
Lecture 3: MATLAB — advanced use cases
Efficient programming in MATLAB

Juha Kuortti and Heikki Apiola
February 17, 2018

Aalto University
juha.kuortti@aalto.fi



Before we begin

On this lecture, we will mostly be talking about efficiency, and
more specifically about the time it takes to run the programs. In
MATLAB, we time the programs using commands tic and toc;
tic starts a stopwatch, and toc tells how many seconds has
passed since the last tic.

For more advanced and detailed reports on the time taken, you can
use profile.



Preallocation



The origin of the issue

MATLAB is an array based language, and therefore it has some
built-in compromises when it comes to memory allocation.
Consider the following:

a = 0;

a(2) = 1;

a(3) = 3;

Most other languages would consider this an assignment out of
range, but in MATLAB, as long as the dimensions remain
unambigous, the assignment out of range is valid code.



Assignment out of index range

Assigning out of index range can be incredibly useful. Consider
reading in some unknown amount of data. Consider

f = @(x)x.^3-3*x+5;

k = 1;

while f(x)<0

y(k) = f(x);

k = k+1;

x = x+0.1;

end



There is a price to be paid for doing things easy

Run these two code segments, and report back the times it takes
to run them.

Segment 1:

tic;

N = 10000;

x(1) = 1000;

for k = 2:N

x(k) = 1.05*x(k-1);

end

toc;

Segment 2:

tic;

N = 10000;

x = zeros(N,1);

x(1) = 1000;

for k = 2:N

x(k) = 1.05*x(k-1);

end

toc;



Exercise I

Load the file blocAvg_bad.m from the course resource page. The
purpose of the function is to downsample the surface created by
function f (x , y) = 5 cos(2(x + y)π) + 2 sin(2xπ) + 2 cos(2xπ).

At its current form the function works correctly, but has some
efficiency problems. Use tic and toc to observe the effects of
preallocation.

Also, instead of preallocation, see what happens if you try to run
the loops in reverse order (i.e. using increment of -1). Is there
speedup?



Loops and indices



Vectorization

In the course of computer history vectorization has had a lot
interpretations. Usually, regardless of context it means doing many
things simultaneously. In the context of MATLAB, it means taking
full advantage of vectorized functions and operators. Consider

N = 512;

x = zeros(N,1); y = x;

for k = 2:N

x(k) = x(k-1) + ...

k*pi/N;

end

for k = 1:n

y(k) = sin(x(k));

end

x = linspace(0,pi);

y = sin(x);



Column majority

In MATLAB, matrices are stored in contiguous array in
columnwise fashion – in the order that is given by linear indices.
This allows us to use memory hierarchy to our advantage — if we
can access the contiguous elements of the array, we can see a
significant performance boost:

A = rand(10000);

tic

for i = 1:N

for j = 1:N

if A(j,i)>refNo

vals(ix)=A(j,i);

ix = ix+1;

end

end

end

toc

A = rand(10000);

tic

for i = 1:N

for j = 1:N

if A(i,j)>refNo

vals(ix)=A(i,j);

ix = ix+1;

end

end

end

toc



Subscript and linear indices

Previously we used so called subscript indexing when traversing the
elements of the matrix. However, as stated, MATLAB does not
store matrices as “arrays of arrays,” but rather as a single
contiguous array, meaning every subscript indexing also involves a
computation. Let’s compare performance with using linear indices
only.

tic

for i = 1:N^2

if A(i)>refNo

vals(ix)=A(i);

ix = ix+1;

end

end

toc



Exercise

Let’s go back to the blockAvg_bad.m. Previously we managed to
speed it up quite a bit by doing preallocation. This time we’ll seek
additional speedups: what happens if you switch the loop orders?

How about linear indices? Can you use them? If so, is there
speedup?

For demo purposes, we’ll also take a look at vectorisation.



Logical indexing

Logical indexing offers a syntactically great way to do searches and
handle indexing. It is also very fast: let’t observe the previous
examples with logical indexing.

tic

vals = A(A>refNo);

toc

Note: Logical indexing usually involves an implicit search
operation. If you have pure indices, then (usually) using linear
indices will be faster.



Set operations

MATLAB contains the standard set operations : union, intersect,
difference etc. These have their uses, especially when dealing with
more complicated datastructures, but on numerical data, it usually
suffices to use the logical equivalents of the set operations.

Demo about binning



arrayfun, cellfun, bsxfun – what’s
with all the fun



Applying function to arrays I

Suppose you have a huge number of processors at you disposal —
say, a GPU with CUDA enabled or a Xeon Phi, or similar; so many
that technically you could assign one of them for every element of
you array. In situation like that you might want a way to apply
some function to every element of an array.

Most of the elementary functions already automatically traverse
arrays, but more complicated ones might not; and most do not
traverse cell arrays.

To this end MATLAB implements a functions called arrayfun

and cellfun



Extended matrix operations

Suppose you have a function that you want to apply to every row
or column of a matrix.

Before version 2016b, you had to use a function called bsxfun. In
2016, MATLAB basic operators were updated to use extended
operations — nowadays, most operations are supported
automatically.

Try out the following commands, and see what they do.

A = magic(6); b = (1:6)'; c = (1:7);

A+b

A+c

b+c

c.*b

c*b


	Preallocation
	Loops and indices
	arrayfun, cellfun, bsxfun – what's with all the fun

