
Lecture 1: MATLAB - advanced use cases
Data handling and analysis

Juha Kuortti and Heikki Apiola
February 10, 2018

Aalto University
juha.kuortti@aalto.fi



Importing and exporting data:
basics



Creating and accessing files save,load

Variables are erased from memory after quitting Matlab (>>quit
or >> exit).

• The command >>save saves all workspace variables into the
file matlab.mat in the current directory.

• >>save A B saves just A and B.
• >>save myfile A B C* saves A,B and all variables starting

with C into myfile.mat. Note: If you happen to have a
variable called myfile in your workspace, then this variable
together with the above variables will be stored in
matlab.mat (:-)).



Files: Loading from a .mat-file

• >>load reads the file matlab.mat (in current directory or on
matlab path) and loads all variables in the workspace, i.e.
restores the state of the workspace after the corresponding
save-command.

• >>load myfile does the same with myfile.mat.
• >>load myfile A B loads just variables A,B.

Note: These .mat-files are in Matlab’s internal format. The next
slide treats ASCII-file handling.

Important: save and load can’t be used to save your session.
Usually, much more important than saving variables, is saving the
commands that created those variables, i.e. saving your session.
For that you need scripts and .m - files.



ASCII Files, load textmat.dat

• To create user-readable files, append the flag -ascii to the
end of a save command.

• Note: In this case, MATLAB does not append any extension
to the file name, so you may want to add an extension such as
.txt or .dat .

Example: Create a text-file textmat.dat outside Matlab.

textmat.dat:

1 2 3 4

5 6 7 8

>> load -ascii textmat.dat

>> % You can omit -ascii here

>> textmat

textmat =

1 2 3 4

5 6 7 8



Numerica data in a text file

If you have straight up numerical data in an array, with no missing
values, you can use simply use load.

However, if there is something missing, e.g. remove a number from
textmat.dat, or it contains something else than just numerical
data (headers, for example) load will give you an error.



Importing data: advanced



*read-functions

There are various functions for importing data (lookfor read).
For our basic examples we’ll use csvread and dlmread.

Both are designed to read delimited textfiles, csvread if the
delimiter is comma, and dlmread for a general delimiter.

The issue with both is that they can only read numerical data. If
your file contains something else — if your file contains something
else, you’ll need to use the options to exclude the offending entries.



Exercise

Download the files gasprices.csv and formants.csv.

• Try reading in the numerical data of gasPrices.csv using
function csvread. The calling convention is as follows
csvread(’fileToRead’,startRow,StartCol) — look at
the file to decide good place to start reading.

• Then try reading formants.csv. The delimeter is now
semicolon, so csvread won’t work. Use help page to work
out how to make dlmread work.



The GUI-way

Whenever you have a file containing data you wish to import, try
dragging and dropping the file onto the command window. If the
file is recognised by MATLAB as importable, an import wizard will
appear giving you a plethora of options to import the data.



One final read function

MATLAB has a data type that can contain various types of entries.
Table datatype is a fairly recent addition, and is specifically created
for the purposes of data-analysis.

You can use function readtable to read a csv-file to a table.



Demonstration of table datatype

• Read in file electricity.csv using readtable.
• Separate the variables from descriptors
• Separate the dates from data.
• Extract the numerical data.
• Plot the data



The Case of Missing Data



How to handle missing data

• Leave the data as is and ignore any NaN elements when
performing calculations. Maintains the integrity of the data
but can be difficult to implement for involved calculations.

• Remove all NaN elements from the data. Simple but, to keep
observations aligned, must remove entire rows of the matrix
where any data is missing, resulting in a loss of valid data.

• Replace all NaN elements in the data. Keeps the data aligned
and makes further computation straightforward, but modifies
the data to include values that were not actually measured or
observed.



Case 1: Ignoring NaNs

When performing any operation containing a NaN, the result will
always be either NaN, or false, depending on context.

Especially:

A = [1,2,3,4,3,1,3,4,5,nan,13,5];

avg = mean(A) % will be nan

To avoid this, either use functions called nan* (e.g. nanmean),
that automatically omit nans, or look for appropriate flags in the
documentation:

avg = mean(A,'omitnan')



Case 2: Hunt’em down

We can also identify all corrupted entries, and just delete them
from our data entirely. This can lead to huge data loss, but
uncertainty involve in guessing data will be less.

You can locate the corrupted entries using either isnan or
ismissing functions. isnan deals specifically with NaN values,
while ismissing is more general, allowing you to specify the
erroneous values.



Case 2 continued

data = readtable('electricity.csv');

idx = ismissing(data); % logical indices of ...

missing values

idxR = any(idx,2); % look for all the rows that ...

are missing data

data(:,idxR) = []; % delete all the rows that ...

have data missing



Case 3: Try and Guess

Sometimes data is too spotty to remove all corrupted entries —
sometimes we know that data is by nature continous. In such cases
we can make educated guesses as to what the data would be, and
obtain more data points. This is called interpolation.

From previous course, we remember the interp*-functions, that
did the interpolation. For data science, there is a useful
helper-function called fillmissing, that is much more forgiving
about the sampling points (e.g. you can omit the eval points, or
you can use dates etc.)



Case 3 continued

fillmissing has a lot of options, as one might imagine. Help
page is your friend, as usual.

data = readtable('electricity.csv');

usage = data{:,2:end}; % extract the numerical data

dates = data.Date; % extract the date

intUsage1 = ...

fillmissing(usage,'linear','samplepoints',dates);

intUsage2 = fillmissing(usage,'nearest'); % ...

assumes even sampling



Exercise

• Read in the file hurricanes2.csv using readtable. You’ll
need to do some sleuthing in the documentation to find out
how to exclude the comment lines.

• Remove all the datapoints that have Country listed as N/A.
• Do a scatter plot of windspeed plotted against air pressure.

Additionally, if time allows:

• Read in the dataset hurricanes3.csv.
• The country identifier is N/A if observation has happened over

sea. Replace all N/A entries with identifier “Sea” and all
others with “Land”.

• Scatterplot the windspeeds and pressures of sea observations
in blue and land observations in red.



Smoothing data



Why smoother is usually better

Oftentimes the data is too noisy to discover possible underlying
trends. Smoothing is a technique similar to interpolation in
technique, but rather than trying to create new points of data, we
are trying to exclude the possible noise components in the data.

Needless to say - since we are actually modifying the underlying
data and observations, smoothing should not be done without
justification.



Underfitting a polynomial I

One of the usual ways (depending on the data, of course) to do
smoothing is to underfit a polynomial to it. An N points of data
allows for a N − 1 degree polynomial to be fitted; however it allows
for all the lower degrees as well. It will mean that fit won’t pass
through all the datapoints, but sometimes a better model can be
produced.



Underfitting a polynomial II

Let’s try to fit a polynomial to US census data.

% create time vectors -- dense and sparse

t = 1900:10:1990;

tt = 1900:1:2010;

pop = [76 92 106 122 132 150 179 203 226 248];

% for show, try the maximum degree polynomial

P = polyfit(t,pop,length(pop)-1);

plot(tt,polyval(P,tt));

% It fails -- as is expected

P = polyfit(t,pop,3);

plot(tt,polyval(P,tt));



If your data is highly sinusoidal

If your data contains clear frequency components that you would
like to keep, and the noise is zero-averaged (“white”), then it may
be possible to identify the noise components in frequency domain.
When you’re using the signal strength to identify the noise, it is
called noise gating.

Note that mathematically this is a crude operation, with possibility
of causing odd artefacts. Look to the Signal Processing Toolbox
for more sophisticated methods in frequency domain.



Noise gating — example

% Create and visualize the data

t = linspace(0,0.5*pi,256);

carrier = sin(2*pi*t) + sin(6*2*pi*t);

plot(t,carrier)

%% add some noise

noisySignal = carrier + 2*rand(size(carrier))-1;

plot(t,carrier,t,noisySignal)

%% Go to frequency spectrum

X = fft(carrier);

plot(abs(X))

Xnoisy = fft(noisySignal);

plot(abs(Xnoisy))

%% Identify the noise component, and gate it out

Xnoisy(abs(Xnoisy)<30) = 0;

%% Go back to time domain

xnew = real(ifft(Xnoisy));

plot(t,carrier,t,xnew)



Exercise

Let’s do a third way of smoothing — a moving average.

• First, read in the data in electricity.csv.
• The table has some spots missing. Fill them in using linear

interpolation (go back a few slides for hints).
• Extract from the dataset the variable total and plot it.
• The data is taken on the first of every month, so therefore it

is affected by seasonal changes — i.e. cooling during the
summer, heating during winter (or something else). In order
to get clear view of how energy demand behaves, we will
smooth the data using moving average.

• Read the documentation of movmean and smooth the data
and plot the result. You’ll also need to decide a proper
window length, but remember that data is monthly and
changes mostly seasonal.



Developing a model



What’s a model?

A topic so wide entire books have been written about it, and as
such much too wide for us to discuss.

For our purposes we treat the model as a function f that is
dependent on the variables x and parameters λ; we judge the
quality of the model by comparing to the data y .

We take a look at few examples of finding the parameters below.



Curve fitting - Example

The very basic example — fitting a trend line on a dataset.

% create some data

x = 5:21;

y = 3.5*x+4 + 4*randn(size(x))+5;

plot(x,y,'ro')

%% the hardcore mathy way

V = [x',ones(size(x'))];

coeff = V\y';

xfit = linspace(x(1),x(end),256);

yfit = coeff(1)*xfit + coeff(2);

plot(x,y,'ro',xfit,yfit)

%% The more consistent way

p = polyfit(x,y,1);

plot(x,y,'ro',xfit,polyval(p,xfit))



Nonlinear fitting

clear; close all;

x = 20:65;

y = [0 0 0 1 2 3 15 65 71 80 55 48 46 26 25 25 16 9 ...

18 ...

8 8 6 4 6 5 5 2 6 4 2 0 0 1 1 1 0 1 1 0 0 0 0 0 1 ...

0 0];

f = @(x,beta)(beta(1)*(x-beta(3)).^2 .* ...

exp(-beta(2)*(x-beta(3)).^2));

fobj= @(lam,x,y)(norm (f(x,lam)-y).^2);

beta0 = [2 0.01 15];

[beta fval eflag] = fminsearch(fobj,beta0,[],x,y);

bar(x,y,'c');

hold on;

plot(x,f(x,beta),'r');

xlabel('Age of Ph.D'); ylabel('Number of Ph.Ds');

hold off


	Importing and exporting data: basics
	Importing data: advanced
	The Case of Missing Data
	Smoothing data
	Developing a model

