 0. Here we learn to choose a sequence
ωn which grows to infinity slowly enough. This plays the role of a “large number” which
is not too large.
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By x̃2
i ≤ ωnxi we see that∑

i∈[n]

x̃2
i

‖x‖1

≤
∑
i∈[n]

ωnxi
‖x‖1

= ωn,

and hence we conclude that

‖x̃‖2
1

‖x‖1

− 2Ee(Gn) ≤ ωn(1 + ωn),

and

E
2e(Gn)

n
≥ n−2‖x̃‖2

1

n−1‖x‖1

− ωn(1 + ωn)

n
=

(
E(Xn ∧ ωn)

)2

EXn

− ωn(1 + ωn)

n

By combining this with (6.6), we conclude that(
E(Xn ∧ ωn)

EXn

)2

EXn −
ωn(1 + ωn)

n
≤ E

2e(Gn)

n
≤ EXn. (6.7)

Now when ωn is any sequence converging to infinity, one can show by applying
Lebesgue’s dominated and monotone convergence theorems that

E(Xn ∧ ωn)→ EX.

Moreover, ωn(1+ωn)
n

→ 0 when we choose ωn to grow slowly enough so that
ωn � n1/2. Hence for example by choosing ωn = n0.4 it follows that both the
lower and the upper bound in (6.7) converge to EX, and we obtain (6.5).

(ii) To finish the proof, we use the second moment method by finding an
upper bound for the variance of the link count. The variance is indeed quite
easy to analyze, because the link indicators of the graph are independent and
Ber(pij)-distributed. Therefore

Var(e(Gn)) =
∑

(i,j)∈[n]2<

pij(1− pij) ≤
∑

(i,j)∈[n]2<

pij = Ee(Gn).

Now Ee(Gn) = n(n−1EXn) ∼ 2nEX →∞ by (i), so that

Var(e(Gn))

(Ee(Gn))2
→ 0,

and the claim follows by Chebyshev’s inequality.
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Theorem 6.13 (Model degree distribution, product-form kernel). Consider
an inhomogeneous Bernoulli graph with link probabilities pij =

xixj
‖x‖1+xixj

.

Assume the empirical distribution of x(n) converges weakly and with first
moments to a limiting distribution µ. Then the distribution of degG(U) in
G = G(x(n)) converges weakly to the µ-mixed Poisson distribution.

Proof. Assume first that the empirical distribution of x(n) converges weakly
and with second moments. Fix some n and let U be a random variable
uniformly distributed in [n]. For each i there exists a coupling (D̂i, Ŷi) of
Law(degG(i)) and Poi(xi) such that P(D̂i 6= Ŷi) ≤ . . . . Now let Ũ , (D̃1, Ỹ1), . . . , (D̃n, Ỹn)
be independent random variables with the right distributions. Then (D̃Ũ , ỸŨ) form
a coupling of Law(degG(U)) and a µn-mixed Poisson distribution such that

P(D̃Ũ 6= ỸŨ) =
1

n

n∑
i=1

P(D̃i 6= Ỹi) ≤
1

n

n∑
i=1

x2
i

‖x‖1

(
1 + 2

n∑
j=1

x2
j

‖x‖1

)
The right side above can also be written as

1

n

n∑
i=1

x2
i

‖x‖1

(
1 + 2

n∑
j=1

x2
j

‖x‖1

)
=

EX2
n

nEXn

(
1 + 2

EX2
n

EXn

)
.

Hence

dtv(Law(degG(U),MPoi(µn))) ≤ EX2
n

nEXn

(
1 + 2

EX2
n

EXn

)
→ 0.

Because µn → µ weakly, it can be shown (for example by computing the gen-
erating functions) that MPoi(µn)→ MPoi(µ) weakly. Then also Law(degG(U))→
MPoi(µ) weakly.

If we only have convergence with the first moments, we can apply a
truncation argument, see [vdH17, Proof of Corollary 6.9].

Theorem 6.13 can be strengthened into a statement of the empirical de-
gree distribution

fGn(k) =
1

n

n∑
i=1

1(degGn(i) = k).

Here MPoi(µ) denotes the µ-mixed Poisson distribution.

Theorem 6.14 (Empirical degree distribution). Consider a GRG. Assume
the empirical distribution of x(n) converges weakly and with first moments to
a limiting distribution µ. For all ε > 0,

P
(
dtv

(
fGn ,MPoi(µ)

)
≤ ε

)
→ 1.
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Proof. See [vdH17, Theorem 6.10].

Theorem 6.15 (Asymptotic equivalence of sparse Chung–Lu and GRG).

For each n ≥ 1, let x(n) = (x
(n)
1 , . . . , x

(n)
n ) be a list of weights with empirical

distribution µn. Assume that µn converges weakly and with 2nd moments to
some probability distribution µ. Then the Chung–Lu model and the general-
ized random graph model are asymptotically equivalent as n→∞.

Proof. Fix some n, and denote the GRG probability matrix p and the Chung–
Lu probability q by

pij =
xixj

‖x‖1 + xixj
and qij = min

{
xixj
‖x‖1

, 1

}
.

Then by the inequality 1− 1/(1 + t) ≤ t,

qij − pij ≤
xixj
‖x‖1

− xixj
‖x‖1 + xixj

=
xixj
‖x‖1

(
1− 1

1 +
xixj
‖x‖1

)
≤
(
xixj
‖x‖1

)2

.

Moreover, by denoting ‖x‖∞ = maxi∈[n] xi,

pij ≥
xixj

‖x‖1 + ‖x‖2
∞
,

so that ∑
(i,j)∈[n]2<

(qij − pij)2

pij
≤ ‖x‖1 + ‖x‖2

∞

‖x‖4
1

∑
(i,j)∈[n]2<

(xixj)
3.

Because ∑
(i,j)∈[n]2<

(xixj)
3 ≤

∑
(i,j)∈[n]2

(xixj)
3 =

(∑
i∈[n]

x3
i

)2

= ‖x‖6
3,

we conclude that ∑
(i,j)∈[n]2<

(qij − pij)2

pij
≤ ‖x‖1 + ‖x‖2

∞

‖x‖4
1

‖x‖6
3.

Now a key observation is that we may write n−1‖x‖1 = EXn whereXn is a µn-
distributed random integer. Because µn → µ weakly and with 1st moments,
it follows that EXn → EX where X is a µ-distributed random integer with a
finite mean. Using this one can show (exercise) that n−1/2‖x‖∞ → 0. Then
also

‖x‖3
3 =

∑
i∈[n]

x3
i ≤ ‖x‖∞

∑
i∈[n]

x2
i = n‖x‖∞EX

2
n,
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and the right side above is bounded by

‖x‖1 + ‖x‖2
∞

‖x‖4
1

‖x‖6
3 ≤

‖x‖1 + ‖x‖2
∞

‖x‖4
1

n2‖x‖2
∞(EX2

n)2 =
nEXn + ‖x‖2

∞
n4EXn

n2‖x‖2
∞(EX2

n)2

The right side tends to zero as n→∞, so the claim follows by Theorem 5.6.

Asymptotic independence of GRG degrees

Consider an inhomogeneous Bernoulli graph with link probabilities pij =
xixj

‖x‖1+xixj
defined by the weight lists x(n) such that the empirical distribution

converges weakly and with 1st moments to a limiting distribution µ. Consider
a node set I(n) ⊂ [n] of size |I(n)| = o(n1/2) and assume that the average
weight of the nodes in I(n) satisfies

1

|I(n)|
∑
i∈I(n)

x
(n)
i

remains bounded as n→∞. For GRG,

∑
(i,j)∈I2

<

pij ≤
∑

(i,j)∈I2

xixj
‖x‖1

=
(
∑

i∈I xi)
2

‖x‖1

=
O(|I(n)|2)

‖x‖(n)
1

∼ O(|I(n)|2)

nEXn
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Chapter 7

Subgraph statistics

7.1 Functions

A function φ is a set of ordered pairs such that (x, y) ∈ φ and (x, y′) ∈ φ
imply y = y′. The domain of φ is the set of x such that (x, y) ∈ φ for some
y, and the range of φ is the set of y such that (x, y) ∈ φ for some x. We say
that a function φ is an injective if (x, y) ∈ φ and (x′, y) ∈ φ imply x = x′;
an injective function is also called an injection. For any x in the domain of
φ we denote by φ(x) the unique element y such that (x, y) ∈ φ. We use the
terms map and mapping as synonyms of the term function.

We say that φ is a function from A to B and denote φ : A → B if the
domain of φ equals A and the range of φ is a subset of B. Hence functions
φ1 : A1 → B1 and φ2 : A2 → B2 are equal if and only if A1 = A2 and
φ1(x) = φ2(x) for all x ∈ A1. A surjection from A to B is a function with
domain A and range B, and a bijection from A to B is an injective function
with domain A and range B.

For functions φ and ψ such that the range of φ is contained in the domain
of ψ, the composition ψ◦φ is the set of ordered pairs (x, z) such that (x, y) ∈ φ
and (y, z) ∈ ψ for some y. The composition is a function with the same
domain as φ and range contained in the range of ψ, and ψ ◦ φ(x) = ψ(φ(x))
for all x in the domain. If φ : A→ B and ψ : B → C, then ψ ◦ φ : A→ C.

For any injection φ we define the inverse φ−1 as the set of ordered pairs
(x, y) such that (y, x) ∈ φ. Then φ−1 is a function with domain being the
range of φ, and it follows that φ(x) = y if and only if x = φ−1(y).

For any subset X of the domain of φ we denote by φ(X) the set elements
y such that (x, y) ∈ φ for some x ∈ X. For any function φ we define the set-
to-set extension as the set of ordered pairs (X,φ(X)) such that X is a subset
of the domain of φ. The set-to-set extension is a function with domain being
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the power set of the domain of φ. We use the same symbol φ to denote both
the original function and the set-to-set extension. In the context of graphs,
we usually restrict the domain of the set-to-set extension to the subsets of
cardinality two, corresponding to node pairs of graph.

Remark 7.1. Note that “φ is an injection” is a property of a function φ,
whereas “φ is a surjection” and “φ is a bijection” are not; the latter two are
properties of the triple (φ,A,B). Hence injective is a proper adjective to
describe a function, but surjective and bijective are not.

Remark 7.2. Many authors define a function to be a triple (φ,A,B) with
φ being a subset of A× B such that (x, y) ∈ φ and (x, y′) ∈ φ imply y = y′,
calling φ the graph, A the domain, and B the codomain of the function
(A,B, φ). In most applications and most mathematical theories it does not
matter which of the definitions is used. However, when we are interested
in counting cardinalities of function sets, then it does make a difference
how functions are defined. For example, consider the set S of functions
φ : {1, 2, 3} → {1, 2, . . . } such that φ(x) ≤ 10 for all x. According to com-
mon sense, S should be finite with size 103. Using the first definition this is
the case. Using the alternative definition as a triple, the size of S infinite.
This is why here we will use the first definition, and we do not associate the
notion of a codomain to a function.

7.2 Graph embeddings

Let F and G be (simple, undirected, loopless) graphs. A function φ : V (F )→
V (G) is called a homomorphism from F to G if

e ∈ E(F ) =⇒ φ(e) ∈ E(G),

and a strong homomorphism if

e ∈ E(F ) ⇐⇒ φ(e) ∈ E(G).

Homomorphisms from F to G are denoted Hom(F,G). An injective ho-
momorphism is called an embedding and the set such functions is denoted
Emb(F,G); an injective strong homomorphism is called a strong embedding
and the set of such functions is denoted Embi(F,G). A strong embedding of
F to G with range V (G) is called an isomorphism from F to G and the set
of such functions is denoted Iso(F,G). Isomorphisms from a graph to itself
are called automorphisms and denoted Aut(G). We use lowercase symbols
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hom(F,G), emb(F,G), etc. to denote the cardinalities of the above function
sets.

For any graph G and any injection φ with domain V (G), the image of G
by φ is defined as

φ(G) :=
(
{φ(v) : v ∈ V (G)}, {φ(e) : e ∈ E(G)}

)
.

This is a graph with node set being the range of φ. By construction, φ is an
isomorphism from G to φ(G). For any graphs F and G and for any injection
φ from V (F ) to V (G), one can verify that exercise

φ ∈ Emb(F,G) ⇐⇒ φ(F ) ⊂ G,

φ ∈ Embi(F,G) ⇐⇒ φ(F ) ⊂i G,
φ ∈ Iso(F,G) ⇐⇒ φ(F ) = G,

Example 7.3. Let K1,2 be the 2-star on [3] with links {1, 2} and {1, 3},
and let K3 be the complete graph on [3]. Then Hom(K1,2, K3) is the set of
functions φ : [3] → [3] such that φ(x) 6= φ(1) for x 6= 1, and none of the
homomorphisms are strong. Hence Embi(K1,2, K3) = ∅, Emb(K1,2, K3) =
Bij([3], [3]). Exercise:

Fill in

details,

count car-

dinalities

Two graphs are called isomorphic if there exists an isomorphism from one
to the other. The set of R-isomorphic subgraphs (resp. induced subgraphs)
of G is denoted by Sub(R,G) (resp. Subi(R,G)).

Remark 7.4. Because every homomorphism from a complete graph Kn to
any other graph G is injective and also a strong homomorphism, it follows
that Hom(Kn, G) = Emb(Kn, G) = Embi(Kn, G).

In terms of adjacency matrices, a map φ is a homomorphism if and only
if

Fx,y ≤ Gφ(x),φ(y) for all x, y,

and a strong isomorphism if and only if

Fx,y = Gφ(x),φ(y) for all x, y.

Lemma 7.5. If the set Emb(R,G,R′) = {φ ∈ Emb(R,G) : φ(R) = R′} is
nonempty, then it can be represented as

Emb(R,G,R′) = {φ0 ◦ ψ : ψ ∈ Aut(R)}

where φ0 ∈ Emb(R,G,R′) is arbitrary.
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Proof. Fix some φ0 ∈ Emb(R,G,R′). If φ = φ0 ◦ ψ for some ψ ∈ Aut(R),
then obviously φ is injective. Moreover, the fact that ψ is a bijection from
V (R) to itself implies that

{φ(v) : v ∈ V (R)} = V (R′).

Analogously, the fact that ψ considered as a set-to-set function with domain
E(R) is a bijection from E(R) to itself shows that

{φ(e) : e ∈ E(R)} = {φ0((ψ(e)) : e ∈ E(R)}
= {φ0((ψ(e)) : ψ(e) ∈ E(R)}
= {φ0(e) : e ∈ E(R)}
= E(R′).

Hence we conclude that φ(R) = R′. Furthermore, by noting that

e ∈ E(R) =⇒ ψ(e) ∈ E(R) =⇒ φ0(ψ(e)) ∈ E(G)

we see that φ ∈ Emb(R,G,R′).
Assume next that φ ∈ Emb(R,G,R′). Then φ is an isomorphism from R

to R′, and so is φ0. It follows that ψ = φ−1
0 ◦ φ is an automorphism of R.

Moreover, φ0 ◦ ψ = φ.

Remark 7.6. The number of r-cliques in a graph G equals |Sub(Kr, G)| =
|Subi(Kr, G)| = |Hom(Kr,G)|

r!
.

67



Proposition 7.7. For any graphs R and G,

|Emb(R,G)| = |Sub(R,G)| · |Aut(R)|, (7.1)

|Embi(R,G)| = |Subi(R,G)| · |Aut(R)|. (7.2)

If R and G are isomorphic, then

|Iso(R,G)| = |Aut(R)| = |Aut(G)|. (7.3)

Proof. (i) Because φ(R) is an R-isomorphic subgraph of G for every φ ∈
Emb(R,G), we may represent the set of embeddings from R to G as a disjoint
union

Emb(R,G) =
⋃

R′∈Sub(R,G)

Emb(R,G,R′),

where {φ ∈ Emb(R,G) : φ(R) = R′}. Observe next that if R′ ∈ Sub(R,G),
then there exists an isomorphism φ from R to R′. Because such φ is also an
embedding of R into G, it follows that the set Emb(R,G,R′) is nonempty,
and by Lemma 7.5, the cardinality of Emb(R,G,R′) equals aut(R). As a
consequence, (7.1) follows.

(ii) Note that Embi(R,G) equals the set of φ ∈ Emb(R,G) such that
φ(R) is an induced subgraph of G. Therefore, we may represent the set of
inductive embeddings from R to G as a disjoint union

Embi(R,G) =
⋃

R′∈Subi(R,G)

Emb(R,G,R′),

In the proof of (i) we saw that Emb(R,G,R′) is nonempty for every R′ ∈
Sub(R,G). Hence by Lemma 7.5, we obtain (7.2).

(iii) Note that Iso(R,G) = Emb(R,G,G). When R and G are isomorphic,
the set Emb(R,G,G) is nonempty, and by Lemma 7.5, its cardinality equals
aut(F ). Therefore |Iso(R,G)| = |Aut(F )|. The second equality of (7.3)
follows by symmetry after noting that |Iso(R,G)| = |Iso(G,R)|.

7.3 Upper bound on the number of homo-

morphisms

The following result shows that the number of homomorphisms from a tree
T to any graph G is maximized by taking T to be a star. The proof is given
in Section 7.3.2
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Theorem 7.8 (Sidorenko’s inequality [Sid94]). For any tree T with k links
and for any graph G,

hom(T,G) ≤ hom(K1,k, G) =
∑

v∈V (G)

dG(v)k.

In the proof below we assumed G to be connected.

As a corollary of Theorem 7.8 we get the following result.

Theorem 7.9. For any connected graph F with r nodes and for any graph G,

hom(F,G) ≤ hom(K1,r−1, G) =
∑

v∈V (G)

dG(v)r−1.

Proof. Let F be a connected graph with r nodes. Then F contains a spanning
tree T , and by Lemma 7.10 below we see that hom(H,G) ≤ hom(T,G).
Because T is a tree with r − 1 links, Sidorenko’s inequality implies

hom(F,G) ≤ hom(T,G) ≤ hom(K1,r−1, G).

Lemma 7.10. If F1 is a subgraph of F2 such that V (F1) = V (F2), then

hom(F2, G) ≤ hom(F1, G)

Proof. Exercise.

7.3.1 Randomly marked trees

We follow the proof in [LP17], based on notions in [BP94]. Let T be a finite
tree and let S be a countable space, and let P be a transition probability
matrix on S with invariant distribution π. We define a random function
X : V (T )→ S which can be viewed as a randomly marked rooted tree induced
by (π, P ) as follows. First we select some node ρ ∈ V (T ) as a root, and we
let Xρ ∈ S be π-distributed. Then we require for all nonroot u ∈ V (T ) the
Markov-type property

P(Xu = v |Xu′ = xu′ : |u′| ≤ |u|, u′ 6= u) = P(Xu = v |Xu↑ = xu↑)

= P (xu↑ , v),

where |u| denotes the distance of u from the root in T and u↑ denotes the
parent of u in T . The above property uniquely determines the distribution
p of random function X ∈ SV (T ), which can be written as

p(x) = π(xρ)
∏
u6=ρ

P (xu↑ , xu), x ∈ SV (T ).

69



The definition implies that (Xu0 , . . . , Xu`) is a Markov chain with initial
distribution π and transition matrix P for any directed path u0, u1, . . . , u` in
the tree T starting with u0 = ρ. Because π is invariant for P , it hence follows
that Xu is π-distributed for every u ∈ V (T ).

Now let us apply the above construction to the case where S is the node
set of a finite graph G, and P is the symmetric random walk on G with
invariant distribution π(v) = dG(v)

2m
where m = |E(G)|. Assume first that G

is connected. Then

p(x) =
dG(xρ)

2m

∏
u6=ρ

1

dG(xu↑)
=

1

2m

∏
u6=ρ,ρ′

1

dG(xu↑)
,

where ρ′ is an arbitrary child of the root ρ. In the product on the right, the
term 1/dG(xρ) appears dT (ρ) − 1 times. A moment’s reflection reveals that
the 1/dG(xu) occurs in the product dT (u) − 1 also when u is a nonroot and
nonleaf node, and when u is a leaf node. Hence the above formula can be
written as

p(x) =
1

2m

∏
u∈V (T )

dG(xu)
1−dT (u),

and this shows that the distribution p is invariant to the initial choice of
the root ρ ∈ V (T ). In a sense, this construction provides an exchangeable
coupling of several stationary (and reversible) random walks on G simulta-
neously.

7.3.2 Proof of Sidorenko’s inequality

We will now present a proof Theorem 7.8, as outlined in [LP17]. The
construction in the previous section shows that the support of p equals
Hom(T,G). Therefore, we may count the cardinality of Hom(T,G) using
the importance sampling formula

|Hom(T,G)| =
∑

x∈Hom(T,G)

p(x)
1

p(x)
= E

1

p(X)
,

where X is distributed according to p. Hence

|Hom(T,G)| = 2mE
∏
u6=ρ,ρ′

dG(Xu↑).

Because |V (T )| = k+ 1, the product on the right side above has k−1 terms,
and the arithmetic-geometric mean inequality implies that∏

u6=ρ,ρ′
dG(Xu↑) =

( ∏
u6=ρ,ρ′

dG(xu↑)
k−1

)1/(k−1)

≤ 1

k − 1

∑
u6=ρ,ρ′

dG(Xu↑)
k−1
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Because Xu is π-distributed for all u, it follows by taking expectations that

|Hom(T,G)| ≤ 2mEdG(Xρ)
k−1 = 2m

∑
v∈V (G)

dG(v)k−1dG(v)

2m
=

∑
v∈V (G)

dG(v)k.

This concludes the proof of Theorem 7.8 because the right side above equals
Hom(K1,k, G); to see why, note that the number of homomorphisms from
K1,k into G such that the hub of K1,k is mapped to v ∈ V (G) equals dG(v)k.

7.4 Counting subgraphs

We will discuss local descriptive statistics of a finite undirected graph G on
node set V = [n]. Basic quantities are the link count

|E(G)| =
∑

(i,j):i<j

Gij,

the average degree

1

n

n∑
i=1

degG(i) =
1

n

n∑
i=1

n∑
j=1

Gij,

and the empirical degree distribution k 7→ 1
n

∑
i 1(degG(i) = k). More de-

tailed information about the local graph structure can be obtained for exam-
ple by computing the number of triangles

∑
(i,j,k):i<j<kGijGikGjk contained

in G.
When extending this from triangles to more general subgraphs we need

to be a bit careful what we mean by saying that something is “contained in
G”. Recall that for undirected graphs F and G:

• F and G are equal, denoted F = G, if V (F ) = V (G) and E(F ) = E(G).

• F is a subgraph of G, denoted F ⊂ G, if V (F ) ⊂ V (G) and E(F ) ⊂
E(G). This is denoted F ⊂ G.

• F is an induced subgraph of G, denoted F ⊂i G if V (F ) ⊂ V (G) and
E(F ) = E(G) ∩

(
V (F )

2

)
.

For any A ⊂ V (G) the subgraph of G induced by A is the graph G[A] =
(A,E(G)∩

(
A
2

)
). The adjacency matrix of G[A] is the adjacency matrix of G

restricted to A× A. These definitions are more convenient to express using
adjacency matrices, see Table 7.1.
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Notion Node set condition Adjacency matrix condition

F = G V (F ) = V (G) Fij = Gij for all i, j ∈ V (F )
F ⊂i G V (F ) ⊂ V (G) Fij = Gij for all i, j ∈ V (F )
F ⊂ G V (F ) ⊂ V (G) Fij ≤ Gij for all i, j ∈ V (F )

Table 7.1: Subgraph definitions.

Exercise 7.11. Show that F is an induced subgraph of G iff F = G[S] for
some set S.

Exercise 7.12. Is F ⊂ G a partial order on the set of all finite graphs?
Prove the claim true of false. What about F ⊂i G?

Graphs F and G are called isomorphic, if there exists a bijection φ :
V (F ) → V (G) such that {φ(i), φ(j)} ∈ E(G) if and only if {i, j} ∈ E(F ).
In terms of adjacency matrices, graphs F and G are isomorphic if and only
if Fi,j = Gφ(i),φ(j) for some bijection φ : V (F )→ V (G).

We may study local properties of a large graph G by computing how
frequently a copy of a small graph1 R can be identified inside G. More
precisely, for an arbitrary graph R we define the R-matching density of G
this is denoted tind(R,G) in [Lov12] by

P̂G(R) =
|Subi(R,G)|
|Sub(R,Kn)|

=
1

|Gn(R)|
∑

R′∈Gn(R)

1(G ⊃i R′) (7.4)

and the R-covering density of G this is denoted tinj(R,G) in [Lov12] by

Q̂G(R) =
|Sub(R,G)|
|Sub(R,Kn)|

=
1

|Gn(R)|
∑

R′∈Gn(R)

1(G ⊃ R′), (7.5)

where Gn(R) denotes the set of all R-isomorphic subgraphs with node set con-
tained in [n]. By definition, 0 ≤ P̂G(R) ≤ Q̂G(R) ≤ 1, and P̂G(R) = Q̂G(R)
when R is a complete graph. Lemma 7.16 shows a formula for counting the
denominator above.

When R = K2, we note that the matching and covering densities are both
equal to the usual link density of the graph

P̂G(R) = Q̂G(R) =
|E(G)|(

n
2

)
1sometimes called a graphlet
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Example 7.13 (2-star densities). Denote by NG(K12) (resp. N i
G(K12)) the

number of K12-isomorphic subgraphs (resp. induced subgraphs) in G. For
a three-node set U ⊂ [n], let NG(K12;U) be the number of K12-isomorphic
subgraphs of G with node set U . Then2

NG(K12) =
∑

U∈(V (G)
3 )

NG(K12;U).

But now
NG(K12;U) = N i

G(K12;U) + 3N i
G(K3;U).

By summing both sides across U , it follows that

NG(K12) = N i
G(K12) + 3N i

G(K3).

Because |Gn(K12)| = 3
(
n
3

)
and |Gn(K3)| =

(
n
3

)
, it hence follows that

Q̂G(K12) =
NG(K12)

|Gn(K12)|
=

N i
G(K12)

|Gn(K12)|
+

3N i
G(K3)

|Gn(K12)|

=
N i
G(K12)

|Gn(K12)|
+
N i
G(K3)

|Gn(K3)|
= P̂G(K12) + P̂G(K3).

Example 7.14 (Diamond). Let G be a diamond on [4] with links E(G) =
{12, 23, 34, 41, 24}. When R = K2, we see that

P̂G(link) = Q̂G(link) =
|E(G)|(

4
2

) =
5

6
.

Next, let R be a 2-star (i.e. 2-path). We can count the number of copies of
the 2-star contained in G by going through all unordered triplets in [4], so
that ∑

R′:R′∼=R

1(R′ ⊂ G) =
∑

V0⊂V :|V0|=3

∑
R′:V (R′)=V0,R′∼=R

1(R′ ⊂ G).

Note first that there exist three R-isomorphic graphs on V0 = {1, 2, 3}, and
one of them is a subgraph in G. Next, the number R-isomorphic graphs on
V0 = {1, 2, 4} equals three, and each of them is a subgraph of G. Proceeding
this way, we find that

Q̂G(2-star) =
1 + 3 + 1 + 3

3 + 3 + 3 + 3
=

8

12
.

2Similar formulas for 4-node graphlets (connected subgraphs) have been derived in
[MS12].
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A similar computation shows that

P̂G(2-star) =
1 + 0 + 1 + 0

3 + 3 + 3 + 3
=

2

12
.

For a triangle, we find that

P̂G(triangle) = Q̂G(triangle) =
0 + 1 + 0 + 1

1 + 1 + 1 + 1
=

2

4
.

Next, let R be a graph on a set of three nodes only containing one link.
On the node set {1, 2, 3} there exist three graphs isomorphic to R, two of
which are subgraphs of G and none of which equals G. On the node set
{1, 2, 4} there exist three graphs isomorphic to R, all of which are subgraphs
of G, and none of which are equal to G. This way, we find that

Q̂G(lone link among three) =
2 + 3 + 2 + 3

3 + 3 + 3 + 3
=

10

12

and

P̂G(lone link among three) =
0 + 0 + 0 + 0

3 + 3 + 3 + 3
= 0.

R P̂G(R) Q̂G(R)

Empty graph of two nodes 1
6 1

Link 5
6

5
6

Empty graph of three nodes 0 1

Lone link among three nodes 0 5
6

2-star 1
6

2
3

Triangle 1
2

1
2

Table 7.2: Matching and covering densities of a diamond.

Proposition 7.15. The matching and covering densities are related by

Q̂(R) =
∑

S⊃R:V (S)=V (R)

P̂ (S).

Proof. Denote by NG(R) (resp. N i
G(R)) the number of R-isomorphic sub-

graphs (resp. induced subgraphs) of G. Note that

NG(R) =
∑

U∈([n]
r )

NG(R,U), N i
G(R) =

∑
U∈([n]

r )

N i
G(R,U),
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where NG(R,U) (resp. N i
G(R,U)) denotes the number of R-isomorphic sub-

graphs (resp. induced subgraphs) of G on node set U . Now observe that
a graph R′ on node set U is R-isomorphic if and only if there exists a bi-
jection φ : [r] → U such that3 R′ = Mφ(R), and that for each such R-
isomorphic graph R′ the number of such bijections equals |Aut(R)|. Now fix
some U ⊂ [n] of size r. Then

NG(R,U) =
1

|Aut(R)|
∑

φ∈Bij([r],U)

1(G ⊃Mφ(R))

=
1

|Aut(R)|
∑

φ∈Bij([r],U)

1(G[U ] ⊃Mφ(R))

=
1

|Aut(R)|
∑

φ∈Bij([r],U)

1(M−1
φ (G[U ]) ⊃ R).

Observe next that for any graph G̃ on node set V (R) = [r],

1(G̃ ⊃ R) =
∑

S⊃R:V (S)=[r]

1(G̃ = S).

By applying this formula to G̃ = M−1
φ (G[U ]), it follows that

1(φ−1(G[U ]) ⊃ R) =
∑

S⊃R:V (S)=[r]

1(M−1
φ (G[U ]) = S)

=
∑

S⊃R:V (S)=[r]

1(G[U ] = Mφ(S))

=
∑

S⊃R:V (S)=[r]

1(G ⊃i Mφ(S)),

3We extend the definition of φ to a map Mφ from the set of graphs on [r] into the set
of graphs on U in a natural way. Mapping G into Mφ(G) corresponds to relabeling the
nodes of G using {φ(a1), φ(a2), . . . , φ(an)} instead of A = {a1, . . . , an}. This map is a
bijection with M−1

φ = Mφ−1 .
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so that

NG(R,U) =
1

|Aut(R)|
∑

φ∈Bij([r],U)

1(M−1
φ (G[U ]) ⊃ R)

=
1

|Aut(R)|
∑

φ∈Bij([r],U)

∑
S⊃R:V (S)=[r]

1(G ⊃i Mφ(S))

=
1

|Aut(R)|
∑

S⊃R:V (S)=[r]

∑
φ∈Bij([r],U)

1(G ⊃i Mφ(S))

=
1

|Aut(R)|
∑

S⊃R:V (S)=[r]

|Aut(S)|N i
G(S, U).

We have hence shown that

NG(R,U) =
∑

S⊃R:V (S)=[r]

|Aut(S)|
|Aut(R)|

N i
G(S, U)

for all U ⊂ [n] of size r. By summing both sides over U , we conclude that

NG(R) =
∑

S⊃R:V (S)=[r]

|Aut(S)|
|Aut(R)|

N i
G(S)

The claim now follows by noting that

Q̂G(R) =
NG(R)

|Gn(R)|
=

NG(R)(
n
r

)
r!

|Aut(R)|

and

P̂G(R) =
N i
G(R)

|Gn(R)|
=

N i
G(R)(

n
r

)
r!

|Aut(R)|
.

Lemma 7.16. For any graph R of r ≤ n nodes, the number of R-isomorphic
graphs with node set contained in [n] equals

|Sub(R,Kn)| =
(n)r

|Aut(R)|
.

Proof. Observe that Emb(R,Kn) equals the set of all injective maps from
V (R) into V (Kn). Hence |Emb(R,Kn)| = (n)r, and the claim follows by
Proposition 7.7.
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7.5 Subgraph thresholds in random graphs

Suppose we have an observed a clique of 10 nodes all connected to each
other in a large but relatively sparse graph. Is this a manifestation that
the observed graph has some hidden structure or mechanism which produces
10-cliques, or is it just a moderately rare event which every now and then
occurs in a large random graph? To study this question we need some theory
to explain what we would expect to see in a random graph where node pairs
are independently linked. We will first look at Erdős–Rényi random graphs.

7.5.1 Erdős–Rényi random graphs

Fix a graph R on node set [r], and let G be the random graph on [n] where
each node pair is linked with probability p, independently of other node
pairs. Let NG(R) be the number of R-isomorphic subgraphs of G. We may
represent this number as

NG(R) =
∑

R′∈Gn(R)

1(G ⊃ R′) (7.6)

where Gn(R) denotes the set of all R-isomorphic subgraphs of the complete
graph on [n]. The expectation is

ENG(R) = |Gn(R)|P(G ⊃ R).

With the help of Lemma 7.16, we find that

ENG(R) =

(
n

r

)
r!

|Aut(R)|
p|E(R)|. (7.7)

For a sequence of graphs Gn parametrized by n and pn, it follows that

ENGn(R) ∼ 1

|Aut(R)|
n|V (R)|p|E(R)|

n (7.8)

as n → ∞. From these observations we obtain the following result. Let us
denote average degree of a graph R by

davg(R) =
2|E(R)|
|V (R)|

.

Theorem 7.17. If pn � n
− 2
davg(R) , then the homogeneous random graph Gn

contains no R-isomorphic subgraphs with high probability.
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Proof. If pn � n
− 2
davg(R) , then as n→∞,(
n|V (R)|p|E(R)|

n

)1/|E(R)|
= n

2
davg(R) pn → 0

Therefore also n|V (R)|p
|E(R)|
n → 0, and Markov’s inequality together with (7.8)

shows that
P(NGn(R) ≥ 1) ≤ ENGn(R) → 0.

When pn � n
− 2
davg(R) , then (7.8) implies that ENGn(R) → ∞. Can we

then conclude that Gn contains R-isomorphic subgraphs with high probabil-
ity? The answer is not as simple as one might expect. Let us consider the
following example.

Example 7.18 (Lollipop counts). Consider a random graph with n nodes
and link probability pn = n−0.7. Consider a (4, 2)-lollipop graph defined as
the union of a complete graph on {1, 2, 3, 4} and a 2-path on {4, 5, 6}. This
graph has average degree 8/3, and hence

ENGn((4, 2)-lollipop) → ∞ (7.9)

due to pn = n−0.7 � n−
2

8/3 . On the other hand, the 4-clique (complete graph
with 4 nodes) has average degree 3, so that

ENGn(4-clique) → 0

due to pn = n−0.7 � n−
2
3 . Moreover, Theorem 7.17 tells that Gn does not

contain 4-cliques, with high probability. But if the graph does not contain
any 4-cliques, it cannot contains any (4,2)-lollipops either. This seems to
conflict with (7.9), so what’s going on?

The lollipop count in the above example provides a situation where the ex-
pectation does not give the correct picture about the stochastic phenomenon
under study. The following theorem due to Bollobás [Bol81] gives a precise
answer. The proof is essentially due to [RV86].

Theorem 7.19. For a homogeneous Bernoulli graph Gn with n→∞ nodes
and link probability pn,

P(Gn contains an R-isomorphic subgraph) →

{
0, if pn � n−2/d∗(R),

1, if pn � n−2/d∗(R),

where d∗(R) is the maximum average degree over nonempty subgraphs of R.
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Proof. (i) Assume that pn � n−2/d∗(R). Then there exists a subgraph H ⊂ R

such that pn � n
− 2
davg(H) , and by Theorem 7.17 we conclude that with high

probability, Gn does not contain H-isomorphic subgraphs. Hence with high
probability, Gn does not contain R-isomorphic subgraphs either.

(ii) Assume next that pn � n−2/d∗(R). We will now compute the variance
of NGn(R). By applying the representation (7.6), we find that

var(NG(R)) = cov

(∑
R′

1(G ⊃ R′),
∑
R′′

1(G ⊃ R′′)

)
=
∑
R′

∑
R′′

cov (1(G ⊃ R′), 1(G ⊃ R′′))

=
∑
R′

∑
R′′

(
P(G ⊃ R′, G ⊃ R′′)− P(G ⊃ R)2

)
,

where R′ and R′′ are summed over the set Gn(R) of all R-isomorphic sub-
graphs of the complete graph on [n].

Denote r = |V (R)| and s = |E(R)|. Observe next that

P(Gn ⊃ R′, Gn ⊃ R′′) = P(Gn ⊃ R′ ∪R′′)
= p|E(R′)∪E(R′′)|

n

= p2s−|E(R′)∩E(R′′)|
n .

Because R′ ∩ R′′ is a subgraph of R′, and R′ is isomorphic to R, it follows
that

|E(R′ ∩R′′)| =
2|E(R′ ∩R′′)|
|V (R′ ∩R′′)|

1

2
|V (R′) ∩ V (R′′)|

= davg(R′ ∩R′′) 1

2
|V (R′) ∩ V (R′′)|

≤ d∗(R)
1

2
|V (R′) ∩ V (R′′)|,

and we conclude that

P(Gn ⊃ R′, Gn ⊃ R′′) ≤ p
2s− d

∗(R)
2
|V (R′)∩V (R′′)|

n .

We will split the variance sum by the conditioning on how much the node
sets of R′ and R′′ overlap.

var(NGn(R)) =
r∑
j=2

∑
(R′,R′′):|V (R′)∩V (R′′)|=j

(
P(G ⊃ R′, G ⊃ R′′)− P(G ⊃ R)2

)

≤
r∑
j=2

∑
(R′,R′′):|V (R′)∩V (R′′)|=j

p
2s− d

∗(R)
2

j
n .

79



Because there are
(
n
r

)(
r
j

)(
n−r
r−j

)
ways to choose the node sets V (R′) and V (R′′)

so that they have j common nodes, by Lemma 7.16, it follows that the number
of (R′, R′′) ∈ Gn(R) such that |V (R′) ∩ V (R′′)| = j equals(

n

r

)(
r

j

)(
n− r
r − j

)(
r!

|Aut(R)|

)2

.

Because
(
n
r

)
≤ nr/r!,

(
r
j

)
≤ r!, and

(
n−r
r−j

)
≤
(
n
r−j

)
≤ nr−j/(r − j)!, it follows

that (
n

r

)(
r

j

)(
n− r
r − j

)
≤ n2r−j,

and

var(NGn(R)) ≤
(

r!

|Aut(R)|

)2

n2rp2s
n

r∑
j=2

n−jp
− d
∗(R)
2

j
n .

Especially, by (7.7) and the fact that
(
n
r

)
∼ nr/r!,

var(NGn(R))

(ENGn(R))2
≤
(
n

r

)−2

n2r

r∑
j=2

n−jp
− d
∗(R)
2

j
n ∼ (r!)2

r∑
j=2

n−jp
− d
∗(R)
2

j
n .

The right side above tends to zero because pn � n−2/d∗(R). Hence by Cheby-
shev’s inequality,

P(NGn(R) ≤ 0) = P(NGn(R)− ENGn(R) ≤ −ENGn(R))

≤ P((NGn(R)− ENGn(R))2 ≥ (ENGn(R))2)

≤ var(NGn(R))

(ENGn(R))2

→ 0.

7.5.2 Stochastic block models

Consider a stochastic block model SBM(z(n), K(n)) on node set [n] with node
labeling z(n) = (z1, . . . , zn) and connectivity matrix

K(n)
u,v = ρnKu,v ∧ 1,

where ρn > 0 is a sparsity parameter and K is the normalized connectivity
matrix. The following result states the subgraph threshold are quite similar
to subgraph thresholds in Erdős–Rényi graphs.
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Theorem 7.20. For a random graph Gn corresponding to a SBM(z(n), K(n))
with n → ∞, ρn → 0, and where the limiting kernel is bounded by c1 ≤
Ku,v ≤ c2 for all u, v, for some constants c1, c2 ∈ (0,∞),

P(Gn contains an R-isomorphic subgraph) →

{
0, if ρn � n−2/d∗(R),

1, if ρn � n−2/d∗(R),

where d∗(R) is the maximum average degree over nonempty subgraphs of R.

Proof. The proof is based on stochastic coupling method. We only analyze
the case where ρn → 0, and we restrict our attention to large enough values
of n so that c2ρn ≤ 1. Now Gn is a random graph where each node pair is
linked with probability p

(n)
ij = ρnKzizj , independently of other node pairs. Let

G
(1)
n (resp. G

(2)
n ) be a random graph where each node pair is independently

linked with probability c1ρn (resp. c2ρn). Then by Theorem 3.6,

G(1)
n ≤st Gn ≤st G(2)

n .

Denote by FR the set of graphs on [n] containing an R-isomorphic graph as a
subgraph. Because FR is an upper set (monotone graph property), it follows
that

P(G(1)
n ∈ FR) ≤ P(Gn ∈ FR) ≤ P(G(2)

n ∈ FR).

Now observe that G
(1)
n is a standard Erdős–Rényi graph. Hence if ρn �

n−2/d∗(R), then Theorem 7.19 tells that the leftmost term above tends to one
as n→∞. Hence so does the lowermost term above. On the other hand, if
ρn � n−2/d∗(R), then a similar argument shows that

P(Gn contains an R-isomorphic subgraph)

≤ P(G(2)
n contains an R-isomorphic subgraph),

and by Theorem 7.19 we know that the rightmost term above tends to zero
as n→∞.
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Chapter 8

Learning SBM parameters

8.1 Statistical network inference

Network data usually consists of relational information between a set of nodes → intro?

that is represented by an n-by-n matrix (Xij) with binary or numerical en-
tries, and node attribute data represented by an n-vector (Zi) with numerical
or categorical entries, see Figure 8.1. Network inference problems concern
computing estimates, making predictions, and testing hypotheses of network
structure and node attributes based on partial or noisy observations of the
network data matrix (Xij), node attribute vectors (Zi), and possibly some
auxiliary data related to temporal dynamics (diffusions, random walks) on
the network.

1

i

j

n

Xij

Zi

Zj

Figure 8.1: Node attributes and relationships.

This framework contains a rich class of applications, for example:

Example 8.1 (Community learning). Estimate node attributes (Zi) based
on fully observed network structure (Xij), up to a permutation of node labels.
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This amounts to estimating a partition of the node set generated by the sets
Vs = {i : Zi = s} called communities.

Example 8.2 (Phylogenetics). Denote by Zi a genetic trait of an individual
or a group of organisms i. If the values of Zi have been observed for a set of
leaf nodes in an evolutionary tree with fully or partially observed structure
(Xij), the task is to infer the value Zi0 of the initial ancestor corresponding
to the root node i0 of the evolutionary tree.

Example 8.3 (Epidemics). Let Zi be a binary variable indicating whether
an individual i falls victim to an infectious disease, and let Xij be a binary
variable indicating whether the disease is transmitted through a direct con-
tact between individuals i and j. An important statistical task is to estimate
the size of the set {i : Zi = 1} of eventually infected individuals, based
on observing values of Zi for a typically small subset of nodes, and partial
observations of the network structure (Xij).

Network data is often given in bipartite form so that we observed rela-
tional information (Xij) in the form of an m-by-n matrix between m nodes
of a particular type having attributes (ZL

i ), and n nodes of a different type
having attributes (ZR

j ), see Figure 8.2. Practical learning tasks involving
bipartite data are common in crowdsourcing and collaborative filtering con-
texts, see the examples below.

1
...

i

ZLi

...

m

1

...

j

ZRj

...

n

Xij

Figure 8.2: Bipartite network data.

Example 8.4 (Crowdsourcing). In microtasking platforms such as Amazon
Mechanical Turk, a set of m simple tasks are allocated to n workers who
might provide unreliable answers. The unreliability is mitigated by allocating
the same task to several workers. Denote by Xij the outcome of task i
performed by worker j, by ZL

i the true outcome of task i, and by ZR
j the

inherent reliability of worker j. The inference problem is to estimate the true
outcomes (ZL

i ) based on observed data (Xij).
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Example 8.5 (Collaborative filtering). In online recommendation systems a
common objective is to infer customer’s preferences based on their own and
other customers’ rankings on a set of items. Let Xij be a number indicating
the level of preference of item i by user j. Having observed a partial set of
entries of (Xij), the challenge is to complete the matrix by estimating the
unobserved remaining values. A famous example of this problem is the Netflix
challenge1. This problem setup does not involve item attributes (ZL

i ) or
customer attributes (ZR

j ), but they could be incorporated as auxiliary model
variables.

For notational simplicity, these lecture notes restrict to the unipartite
network setting corresponding to Figure 8.1. We will model the joint dis-
tribution of the network structure (Xij) and the node attributes (Zi) using
a statistical model where the entries Xij are mutually independent condi-
tionally on the node attributes. This model is described in detail in next
section.

8.2 Learning stochastic block models

Denote by Gn the set of undirected graphs on node set [n], or equivalently,
the set of all binary arrays (xij) indexed by 1 ≤ i < j ≤ n. A stochastic
block model with n nodes and m communities is a probability distribution
on Gn × [m]n defined by

f(x, z) =
∑
z∈[m]n

f(x | z)
n∏
i=1

α(zi) (8.1)

and
f(x | z) =

∏
1≤i<j≤n

(1−Kzizj)
1−xijKxij

zizj
, (8.2)

where K is a symmetric m-by-m matrix with nonnegative entries, and α is a
probability distribution on [m]. Formula (8.1) represents the joint distribu-
tion of a random graph (Xij) and a random vector (Zi) such that the entries
of (Zi) are independent and α-distributed, and conditionally on (Zi), the
entries Xij are independent and Bernoulli distributed with mean K(Zi, Zj).

The SBM is parametrized by θ = (m,n, α,K), and we often write f(x, z) =
fθ(x, z) and f(x | z) = fθ(x | z) to emphasize the dependence of the distribu-
tion on its parameters. When n and m are known, the conditional density
(8.2) only depends on the parameterK, so we might write f(x | z) = fK(x | z).

1https://en.wikipedia.org/wiki/Netflix_Prize
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8.3 Learning the kernel when node attributes

are known

The easiest learning problem is to estimate the kernel K from observed graph
sample x = (xij) when the number of communities m and the node attributes
z = (zi) are known, or they have been first estimated using some other
method. A maximum likelihood estimate of K is a symmetric nonnegative m-
by-m matrix K̂ which maximizes the likelihood K 7→ fK(x | z) corresponding
to formula (8.2).

Let us first introduce some helpful notation related to the block structure
of the observed graph sample. First, let us represent the attribute vector
(zi) as an n-by-m binary matrix (zij) with entries zis = 1(zi = s) indicating
whether node i belongs to community s. Then the size of community s can
be written as

ns =
n∑
i=1

zis,

and the number of links between communities s and t as

est =

{∑n
i=1

∑n
j=1 xijziszjt, s 6= t,

1
2

∑n
i=1

∑n
j=1 xijziszjs, s = t.

As a consequence, the link density between communities s and t in the ob-
served graph can be written as

dst =
est
nst

, (8.3)

where

nst =

{
nsnt, s 6= t,
1
2
ns(ns − 1), s = t.

Theorem 8.6. The unique maximum likelihood estimate of the kernel K is
the m-by-m matrix with entries being the observed block densities K̂st = dst
defined by (8.3).

Proof. Recall that maximizing a function is equivalent to maximizing its
logarithm. We take logarithm of the likelihood to transform the product in
(8.2) into a sum. The log-likelihood can be written as

log fK(x | z) =
∑

1≤i<j≤n

{
(1− xij) log(1−Kzi,zj) + xij logKzi,zj

}
.
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In the above sum there is a lot of redundancy in the sense that the only
possible values of the terms on are log(1 − Ks,t) and logKs,t for some 1 ≤
s ≤ t ≤ m. By counting how many times these values occur in the sum, we
see that the log-likelihood can be written as

log fK(x | z) =
∑

1≤s≤t≤m

{
(Nst − est) log(1−Kst) + est log(Kst)

}
=

∑
1≤s≤t≤m

Nst

{
(1− dst) log(1−Kst) + dst log(Kst)

}
.

After brief algebraic manipulations, one can also verify that

log fK(x | z) =
∑

1≤s≤t≤m

Nst

{
−H(Ber(dst))− dKL(Ber(Kst)||Ber(dst))

}
,

where H(f) denotes the entropy of probability distribution f , and dKL(f ||g)
denotes the Kullback–Leibler divergence of f with respect to g. Because
dKL(f ||g) ≥ 0 always, with equality holding if and only if f = g, it follows
that the above quantity is maximized when Ber(Kst) = Ber(dst)) for all s and
t, that is, when Kst = dst.

8.4 Learning community frequencies and com-

munity link rates

We will discuss the article [BCL11]. A large random graph is modeled as
a sequence of doubly stochastic block models SBM(α,K(n)) on node set [n]
indexed by n = 1, 2, . . . , where the label distribution α is a probability
distribution on a set S, and the connectivity matrix is given by

K(n)(s, t) = ρnK(s, t) ∧ 1, (8.4)

where the link density ρn is a scalar such that ρn → 0 as n → ∞, and the BJR07

assume

ρn = n−1

normalized kernel K : S × S → [0,∞) is a symmetric function2 normalized
according to3 ∑

s

∑
t

K(s, t)α(s)α(t) = 1.

2In the paper [BCL11] a different truncation w1(w ≤ 1) was used in place of w∧1, and
S = (0, 1), but this should not make a difference.

3If S is an uncountable measurable space, then all sums over S involving α(u) should
be replaced by integrals involving α(du).
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As n → ∞, one can verify (exercise) that any particular node pair is linked
with probability (1 + o(1))ρn, and the expected degree of any node equals
(1 + o(1))nρn. The statistical learning problem is now to determine the
label distribution α and the normalized kernel K from a graph sample X(n)

obtained from the SBM(α,K(n)) distribution.
An moment-based estimation approach for learning the model parameters

is to compute the R-matching (or R-covering) densities defined in (7.4) of
the observed graph sample X(n) for a suitable collection of small graphs
R, and try to match the so-obtained empirical densities to the corresponding
theoretical densities of the model. Because in the sparse setting with ρn → 0,
the empirical and model densities converge to zero, we need to work with
normalized densities. For a graph R on node set [r], the normalized R-
covering density of the model is defined by

Q∗(R) =
∑
z1

· · ·
∑
zr

α(z1) · · ·α(zr)
∏

ij∈E(R)

K(zi, zj),

and the normalized empirical R-covering density of the graph sample X(n) is
defined by ρ

−|E(R)|
n Q̂X(n)(R) where Q̂X(n)(R) is defined in (7.5). The following

result provides a sufficient condition for the normalized empirical R-covering
density to be a consistent estimator of Q∗α,K(R).

Theorem 8.7. Assume that cn−1 ≤ ρn � 1, and that Clarify me∑
s

∑
t

K(s, t)2rα(s)α(t) <∞.

Then for any acyclic graph R with r nodes,

ρ−|E(R)|
n Q̂X(n)(R)

P−→ Q∗(R).

Sketch of proof. Because the distribution of the random graph X = X(n) is
invariant with respect to node relabeling, we may relabel the nodes of R so
that V (R) = [r], and P(X ⊃ R′) = P(X ⊃ R) whenever R′ is isomorphic to
R. Hence the expected R-covering density of X equals

EQ̂X(n)(R) = E
∑

R′∈Gn(R) 1(X(n) ⊃ R′)

|Gn(R)|
= P(X(n) ⊃ R).

Because the the entries Xij are conditionally independent given the node
labeling Z, it follows that

P(X(n) ⊃ R |Z = z) =
∏

ij∈E(R)

(ρnK(zi, zj) ∧ 1),
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and

ρ−|E(R)|
n P(X(n) ⊃ R |Z = z) =

∏
ij∈E(R)

(K(zi, zj) ∧ ρ−1
n ) →

∏
ij∈E(R)

K(zi, zj).

After multiplying the left side above by α(z1) · · ·α(zr) and summing over
z1, . . . , zr, it follows (by Lebesgue’s monotone convergence) that

ρ−|E(R)|
n P(X(n) ⊃ R) → Q∗(R),

and we conclude that

E ρ−|E(R)|
n Q̂X(n)(R) → Q∗(R).

To finish the proof by Chebyshev’s inequality (i.e. the second moment
method), it suffices to show that

Var
(
ρ−|E(R)|
n Q̂X(n)(R)

)
→ 0.

This is done in [BCL11, Proof of Theorem 1] (see also [Bol01, Sec 4.1]).

Using matching densities instead of covering densities

For sparse doubly stochastic block models, the empirical matching and cov-
ering densities behave roughly similarly. By similar arguments as for the
R-covering density, it follows that the expected R-matching density of X =
X(n) equals

EP̂X(R) = P(X[[r]] = R) = P
(
Xij = Rij for all 1 ≤ i < j ≤ r

)
.

Observe that the difference between the covering and the matching densities
is bounded by Q̂X(R)− P̂X(R) ≥ 0 and

Q̂X(R)− P̂X(R) =
1

|Gn(R)|
∑

R′∈Gn(R)

1(X ⊃ R′)1(Xk` = 1 for some k` /∈ E(R′))

=
1

|Gn(R)|
∑

R′∈Gn(R)

∏
ij∈E(R′)

Xij1(Xk` = 1 for some k` /∈ E(R′))

≤ 1

|Gn(R)|
∑

R′∈Gn(R)

 ∏
ij∈E(R′)

Xij

 ∑
k`/∈E(R′)

Xk`

 ,
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where k` /∈ E(R′) refers to the k` ∈
(

[r]
2

)
\ E(R′), so that

E|Q̂X(R)− P̂X(R)| ≤ E

 ∏
ij∈E(R)

Xij


 ∑
k`∈([r]

2 )\E(R)

Xk`


≤ ρ|E(R)|+1

n E

 ∏
ij∈E(R)

K(Zi, Zj)


 ∑
k`∈([r]

2 )\E(R)

K(Zk, Z`)


≤ cρ|E(R)|+1

n

under sufficient moment conditions on w. Hence by Markov’s inequality,

ρ−|E(R)|
n Q̂X(R)− ρ−|E(R)|

n P̂X(R)
P−→ 0.

Hence by Theorem 8.7 it follows that also the normalized empirical matching
density converges to Q∗(R), according to

ρ−|E(R)|
n P̂X(R)

P−→ Q∗(R).

8.5 Identifiability of the doubly stochastic block

model from covering densities

The label distribution α can be viewed as a column vector of m numbers
αs ∈ [0, 1] normalized according to

m∑
s=1

αs = 1. (8.5)

In a finite label we can ignore the truncation term in the kernel definition
(8.4), and we can write K(n)(s, t) = ρnKs,t, where ρn ∈ (0, 1) is the overall
link density and the limiting kernel K is now a symmetric m-by-m matrix
with entries in Kst ∈ [0, 1] normalized by

m∑
s=1

m∑
t=1

Kstαsαt = 1. (8.6)

To learn the model it is then sufficient to determine the m real numbers
αs and the m(m+ 1)/2 real numbers Kst, 1 ≤ s ≤ t ≤ m. Actually, a bit less
is sufficient. Namely, (8.5) and (8.6) imply that we can omit learning one
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entry of α and one entry of K. Therefore, the number of free parameters in
the model equals m(m+ 3)/2− 2.

The limiting normalized R-covering density of a doubly stochastic block
model with label distribution α and kernel K was found to be

Q∗(R) =
∑
z1

· · ·
∑
zr

∏
ij∈E(R)

Kzi,zj αz1 · · ·αzr .

The problem is now to determine α and K from Q∗(R) for a collection of R.
Let us compute the normalized R-covering density for some simple graphs

first. When R is a single link, we get

Q∗(link) =
∑
s

∑
t

Kst αsαt = 1

due to the normalization constraint (8.6). For the triangle we obtain

Q∗(triangle) =
∑
s

∑
t

∑
u

KstKtuKsu αsαtαu,

but this appears a complicated formula to analyze. To obtain simpler alge-
braic expressions, we will try computing covering densities for some acyclic
graphs. For the 3-path with V (R) = {1, 2, 3, 4} and E(R) = {{1, 2}, {2, 3}, {3, 4}},
we find that

Q∗(3-path) =
∑

u1,u2,u3,u4

Ku1u2Ku2u3Ku3u4 αu1αu2αu3αu4

=
∑

u1,u2,u3,u4

αu1Lu1u2Lu2u3Lu3u4

=
∑
u1

∑
u4

αu1L
3
u1u4

=
∑
u

αu(L
3e)u,

where Luv = Kuvαv is the matrix product of K and the diagonal matrix with
entries α1, . . . , αm, and e is the column vectors of m ones. For the 3-star

90



with V (R) = {1, 2, 3, 4} and E(R) = {{1, 2}, {1, 3}, {1, 4}}, we get

Q∗(3-star) =
∑

u1,u2,u3,u4

Ku1u2Ku1u3Ku1u4 αu1αu2αu3αu4

=
∑
u1

αu1

(∑
u2

∑
u3

∑
u4

Ku1u2Ku1u3Ku1u4αu2αu3αu4

)

=
∑
u

αu

(∑
v

Kuvαv

)3

=
∑
u

αu ((Le)u)
3 .

The above computations can be generalized to (exercise)

Q∗(k-path) =
∑
u

αu(L
ke)u,

Q∗(`-star) =
∑
u

αu ((Le)u)
` .

Even more generally, one can verify (exercise) that

Q∗((k, `)-star) =
∑
u

αu(L
ke)`u, (8.7)

where a (k, `)-star refers to a graph of radius k obtained by joining the end-
points of ` paths of length k at a common hub node in the center. Hence an
(1, `)-star is the usual `-star.

Can we identify α and K from the covering densities of paths and stars?
The first claim is that we can identify (α1, . . . , αm) from the `-star covering
densities with ` = 1, . . . , 2m− 1. Why? Let X1 be a random variable which
takes on value (Le)u with probability αu for all u = 1, . . . ,m. Then

EX`
1 =

∑
u

αu ((Le)u)
` = Q∗(`-star).

Then a classical theorem about the method of moments [Fel71] tells that
the distribution (support and probabilities) of X1 can be recovered from
sufficiently many moments EX1,EX2

1 , . . . Hence, we may obtain the label
distribution α and the rows sums (Le)1, . . . (Le)m from the star covering
densities. Next, let Xk be a random variable which takes on value (Lke)u with
probability αu. Then by (8.7),

EX`
k =

∑
u

αu(L
ke)`u = Q∗((k, `)-star),
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and hence we may recover the rows sums (Lke)1, . . . , (L
ke)m from the (k, `)-

star covering densities. Let us now defined the m-by-m square matrices

V (1) =
[
e Le · · · Lm−1e

]
and

V (2) =
[
Le L2e · · · Lme

]
.

Then
LV (1) = V (2),

and if the columns of V (1) are linearly independent, we obtain the matrix
L from

L = V (2)(V (1))−1,

and thereafter the matrix K by Kuv = Luvα
−1
v . Hence we have proved the

following result.

Theorem 8.8. Assume that the vectors e, Le, . . . , Lm−1e are linearly inde-
pendent and αu > 0 for all u. Then the label distribution α and the nor-
malized kernel K can be identified from the normalized covering densities
Q∗((k, `)-star) with k, ` ≥ 1.

Combining Theorems 8.7 and 8.8 yields a consistent way to estimate the
parameters α and K of a large and sparse doubly stochastic block model from
the normalized empirical covering densities of (k, `)-stars computed from a
single large sample X(n).
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Appendix A

Probability

Here are some miscellaneous facts from probability theory that are used in
the text.

A.1 Inequalities

Proposition A.1 (Markov’s inequality). For any random number X ≥
0 and any a > 0,

P(X ≥ a) ≤ a−1EX.

Proof. First, note that P(X ≥ a) = E1(X ≥ a) where 1(A) in general denotes
the indicator of the event A. Hence by the linearity of expectation,

aP(X ≥ a) = aE1(X ≥ a) = Ea1(X ≥ a).

Next, the inequalities

a1(X ≥ a) ≤ X1(X ≥ a) ≤ X

which are valid for any realization of X, and the monotonicity of the expec-
tation imply that

Ea1(X ≥ a) ≤ EX.

Hence aP(X ≥ a) ≤ EX, and the claim follows.

Proposition A.2 (Chebyshev’s inequality). For any random number X with
a finite mean µ = EX and any a > 0,

P(|X − µ| ≥ a) ≤ a−2 Var(X).
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Proof. By applying Markov’s inequality for Y = (X − µ)2, we find that

P(|X − µ| ≥ a) = P((X − µ)2 ≥ a2)

≤ (a2)−1E(X − µ)2 = a−2 Var(X).

The following inequality is due to the Finnish-born Wassily Hoeffding.

Proposition A.3 (Hoeffding’s inequality). Let Sn =
∑n

i=1Xi where the
summands are independent and bounded by ai ≤ Xi ≤ bi. Then for any
t > 0,

P(Sn ≥ ESn + t) ≤ e
− 2t2∑

i(bi−ai)2 ,

P(Sn ≤ ESn − t) ≤ e
− 2t2∑

i(bi−ai)2 ,

and

P(|Sn − ESn| ≥ t) ≤ 2e
− 2t2∑

i(bi−ai)2 .

Proof. A well-written proof of the first inequality, based on an extremality
property related to convex stochastic orders, is available in the original re-
search article Hoeffding [Hoe63]. The second inequality follows by applying
the first inequality to S̃n = −Sn and the third inequality follows from the
first two by the union bound.

A.2 Convergence of discrete probability dis-

tributions

For probability distributions on a countable set S we say that µn → µ weakly
if
∑

x φ(x)µn(x) →
∑

x φ(x)µ(x) for every bounded function φ : R → R.
For random variables distributed according to µn and µ, this is denoted as

Xn
d−→ X.

Theorem A.4. The following are equivalent for random sequences in a
countable set S:

(i) Xn
d−→ X.

(ii) P(Xn ∈ A)→ P(X ∈ A) for all A ⊂ S.

(iii) P(Xn = s)→ P(X = s) for all s ∈ S.

(iv) Xn
tv−→ X.
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Proof. Sorry, the current proof is in Finnish, and part (iv) is missing. Todis-
tetaan lause kolmessa vaiheessa näyttämällä toteen seuraamukset (i) =⇒
(ii) =⇒ (iii) =⇒ (i). Kaksi ensimmäistä vaihetta on helppoja, kun taas
kolmas vaatii vähän enemmän työtä.

(i) =⇒ (ii). Oletetaan, että (i) pätee ja valitaan mielivaltainen A ⊂ S.
Funktio f(s) = 1A(s) on nyt rajoitettu, joten (i):n nojalla

P(Xn ∈ A) = E1A(Xn)→ E1A(X) = P(X ∈ A).

(ii) =⇒ (iii). Oletetaan, että (ii) pätee ja valitaan mielivaltainen s ∈ S.
Määritellään A = {s}. Tällöin (ii):n nojalla

P(Xn = s) = P(Xn ∈ A)→ P(X ∈ A) = P(X = s).

(iii) =⇒ (i). Oletetaan, että (iii) pätee ja valitaan jokin rajoitettu
funktio f : S → R. Valitaan myös jokin mielivaltaisen pieni ε > 0. Esitetään
S numeroimalla sen alkiot muodossa S = {s1, s2, . . . } ja merkitään Ck =
{s1, . . . , sk}. Koska

∑∞
j=1 PX(sj) = 1, voidaan valita luku k siten, että

P(X ∈ Cc
k) =

∞∑
j=k+1

PX(sj) ≤ ε.

Kirjoitetaan tarkasteltavana olevien odotusarvojen erotus muodossa

Ef(Xn)− Ef(X) = ∆n + Ef(Xn)1{Xn∈Cck} − Ef(X)1{Xn∈Cck}, (A.1)

missä

∆n = Ef(Xn)1{Xn∈Ck} − Ef(X)1{Xn∈Ck},

Oletuksen (iii) nojalla

∆n =
∑
s∈Ck

f(s)(PXn(s)− PX(s))→ 0,

kun n→∞. Seuraavaksi nähdään, että yhtälön (A.1) oikean puolen toinen
termi toteuttaa∣∣Ef(Xn)1{Xn∈Cck}

∣∣ ≤ ||f ||P(Xn ∈ Cc
k) = ||f || (P(X ∈ Cc

k) + ∆′n) ,

missä ||f || = sups∈S |f(s)| ja

∆′n = P(Xn ∈ Cc
k)− P(X ∈ Cc

k)

= P(X ∈ Ck)− P(Xn ∈ Ck)

=
∑
s∈Ck

(PX(s)− PXn(s))→ 0,
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kun n→∞ oletuksen (iii) nojalla. Näin ollen siis

|Ef(Xn)− Ef(X)| ≤ |∆n|+ ||f || (2P(Xn ∈ Cc
k) + |∆′n|)

≤ |∆n|+ ||f || (2ε+ |∆′n|) .

Koska |∆n| ≤ ε ja |∆′n| ≤ ε kaikilla riittävän suurilla n, nähdään että

|Ef(Xn)− Ef(X)| ≤ (1 + 3||f ||)ε

kaikilla riittävän suurilla n. Koska ε oli mielivaltaisen pieni, (i) seuraa.

A.3 Weak convergence of probability mea-

sures

Let µ, µ1, µ2, . . . be probability distributions on R. We say that µn → µ
weakly if

∫
φ(x)µn(dx)→

∫
φ(x)µ(dx) for every bounded continuous function

φ : R → R. We say that µn → µ weakly and with k-th moments, if in
addition µn and µ have finite k-th moments and

∫
|x|kµn(dx)→

∫
|x|kµ(dx).

The sequence (µn) is called uniformly integrable if supn
∫
|x|µn(dx)1(|x| >

K) → 0 as K → ∞. Let X,X1, X2, . . . be real-valued random variables.
We say that Xn → X weakly (resp. with weakly with k-th moments) if the
corresponding probability distributions converge weakly (resp. weakly with
k-th moments). We say that (Xn) is uniformly integrable if the collection of
corresponding probability distributions is uniformly integrable.

Lemma A.5. Let Xn and X be random numbers such that Xn → X weakly
with 1st moments. Then the sequence (Xn) is uniformly integrable.

Proof. Given ε > 0, by Lebesgue’s dominated convergence we may choose
K > 0 such that EX1(X > K) ≤ ε/3. Then let φK be a continuous bounded
function such that φK(x) = x for x ≤ K and φK = 0 for x ≥ K + 1. Then

x1(x ≤ K) ≤ φK(x) ≤ x1(x ≤ K + 1),

so that

EXn1(Xn > K + 1) = EXn − EXn1(Xn ≤ K + 1)

≤ EXn − EφK(Xn)

= EXn − EφK(X) + EφK(X)− EφK(Xn)

≤ EXn − EX1(X ≤ K) + EφK(X)− EφK(Xn)

= EX1(X > K) + EXn − EX + EφK(X)− EφK(Xn)

≤ ε/3 + |EXn − EX|+ |EφK(Xn)− EφK(X)|.
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Then we may choose n0 so large that |EXn − EX| ≤ ε/3 and |EφK(Xn)− EφK(X)| ≤
ε/3 for all n > n0. Hence EXn1(Xn > K + 1) ≤ ε for all n > n0. Further-
more, for every 1 ≤ m ≤ n0 we may choose, again by Lebesgue’s domi-
nated convergence, Km such that EXm1(Xm > Km) ≤ ε. Now if we choose
L = max{K + 1, K1, . . . , Kn0}, it follows that supn EXn1(Xn > L) ≤ ε.
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Appendix B

Locally finite rooted graphs

We discuss the concepts introduced by Itai Benjamini and Oded Schramm
in [BS01]. A rooted graph is a pairG• = (G, o) whereG is a graph (undirected,
no parallel links, loopless) and o ∈ V (G) is a node of the graph called the
root. The root of G• is usually denoted by o(G•). The r-neighborhood of a
rooted graph G• = (G, o) is the rooted graph TrG

• = (Go,r, o) where Go,r is
the subgraph of G induced by the set of nodes reachable from o by a path
of length at most r. A rooted graph is connected if every node is reachable
from the root via some finite path. A rooted graph is locally finite if every
node has a finite degree.

Remark B.1 (Graphs with loops). Homomorphisms are conceptually easier
to define for graphs with loops. Fix a set V and let Gs be the set of finite,
simple (no parallel links, loops are allowed), undirected graphs. Let Gs(V ) be
the set of graphs in Gs with node set V . Here E(G) is a collection of subsets
of V (G) of cardinality one or two, and singleton sets in E(G) are called loops.
Note that any function φ : V → V ′ induces a map Pow(V )→ Pow(V ′) such
that e ⊂ V mapsto φ(e) := {φ(v) : v ∈ e}. Hence any function φ : V → V ′

also induces a graph-to-graph map such that V (G) 7→ φ(V (G)) = {φ(v) : v ∈
V (G)} and E(G) 7→ φ(E(G)) := {φ(e) : e ∈ E(G)}. Now loops map to loops,
but also nonloops can map into loops. Now such a map φ is a homomorphism
from G into H just means that φ : V (G) → V (H) as a graph-to-graph
map maps G into a subgraph of H in the sense that φ(V (G)) ⊂ V (H) and
φ(E(G)) ⊂ E(H). It is easy to verify that a map φ is injective as map
V → V ′ if and only if φ is injective as a map Gs(V ) → Gs(V ′). Strong
homomorphism means that φ(G) is an induced subgraph of H, a subgraph
of H induced by φ(V (G)). Embedding means an injective (as a function on V
or equivalently on Gs) homomorphism, and strong (or injective) embedding
means an injective strong homomorphism.
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If we insisted on working on the space of loopless simple graphs, then
not every φ on V extends to a function on the space of loopless simple
graphs — only injections do — but we often want to deal with noninjective
homomorphisms. Note that in the above sense, if φ is a homomorphism from
G into a loopless graph H, then also G must be loopless. Note that when we
want to count the number of embeddings from G to H, we look at functions
φ : V (G)→ V (H).

A homomorphism from G• into H• is map φ : V (G•) → V (H•) such
that φ(E(G•)) ⊂ E(H•) and φ(o(G•)) = φ(o(H•)). Equivalently, φ is a
homomorphism of the unrooted graphs which preserves the root.

Rooted graphs G• and H• are isomorphic, denoted G• ∼= H•, if there
exists a bijection φ : V (G) → V (H) which satisfies φ(o(G•)) = o(H•) and
the property that {φ(u), φ(v)} ∈ E(H) if and only if {u, v} ∈ E(G).

B.1 Identification from local neighborhoods

The following technical result is later needed in verifying that the local dis-
tance defined on the isomorphism classes of connected locally finite rooted
graphs is a metric.

Lemma B.2. Let F • and G• be connected locally finite rooted graphs such
that TrF

• ∼= TrG
• for all r ≥ 0. Then F • ∼= G•.

Proof. We need to prove the existence of an isomorphism between F • and G•.
The proof is based on a nonconstructive subsequence argument. The assump-
tion implies that for any r there exists an isomorphism φr between TrF

• and
TrG

•. We will extend this to a function ψr : V (F •)→ V (G•) by defining

ψr(v) =

{
φr(v), v ∈ V (TrF

•),

oG, otherwise.

Now we have a sequence (ψ0, ψ1, ψ2, . . . ) of functions from V (F •) into V (G•).
We will next describe how we can extract a rooted graph isomorphism be-
tween F• and G• from this sequence. For convenience, denote by Vr =
V (TrF

•) the set of nodes within distance at most r from the root in F •.
Observe first that for any r, the restriction ψr|V0 of ψr to domain V0 is an

isomorphism between T0F
• and T0G

•. Because the set of such isomorphisms
is finite, there exists at least one such isomorphism, call it φ′0, which is
repeated infinitely many times in the sequence (ψr|V0 : r ∈ N). Hence there
exists an infinite subset N0 ⊂ N such that

ψr|V0 = φ′0 for all r ∈ N0.
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Let us now repeat this argument. Note that for any r ∈ N0, the restriction
ψr|V1 is an isomorphism between T1F

• and T1G
•. Again, because the set of

such isomorphisms is finite, there is at least one, call it φ′1, which is repeated
infinitely many times in the sequence (ψr|V1 : r ∈ N0). Hence there exists an
infinite subset N1 ⊂ N0 such that ψr|V1 = φ′1 for all r ∈ N1. By continuing
this way we see that there exist a nested sequence of infinite sets N ⊃ N0 ⊃
N1 ⊃ · · · such that for all k ≥ 0,

ψr|Vk = φ′k for all r ∈ Nk,

where φ′k is an isomorphism between TkF
• and TkG

•.
Let us define ψ′` as the first member of the sequence (ψr : r ∈ N`). Because

ψ′` is also a member of (ψr : r ∈ Nk), it follows that for v ∈ Vk,

ψ′`(v) = φ′k(v) for all ` ≥ k.

Now because F • is connected, we have V (F •) = ∪∞k=0Vk, and the above
equation shows that the function sequence (ψ′` : ` ∈ N0) converges pointwise
to a limiting function

ψ′∞ =
∞∑
k=0

φ′k1Uk

where U0 = V0 and Uk = Vk \ Vk−1 for k ≥ 1.
Let us finally verify that ψ′ is a rooted graph isomorphism between F •

and G•. The above representation makes it clear that ψ′ is injective. It
is also surjective because both F • and G• are connected. If u, v ∈ V (F •),
then for k = max{dF (oF , u), dF (oF , v)} we have u, v ∈ Vk. Because φ′k is an
isomorphism between TkF

• and TkG
•, it follows that φ′k(u), φ′k(v) ∈ V (TkG

•),
and {u, v} ∈ E(TkF

•) iff {φ′k(u), φ′k(v)} ∈ E(TkG
•). Because ψ′∞|Vk = φ′k, it

follows that

{u, v} ∈ E(TkF
•) ⇐⇒ {ψ′(u), ψ′(v)} ∈ E(TkG

•),

which now is equivalent to

{u, v} ∈ E(F •) ⇐⇒ {ψ′(u), ψ′(v)} ∈ E(G•).

Finally, ψ′(oF ) = ψ′|V0(oF ) = φ′0(oF ) = oG concludes the claim.

B.2 Completeness

The following important result tells that any compatible sequence of rooted
graphs of increasing diameter admits a limiting graph which is unique up
to isomorphism. Here compatibility means that truncated versions of the
members of the sequence match with earlier members of the sequence.
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Lemma B.3. Let G•0, G
•
1, . . . be connected locally finite rooted graphs which

are compatible in the sense that TrG
•
s
∼= G•r for all r ≤ s. Then there exists

a connected locally finite rooted graph H• such that

G•r
∼= TrH

• for all r ≥ 0. (B.1)

Moreover, such H• is unique up to isomorphism.
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Figure B.1: Compatible construction of isomorphic copies of G•0, G
•
1, . . .

Proof. To prove existence, we will first construct isomorphic copies ofG•0, G
•
1, . . .

on a common node set, in a compatible way. To do this, denote Vr = {v ∈
N : v ≤ Nr} where Nr = |V (G•r)|. We will define a sequence of bijections
φr : V (G•r)→ Vr recursively as follows. First, we let φ0 = η0 where η0 is the
unique bijection from V (G•0) = {o(G•0)} onto the singleton set V0 = {1}. For
any r ≥ 1, we define

φr(v) =

{
φr−1(ψ−1

r (v)), v ∈ V (Tr−1G
•
r),

ηr(v), v ∈ V (G•r) \ V (Tr−1G
•
r),

where ψr is an isomorphism between G•r−1 and Tr−1G
•
r, and ηr is an arbitrary

bijection from V (G•r) \ V (Tr−1G
•
r) onto Vr \ Vr−1, see Figure B.1. Next we

define H•r = φr(G
•
r) as the image1 of G•r with respect to φr. Because φr is a

1The image φ(G•) of a rooted graph G• by a function φ with domain V (G•) is defined
as the rooted graph H• = φ(G•) with node set V (H•) = {φ(v) : v ∈ V (G•)}, link set
E(H•) = {{φ(u), φ(v)} : {u, v} ∈ E(G•)}, and root o(H•) = φ(o(G•)).
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bijection, it follows that

G•r
∼= H•r for all r ≥ 0.

Moreover, the construction guarantees that o(H•r ) = 1 for all r ≥ 0. We
define a rooted graph H• with node set V (H•) = ∪∞r=0V (H•r ), link set
E(H•) = ∪∞r=0E(H•r ) and root o(H•) = 1. Then it follows that

TrH
• = H•r for all r ≥ 0.

Now (B.1) follows from the fact that G•r
∼= H•r , and from this we also conclude

that H• is locally finite and connected.
To verify uniqueness, assume that H• and I• are locally finite rooted

graphs satisfying (B.1). Then TrH
• ∼= TrI

• for all r, and it follows that
d(H•, I•) = 0. Hence by Lemma B.2, it follows that H• ∼= I•.

B.3 Local distance

Let G• be the set of connected, locally finite, rooted graphs with node set
contained in N = {1, 2, . . . }. Note that this set is uncountably infinite. The
local distance on G• is defined by

dloc(F
•, G•) = 2− sup{r≥0:TrF •∼=TrG•}. (B.2)

The following result implies that dloc is a pseudometric on G• (see for example
[Kel75, Chapter 4]). We equip G• with the pseudometric topology, that is,
the topology generated by the open balls {G• ∈ G• : dloc(G

•, F •) < ε}.

Proposition B.4. The map dloc : G• × G• → [0, 1] satisfies

(i) dloc(F
•, G•) = 0 if and only if F • ∼= G•,

(ii) dloc(F
•, G•) = dloc(G

•, F •),

(iii) dloc(F
•, H•) ≤ max{dloc(F

•, G•), dloc(G
•, H•)}.

Moreover,

(iv) dloc(F̂ •, Ĝ•) = dloc(F
•, G•) whenever F̂ • ∼= F • and Ĝ• ∼= G•.

Proof. (i) Assume that dloc(F
•, G•) = 0. Then TrF

• ∼= TrG
• for all r ≥ 0,

and by Lemma B.2 it follows that F • ∼= G•. The converse is immediate.
(ii) Immediate.
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(iii) Let rFH = sup{r ≥ 0 : TrF
• ∼= TrH

•}, and define rFG, rGH similarly.
Then TrF

• ∼= TrG
• and TrG

• ∼= TrH
• for all r ≤ min{rFG, rGH}. This

implies that TrF
• ∼= TrH

• for all r ≤ min{rFG, rGH}. We conclude that
rFH ≥ min{rFG, rGH}, or equivalently, 2−rFH ≤ max{2−rFG , 2−rGH}, and
hence the inequality in (iii) is valid.

(iv) This follows by noting that if F̂ • ∼= F • and Ĝ• ∼= G•, then TrF
• ∼=

TrG
• if and only if TrF̂ • ∼= TrĜ•.

For a rooted graph G•, the equivalence class

[G•] = {H• ∈ G• : H• ∼= G•}

is called an unlabelled rooted graph with representative G•. For a collection
of rooted graphs A we denote [A] = {[A•] : A• ∈ A}. Then [G•] denotes
the set of unlabelled rooted graphs which are connected and locally finite.
Proposition B.4:(iv) implies that dloc(F

•, G•) depends on its inputs only via
their equivalence classes. Hence we may define the local distance on [G•] by
dloc([F

•], [G•]) = dloc(F
•, G•).

Then the projection map i : G• 7→ [G•] from G• onto [G•] is an isometry
of pseudometric spaces: dloc([F

•], [G•]) = dloc(F
•, G•) for all F •, G• ∈ G•.

Hence i is a surjection that maps open balls of radius r in G• into open balls
of radius r in [G•], conversely preimages of open balls of radius r in [G•] are
open balls of radius r in G•. Hence A is open in G• if and only if [A] is open
in [G•].

Proposition B.5. ([G•], dloc) is a complete separable metric space.

Proof. Let us first verify that dloc is a metric. Positivity and symmetry
follow from Proposition B.4:(i)–(ii). The triangle inequality follows from
Proposition B.4:(iii) which is indeed a stronger property, called an ultrametric
inequality.

To verify separability, note that the set of all finite rooted graphs G•<∞ ⊂
G• is a countable set. We will verify that [G•<∞] is dense in [G•]. This is easy
because for any G ∈ G•, and for any ε > 0, dloc(Gr, G) ≤ 2−r < ε when r is
large enough. Hence every open dloc-ball in [G•] also contains elements of
[G•<∞].

To verify completeness, fix a Cauchy sequence ([G•n])n≥1 with represen-
tative rooted graphs G•n. Then for any ε > 0 there exists nε such that
dloc(G

•
m, G

•
n) < ε for all m,n ≥ nε. Equivalently, for any integer r ≥ 0, there

exists nr such that TrG
•
n
∼= TrG

•
m for all m,n ≥ nr, which implies that

TrG
•
n
∼= TrG

•
nr for all n ≥ nr.
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Above we may select the threshold values so that 1 = n0 < n1 < · · · Now
define H•r = TrG

•
nr . Then H•0 , H

•
1 , . . . form a compatible sequence in the

sense that for r ≤ s,

TrH
•
s = TrTsG

•
ns = TrG

•
ns
∼= TrG

•
nr = H•r ,

and by Lemma B.3 there exists a locally finite connected rooted graph G•

such that TrG
• ∼= H•r for all r. Now

TrG
•
n
∼= TrG

•
nr = H•r

∼= TrG
• for all n ≥ nr,

which implies that

dloc([G
•
n], [G•]) = dloc(G

•
n, G

•) ≤ 2−r for all n ≥ nr.

Hence [G•n]→ [G•] in the topology induced by the local metric on [G•].

B.4 Topological properties

We discuss topological properties of the metric space ([G•], dloc), some of
which differ quite a lot from what is common in usual topological spaces.
We first note that this is a bounded metric space with diameter one, and
dloc([F

•], [G•]) = 1 if and only if the 1-neighborhoods of the roots of F • and
G• are nonisomorphic. Observe next that

dloc([F
•], [G•]) < ε

if and only if TrF
• ∼= TrG

• for r = blog2(1/ε)c+ 1. Hence

[G•n]→ [G•]

if and only if for all r ≥ 0 there exists n0 such that TrG
•
n
∼= TrG

• for all
n ≥ n0.

The open ball of radius ε = 2−r centered at [F •] equals

B([F •], 2−r) = {[G•] ∈ [G•] : Tr+1G
• ∼= Tr+1F

•}. (B.3)

For example, all singleton sets corresponding to finite graphs are open, be-
cause the open ball of radius 2−r−1 around G• ∈ G• of diameter r equals
{G•}. As a consequence the set [G•<∞] of all finite graphs is open, and so are
all of its subsets. The local topology restricted to finite graphs is hence the
discrete topology. Examples of open sets consisting of infinite rooted graphs
include for example
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• The set of all rooted graphs where the neighborhood of the root is a
3-clique.

About closed sets. Being a metric space, the space is Hausdorff. This
implies that all singleton sets are closed.

We will next discuss compactness. We denote by

∆(G) = sup
v∈V (G)

degG(v)

the maximum degree (possibly infinite) of a graph G, and this definition
naturally extends to rooted graphs and unlabeled rooted graphs by setting
∆([G•]) = ∆(G•) = ∆(G). A set of called relatively compact if it has a
compact closure.

Theorem B.6. A set of unlabelled rooted graphs [A] ⊂ [G•] is relatively
compact if and only if

sup
A•∈A

∆(TrA
•) <∞ for all r ≥ 0. (B.4)

Proof. Because the metric space ([G•], dloc) is complete, we know that rela-
tive compactness is equivalent to total boundedness [Rud73, Theorem A4]).
Recalling the shape of open balls (B.3), this means that [A] is relatively com-
pact if and only if for all r ≥ 0, the set [A] can be covered by finitely many
open balls

{[G•] : TrG
• ∼= TrF

•
i }, i = 1, . . . , n,

with radii 2−r+1 and centers [F •i ]. Equivalently, every rooted graph A• in A
satisfies TrA

• ∼= TrF
•
i for some i = 1, . . . , n. This is further equivalent to

saying that the set
[TrA] := {[TrA•] : A• ∈ A}

is finite for every r.
We will now verify that [TrA] is finite if and only if (B.4) holds. If

Cr = supA•∈A∆(TrA
•) is finite, then because any A• ∈ A is connected, the

graph TrA
• can have at most 1+Cr+C

2
r +· · ·Cr

r nodes, and hence [TrA] must
be finite. On the other hand, if Cr is infinite, then A contains a sequence of
rooted graphs A•1, A

•
2, . . . such that the cardinality of V (TrA

•
n) converges to

infinity as n → ∞. Because graphs with differing node counts are noniso-
morphic, it follows that [TrA] then contains infinitely many elements.

Example B.7 (Open relatively compact set). Let A = {TrG• : r ≥ 0}
where G• is the infinite line graph with node set V (G•) = N, link set E(G•) =
{{k, k+1}, k ∈ N}, and root o(G•) = 1. Then every graph inA has maximum
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degree 2, and therefore [A] is relatively compact. The set [A] is open because
it is a union of open singletons {[TrG•}, but not closed because [TrG

•] →
[G•] 6∈ [A].

Example B.8 (Compact set). Let [A] ⊂ [G•] be a set of unlabelled rooted
graphs with maximum degree at most 100. Then [A] is relatively compact.
This set is also closed because [G•] 7→ ∆([G•]) is continuous. Hence [A] is
compact.

Example B.9 (Set which is not relatively compact). Let A = {K•1,n : n ≥ 1}
where K•1,n is a star graph with n leaves, rooted at the hub node. Then
supA•∈A∆(T1A

•) is infinite because T1K
•
1,n = K•1,n has maximum degree n.

Hence the set [A] of finite unlabelled stars is not relatively compact.

B.5 Continuity

What about continuous functions from [G•] to R? If φ([G•]) = φ([TrG
•])

depends on its input only via some r-neighborhood of the origin, then φ is
continuous. The same is true for any function of the form

φ([G•]) =
∞∑
r=0

arφr([TrG
•])

when
∑∞

r=0 |ar| < ∞. Intuitively, a function on [G•] is continuous if it de-
pends on its input mainly by the structure near the origin, and the depen-
dence on far-away structure vanishes the farther we look.

B.6 Random rooted graphs

A random, unlabelled, locally finite, connected, rooted graph is a random
variable X in [G•] equipped with the Borel sigma-algebra induced by the
local metric, defined on some probability space (Ω,F ,P). A random, locally
finite, connected, rooted graph is a random variable X in G• equipped with
the Borel sigma-algebra induced by the local pseudometric.

The distribution of X is the probability measure Law(X) = P ◦X−1 on
the Borel sets of [G•].

Proposition B.10. Every random variable X in [G•] can be represented as
X = [Y ] where Y is a random variable in G•.
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Proof. Let X : Ω→ [G•] be measurable. Then for any ω ∈ Ω, the realization
X(ω) can be written as X(ω) = [Y (ω)] for some Y (ω) ∈ G•. When we
choose2 one such Y (ω) for each ω, we obtain a function Y : Ω→ G•. We will
next show that such Y is measurable. To do this, choose an arbitrary open
ball B(F •, ε) in G•. Because dloc([F

•], [G•]) = dloc(F
•, G•) for all F •, G•, it

follows that G• ∈ B(F •, ε) if and only if [G•] ∈ B([F •], ε). Especially,

{ω ∈ Ω : Y (ω) ∈ B(F •, ε)} = {ω ∈ Ω : [Y (ω)] ∈ B([F •], ε)}
= {ω ∈ Ω : X(ω) ∈ B([F •], ε)}.

Because X is measurable, the above equality shows that the preimage of Y
for any open ball in G• is a measurable set in Ω. Because the open balls
generate the Borel sigma-algebra of G•, it follows that Y is a measurable
function.

What about random variable X = [G•]? We would like to say that every
random variable X can be represented as [G•] where G• is a random variable
in the space (with sigma-algebra induced by the pseudometric dloc) of labeled
graphs G• with node set being a subset of N.

Let us think of (G•, dloc) as a pseudometric space with topology induced
by the pseudometric dloc. This is a separable topological space: the set G•<∞
of finite rooted graphs with node set in N is countable, and it is also dense
by the same argument that was done earlier. We equip G• with the Borel
sigma-algebra induced by the local topology on G•. A random variable in
G• is a measurable function from a probability space into the G•. If G• is a
random variable in G•, then [G•] = i◦G• is a random variable in [G•] because
the quotient map i is continuous and hence Borel measurable.

Proposition B.11. Law(X) = Law(Y ) if and only if . . .

B.7 Convergence in distribution

Theorem B.12. Let Xn, X be unlabelled random rooted graphs in [G•].
Then Xn → X in distribution iff for any corresponding random variables
P([TrX

•
n] = [G•])→ P([TrX

•] = [G•]) for all F • ∈ G• and all integers r ≥ 0.
This is also equivalent to [TrX

•
n]→ [TrX

•] in distribution, for every r.

2We do not need the axiom of choice if take Y (ω) as the element of X(ω) with smallest
label, and keeping in mind that we restrict [G•] to be the equivalence classes of a rooted
graph with a node set contained in N.
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Proof. This argument follows Curien 2018 lecture notes, Proposition 4. Let
S be the collection of sets of the form SA,r = {[G•] : [TrG

•] ∈ A}, with r ≥ 0
and A ⊂ [G•] being a Borel set. Note that

µn(SA,r) = µn([G•] : [TrG
•] ∈ A) = P([TrX

•
n] ∈ Ar)

=
∑

[G•]∈Ar

P([X•n] = [G•]),

where Ar denotes the unlabelled rooted graphs in A of radius at most r. Be-
cause Ar is countable, a standard argument implies that µn(SA,r)→ µ(SA,r)
for all SA,r in S. The claim then follows from [Bil99, Theorem 2.2] after
verifying that S is a π-system and that all open sets in [G•] are countable
unions of sets in S.

Note than any open ball in [G•] can be written in the form

B([F •], 2−r) = {[G•] : TrG
• ∼= TrF

•} = SA,r

with A = {[TrF •]}. Furthermore, because [G•] is separable, it follows that
every open set in [G•] can be written as a countable union of open balls.
Hence every open set in [G•] can be written as a countable union of sets in
S. Next, observe that for r ≤ s,

SA,r ∩ SB,s = {[G•] : [TrG
•] ∈ A, [TsG•] ∈ B} = SC,s,

where C = {[G•] : [TrG
•] ∈ A, [TsG•] ∈ B}. Hence S is a π-system.
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[Bol01] Béla Bollobás. Random Graphs, volume 73 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, second
edition, 2001.

[BP94] Itai Benjamini and Yuval Peres. Markov chains indexed by trees.
Ann. Probab., 1994.

[BS01] Itai Benjamini and Oded Schramm. Recurrence of distributional
limits of finite planar graphs. Electron. J. Probab., 6:13 pp., 2001.

[Die17] Reinhard Diestel. Graph theory. Springer, fifth edition, 2017.
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