Global \mathbb{R}-linear GMRES for solving a class of \mathbb{R}-linear matrix equations

Kui Du

Institute of Mathematics, Aalto University, P.O.Box 11100, FI-00076 Aalto, Finland.

Abstract

We present a new minimal residual method, called global \mathbb{R}-linear GMRES, to solve the \mathbb{R}-linear matrix equations $X + A\overline{X}B = C$ and $X + AX^*B = C$, where $C, X \in \mathbb{C}^{m \times n}$, \overline{X} denotes the complex conjugate of X, X^* its complex conjugate transpose, and A, B are complex matrices with appropriate dimensions. We show that the new method requires fewer matrix-matrix products than the global GMRES method applied to the related generalized Sylvester matrix equations $W - AAWB = C$ with $X = W - AWB$ and $W - AB^*WA^*B = C$ with $X = W - AW^*B$. A numerical example is given to illustrate our theoretical results.

Keywords: \mathbb{R}-linear matrix equation, global GMRES, global \mathbb{R}-linear GMRES, matrix-matrix product

2000 MSC: 65F10

1. Introduction

We consider the \mathbb{R}-linear matrix equations

\begin{align*}
X + A\overline{X}B &= C \quad (1.1) \\
X + AX^*B &= C, \quad (1.2)
\end{align*}

where $C, X \in \mathbb{C}^{m \times n}$, \overline{X} denotes the complex conjugate of X, X^* its complex conjugate transpose, and A, B are complex matrices with appropriate dimensions. Such matrix equations, or more general, the matrix equations $EXF + A\overline{X}B = C$ and $EXF + AX^*B = C$ with appropriately chosen matrices A, B, E and F, have been extensively investigated; see, for example, [1–12]. In this paper, we present a new minimal residual method, called global \mathbb{R}-linear GMRES (GI-RL-GMRES), to solve (1.1) and (1.2) by the global Arnoldi algorithm (see Algorithm 2), which extends the \mathbb{R}-linear GMRES (RL-GMRES) method [13] for \mathbb{R}-linear systems to \mathbb{R}-linear matrix equations.

Replacing X by $W - AWB$, we obtain the generalized Sylvester matrix equation related to (1.1)

\begin{equation}
W - A\overline{W}B = C. \quad (1.3)
\end{equation}

Replacing X by $W - AW^*B$, we obtain the generalized Sylvester matrix equation related to (1.2)

\begin{equation}
W - AB^*WA^*B = C. \quad (1.4)
\end{equation}
The global GMRES (Gl-GMRES) method [14] can be used to solve (1.3) and (1.4). In this paper, we show that Gl-RL-GMRES applied to (1.1) and (1.2) is faster than Gl-GMRES applied to (1.3) and (1.4) in terms of matrix-matrix products; see Remark 4.3.

The paper is organized as follows. In section 2, we review the R-linear GMRES method. In section 3 we present the global R-linear GMRES method. In section 4 we investigate the global R-linear GMRES method through the equivalent R-linear systems. In section 5 we report numerical experiments illustrating our theoretical results. We present some concluding remarks in the last section.

2. R-linear GMRES

The R-linear GMRES method [13] was proposed for solving the R-linear system

\[\kappa z + M \bar{z} = b, \]

(2.1)

where \(\kappa \in \mathbb{C}, z, b \in \mathbb{C}^n, M \in \mathbb{C}^{n \times n} \). Such R-linear systems arise in the inverse problem of reconstructing an unknown electric conductivity in the unit disc from boundary measurements [15–17], especially in the numerical discretization of the \(\mathbb{R} \)-linear Beltrami equation [18] and the \(\bar{\partial} \)-equation [19]. Let \(\tau \) denote the complex conjugation operator \(\tau x = \bar{x} \) on \(\mathbb{C}^n \) and \(I \) the identity matrix whose dimension is clear from the context. For notational simplicity, denote \(\kappa I + M \tau \) by \(M \kappa \).

Let \(z_0 \) be the initial guess and \(r_0 = b - M \kappa z_0 \) the corresponding residual. Let \(\| \cdot \| \) denote the 2-norm. The \(i \)th iterate, \(z_i \), determined by RL-GMRES satisfies

\[\| b - M \kappa z_i \| = \min_{w \in z_0 + K_i(M_k, r_0)} \| b - M_k w \|, \quad z_i \in z_0 + K_i(M_k, r_0). \]

Here \(K_i(M_k, r_0) \) denotes the \(i \)th Krylov subspace generated by \(M_k \) and \(r_0 \in \mathbb{C}^n \),

\[K_i(M_k, r_0) := \text{span}\{r_0, M_k r_0, \ldots, M_k^{i-1} r_0\} \subset \mathbb{C}^n. \]

Let \(\tilde{I} \) denote the \(i \times i \) identity matrix augmented with the row of zeros as the last row and \(e_1 \) the first column of the identity matrix with appropriate dimension. Let \(H_{i+1, j} \) be the upper Hessenberg matrix generated in the Arnoldi process (see step 2 of Algorithm 1 below). The \(i \)th iterate \(z_i \) satisfies

\[\| b - M_k z_i \| = \min_{s \in \mathbb{C}^n} \| r_0 \|_2 e_1 - \kappa \tilde{I} s - H_{i+1, i} \bar{s} \|_2. \]

The above minimal problem

\[\min_{s \in \mathbb{C}^n} \| r_0 \|_2 e_1 - \kappa \tilde{I} s - H_{i+1, i} \bar{s} \|_2 \]

can be solved by employing the \(\mathbb{R} \)-linear QR decomposition [13]. The work and storage of RL-GMRES (as a function of the number of iterations) are comparable to those of GMRES [23]. We give the details of RL-GMRES in Algorithm 1.
Algorithm 1: \(\mathbb{R} \)-linear GMRES

1. Compute \(r_0 = b - M_0z_0, z_0 \) is the initial guess
2. Generate the Arnoldi basis and the matrix \(H_{i+1,i} \):
 \[
 v_1 = r_0/\|r_0\|; \\
 \text{for } j = 1, 2, \ldots, \text{ do} \\
 \quad w = \tilde{M}v_j \\
 \quad \text{for } i = 1 \text{ to } j \text{ do} \\
 \quad \quad h_{ij} = v_i^* w \\
 \quad \quad w = w - h_{ij}v_i \\
 \quad \text{end for} \]
 \[
 h_{j+1,j} = \|w\| \\
 v_{j+1} = w/h_{j+1,j} \\
 \text{Solve the minimal problem } \min_{s \in \mathbb{C}} \|r_0\|e_1 - \kappa_1 s - H_{i+1,i}\tilde{s} \text{ for } s \\
 \text{Set } z_i = z_0 + V_is \text{ and } r_i = b - M_0z_i \\
 \text{Exit if satisfied} \]

By the right preconditioner \(\kappa I - M\tilde{\tau} \), one obtains the \(\mathbb{C} \)-linear system
\[
|\kappa|^2w - \overline{M}w = b. \tag{2.2}
\]
If (2.2) is solved, then \(z = \overline{\kappa}w - M\tilde{\tau}w \). Through the equivalent real formulations of (2.1), it was shown in [24] that RL-GMRES applied to (2.1) is faster than GMRES applied to (2.2) in terms of matrix-vector products; see Theorem 3.9 and Remark 3.10 of [24]. Here, we give a different proof [25].

Theorem 2.1. Let \(r_i \) and \(r_i^G \) be the \(i \)th residual of RL-GMRES applied to (2.1) and the \(i \)th residual of GMRES applied to (2.2), respectively. If further assume that \(r_0 = r_0^G \), then we have
\[
\|r_2\| \leq \|r_i^G\|.
\]

Proof. By the shift-invariance property [26] of Krylov subspaces, we have
\[
\|r_i^G\| = \min_{u \in K(|\kappa|^2 I - \overline{M})} \|r_0 - (|\kappa|^2 I - \overline{M})u\| \\
= \min_{u \in K(M\tilde{\tau})} \|r_0 - (|\kappa|^2 I - M\overline{\tau})u\| \\
= \min_{u \in K(M\tilde{\tau})} \|r_0 - M\kappa u\| \\
= \min_{u \in (\kappa I - M\tau)K(M\overline{\tau})} \|r_0 - M\kappa u\| = \|r_2\|.
\]
The inequality follows from
\[
(\kappa I - M\tau)K(\overline{M}, r_0) = (\kappa I - M\tau)K((\tau)^2, r_0) \subseteq K_2(M, r_0) = K_2(M, r_0).
\]

Remark 2.2. The assumption \(r_0 = r_0^G \) in Theorem 2.1 is attainable by setting the zero vector as the initial guess. For this case we have \(r_0 = r_0^G = b \).
3. Global \mathbb{R}-linear GMRES

For two matrices $A, B \in \mathbb{C}^{p \times q}$, we define the inner product $(A, B)_F = \text{trace}(A^*B)$. The associated norm is the well-known Frobenius norm denoted by $\| \cdot \|_F$. In the sequel, we mainly present our results for (1.1) and its related systems. The results for (1.2) and its related systems are similar. We define the \mathbb{R}-linear operator \mathcal{M} by

$$\mathcal{M} : X \rightarrow X + A\bar{X}B.$$

We call $\{V_1, V_2, \ldots, V_i\}$ an F-orthonormal basis of the matrix Krylov subspace

$$\mathcal{K}_i(M, V) = \text{span}\{V, MV, \ldots, M^{i-1}V\},$$

if for $j, k = 1, \ldots, i$,

$$\langle V_j, V_k \rangle_F = \begin{cases} 0, & j \neq k, \\ 1, & j = k, \end{cases}$$

and

$$\text{span}\{V_1, V_2, \ldots, V_i\} = \mathcal{K}_i(M, V).$$

Here M^iV is defined recursively as $M(M^{i-1}V)$. We describe the global Arnoldi algorithm as follows.

Algorithm 2: Global Arnoldi algorithm

1. Compute $\|V\|_F$, and let $V_1 = V/\|V\|_F$
2. for $j = 1, 2, \ldots, i$

 $W = AV_jB$

 for $k = 1$ to j

 $h_{kj} = \text{trace}(V_k^*W)$

 $W = W - h_{kj}V_k$

 end for

 $h_{j+1} = \|W\|_F$

 $v_{j+1} = W/h_{j+1}$

end for

Proposition 3.1. The global Arnoldi algorithm constructs an F-orthonormal basis V_1, V_2, \ldots, V_i of the Krylov subspace $\mathcal{K}_i(M, V)$

Proof. Note that the shift-invariance property of Krylov subspace. The proof follows the same arguments of the proof of Theorem 3.1 of [13].

Let X_0 be the initial guess and $R_0 = C - MX_0$ the corresponding residual. Gl-RL-GMRES constructs the approximate solution $X_i \in X_0 + \mathcal{K}_i(M, R_0)$ at step i such that

$$\|R_i\|_F := \|C - MX_i\|_F = \min_{Z \in \mathcal{K}_i(M, R_0)} \|R_0 - MZ\|_F.$$ (3.1)

Theorem 3.2. Let \bar{I}_i denote the $i \times i$ identity matrix augmented with the row of zeros as the last row and e_1 the first column of the identity matrix with appropriate dimension. Let $H_{i+1,j}$ be the upper Hessenberg matrix generated in Algorithm 1 with $V = R_0$. We have

$$\|R_i\|_F = \min_{s \in \mathcal{C}^i} \|R_0\|_F e_1 - \bar{I}_i s - H_{i+1,j} \bar{s}\|.$$
Proof. Let \(s = (s_1, \ldots, s_i)^T \). From (3.1)
\[
\|R_i\|_F = \min_{s \in \mathbb{C}_i} \left\| R_0 - \sum_{j=1}^i V_j s_j - \sum_{j=1}^i s_j A V_j B \right\|_F
\]
\[
= \min_{s \in \mathbb{C}_i} \left\| \|R_0\|_F V_1 - \sum_{j=1}^i V_j s_j - \sum_{j=1}^i \sum_{k=1}^{j+1} s_j h_{kj} V_k \right\|_F
\]
\[
= \min_{s \in \mathbb{C}_i} \left\| \|R_0\|_F e_1 - \tilde{I}_i s - H_{i+1, i} \| \right\|.
\]
The last equality holds because \(V_1, \ldots, V_{i+1} \) are \(F \)-orthonormal.

The minimal problem
\[
\min_{s \in \mathbb{C}_i} \left\| \|R_0\|_F e_1 - \tilde{I}_i s - H_{i+1, i} \| \right\|
\]
can be solved by employing the \(\mathbb{R} \)-linear QR decomposition [13]. We present the details of Gl-RL-GMRES as follows.

Algorithm 3: Global \(\mathbb{R} \)-linear GMRES

1. Compute \(R_0 = C - M X_0 \), \(X_0 \) is the initial guess
2. for \(j = 1, 2, \ldots \),
 1. Generate \(\{V_1, V_2, \ldots\} \) and \(H_{i+1, i} \) by Algorithm 2 with \(V = R_0 \)
 2. Solve the problem \(\min_{s \in \mathbb{C}_i} \left\| \|R_0\|_F e_1 - \tilde{I}_i s - H_{i+1, i} \| \right\| \) for \(s = (s_1, \ldots, s_i)^T \)
 3. Set \(X_i = X_0 + \sum_{j=1}^i V_j s_j \) and \(R_i = C - M X_i \)
 4. Exit if satisfied
end for

4. Equivalent \(\mathbb{R} \)-linear systems

Let \(X^T \) denote the transpose of \(X \). Define \(\text{vec}(X) \in \mathbb{C}^{mn} \) by \(\text{vec}(X) = [x_1^T, \ldots, x_n^T]^T \), where \(X = [x_1, \ldots, x_n] \) with \(x_i \in \mathbb{C}^m, i = 1, \ldots, n \). Taking the vec operator on both sides of (1.1) and (1.2) we obtain the equivalent \(\mathbb{R} \)-linear systems
\[
(I + (B^T \otimes A)\tau)\text{vec}(X) = \text{vec}(C), \tag{4.1}
\]
and
\[
(I + (B^T \otimes A)P\tau)\text{vec}(X) = \text{vec}(C). \tag{4.2}
\]
Here \(\otimes \) denotes the Kronecker product [27, Chapter 4] and \(P \) the permutation described in [27, Theorem 4.3.8]. The related \(\mathbb{C} \)-linear systems to (4.1) and (4.2) are
\[
(I - (BB^T) \otimes (AA^T))\text{vec}(W) = \text{vec}(C), \tag{4.3}
\]
and
\[
(I - (A^* B)^T \otimes (AB^*))\text{vec}(W) = \text{vec}(C). \tag{4.4}
\]
Let $\sigma(M)$ denote the spectrum of a matrix $M \in \mathbb{C}^{m \times n}$. The \mathbb{R}-linear matrix equation (1.1) has a unique solution if and only if $\lambda_i \mu_j \neq 1$ for $\lambda_i \in \sigma(\overline{A}A)$, $\mu_j \in \sigma(\overline{B}B)$, $i = 1, \ldots, m$, $j = 1, \ldots, n$. The \mathbb{R}-linear matrix equation (1.2) has a unique solution if and only if $\lambda_i \lambda_j \neq 1$ for $\lambda_i, \lambda_j \in \sigma(AB^*)$, $i, j = 1, \ldots, m$.

Note that for any $X \in \mathbb{C}^{m \times n}$, $\|X\|_F = \|\text{vec}(X)\|$. It is easy to prove the following proposition.

Proposition 4.1. Let R_i, R_i^G, r_i and r_i^G be the ith residual of GI-RL-GMRES applied to (1.1), the ith residual of GI-GMRES applied to (1.3), the ith residual of RL-GMRES applied to (4.1) and the ith residual of GMRES applied to (4.3), respectively.

1. GI-RL-GMRES applied to (1.1) is mathematically equivalent to RL-GMRES applied to (4.1), i.e., if $r_0 = \text{vec}(R_0)$ then $r_i = \text{vec}(R_i)$.

2. GI-GMRES applied to (1.3) is mathematically equivalent to GMRES applied to (4.3), i.e., if $r_0^G = \text{vec}(R_0^G)$ then $r_i^G = \text{vec}(R_i^G)$.

By Theorem 2.1 and Proposition 4.1, we immediately obtain the following corollary.

Corollary 4.2. Let R_i and R_i^G be the ith residual of GI-RL-GMRES applied to (1.1) and the ith residual of GI-GMRES applied to (1.3), respectively. If further assume that $R_0 = R_0^G$, then we have

$$\|R_2\|_F \leq \|R_i^G\|_F.$$

Remark 4.3. By Corollary 4.2, GI-RL-GMRES applied to (1.1) requires fewer matrix-matrix products than GI-GMRES applied to (1.3) (Note that GI-RL-GMRES applied to (1.1) requires two matrix-matrix products every iteration, and GI-GMRES applied to (1.3) requires four matrix-matrix products every iteration and for X two extra matrix-matrix products are required). Roughly speaking, the cost of every iteration of GI-GMRES is twice as much as that of GI-RL-GMRES.

Remark 4.4. If A and B in (1.1) are not large, then by saving the matrices $A\overline{A}$ and $B\overline{B}$, GI-GMRES applied to (1.3) only requires two matrix-matrix products every iteration. When A and B are large and have some special structure, for example, sparsity, Toeplitz, $A\overline{A}$ and $B\overline{B}$ do not preserve such structure in general. Therefore, storing $A\overline{A}$ and $B\overline{B}$ is inadvisable.

5. **Numerical experiments**

We compare GI-RL-GMRES with GI-GMRES. The initial guess is set to be the zero matrix and the iteration stops if $\|r_i\|_F/\|C\|_F \leq 10^{-12}$ (GI-RL-GMRES) or $\|R_i^G\|_F/\|C\|_F \leq 10^{-12}$ (GI-GMRES). Throughout, the computation is performed in MATLAB 2008a on a laptop with 2.26G CPU and 4GB memory.

Consider the \mathbb{R}-linear matrix equation

$$X - A\overline{A}F = C$$

where

$$A = \begin{bmatrix}
1 & -2 - i & -1 + i \\
0 & i & 0 \\
0 & -1 & 1 - i
\end{bmatrix}, \quad F = \begin{bmatrix}
2i & i \\
1 & -1 + i \\
-1 + i & 1
\end{bmatrix}, \quad C = \begin{bmatrix}
-1 + i & 1 \\
0 & i \\
-1 - i & 1 - 2i
\end{bmatrix}.$$

This equation has been studied in [28]. Both GI-RL-GMRES and GI-GMRES require 6 iterations to obtain the satisfactory solutions. GI-RL-GMRES requires 12 matrix-matrix products and GI-GMRES requires 26 matrix-matrix products (see Remark 4.3). We plot the convergence history of GI-RL-GMRES and GI-GMRES in Figures 1-2.
Figure 1: Convergence history of Gl-RL-GMRES and Gl-GMRES in terms of iterations

Figure 2: Convergence history of Gl-RL-GMRES and Gl-GMRES in terms of matrix-matrix products
6. Concluding remarks

We have presented the global \mathbb{R}-linear GMRES method, which is an extension of the \mathbb{R}-linear GMRES method for solving the \mathbb{R}-linear system (2.1) to solve the \mathbb{R}-linear matrix equations (1.1) and (1.2). We have proved that the new method requires fewer matrix-matrix products than the global GMRES method applied to the related generalized Sylvester matrix equations (1.3) and (1.4).

Acknowledgments

The authors thank Marko Huhtanen, Olavi Nevanlinna, Allan Perämäki and Yimin Wei for many helpful discussions about this work.

References

