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Abstract

This paper reviews the finite differencemethodin the soundsynthesisof
string instruments. Themathematicalbasisfor the methodand the evalu-
ation of the recursion equations are considered. Somestability conditions
are discussed. Initial andboundaryconditionsare reviewedfor piano-and
guitar-like strings.

1. INTRODUCTION

Physicalmodelingof musicalinstrumentsis nowadaysoneof the mostactive fields in
soundsynthesis,musical acousticsandcomputermusicresearch.Thebasisof its attrac-
tivity is that it givesbettertools for controlling andproducingboth traditionalandnew
synthesizedsounds.Physicalmodelingsimulatesthefundamentalphysical behaviour of
an actualinstrumentby employing the knowledgeof the physical laws that govern the
motionsandinteractionswithin theinstrumentandexpressingthemasmathematicalfor-
mulaeandequations.

Onemethodfor physical modeling is thenumericalsolvingof themathematicalequa-
tions that describea given phenomenon.Finite differencemethod,in fact, is not one
methodbut afield of schemesfor numericalsolvingof partialdifferentialequations.The
basisof theseschemesis approximating derivativeswith differences.This canbe done
in numerousways. The “best” methodto choosedependsalwayson the problemand
thecomputational resourcesavailable.Themethodpresentedin this work is particularly
suitablefor waveequations.

This approachin physical modelingfo soundwasfirst takenin (Hiller & Ruiz 1971a)
and (Hiller & Ruiz 1971b). It hasbeenusedin soundsynthesis especiallyfor string
instruments.

2. THE IDEAL STRING EQUATION

Using finite differencemethodin the soundsynthesisof string instrumentsis basedon
modelingthephysical propertiesof a vibratingstring. Therefore,we startwith thewave
equationfor the ideal string, which is the simplest mathematicalmodelof a vibrating
string(Hiller & Ruiz 1971a). Theessentialpropertiesof the idealstringarethe follow-
ing. Thestringvibratesin oneplaneonly anddoesnot vibratelongitudinally or stretch.
Thetensionchangesarenegligible andtheweightof thestringis smallcomparedto the
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tension.The string is perfectlyflexible, hasa uniform lineardensityandis rigidly sup-
portedat both ends. The amplitudeof the oscillations is small comparedto the length
of thestringandtheeffect of thesurroundingmediumis negligible. Thereforethe ideal
stringequationis assimpleas ���������	�
������
 (1)

where � is thedisplacementof thestring, � is theaxisalongthestring, � is time and � is
thetransversevelocityof thestring.Wedenotethepartialderivatives

�� ����� � 
 ��� � � � etc.
Whensolvingequation(1) with finite differencemethodwe first divide thestringof

length � into � intervalsof equallengths��� � �� . We denotethe endpointsof each
interval by ��� ,  �"!#
%$%$%$&
 � andnamethestartingpointof thestring �(' . Thenwedivide
alsothe time in intervals of equallength �)� anddenotethemby �	* , + �-,.
/!#
%$%$%$ . We
cangaininsight on theproblemby representingthespatialandtime intervalsonagrid of
pointsin the � � 
 ��� -plane. If we have a functiondefinedfor continuously varying � and� , namely � � � 
 ��� , we usethe notation � �  
 +(� �-� �  0��� 
 +��)��� �1� � �2� 
 �3*4� (Strikwerda
1989).
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Figure1: Dependenceof displacement� �  
 +:6 ! � (markedwith ; ) on previous values
of thedisplacement(markedwith < ) in the � � 
 ��� -grid of anidealstring.

Figure1 is an illustration of the informationwe needfor eachpoint of string when
applyingfinite differencemethodto the ideal string equation.The displacementof the
stringat position  at time +=6 ! is computedfrom thedisplacementsat thepresenttime+ at positions  :5 ! ,  and  �6 ! andat theprecedingtime +>5 ! at position  . In the
followingweshallseehow this is achieved.

The basicideaof finite differenceschemesis to replacederivativesby finite differ-
ences.Sincethederivative of a function � of onevariablecanbedefinedasa limit of a
difference, ��?@� �A� � BDCFEG �IH ' ��� �)6J�)�A��5 ��� �A��)� 
 (2)

it is naturalto approximate

��?@� �A�LK �M� �)6J�)�A��5 ��� �A��)� or ��?N� �A�OK ��� ��6P���A��5 �M� �=5Q���A�R �)� (3)

for small �)� . The latter formula is preferable,sinceit computesthedifferencewithout
weightinginformation from oneor theothersideof thepoint in question. For a function
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� of two variableswehave thenthepartialderivatives��� � � 
 ���OK � � �)6P�)� 
 ����5 � � �S5T�)� 
 ���R �)� 
 (4)��� � � 
 ���OK � � � 
 �26J�)����5 � � � 
 �U5T�����R �)� 
 (5)

whichcanbewrittenwith thenotationsdefinedpreviously in thissection�V� �  
 +(�OK � �  W6 !#
 +(�M5 � �  �5 !#
 +(�R �)� 
 (6)��� �  
 +(�OK � �  
 +X6 ! �M5 � �  
 +85 ! �R �)� $ (7)

In the ideal string equationwe have second-orderderivatives. Let us approximate� ? ? � �A� just likewedid � ? � �A� ,
��? ?@� �A�OK � ? � �)6J�)�A��5 � ? � �:5T�)�A�R ���K Y/Z �I[ � G �I\N] Y/Z �I\� G � 5 Y/Z �I\^] Y/Z �%] � G �I\� G �R �)�K ��� ��6P�)�A�_5 R ��� �A�(6 ��� �S5`�)�A�� �)�A� � 
 (8)

by changingthenotation
R �)�ba ��� . Applying this to thedisplacementfunctionyields����� �  
 +��LK � �  W6 !#
 +��M5 R � �  
 +���6 � �  )5 !�
 +(�� �)�A� � 
 (9)����� �  
 +��LK � �  
 +X6 ! �M5 R � �  
 +���6 � �  
 +85 ! �� �)��� � $ (10)

Now wehavetheapproximatederivativesweneedfor theidealstringequation.Insert-
ing (9) and(10) into equation(1) weget� �  
 +X6 ! �M5 R � �  
 +(�26 � �  
 +85 ! �� �)��� � �c� � � �  W6 !#
 +��M5 R � �  
 +���6 � �  )5 !�
 +(�� �)�A� � $ (11)

Studyingequation(11) we seethatit wouldbeconvenient if thespatialintervals �)� and
thetime intervals �)� weresomehow related.We canindeedwrite by theVon Neumann
stability condition(Strikwerda1989)� ������ �cd)ef!#$ (12)

Now wecanwrite thedisplacementof stringat �2� at thetime �g* [Ah as� �  
 +X6 ! � � R � ! 5 dV� � � �  
 +(��6 d��Uij� �  W6 !#
 +(�(6 � �  k5 !�
 +(�3lm5 � �  
 +=5 ! � 
 (13)

andif dn�"! , asis thecasein theidealstring,� �  
 +X6 ! � �c� �  n6 !#
 +(�(6 � �  k5 !#
 +(�M5 � �  
 +=5 ! � $ (14)

Therecursionformula(13) is illustratedin Figure1. This equationcanbedirectly used
for computingthedisplacementsof thechosendiscretepointson thestring.
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Therecursive equation(14) canbeinterpretedasa spatio-temporaldigital waveguide
filter (Karjalainen2002).Equation(14)canbegeneralizedas� �  
 +X6 ! � �co ]� � �  W6 !#
 +��(6 o [� � �  )5 !#
 +(�(6Jp4� � �  
 +=5 ! � 
 (15)

wherecoefficients o ]� , o [� and p4� canbe usedfor simulating the losses,scatteringetc.
This leadsto thedigital waveguidefilter shown in Figure2 (Karjalainen2002).However,
in thiswork weexaminetheimplementationof differentmodifications of theidealstring
equationwith themathematicalmodelasastartingpoint.
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Figure2: Digital Waveguide structurebasedon finite differenceapproximation of one-
dimensionalwaveequation.

2.1. Stability and Numerical Dispersion

Thechoice
G �G � ��� givestheexactsolution with nonumericaldispersion(Chaigne1992).

However, d7�f! is valid only in thecaseof anidealstring.
It is convenientto write the stability condition(12) in termsof samplingfrequency�Vs � hG � andfundamentalfrequency of thestring � h_� t� � , yielding

� � hue �VsR $ (16)

TheNyquisttheoremstatesthat theupperfrequency in thespectrumshouldbelessthanYwv� in orderto avoid aliasingandto guaranteea uniquecontinuousreconstruction.There-
fore, in theidealcasewhentheeigenfrequenciesof thestringareequallyspaced,that is,
when � � � � h , condition(16) indicatesthatthemaximumnumberof frequenciesin the
spectrumis � .

In practice,condition (16) can be usedfor selectingthe appropriatenumber � of
spatialpoints for synthesizing a soundwith fundamentalfrequency � h , if the sampling
frequency �xs is given. However, since � is an integer, only discretevaluesof � hW� Y v� �
canbe obtainedwithout any truncationerror, that is, using dy�z! . Sincethesediscrete
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seriesin generaldonotcorrespondto themusicalscalesof commonusein westernmusic,
we mustaccepta reasonablysmall truncationerror in orderto getaccurateadjustments
of � h . Thiscanbeobtainedby spatialoversampling, thatis, taking dk{|! .
3. MODIFICATIONS OF THE STRING EQUATION

Theidealstringequationis not a highly accurateapproximationof thebehaviour of real
strings.Thereforeweneedto modify theequationby addingpropertiesthatresemblereal
strings. The stability conditions for the following modificationsof the string equations
canbefoundin (Chaigne1992).

3.1. Stiff String

By addinga term that modelsthe stiffnessof the string (Hiller & Ruiz 1971a), we can
write thewaveequationfor astiff stringas�V���}�c� � �V��� 5Q~ � � � � ����������
 (17)

where � is thestringlengthand ~ thestiffnessparameterthatis givenby

~ ��� �L�k�� � � 
 (18)

where � is theradiusof gyrationof thestring, � is Young’smodulus,� is theareaof the
stringcrosssectionand

�
is thestringtension.

For the third- andfourth-orderderivativesof a function of onevariablewe have the
approximations

� Z�� \ � �A�OK ��� ��6 R �)�A�M5 R ��� ��6P���A�}6 R ��� �S5T�)�A�M5 ��� �S5 R �)�A�R � �)�A� � 

� Z�� \ � �A�OK ��� ��6 R �)�A�M5`� ��� ��6P���A�}6P� ��� �A�M5�� ��� �S5T�)�A�}6 ��� �:5 R �)�A�� �)�A� � 
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Figure3: Dependenceof displacement� �  
 +S6 ! � (markedwith ; ) on previousvalues
of thedisplacement(markedwith < ) in the � � 
 ��� -grid of astiff string.
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which areattainedin thesameway asthefirst- andsecond-orderderivatives.Therefore,
wehave for thederivative in thestiffnessterm�V������� �  
 +(�OK � �  W6 R 
 +(�M5�� � �  W6 !#
 +(�(6J� � �  
 +(��5`� � �  k5 !#
 +���6 � �  )5 R 
 +(�� �)�A� � $

(19)
Writing p � ~�� �� �)�A� � 
 (20)

thestiff stringequationcannow beconvertedinto therecursive formula� �  
 +X6 ! � � RX� ! 5 � ! 6J�#p�� d ��� � �  
 +(�(6 d � � ! 6P�4p�� ij� �  W6 !#
 +��(6 � �  k5 !#
 +(��l5Tp d � ij� �  W6 R 
 +��(6 � �  k5 R 
 +(��l�5 � �  
 +=5 ! � $ (21)

Equation(21) canbe illustratedin thesameway asequation(21). As onecanseein
Figure3, in astiff stringmoredistantvaluesof thedisplacementsaffect thedisplacement
at a futuretime,which is quiteevident, whenthinkingof themeaningof stiffness.

3.2. Damped String

By including frequency-dependentlossesdueto thefriction with air, viscosityandfinite
massof the string (Hiller & Ruiz 1971a), we get the wave equationfor a dampedstiff
string �V���(���	�
�V��� 5�~ �	� � ����������� 5 R�� hg��� 6 R�� � �V������
 (22)

where
� h and

� � arethelossparameters,whichareobtainedvia theanalysisof realinstru-
menttones.Thethird-ordertime derivativecanbeapproximatedasthedifference������� �  
 +(�_K � �  
 +96 R �M5 R � �  
 +X6 ! �(6 R � �  
 +=5 ! ��5 � �  
 +=5 R �� ����� � 
 (23)

whichmeansthatif we just insertdifferencesin placeof derivativesin thedampedstring
equation(22), therewill bea term � �  
 +76 R � in theequationwecangetfor computating� �  
 +76 ! � . Therefore,in orderto computethedisplacementat time +k6 ! similarly asin
theprecedingsections,weshouldalreadyknow thedisplacementat time +W6 R . This is of
courseimpossible,andimplicit methodsareneededto solvetheequation.However, since
theperturbationterm

R�� � ������� is relatively small,wecanapproximatetheterm � �  
 +X6 R �
by usingtwice therecursiveequation(14) for anidealstring,� �  
 +X6 R � �c� �  n6 !#
 +X6 ! �(6 � �  )5 !#
 +96 ! �M5 � �  
 +���c� �  n6 R 
 +(�U5 � �  W6 !#
 +85 ! �(6 � �  
 +(�26 � �  k5 R 
 +��U5 � �  k5 !#
 +85 ! � $
Now weareableto write therecursionformula� �  
 +96 ! � � R 5 R d � 5T��p � d � 6��N�G �� � �  
 +(�

6 d � � ! 6P�4p��� ij� �  W6 !#
 +(�(6 � �  k5 !�
 +(�3l
6 �N�G � 5Tp d �� i�� �  W6 R 
 +��(6 � �  k5 R 
 +���l
6 5 ! 6 � h �)�(6 R �N�G �� � �  
 +=5 ! � (24)5 � �� ��� i�� �  W6 !#
 +85 ! �(6 � �  )5 !#
 +85 ! ��6 � �  
 +85 R �3l 
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where � ��! 6 � h �)�(6 R � ��)� 
 (25)

and p is given by formula(20). Althoughequation(24)mayseemcomplicated,it is again
straightforward to illustrateits form, which is shown in Figure4 (Tolonen,Välimäki &
Karjalainen1998).Theincreasein timestepsrequiredin theformulais natural,sincethe
dampingeffect is proportionalto thetimederivativesof thedisplacement.
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Figure4: Dependenceof displacement� �  
 +S6 ! � (markedwith ; ) on previousvalues
of thedisplacement(markedwith < ) in the � � 
 ��� -grid of adampedstiff string.

4. INITIAL CONDITIONS

Althoughthestringequationscarrymuchinformation of thebehaviour of thestring,ad-
ditionalconditionsareneededin orderto modelthephenomenonof theemergingsound.

The initial excitation can be simulated by addingan accelerationterm to the wave
equation, �����(���	������� 5Q~ �I� � ����������� 5 R�� h��V� 6 R�� � ������� 6 ��� � 
 ��' 
 ��� 
 (26)

where ��� � 
 ��' 
 ��� is theexcitationaccelerationappliedat point �(' (Tolonenet al. 1998).
It is assumedherethat the forcedensitydoesnot propagatealongthestring. Therefore,
thetimeandspacedependencecanbeseparated,andweget��� � 
 ��' 
 ��� � � ' � ��� o � � 
 ��'	� $ (27)

The term o � � 
 ��'�� canbe understoodasa spatialwindow that distributesthe excitation
energy to thestring(Chaigne1992). The forcedensityterm � ' � ��� is relatedto the force� � ��� exertedin theexcitationby

� ' � ��� � � � ������ �	�3[� ¡�� � ]� ¡� o � � 
 ��'I��¢#� 
 (28)

where� is thelinearmassdensityof thestringandtheeffectivelengthof thestringsection
interactingwith theexciter is

R�£ � .
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By applying the finite differenceschemeto equation(26) and discretizingalso the
integral in formula(28)wegettherecursionformula

� �  
 +96 ! � � R 5 R d � 5T�#p � d � 6 �N�G �� � �  
 +��
6 d � � ! 6T�4p��� ij� �  76 !#
 +��(6 � �  k5 !#
 +(��l
6 � �G � 5Tp d �� ij� �  W6 R 
 +(�(6 � �  k5 R 
 +(�3l
6 5 ! 6 � h �)�}6 R �N�G �� � �  
 +:5 ! �5 � �� �)� i�� �  n6 !#
 +85 ! �(6 � �  k5 !#
 +85 ! �(6 � �  
 +85 R ��l6 � �)��� � ��8¤�¥ � � +(� o �  
  #'
� 
 (29)

with p and
�

given by formulae(20) and(25), respectively. Here
¤T¥

is themassof the
string,

� � +(� is theforceappliedat time + and o �  
  0'	� is thevalueof thespatialwindow
at position �2' �  #'��)� (Chaigne,Askenfelt& Jansson1990).

4.1. Plucked String

For theguitar-likemodelof thestringweassumethatthestringis initially at rest,thatis,�V� � � 

, � ��, ¦ � �  
%! � ��� �  
 5 ! � $ (30)

Theinitial form of thestringis givenby� � � 
�, � �|§ � �A� ¦ � �  
�, � ��§ �  �� $ (31)

In thecaseof anidealpluckedstringtheinitial shapecanbeapproximatedastriangular,

§ � �A� �©¨ � � ��'�� ��	� 
 ,�e � e ��' 
� � ��'�� �%] ��	��] � 
 ��' { � e � 
 (32)

where��' representsthepointof plucking(Hiller & Ruiz 1971a).
Furtherconsiderationsof the plucked string can be found for examplein (Chaigne

1992).

4.2. Struck String

Thepiano-likemodelfor theexcitation of thestringis developedin (Chaigne& Askenfelt
1994a) and(Chaigne& Askenfelt 1994b). We assumethat the string is initially at rest
andhasa zeroinitial displacement, � �  
�, � �c,.$ (33)

In orderto beableto usetherecursive formula (29) with
� � +(� replacedby thehammer

force
�Uª � +(� , weneedto estimatesomehow thedisplacementof thestringat thefirst three
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time steps.Thefirst onewealreadyhave in formula(33). By usingapproximatedTaylor
seriesweobtain � �  
/! � � � �  n6 !#
�, ��6 � �  k5 !#
�, �R $ (34)

Thehammerforceis modeledas�Mª � ��� � � ª�« ¬ � ���M5 � � ��' 
 ��� « ­ 
 (35)

where� ª is thegeneralizedstiffnessof thehammer, ® is theeffectivenonlinearityexpo-
nent(preferredrangeof values

R { ® { � (Russell1997))and
¬ � ��� is thedisplacementof

thehammerdefinedby ¤�ª�¢ � ¬¢4� � � 5 �Uª � ��� 
 (36)

where
¤�ª

is themassof thehammer. Now for thedisplacementof thehammerat time+ ��! wecalculate ¬ � ! � ��¯ ª '	�)� 
 (37)

where ¯ ª ' is thehammervelocityat � ��, . For theforceexertedby thehammerweget�Uª � ! � � � ª�« ¬ � ! ��5 � �  4' 
%! � « ­ $ (38)

Now � �  
 R � canbecomputedusingasimplified versionof equation(29),

� �  
 R � �°� �  k5 !#
%! ��6 � �  n6 !#
%! �U5 � �  
�, �A6 � ��� � �g� �Mª � ! �¤�¥ 
 (39)

wherethestiffnessanddampingtermsaredroppedoutin orderto limit thespaceandtime
dependence.Thedisplacementof thehammerandthehammerforcearecomputedby¬ � R � � R ¬ � ! �U5 ¬ � , �M5 � �)��� � �Uª � ! �¤�ª 
 (40)�Mª � R � � � ª�« ¬ � R �M5 � �  #' 
 R � « ­ $ (41)

With theseestimationsit is possible to usedirectly equation(29) for computingthedis-
placementsat futuretimes.Theforce

��ª � +(� is assumedto beknown andits effect for the
stringis takeninto accountuntil time + when¬ � +96 ! � {J� � �S' 
 +96 ! � $ (42)

After this thestringis left freefor vibrationsunlessrecontactof thehammeris modeled.

5. BOUNDARY CONDITIONS

Theboundaryconditionsareshapedto describethecontactof thestringwith theenviron-
ment(Chaigne1992).For example,theendpointsof a pianostringcanbeconsideredas
hinged, � � ,.
 ��� �°� � � 
 ��� ��,.
 (43)����� � ,.
 ��� �°����� � � 
 ��� ��,.$ (44)
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By discretizingthesefor the ideal stringequation(1) we obtaintheboundarycondi-
tions � � ,0
 +(� �°� � � 
 +(� �c, (45)� � 5 !#
 +�� � 5 � � !#
 +�� and � � �±6 !#
 +�� � 5 � � �-5 !#
 +(� $ (46)

Thedisplacementsatpoints� � 5 !#
 +(� and � �¡² 6 !�
 +(� areimportantsincethey areneeded
for computing the displacementat points � � !#
 +�� and � �¡² 5 !#
 +(� (as can be seenin
Figures3 and4), evenif they arenot includedin thestringmodelitself.

If thewave equationdescribingthestring includesdamping andstiffnessterms,con-
ditionsin formula(46) transforminto somewhatmorecomplicatedboundaryconditions� ! 6³�4p � � ij� � �©6 !#
 +��(6 � � �-5 !#
 +���l61´ � ��)� 5Qp �	µTij� � �¶6 R 
 +(�(6 � � �-5 R 
 +(��l

5 � ���� ij� � �±6 !#
 +85 ! �(6 � � �-5 !#
 +85 ! �3l ��,.
 (47)

and � ! 6³�4p � � i � � !#
 +(�26 � � 5 !#
 +(�3l61´ � ��)� 5Tp �	µTij� � R 
 +���6 � � 5 R 
 +���l5 � ��)� i�� � !�
 +=5 ! �(6 � � 5 !#
 +=5 ! ��l ��, (48)

which areattainedby writing the formula (24) with the conditions (45). The boundary
conditions for piano-likestringsareillustratedin Figure5.

PSfragreplacements �·5 ! �!,

Figure5: Model for piano-likeboundaryconditions.

In guitar, the terminationsof stringsarenot completelyrigid. The bridgehasfinite
impedanceandthefinger terminatingthestringagainstthefingerboardis far from rigid.
Therefore,in the guitarmodelit is assumedthat the displacement� � � 
 +�� of the string
is non-zero. Further, the string is clampedjust behindthe bridge,so that the distance
betweenthe bridgeandtheclampingpositionis above the audiblewavelengthrangeof
human,andwecanassumethat � � �©6 !#
 +�� ��� � � 
 +(� $ (49)

Theboundaryconditions for guitar-likestringsareillustratedin Figure6.
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PSfrag replacements �·5 ! � �±6 !

Figure6: Model for aguitar-likeboundarycondition.

6. SUMMARY

The aim of this work wasto go throughthe formulation of finite differencemethodin
soundsynthesis.Thiswasdonefrom themathematical pointof view andnotconsidering
verymuchtheactualimplementationof soundsynthesisor thecomputational resources.

The modelsdescribedin this work have beenevaluatedandcomparedto real instru-
mentsby (Chaigne& Askenfelt1994b) and(Chaigneetal. 1990).
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