Matlab Basics Lecture 1

Juha Kuortti, Heikki Apiola October 22, 2018

First steps

Meet the IDE
Getting Help
Basic scalar variables.

1. What, where, how

- Matrix laboratory [Cleve Moler, Mathworks inc.]
- Language and tool for numerical computation
- Large number of mathematical and other functions.
- Functional programming language, user can extend Matlab by defining (programming) own functions.
- Application specific toolboxes
- http://se.mathworks.com/help/matlab/index.html
- http://www.mathworks.se/academia/
- http://se.mathworks.com/help/matlab/examples/basicmatrix-operations.html?prodcode=ML
- google: learn matlab, matlab <keyword>

help,doc,lookfor

- help, doc
 - >> doc starts help system, same as ?
 - >> help name >> doc namehelp is faster, doc is more comprehensive.
 - Some search words for help/doc: elfun – elementary functions general, ops, elmat, ... More on next slide

lookfor

- >> lookfor sum, lookfor solve
- >> lookfor optimize, lookfor equation

Beware: Some searches may give too many hits.

google Matlab, < keywords, phrases >

Some help-keywords »help

general - General purpose commands
ops - Operators and spec. chars

lang - Programming language constructs

elmat - Elementary matrices elfun - Elementary functions

specfun - Special functuons
matfun - Matrix functions

datafun - Data analysis and Fourier transform

graph2d - 2d graphics graph3d - 3d graphics

graphics - Handle graphics

imagesci - Image and scientific data

demos - Examples and demo's

First steps and concepts

- Workspace, command window
 - Matrices and other datatypes are stored in memory, contents are shown in workspace...
 - » who, whos
- Commands (functions) are applied to variables in the workspace.
 - Matlab interprets and returns the result(s) in the workspace. (Or displays an error

First steps and concepts

- Workspace, command window
 - Matrices and other datatypes are stored in memory, contents are shown in workspace.
 - » who, whos
- Commands (functions) are applied to variables in the workspace.
 - Matlab interprets and returns the result(s) in the workspace. (Or displays an error

- 1. Start Matlab
- Create a working directory: Either File-menu or command >> mkdir mydir a)
- 3. >> cd mydir
- 4. Create variable:

- 5. Do: >> y=exp(x)
- 6. Try >> who, whos

^aSome Unix/Linux-commands can be given in the Matlab command window

Working in the command window

- "Undoc" command window (or make it large enough)
- Here's a possible first session, try yourself!

```
>> 3/4
ans =
   0.7500
>> 4*ans
ans =
>> r=3/4; % Supress output
>> r % Show result
   0.7500
>> Area=pi*r^2
Area =
```

Arithmetic operations, examples

- Multiplication and division from left to right, equal precedence.
- Ordinary precedence rules. Use parentheses for clearity !

Exercise

Make the following variables:

- a = 10
- $b = 2.510^{23}$
- c = 2 + 3i (*i* being the imaginary unit)
- $d = e^{\frac{2}{3}\pi i}$

Arithmetic, precedence

Scalar arithmetic operations

Symbol	Name	Math	Matlab
+,-	add/subtract	$a \pm b$	a+b,a-b
*	multiply	ab	a*b
/	Righ divide	<u>a</u> b	a/b^{1}
\	Left divide	<u>b</u> a	a\b²
^	power	a ^b	a^b

¹Recommendation:Use this for scalar division

²Recommendation:Use this for "matrix division"

Command window, history, create script

Command window:

- Use the up-arrow key to scroll back through the commands.
- Use the down-arrow key to scroll forward
- Edit a line using the left- and right-arrow keys.
- Press the Enter key to execute the command

Create script from command history:

- Choose commands from the history with CTR + mouse left.
 Mouse right lets you choose "create script". (More on scripts soon.)
- Execute commands from the editor: CTR-Enter.

Little scalar task, work together

• The volume of a circular cylinder of height h and radius r is given by $V=\pi r^2h$. A particular cylindrical tank is 15 m high and has a radius of 8 m. We want to construct another cylindrical tank with a volume 20 percent greater but having the same height. How large must its radius be?

Solution, command history, make script

Here's the Matlab-session:

Use \uparrow for command history. With CTR+Mouse left paint commands you want to save, press mouse right and choose "make script".

Scripts, publish

You can perform operations in MATLAB in two ways:

- In the interactive mode, in which all commands are entered directly in the Command window.
- By running a MATLAB program stored in a script file. This
 type of file contains MATLAB commands, so running it is
 equivalent to typing all the commands—one at a time—at the
 Command window prompt. You can run the file by typing its
 name at the Command window prompt.
- The script file commands can also be executed directly from Matlab's editor window either by parts or all of them.
- publish produces a well structured document of running the script.

Examples of expressions

```
>> 6*sqrt(2)+pi^2
  ans=18.3549
>> one=sin(pi/3)^2 + cos(pi/3)^2
 one = 1
>> 1==\sin(pi/3)^2 + \cos(pi/3)^2 % Equal?
 ans = 1
                                % Logical: true
                                % Not e^x !!
>> exp(i*pi)
>> 1.0/0.0 -> Inf
>> -4/Inf -> 0
>> 0/0 -> NaN % "Not-a-number".
>> format long % Show max number of digits.
>> [1+eps,1+3*eps] % eps: Limit of rel. accuracy.
>> format short % Back to default display.
>> 010
                & Clash dienlaw
```

Workspace

- Variables are stored in the memory and accessed in the workspace
- Commands for managing the workspace are called here "system commands", perhaps a little "unofficially". For instance who, whos show variables in the workspace, latter with sizes.
- clear erases all variables from the workspace (memory), clear var1 var2 erases these variables.
- The syntax of "system commands" differs from computational and other functions. System commands don't use parenteheses or commas.

Some "system commands"

Some commands for managing the workspace

Matlab command	Description	
clc	Clear command window (visually).	
clear	Clear all variables (from memory).	
clear var1 var2	Clear these variables.	
who	List variables in memory	
whos	List variables with sizes in memory	
format	Display format of numbers	
clf	Clear current graphics window.	
close all	Close all graphics windows.	
shg	Show Graphics.	

Comparison, relations, scalar case

- Remember: name = expression means assignment of the value of expression to variable name.
- lhs == rhs Returns 1 if equal,0 if not.
- <, <=, >, >=, \sim = are other arithmetic comparisons.
- The value of a comparison is true (1) or false (0).
- Precedence of arithmetics is higher than that of comparisons

```
>> 1==0 % --> ans = 0
>> E = 1.733>tan(pi/3) % --> E = 1
```

What are the results ? : >> E=4>5-2 , (4>5)-2

Expression, variable, special variable ans

 An expression consists of numbers, variables, functions, operators such as

```
+,-,*,/,^{\circ},(), sin, cos, exp, abs, ...
```

- help/doc ops,elfun [See previous slide for more searchwords.]
- >> var=expression assigns the value of expression to variable var.
- If the expression is written without an assignment, the result is assigned to the special variable ans.

Note: ans holds just the previous result, the next such computation overwrites it.

Variable names and types

Variable names:

- Start with a letter, then letters, numbers, underscore(_)
- Other special characters not allowed, especially minus (-) is not possible, as it means subtraction.
- CASE SENSITIVE! (var1 is different from Var1)

NOTE: Matlab help texts: old style (from 1980's) of capitalized NAME meaning **name**, Let's abandon this usage.

```
>> number=-2.345
>> % Note: period (.), not comma (,)
>> complex_number=3+4*i
>> n=1 n=n+1.
```

Variable names and types

- No need to initialize or define a variable, if efficiency is not an issue (return to this later).
- Default type is 64 bits floating point number ("double"), about 16 decimal digits.

- Characters are of type 'char' (16 bits)
 - >> 'this is a character string'
- Change numeric data into character
 - >> num2str(2.3)
 - >> str2num(ans) % and back
- Other tyes: logical, single,int-types
 help datatypes
 https://se.mathworks.com/help/matlab/numeric-types.html

Complex numbers

- All arithmetic in Matlab works on complex numbers as well. Matlab has special variables i and j for $\sqrt{-1}$.
- All special variables can be overwritten, so:

```
>> 2+3*i
ans =
  2.0000 + 3.0000i
>> i=1;
>> 2+3*i
ans =
>> clear i
ans =
   0.0000 + 1.0000i
```

Complex numbers continued

```
>> sqrt(-1)
ans =
 0.0000 + 1.0000i
>> 4 + 6*\dot{7};
>> 4 + 6j; % Correct, I don't recommend:
>> 4+j6 % -> Undefined function or variable 'j6'
>> x=1; y=2; x+y*i
>> x+vi; % Same error.
>> C=1 - 2*i;
>> real(C), imag(C)
>> abs(C)
>> angleDegrees=angle(C) *180/pi
>> exp(i*pi) % Matlab meets Euler!
anc =
```

Dimensional increase

Vectors
Matrices
Arrays.

Vectors, arrays, matrices

Basic data structure: Matrix (array), elements: complex numbers. Let's limit ourselves at first to two-dimensional arrays.

Vectors, matrices, arrays (continued)

```
% Matrix and its size
>> A=[1 2 3 4 ;5 6 7 8; 9 10 11 12]
>> [m,n]=size(A)
    m=3,n=4
>> [size(A,1) size(A,2)]
ans =
    3    4
>> who, whos % show workspace variables
```

- Column vector: (m,1)-matrix
- Row vector: (1,n)-matrix
- Scalar: (1,1)-matrix
- Empty: (m O) or (O m) matrix

Calculus with vectors

- The numbers 0, 0.1, 0.2, ..., 10 can be assigned to the variable u by typing u = 0:0.1:10;
- length(u) reveals us that there are 101 elements in u.
- To compute $w = 5 \sin u$ for $u = 0, 0.1, 0.2, \dots, 10$, the session is;

• This was our first acquaintance with "vectorization".

Vector excercise

Make the following variables:

• aVec =
$$\begin{bmatrix} 3.14 & 15 & 9 & 26 \end{bmatrix}$$

• bVec = $\begin{bmatrix} 2.71 \\ 8 \\ 28 \\ 182 \end{bmatrix}$

- cVec= $[5, 4.8, \dots, -4.8, -5]$ (all the numbers from 5 to -5 with increments of -0.2)
- dVec = $[10^0 10^{0.01} \dots 10^{0.99} 10^1]$ logarithmically spaced numbers between 1 and 10.
- eVec = 'Hello there' (eVec is a string, which is a vector of characters)

"Scalar functions" support vectorization

The previous example leads us to the following general idea: Functions which applied to a scalar produce a scalar result are called *scalar functions* (perhaps a bit misleadingly). When such functions are applied to a vector, they operate on every element of the vector. Mathematical functions help elfun, specfun among others are of this type.

```
>> t = [-1 0 1];

>> y = exp(t)

y =

0.3679 1.0000 2.7183

>> [exp(-1) exp(0) exp(1)]

ans =
```

"Scalar functions" support vectorization (contnd.)

Assume we want to compute values of

$$y = e^{-x} \sin x$$

at a vector x. We need the vector $y = (e^{-x(1)}\sin(x(1)), e^{-x(2)}\sin(x(2)), \dots, e^{-x(n)}\sin(x(n)))$ Here we need the pointwise product (.*) of two vectors:

```
>> x=-pi:.1:pi;
>> y=exp(-x).*sin(x);
```

This is just the data we need for plotting. >> plot(x,y)

Functions for building vectors colon(:),linspace,logspace

- v=a:b, w=a:h:b; default: h=1
 v=linspace(a,b,N); default: N=100
- v=logspace(a,b,N); $10^a, \dots, 10^b$, N points

```
>> 0:10; 0:.1:1;

>> 10:-2:0

ans =

10 8 6 4 2 0

>> logspace(0,1,4)

ans =

1.0000 2.1544 4.6416 10.0000

>> 10.^linspace(0,1,4)

ans =

1.0000 2.1544 4.6416 10.0000
```