
Lecture 4: MATLAB — advanced use cases
(very) Short introduction to GPU computing on MATLAB

Juha Kuortti and Heikki Apiola
February 22, 2018

Aalto University
juha.kuortti@aalto.fi



Why GPUs

A GPU — or massively parallel approach to parallelism is
somewhat different from what we saw previously.

• CPU
• Low latency
• Make sequentially dependent code run as fast as possible
• Try to avoid memory access bottleneck with large caches

• GPU
• Aim for high throughput
• Finish as many instructions per clock cycle as possible
• Need a lot of computation on chip → cannot afford large

caches

Not all tasks are suitable for a GPU.



GPUs in MATLAB

Assuming that you have properly set up CUDA, (sorry AMD), the
command that transfers your variable (generally, only matrices) to
GPU memory is called gpuArray. The command broadcasts the
variable to GPU, and afterwards you can do computations on it as
you would with a regular variable.

Once you’re done computing, you will need to get the variables
back from the GPU memory. You’ll do this with command gather.



Some basic demos

First — if you’re on a laptop, you’ll almost certainly will need to
make a remote connection to a machine that will have CUDA
enabled.

a = randn(3000);

b = a*ones(3000,1);

tic; x = a\b; toc

tic;

A = gpuArray(a);

B = gpuArray(b);

x = A\B; x = gather(x);

toc



Slightly more advanced demo

For massively parallel computation, arrayfun is a natural way to
work, since it can assign one processor for every element of array.

So if you recall the juliaDemo from last lecture, we can do this
on a GPU, and get a decent speedup. There are caveats, though
— gpuArray cannot construct the the anonymous funtion from
variables in workspace, for example.



What GPUs are not good for

GPUs are a powerful tool for computation, but when applied
outside of their scope, they become more of a liability, the
overhead eating away the speedup.

The speed multiplier provided by GPU is mainly due to the
coherent data access. If your problem does not benefit from that,
(say, doing a costly operation to few elements) the GPU cons will
outweigh the pros.



So you think this isn’t fast enough. . .

Just like we can make C-programs into MATLAB functions via
mex, we can write CUDA natively and compile it via nvcc (i.e.
system command). If written following the MATLAB convention,
it can be called from MATLAB by using
parallel.gpu.CUDAKernel.


