
Matlab Basics
Lecture 4

Juha Kuortti
October 30, 2018

1



Creating and accessing files save,load

Variables are erased from memory after quitting Matlab (>>quit
or >> exit).

• The command >>save saves all workspace variables into the
file matlab.mat in the current directory.

• >>save A B saves just A and B.
• >>save myfile A B C* saves A,B and all variables starting

with C into myfile.mat. Note: If you happen to have a
variable called myfile in your workspace, then this variable
together with the above variables will be stored in
matlab.mat (:-)).

2



Files: Loading from a .mat-file

• >>load reads the file matlab.mat (in current directory or on
matlab path) and loads all variables in the workspace, i.e.
restores the state of the workspace after the corresponding
save-command.

• >>load myfile does the same with myfile.mat.
• >>load myfile A B loads just variables A,B.

Note: These .mat-files are in Matlab’s internal format. The next
slide treats ASCII-file handling.

Important: save and load can’t be used to save your session.
Usually, much more important than saving variables, is saving the
commands that created those variables, i.e. saving your session.
For that you need scripts and .m - files.

3



ASCII Files, load textmat.dat

• To create user-readable files, append the flag -ascii to the
end of a save command.

• Note: In this case, MATLAB does not append any extension
to the file name, so you may want to add an extension such as
.txt or .dat .

Example: Create a text-file textmat.dat outside Matlab.

textmat.dat:

1 2 3 4

5 6 7 8

>> load -ascii textmat.dat

>> % You can omit -ascii here

>> textmat

textmat =

1 2 3 4

5 6 7 8

4



ASCII Files, save -ascii Afile.dat

Save a Matlab-variable into an ascii-file:

>> A=magic(3);

>> save -ascii Afile.dat A

>> % or: >> save -ascii -double Afile.dat A

>> clear

>> load Afile.dat

>> who

Your variables are: Afile

>> Afile

Afile =

8 1 6

3 5 7

4 9 2

See help save for more options.
5



Importing data

MATLAB has several specialty functions to import different types
of data.

Examples:

• xlsread — for reading Excel files
• csvread — for reading CSV delimeted data
• imread — for reading image data
• audioread — for reading audio data

There are countless others. When trying to import data, a good
first step is to drag and drop the data file on the desktop, which
will lead MATLAB trying to identify the file type.

6



Exporting data

Almost every “read” function in MATLAB has a corresponding
“write” function

Examples:

• xlswrite — for writing Excel files
• csvwrite — for writing CSV delimeted data
• imwrite — for writing image data
• audiowrite — for writing audio data

7



Excercise

• Read the file gasprices.csv in the MATLAB (available on
the course web page)

• Find all entries in the file that have NaN entries, meaning
they have no data, and replace the NaN value with value 1.37
(Hint: use isnan and logical indexing).

• Plot the data, using column year as the x-axis.

8



Very short introduction to
Singular Value Decomposition

9



Let’s go back to matrices for a minute

All data can be thought of as matrices (vectors are matrices too).
However if your data has high dimensionality, gleaning patterns
can be hard.

Similarily, many interesting problems will lead to linear systems
that are not solvable in exact sense.

10



The fantastic SVD

Both of these can be solved (amongst other things) via using
Singular Value Decomposition. The decomposition writest any
matrix A in form

A = USVT

where S is a diagonal matrix, and U,V are orthogonal matrices.

Mathematics behind this is a little bit complicated, but one can
think of the values in S (the eponymous ”Singular Values”) tell
how much the corresponding columns of U and V contribute to
the whole matrix.

11



Solving equations with SVD

From linear algebra we know that matrix inverse is

A−1 = VS−1UT

However, if matrix is not invertible there are zeroes on the diagonal
of S, making it singular. Likewise, if the matrix is badly
conditioned, there are very small singular values.

The idea using SVD is that we only invert the non-zero elements of
S.

12



Example

M = magic(16); % degree is even so M is singular

b = M*ones(16,1); % let's create a right side for ...

the equation

x1 = M\b %doesn't work

[u,s,v] = svd(M); % make the svd

semilogy(diag(s),'*') % plot the singular values ...

against their indices. It would appear that only ...

first three are meaningful, rest are almost zero

sDiagonal = diag(s); % extract the singular values ...

into vector

sInverseDiagonal = 1./sDiagonal % invert only the ...

first three

sInverseDiagonal(4:end) = 0;% set the rest to 0

% now solve the system: remember x =A^-1*b = v*s^-1*u^t

x2 = v*diag(sInverseDiagonal)*u'*b

% If you're in a hurry

x = pinv(M)*b

13



Interpolation
Parameter fitting
Noisy Data

14



Interpolation

Problem: suppose we have some discrete measurement data, and
we wish to construct new evaluation points within the range of
those measurements.

This problem is called interpolation. Interpolation is a complicated
problem that generally has no unique solution — in order for
intepolation to provide a meaningful results, usually some a priori
knowledge is needed.

15



Interpolation: the tools of trade

Your primary interpolation tools within the MATLAB are the
interp-functions. They are numbered 1–3, with the number
telling the dimensionality of the data.

For our examples we’ll use 1D data, so interp1.

16



Which is the “best”?

Let us create a sample data by sampling values of a sine function
randomly:

xpts = 12*rand(26,1)+6;

xpts = sort(xpts);

ypts = sin(xpts);

plot(xpts,ypts,'ro')

axis equal

17



Which is the “best”?

8 10 12 14 16

-4

-3

-2

-1

0

1

2

3

4

18



Which is the “best”?

8 10 12 14 16

-4

-3

-2

-1

0

1

2

3

4

19



Which is the “best”?

8 10 12 14 16

-4

-3

-2

-1

0

1

2

3

4

20



Which is the “best”?

8 10 12 14 16

-4

-3

-2

-1

0

1

2

3

4

21



Exercise

Load the mat file interpData.mat into MATLAB, and perform
interpolation of your choosing on the data. Can you guess the
underlying function?

22



Perils of polynomial interpolation

If you have n data points, you can (technically) fit a n − 1 degree
polynomial to the data.

If you try this on the previous data however

p = polyfit(xpts,ypts,45);

x = linspace(xpts(1),xpts(end),128);

plot(x,polyval(p,x));

you’ll see why this is usually not a good idea.

23



Perils of polynomial interpolation

Polynomial fit will pass through all the data points, but the
oscillations of the high-degree polynomial will make the result
unusable.

However, if you can select the points on which you fit, the results
can change dramatically:

x = linspace(-5,5,13); % datapoints

xx = linspace(-5,5,256); % interpolation points

f = @(x)1./(1+x.^2); % the function fitted for

pp = polyfit(x,f(x))

% Plot

plot(xx,f(xx),xx,polyval(pp,xx))

24



There are solutions, however

x = 5*cos(pi*(0:12)./12);

xx = linspace(-5,5,256); % query points

f = @(x)1./(1+x.^2); % the function fitted for

pp = polyfit(x,f(x))

% Plot

plot(xx,f(xx),xx,polyval(pp,xx))

25



Curve fitting

Unlike in interpolation, curve fitting can be thought of as a
minimization-problem.

You’ll want to find a curve that is as close to data as possible
within the parameters, but does not necessarily need to pass
through every datapoint.

26



Curve fitting - Example

The very basic example — fitting a trend line on a dataset.

% create some data

x = 5:21;

y = 3.5*x+4 + 4*randn(size(x))+5;

plot(x,y,'ro')

%% the hardcore mathy way

V = [x',ones(size(x'))];

coeff = V\y';

xfit = linspace(x(1),x(end),256);

yfit = coeff(1)*xfit + coeff(2);

plot(x,y,'ro',xfit,yfit)

%% The more consistent way

p = polyfit(x,y,1);

plot(x,y,'ro',xfit,polyval(p,xfit))

27



Underfitting a polynomial

Let’s try to fit a polynomial to US census data.

% create time vectors -- dense and sparse

t = 1900:10:1990;

tt = 1900:1:2010;

pop = [76 92 106 122 132 150 179 203 226 248];

% for show, try the maximum degree polynomial

P = polyfit(t,pop,length(pop)-1);

plot(tt,polyval(P,tt));

% It fails -- as is expected

P = polyfit(t,pop,3);

plot(tt,polyval(P,tt));

28



Nonlinear fitting

x = 20:65;

y = [0 0 0 1 2 5 15 65 71 79 55 48 46 26 25 25 16 9 ...

18 8 8 6 4 6 5 5 2 6 4 2 0 0 1 1 1 0 1 1 0 0 0

0 0 2 0 0];

f = @(beta,x)beta(1)*x.^9 .* exp(-beta(2)*x);

fobj = @(lam)norm(f(lam,x)-y);

beta0 = [1 -1];

betaOpt = fminsearch(fobj,beta0);

xfit = linspace(20,65,128);

plot(xfit,f(betaOpt,xfit),x,y)

29



Noise gating — example

% Create and visualize the data

t = linspace(0,0.5*pi,256);

signal = sin(2*pi*t) + sin(6*2*pi*t);

plot(t,signal)

%% add some noise

noisySignal = signal + 2*rand(size(signal))-1;

plot(t,signal,t,noisySignal)

%% Go to frequency spectrum

X = fft(signal);

plot(abs(X))

Xnoisy = fft(noisySignal);

plot(abs(Xnoisy))

%% Identify the noise component, and gate it out

Xnoisy(abs(Xnoisy)<30) = 0;

%% Go back to time domain

xnew = real(ifft(Xnoisy));

plot(t,signal,t,xnew)

30


