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Abstract

This paper reviews the finite differencemethodin the soundsynthesisof
string instruments The mathematicabasisfor the methodand the evalu-
ation of the recursion equatias are consideed. Somestabiity conditions
are discused. Initial and boundaryconditionsare reviewedfor piano-and
guitar-like strings.

1. INTRODUCTION

Physicalmodelingof musicalinstrumentss nowadaysone of the mostactwve fields in
soundsynthesis,musical acousticeandcomputemusicresearch.The basisof its attrac-
tivity is thatit givesbettertoolsfor controlling and producingboth traditionaland new
synthesizedounds.Physicalmodelingsimulaesthe fundamentaphyscal behaiour of
an actualinstrumentby employing the knowledgeof the phystcal laws that governthe
motionsandinteractionswithin theinstrunentandexpressinghemasmathematicafor-
mulaeandequations.

Onemethodfor physcal modelng is the numericalsolving of the mathematicaéqua-
tions that describea given phenomenon.Finite differencemethod,in fact, is not one
methodbut a field of schemegor numericalsolvingof partialdifferentialequationsThe
basisof theseschemess approximatng derivativeswith differences.This canbe done
in numerouswvays. The “best” methodto choosedependsalways on the problemand
the computatimal resourcesvailable. The methodpresentedn this work is particularly
suitablefor wave equations.

This approachn physcal modelingfo soundwasfirst takenin (Hiller & Ruiz 1971a)
and (Hiller & Ruiz 1971b). It hasbeenusedin soundsynthess especiallyfor string
instrumens.

2. THE IDEAL STRING EQUATION

Using finite differencemethodin the soundsynthesisof string instrumentds basedon
modelingthe physcal propertiesof a vibrating string. Therefore we startwith the wave
equationfor the ideal string, which is the simple$ mathematicamodel of a vibrating
string (Hiller & Ruiz 1971a). The essentiapropertiesof the ideal string arethe follow-
ing. The stringvibratesin oneplaneonly anddoesnot vibratelongitudinally or stretch.
Thetensionchangesrenegligible andthe weightof the stringis smallcomparedo the
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tension. The stringis perfectlyflexible, hasa uniform linear densityandis rigidly sup-
portedat both ends. The amplitude of the oscillatiors is small comparedo the length
of the stringandthe effect of the surroundingmediumis negligible. Thereforetheideal
stringequations assimpleas

Yu = Czymma (1)

wherey is the displacemenbf the string, z is the axisalongthe string, ¢ is time andc is
thetrans\ersevelocity of the string. We denotethe partial derivatives % f(z,t) = f, etc.
Whensolving equation(1) with finite differencemethodwe first divide the string of
length L into K intervals of equallengthsAz = % We denotethe end pointsof each
intenval by z, £ = 1, ..., K andnamethestartingpoint of thestringx,. Thenwe divide
alsothetime in intervals of equallength At anddenotethemby ¢,,, n = 0,1,.... We
cangaininsight onthe problemby representinghe spatialandtime intervalsonagrid of
pointsin the (z, t)-plane. If we have a functiondefinedfor continuouy varyingz and
t, namelyy(z,t), we usethe notationy(k,n) = y(kAzx,nAt) = y(z, t,) (Strikwerda

1989).
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Figurel: Dependencef displacemeny(k,n + 1) (markedwith O ) on previous values
of thedisplacemen{markedwith ® ) in the (z, ¢)-grid of anidealstring.

Figure 1 is anillustration of the informationwe needfor eachpoint of stringwhen
applyingfinite differencemethodto the ideal string equation. The displacemenbf the
stringat positionk attimen + 1 is computedrom the displacementat the presentime
n at positonsk — 1, k andk + 1 andat the precedingtime n — 1 at positin £. In the
following we shallseehow thisis achieved.

The basicideaof finite differenceschemess to replacederivatives by finite differ-
ences.Sincethe dervatve of a function f of onevariablecanbe definedasa limit of a

difference,

Az—0 Az ’

it is naturalto approxinate

for small Az. Thelatterformulais preferable sinceit computeghe differencewithout
weightinginformatian from oneor the othersideof the pointin question For afunction
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y of two variableswve have thenthe partialderivatves

_ylz+ Az, t) —y(z — Az, 1)

~ 4
e ! , @
oyl t+ At) —y(z,t — At)
yt(xat) ~ IAL ) (5)

which canbewritten with the notations definedpreviously in this section

~ y(k+17n)_y(k_1an)

vk, m) o , ©
ik, m) ~ y(k,n+ 1)2;3(& n— 1)' @

In the ideal string equationwe have second-ordederivatives. Let us approximate
f"(x) justlikewedid f'(z),

fl(x+ Az) — f'(x — Ax)

2Ax
fz+2Az)—f(x)  f(z)—f(z—2Ax)
2Azx 2Ax

2Ax
flx+Az) = 2f(z) + f(z — Ax)
(Az)? ’

f(z) ~

&

(8)

%

by changinghenotaton 2Ax — Axz. Applying thisto thedisplacementunctionyields

y(k+1,n) —2y(k,n) + y(k — 1,n)

Yoz (k,n) = (D)2 : 9)
(b, m) o EE T L) = Q?XZ’)Z) Tylkn 1) (10)

Now we have theapproximatelerivativeswe needfor theidealstringequation.Insert-
ing (9) and(10) into equation(1) we get
y(kan + 1) — 2y(ka n) + y(ka n-— 1) Zy(k + lan) — Qy(kan) + y(k -1, n)

(A1)? =c (Az)? . (11)

Studyingequation(11) we seethatit would be corvenientif the spatialinternvals Az and

thetime intervals At weresomehav related. We canindeedwrite by the Von Neumann
stability condition(Strikwerdal989)

At _

CAJ: N

Now we canwrite the displacementf stringat z,, atthetimet, ., as

r<1. (12)

y(kyn+1) =21 —ry(k,n) + r* [y(k+1,n) +y(k — 1,n)] — y(k,n — 1), (13)
andif r = 1, asis thecasein theidealstring,
y(kan+1) :y(k+1’n)+y(k_1an)_y(kan_l) (14)

Therecursionformula (13) is illustratedin Figure 1. This equationcanbe directly used
for computingthe displacementsf the choserdiscretepointson the string.
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Therecursve equation(14) canbe interpretedasa spatio-emporaldigital waveguide
filter (Karjalainen2002).Equation(14) canbe generalizeds

y(k,n+1) = gy y(k+1,n) + gfy(k — 1,n) + agy(k,n — 1), (15)

wherecoeficients g, , g; anda;, canbe usedfor simulatirg the losses,scatteringetc.
Thisleadsto thedigital waveguidefilter shovn in Figure2 (Karjalainen2002).However,
in thiswork we examinetheimplemenation of differentmodificatiors of theidealstring
equationwith the mathematal modelasa startingpoint.

Qg—1 73 Qg1
—<}— <] <]
+ - + — + -
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O e
Yk—1,n+1 Ykn+1
71 71
- ®
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Yk—1,n—1 Yk,n—1 Yk+1,n—1

Figure2: Digital Waveguide structurebasedon finite differenceapproximatia of one-
dimensimal wave equation.

2.1. Stability and Numerical Dispersion

Thechoiceﬁ—j = ¢ givestheexactsolutian with no numericaldispersionChaignel992).
However, r = 1 is valid only in the caseof anidealsstring.

It is convenientto write the stability condition(12) in termsof samplingfrequeng
fe= Ait andfundamentafrequeny of thestring f; = 57, yielding

K<t (16)

The Nyquisttheoremstateshatthe upperfrequeng in the spectrumshouldbe lessthan
f2—e in orderto avoid aliasingandto guarantee uniquecontinuaisreconstructionThere-
fore, in theidealcasewhenthe eigenfrequenciesf the stringareequallyspacedthatis,
whenAf = f;, condition(16) indicatesthatthe maximumnumberof frequenciesn the
spectrunis K.

In practice,condition (16) can be usedfor selectingthe appropriatenumber K of
spatialpointsfor synthesiang a soundwith fundamentafrequeny f1, if the samplirg
frequeng f. is given. However, sinceK is aninteger, only discretevaluesof f; = Jfe

2K
canbe obtainedwithout any truncationerror, thatis, usingr = 1. Sincethesediscrete
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seriedn generakdonotcorrespondo themusicalscalesof commonusein westerrmust,
we mustaccepta reasonablysmall truncationerror in orderto getaccurateadjustnents
of f1. Thiscanbeobtainedy spatialoversamphg, thatis, takingr < 1.

3. MODIFICATIONS OF THE STRING EQUATION

Theideal stringequationis not a highly accurateapproximatiorof the behaiour of real
strings.Thereforewe needto modify theequatiornby addingpropertieshatresembleeal
strings. The stability conditiors for the following modificationsof the string equations
canbefoundin (Chaignel992).

3.1. Stiff String

By addinga term that modelsthe stiffnessof the string (Hiller & Ruiz 1971a), we can
write thewave equatiorfor a stiff stringas

Y = CQy;m - EC2L2ywwwwa (17)
wherelL is thestringlengthandes the stiffnessparametethatis givenby

ES
=g2 18
wherek is theradiusof gyrationof thestring, F' is Youngs modulus,S is theareaof the
stringcrosssectionand? is the stringtension.
For the third- andfourth-orderderivatives of a function of onevariablewe have the
approximatios

flz+2Az) —2f(x + Ax) + 2f(x — Azx) — f(x — 2Ax)

O (z) ~ ,
2(Az)3
FO () L@ T282) —4f (@ + Az) + 6/(2) —4[(z — Az) + [ (@ — 2A2)
(z) ~ Aoy ,
s (L n+1
® ® ® ® ® n
® n—1
t

—k—-2 k-1 k k+1 k+2
x

Figure3: Dependencef displacemeny(k,n + 1) (markedwith O ) on previousvalues
of thedisplacemenfmarkedwith ® ) in the (z, t)-grid of a stiff string.
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which areattainedin the sameway asthefirst- andsecond-ordederiatives. Therefore,
we have for thederivative in the stiffnessterm

y(k+2,n) —4dy(k+ 1,n) + 6y(k,n) —4y(k — 1,n) + y(k — 2,n)

(19)
Writing ,
0= G (20)

thestiff stringequationcannow be corvertedinto therecursve formula

y(k,n+1)=2[1— (14 3a)r’] y(k,n) +r* (1 + 4a) [y(k + 1,n) + y(k — 1,n)]
—ar®[y(k+2,n) +y(k —2,n)] —y(k,n —1). (21)
Equation(21) canbeillustratedin the sameway asequation(21). As onecanseein

Figure3, in astiff stringmoredistantvaluesof thedisplacementsaffect thedisplacement
atafuturetime, whichis quite evident whenthinking of the meaningof stiffness.

3.2. Damped String

By including frequeng-dependentossesdueto the friction with air, viscosityandfinite
massof the string (Hiller & Ruiz 1971a), we get the wave equationfor a dampedstiff
string

Yt = C2yww - 5C2L2yzzzzw - 2b1yt + 2b3yttta (22)
whereb, andbs arethelossparametersyhich areobtainedvia theanalysisof realinstru-
menttones.Thethird-ordertime derivative canbe approximatecsthedifference

y(k,n+2) —2y(k,n+1)+2y(k,n—1) —y(k,n —2)

(At)? ’
which meanghatif we justinsertdifferencesn placeof derivativesin the dampedstring
equation(22), therewill beatermy(k,n + 2) in theequationve cangetfor computatig
y(k,n+ 1). Thereforejn orderto computethedisplacemenattimen + 1 similarly asin
theprecedingsectionsyve shouldalreadyknow thedisplacemenattimen + 2. Thisis of
coursempossible,andimplicit methodsareneededo solve theequation However, since
the perturbatiorterm2b3y,,; is relatively small,we canapproximatehetermy(k, n + 2)
by usingtwice therecursve equation(14) for anidealstring,

yk,n+2)=ylk+1,n+1)+ylk—1,n+1)—y(k,n)
= y(k+27n) _y(k+1an_ 1) +y(kan) +y(k_ 2,%) _y(k_ Ln— 1)
Now we areableto write therecursionformula

2 2,.2 b
2—2r" —6a’r" + &

Yar (k, n) ~ (23)

y(k,n+1) = D y(k,n)
2(1+4
% [y(k+1,n) +y(k —1,n)]
bs _ qr?
+ MT [y(k+2,n) +y(k —2,n)]
—1+bAt + 28
lD Aty(k:n_ 1) (24)
bs
~pag W+ Ln=1) +y(k=1,n-1) +y(kn—2)],



where

bs
D=1+bAt+2-> 2
+ b At + Ap (25)

anda is given by formula(20). Althoughequation(24) mayseencomplicatedit is again
straightforvard to illustrateits form, which is shawvn in Figure4 (Tolonen,Valimaki &
Karjalainen1998). Theincreasean time stepsrequiredin theformulais natural,sincethe
dampingeffectis proportionalto thetime derivativesof thedisplacement.

- L n+1
® ® ® ® ® n

¢ ¢ ® n—1

? n—2
Tk—Z k-1 k k+1 k+2 t

Figure4: Dependencef displacemeny(k,n + 1) (markedwith O ) on previousvalues
of thedisplacementmarkedwith ® ) in the (x, t)-grid of adampedkstiff string.

4. INITIAL CONDITIONS

Althoughthe string equationgarry muchinformatian of the behaiour of the string,ad-
ditional conditonsareneededn orderto modelthe phenomenowf theemeging sound.
The initial excitation can be simulaed by addingan acceleratiorterm to the wave

equation,
Yt = CQymm - 502L2ymmmm - 2blyt + 2b3yttt + f(l', Zo, t)a (26)

where f(z, zo, t) is the excitation acceleratiorappliedat point z, (Tolonenet al. 1998).
It is assumedherethatthe force densitydoesnot propagatealongthe string. Therefore,
thetime andspacedependenceanbe separatedandwe get

[z, z0,t) = fo(t)g(z, o). (27)

Thetermg(z, zy) canbe understoodasa spatialwindow that distributes the excitation
enegy to the string (Chaignel992). The force densityterm fy(¢) is relatedto the force
F(t) exertedin the excitationby

_ F(?)
holt) = Nf;oojgiw 9(x, 20) dz’

(28)

wherey is thelinearmassdensityof thestringandtheeffective lengthof thestringsection
interactingwith the exciteris 20zx.



By applying the finite differenceschemeto equation(26) and discretizingalso the
integralin formula(28) we gettherecursionformula

b
2—2r —6a’r® + 2
D
r?(1 + 4a)
D

b3 2

ar
+ At 5 [y(k+2,n) +y(k —2,n)]

—1+ b AL+ 2%
D
b
- DZt y(k+1,n—1)4+y(k—1,n—1)+y(k,n—2)]
(At)’K
DM,

ylk,n+1) = y(k,n)

ly(k+1,n) +y(k—1,n)]

y(k,n—1)

_|_

F(n)g(k, ko), (29)

with ¢ and D given by formulae(20) and(25), respectirely. Here M is the massof the
string, F'(n) is theforceappliedattime n andg(k, ko) is the valueof the spatialwindow
atpositonzy = kyAz (Chaigne Askenfelt& Janssori990).

4.1. Plucked String

For theguitarlike modelof the stringwe assumeéhatthe stringis initially atrest,thatis,
y(z,0)=0 = y(k,1)=y(k,—1). (30)
Theinitial form of thestringis givenby
y(@,0) =h(z) = y(k,0)=h(k). (31)

In the caseof anidealpluckedstringtheinitial shapecanbeapproximatedstriangular

z 0<z<
ha) = V) a =T=T (32)
y(To) =T xo <z <L,

wherez, representghe pointof plucking (Hiller & Ruiz 1971a).
Furtherconsideration®f the plucked string can be found for examplein (Chaigne
1992).

4.2. Struck String

Thepiano-like modelfor theexcitation of thestringis developedn (Chaigne& Askenfelt
19947) and (Chaigne& Askenfelt1994). We assumeéhatthe stringis initially at rest
andhasa zeroinitial displacement,

y(k,0) = 0. (33)

In orderto be ableto usethe recursve formula (29) with F'(n) replacedoy the hammer
force F(n), we needto estimatesomeha thedisplacemendf thestringatthefirst three
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time steps.Thefirst onewe alreadyhave in formula(33). By usingapproximatedaylor

serieswe obtain

Thehammerforceis modeledas
Fy(t) = Kg n(t) — y(xo, 1), (35)

whereKy is thegeneralizedtiffnessof thehammeyp is the effective nonlinearity expo-
nent(preferredrangeof values2 < p < 3 (Russell1l997))andn(t) is thedisplacemenof
thehammerdefinedby
2
My ST = —Fa(t) (36)
where My is the massof the hammer Now for the displacemenbf the hammerat time
n = 1 we calculate

whereVy, is thehammervelocity at¢ = 0. For theforce exertedby the hammemwe get
Fy(1) = Ky [n(1) — y(ko, 1)[” . (38)
Now y(k, 2) canbe computediusinga simgified versionof equation(29),

(A2)K Fy (1)

Ms

(39)

wherethestiffnessanddampingtermsaredroppedoutin orderto limit thespaceandtime
dependencel hedisplacemendf the hammerandthe hammerforce arecomputedoy

() =2n(1) — n(0) - SLTHD. (40)
Fp(2) = Kg [n(2) — y(ko, 2)[" . (41)

With theseestimatonsit is possibé to usedirectly equation(29) for computingthe dis-
placementsatfuturetimes.Theforce Fiy (n) is assumedo beknown andits effectfor the
stringis takeninto accountuntil time n when

nn+1) < y(Ko,n+1). (42)

After thisthestringis left freefor vibrationsunlessrecontacbf thehammelis modeled.

5. BOUNDARY CONDITIONS

Theboundaryconditonsareshapedo describehe contactof the stringwith theerviron-
ment(Chaignel992). For example,the endpointsof a pianostringcanbe consideredis
hinged,

y(0,t) =y(L,t) =0, (43)
yzczc(oa t) = yww(La t) =0. (44)



By discretizingthesefor the ideal string equation(1) we obtainthe boundarycondi-
tions

y(0> 7’L) = y(Ka n) =0 (45)
y(—1,n) = —y(l,n) and y(K+1,n)=—-y(K —1,n). (46)

Thedisplacementsatpointsy(—1,n) andy(N + 1, n) areimportantsincethey areneeded
for computirg the displacementat pointsy(1,n) andy(N — 1,n) (ascan be seenin
Figures3 and4), evenif they arenotincludedin the stringmodelitself.

If the wave equationdescribingthe string includesdampirg andstiffnessterms,con-
ditionsin formula(46) transforminto somavhatmorecomplicatedooundaryconditiors

(1+4a®) [y(K +1,n) + y(K — 1,n)]
+ <b—3 - a2) W(K+2,n)+y(K—2n)]

At

_Z_?’t[y(K—i_lan_l)—i_y(K_lan_l)]:07 (47)

and
(1+4a'2) [y(la n) + y(_lv TL)]
s (=) e + (=20
- A—?’t[y(l,n—l)—ky(—l,n—l)] =0 (48)

which are attainedby writing the formula (24) with the conditiors (45). The boundary
conditiors for piano-like stringsareillustratedin Figure5.

Figure5: Modelfor piano-like boundaryconditiors.

In guitar, the terminationsof stringsare not completelyrigid. The bridge hasfinite
impedancendthe fingerterminatingthe string againsthe fingerboards far from rigid.
Therefore,in the guitarmodelit is assumedhatthe displacementy (K, n) of the string
is non-zero. Further the string is clampedjust behindthe bridge, so that the distance
betweenthe bridgeandthe clampingpositionis above the audiblewavelengthrangeof
human,andwe canassumehat

y(K +1,n) = y(K,n). (49)
Theboundaryconditiors for guitarlik e stringsareillustratedin Figure6.
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Figure6: Modelfor aguitarlike boundarycondition.

6. SUMMARY

The aim of this work wasto go throughthe formulatian of finite differencemethodin
soundsynttesis. This wasdonefrom the mathemactal point of view andnot considering
very muchtheactualimplementatn of soundsynthesisor thecomputatioal resources.

The modelsdescribedn this work have beenevaluatedand comparedo realinstru-
mentsby (Chaigne& Askenfelt1994) and(Chaigneetal. 1990).
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