
MATLAB basics, Fall 2017 Kuortti

Credit Exercises

If you wish to obtain the credits for the course, choose 4 of the problems below and
prepare a published .pdf-file. Send the pdf-file and the source code by email to Juha
(juha.kuortti ’at’ aalto.fi).
Please: Use semicolons(;) to avoid long outputs!
Deadline for submission will be discussed in class.

Exercise 1: Write functions F2C and C2F that convert Fahrenheit scale to Celsius,
and Celsius to Fahrenheit. Be sure to have them work for vectors as well as scalars.

TC =
5

9
(TF − 32).

(F: Fahrenheit, C: Celsius)
Test your functions, especially: (40,40) and (0C,32F).
Make a table of values and plot.

Exercise 2: 1. Evaluate y = x2 for x=-4:0.1:4.

2. Add random noise to these samples. Use randn. Plot the noisy signal with mar-
kers (.) (period).

3. Fit a 2nd degree polynomial to the noisy data.

4. Plot the fitted polynomial on the same plot, using same x-values and a red line.

Exercise 3: This has lots of quite detailed instructions, looks long but you just need
to follow the instructions.
Below are all the steps you need. You should also add your own meaningful comments.
When you are done and have “green square” on top-right of the editor, you should
publish your work : >> publish(’throwBall.m’,’pdf’), or use the editor’s built in
publishing tools
Study the trajectory of a thrown ball.

a) In the process use double-percents to divide your file into small blocks you can
exctute (CTR-ENTER) to test your proceeding.

b) At the top of your file, define some constants

1



MATLAB basics, Fall 2017 Kuortti

i) Initial height h at release = 1.5m

ii) Gravitational acceleration g = 9.8m/s2

iii) Velocity of ball v at release = 4m/s

iv) Angle of velocity vector at release = θ on 45o

c) Make a time vector with 1000 linearly spaced values on the (closed) interval [0, 1].

d) If x(t) is distance and y(t) is height at time t, the equations below describe the
trajectory of the ball: 

x(t) = v cos

(
θ π
180

)
t

y(t) = h+ v sin

(
θ π
180

)
t− 1

2
gt2.

(You can also use the recently introduced functions sind, cosd [d for “degree”].)
Define vectors x and y based on these formulas.
Note: The length of these vectors is 1000, so don’t forget the semicolons (;).
(You can look at the the first 10 values, say, by x(1:10), y(1:10) .)

e) Approximate the time when the ball hits the ground.

i Find the index, when the height first becomes negative (use find).
ii The distance at which the ball hits the ground is value of vector x at that

index.
iii Display the words: ‘The ball hits the ground at distance xhit meters’, where
xhit is the value you found above. (Use disp and num2str in the form
disp([’The ball ... ’,num2str(xhit),’ meters’] )

f) Plot the ball’s trajectory.

i Just use plot in its very basic form, plot also gridlines (grid on)
ii) Label the axes meaningfully and give the figure a title, use xlabel, ylabel,

title
iii) use hold on
iv) Plot the ground as a black dashed line.

Hint: One way would be: plot(x,zeros(size(x)),’--k’) or plot(x,0*x,’--k’).
In fact, all one needs for a line, is two points, so the most “economic” way
would be just to take first and last elements of the vectors x and y for the
plot-function. Do this!
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Exercise 4: This assignment focuses on the connection of matrices, images and sin-
gular values.
The singular value decomposition of a matrix is

A = USVT ,

where matrix S is a diagonal, and U and V are orthogonal square matrices; if this all
means nothing to you, don’t worry – this assignment requires essentially no mathe-
matical framework.
The information contained in matrix be compressed (in a sense) by dropping off parts
of the singular value decomposition, and conveniently the size of singular value tells
the importance of the associated singular vectors; even more conveniently they are
already sorted inside the S; or in MATLABese, U(:,1:k)*S(1:k,1:k)*V(:,1:k)’ is
the best possible approximation of A using 2k vectors.
Any image can be thought of as an m×n matrix, where element i, j describes the color
value of the pixel at the location. We will now see, how singular values can be used to
compress images.
Read in any image you wish using MATLAB’s imread-command. It will (usually, but
little depending on the image format). m × n × 3 array. Each of the three layers of
the array corresponds to color intensities of red, green and blue respectively. First,
convert the image to grayscale with command rgb2gray, or pick one of the layers: im
= A(:,:,1). After this, do the singular value decomposition with command [u,s,v]
= svd(im).
Now you can test with which k the commands

>> M = u(:,1:k)*s(1:k,1:k)*v(:,1:k)’;
>> image(M)

produces results that are distinguishable. The large components of the image should
also start appearing first, which makes singular value decomposition a useful tool in
pattern recognition.
In order to do this properly for colored images, you should do the above process sepa-
rately for each of the three layers of the array; also, for fun, you could try different
values of k for each layer, suppressing certain colors more than others.

Exercise 5: Here are 25 observations yk, taken at equally spaced values of t.

t = 1:25
y =[5.0291 6.5099 5.3666 4.1272 4.2948

6.1261 12.5140 10.0502 9.1614 7.5677
7.2920 10.0357 11.0708 13.4045 12.8415
11.9666 11.0765 11.7774 14.5701 17.0440
17.0398 15.9069 15.4850 15.5112 17.6572];

y = y';
y = y(:)
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a) Fit the data with a straight line y(t) = β1 + β2t, and plot the residuals, y(tk)− yk.
You should observe that one of the data points has a much larger (in absolute
value) residual than the others. This is probably an outlier.

b) Discard the outlier, and fit the data again by a straight line. Plot the residuals
again. Do you see any pattern in the residuals?

c) Fit the data, with the outlier excluded, by a model of the form

y(t) = β1 + β2t+ β3 sin(t)

d) Evaluate the third fit on a finer grid over the interval [0,26]. Plot the fitted
curve, using line style ’-’ , together with the data, using line style ’o’ . Include
the outlier, using a different marker, ’*’ .

Exercise 6: • Plot the unit square : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1 and the unit circle
inside it. (i.e. a circle with radius one)

a) Generate random points, uniformly distributed on the unit square −1 < x <, 1 <
y < 1. Find an approximation for π by counting the ratio of the number of points
inside the circle with the total number of points generated.

• Write a function that approximates the area of the ellipse:

x2

a2
+
y2

b2
= 1

[Aappr,Atrue]=function Aellipse(a,b,N)

b) Make plots: color points inside and points outside differently. If you include a
plot in your function, test for N to avoid plotting for too large value.

Hint: Generate two random vectors x and y. Find a suitable condition for logical
indexing to pick the “inside-poins”.
Note: You can use arithmetic (sum) to a logical vector. Try to avoid loops.
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