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Abstract: The LQ-optimal state feedback of a finite-dimensional linear time-invariant sys-
tem determines a coprime factorization NM−1 of the transfer function. We show that the
same is true also for infinite-dimensional systems over arbitrary Hilbert spaces, in the sense
that the factorization is weakly coprime, i.e., Nf, Mf ∈ H2 =⇒ f ∈ H2 for every function f .
The factorization need not be Bézout coprime.

We prove that every proper quotient of two bounded holomorphic operator-valued func-
tions can be presented as the quotient of two bounded holomorphic weakly coprime func-
tions. This result was already known for matrix-valued functions with the classical definition
gcd(N, M) = I, which we prove equivalent to our definition.

We give necessary and sufficient conditions and further results for weak coprimeness and
for Bézout coprimeness. We then establish a variant of the inner-outer factorization with the
inner factor being “weakly left-invertible”. Most of our results hold also for continuous-time
systems and many are new also in the scalar-valued case.

AMS class: 49N10, 93D15, 93B52; 47A68, 47A56, 47B35.
Keywords: Quasi-coprime factorization, stabilizable realization, stabilizable and detectable
realization, LQR problem, optimal state feedback, infinite-dimensional systems theory.

1 Introduction and main results
In this article we shall establish the results mentioned in the abstract and some others
on weakly coprime and Bézout coprime factorizations, LQ-optimal control, stabilizable
realizations and weakly left-invertible holomorphic functions (possibly Hilbert space
operator-valued). We work in discrete time, but the results hold in continuous time too,
with certain technical differences in the case of very unbounded control and observation
operators. By H∞ we denote the set of bounded holomorphic (possibly operator-
valued) functions on the unit disc. By I we denote either the identity operator or the
corresponding constant function I ∈ H∞.

In a “coprime factorization” p = n
m of a rational number p, any common divisors of

n and m (other than the units ±1) have been canceled out, i.e., n and m are relative
primes (coprime). Thus, their greatest common divisor is gcd(n,m) = 1. Similarly,
in a “right coprime factorization” P = NM−1 of a function P , any common (right)
divisors (in H∞) of N, M ∈ H∞ “have been canceled out”. This means that

if
[
N
M

]
=

[
A
B

]
V for some A,B, V ∈ H∞, then V is a (right) divisor of I, (1)
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i.e., then I = LV for some L ∈ H∞. This is sometimes expressed as “(a right)
gcd(N, M) = I”. Condition (1) is equivalent to the Bézout condition that XM−Y N ≡
I for some X, Y ∈ H∞ (take [ A

B ] = [ I 0
0 I ], V = [ N

M ] to prove this).
If N and M are scalar-valued and we only require (1) to hold for scalar-valued

functions V , then we get the classical definition of a “weakly right coprime factorization”
[Fuh81] [Ino88] [Smi89]. The same holds in the matrix-valued case too if we only require
(1) to hold for square-matrix-valued functions V [Mik08, Theorem 2.17(c)].

In the operator-valued case one should only require (1) to hold when V (0) is in-
vertible. That definition is equivalent to the classical one in the matrix-valued case
(assuming that M(0) is invertible), but it is “the right definition” in the operator-valued
case too, in the sense that all functions of the form NM−1 do have weakly coprime
factorizations and the classical relations to LQ-optimal state feedback are retained, etc.
Most of these relations are new in the scalar-valued case too (for nonrational functions).
However, we will use the property (2) below as our definition, because it is more useful
in state-feedback contexts. We later prove our definition equivalent to the one above.

The theory on the connection between coprime factorization and different forms of
stabilization of finite-dimensional systems became rather mature during the 70s and
80s [Vid85] [Fra87]. Thereafter, coprime factorization has played a major role in control
theory, both finite- and infinite-dimensional. Also the infinite-dimensional setting has
been studied intensively, but only now the theory is becoming complete.

The connection between dynamic stabilization and (Bézout) coprime factorization
has been established also for general nonrational functions in, e.g., [Vid85], [Ino88],
[Smi89], [Qua04] in the matrix-valued case, and in the operator-valued case in [CWW01],
[Cur06] and [Mik07a]; all these for transfer functions only. Fairly general state-space
results are given in [WR00].

In [CO06] and [Sta98], certain connections between coprime factorization and sta-
bilizability and detectability were established. These results will be extended to an
equivalence in Theorem 1.3.

In the finite-dimensional case, the coprime factorization of the transfer function of
a system is determined by the LQ-optimal state feedback. We shall show that, in the
infinite-dimensional case, the factorization defined by that state feedback is “weakly
coprime” (not always (Bézout) coprime).

Using this result, we establish algebraic and system-theoretic necessary and suffi-
cient conditions for a (possibly operator-valued) function to have a (state-feedback)
stabilizable realization or a weakly coprime factorization (Theorem 1.2). Also similar
results on the Bézout coprime factorization are given, as well as further properties on
both types of coprimeness.

Before presenting the main results, we need some definitions. Let U, X and Y be
arbitrary complex Hilbert spaces, and set D := {z ∈ C ∣∣ |z| < 1}. Let B stand for
bounded linear operators. By H∞(U, Y) (resp., H∞(U)) we denote the Banach space
of bounded holomorphic functions D→ B(U, Y) (resp., D→ B(U)) with the supremum
norm. A holomorphic function f : D → U is in the Hilbert space H2(U) if and only if
‖f‖H2 := sup0<r<1 ‖f(rei·)‖L2 < ∞.

The functions that are holomorphic on a neighborhood of the origin are called
proper. If N ∈ H∞(U, Y), M ∈ H∞(U) and M(0) is invertible, then we call NM−1 a
right factorization (of P , if P is a proper B(U, Y)-valued function and P = NM−1 near
0). We call such a factorization a weakly right coprime factorization (w.r.c.f.) if, in
addition, [

N
M

]
f ∈ H2 =⇒ f ∈ H2 (2)
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for every proper U-valued function f ; i.e., if a proper U-valued function f is a restriction
of an element of H2(U) whenever [ N

M ] f is a restriction of an element of H2(Y× U).1 In
[Mik08] it will be shown that an equivalent definition is obtained with, e.g., any Hp

space in place of H2 in (2).
In Section 6 the relations between different forms of coprimeness will be treated

(the claims on (1) partially in [Mik08]) and the above will be shown equivalent to the
classical definition in the matrix-valued case. The property (2) is very important from
the control-theoretic point of view. In the literature that property (of Bézout coprime
pairs) has been used to reduce unstable control problems to stable ones. Now that can
be done in the general case too, as explained in the notes to Section 3.

A right factorization NM−1 is called a (Bézout) right coprime factorization (r.c.f.)
if [ N

M ] is left-invertible in H∞, i.e., if there exist X̃, Ỹ ∈ H∞ such that X̃M − Ỹ N ≡ I
on D (the minus sign is used for historical and practical reasons). A r.c.f. is a w.r.c.f.
(because then f =

[−Ỹ X̃
]
[ N
M ] f ∈ H2 in (2)), but the converse is not true (Example

7.1).
A right factorization NM−1 is normalized if [ N

M ] is inner, i.e., if
∥∥

[
N(z)
M(z)

]
u0

∥∥
Y

=

‖u0‖U for a.e. z ∈ T := {z ∈ C ∣∣ |z| = 1} for every u0 ∈ U. (Here we used the fact that
a Hilbert-space-valued H∞ function has an L∞ boundary function [Nik02] [Mik09].)

Now we can state our first main result: every right factorization can be made weakly
coprime. (The proof is given in Section 3.)

Theorem 1.1 A B(U, Y)-valued function P has a right factorization if and only if it
has a normalized weakly right coprime factorization.

A normalized w.r.c.f. of P is unique modulo the right-multiplication by a unitary
operator in B(U).

Moreover, if P = NM−1 is a w.r.c.f., then all right factorizations of P are para-
meterized by P = (NV )(MV )−1, where V ∈ H∞(U) and V −1 is proper. The w.r.c.f.’s
are those for which V −1 ∈ H∞ too. In particular, if a function P has a Bézout right
coprime factorization, then every w.r.c.f. of P is Bézout right coprime.

Thus, with respect to H∞ /H∞ fractions (or state-feedback stabilization, see The-
orem 1.2), weak coprimeness is the more natural form of coprimeness. A r.c.f. is just
the special case of the w.r.c.f. for functions of the form characterized in Theorem 1.3.

Nevertheless, for rational matrix-valued functions (or others continuous on D), weak
coprimeness is equivalent to coprimeness, as well as to N and M having no common
zeros on D. Therefore, the difference between a r.c.f. and a w.r.c.f. does not show up
in the finite-dimensional systems and control theory (cf. [Fra87]).

From Theorem 1.1 we see that a right factorization P = NM−1 is a w.r.c.f. if and
only if M divides the denominator of every right factorization of P . It follows that
M−1 must contain the singularities of P but no others (as in Theorem 6.17); note that
in the operator-valued case also injective singularity might exist (and is yet forbidden
in V ). Further details are provided in Section 6 and a rich algebraic description of
w.r.c.f.’s in the matrix-valued case is given in [Qua03a] and in [Qua06].

From Theorem 1.1 we also conclude that if P = NM−1 is a normalized w.r.c.f.,
then all normalized right factorizations of P are exactly those corresponding to an
inner V ∈ H∞(U) such that V −1 is proper. This solves a problem studied in [OC05].

1To be exact, we misuse the notation in a fairly standard way: we write f ∈ H2(U) whenever
f : D(f) → U is such that D∩D(f) is nonempty and open and f |D∩D(f)

is a restriction of an
element of H2. Analogous misuse applies to H∞ and to other spaces of holomorphic functions
in place of H2.
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Now it is the time to explain some of the system- and control-theoretic properties
and applications of w.r.c.f.’s.

We call
( A B

C D

) ∈ B(X × U, X × Y) (together with X) a realization of P if P (z) =
D + C(z−1 −A)−1B near 0 (and X is a Hilbert space). In Section 3 we shall prove the
following “extension” of Theorem 1.1 (the fairly standard definitions of (iii)–(v) will be
presented in Sections 2 and 3).

Theorem 1.2 (w.r.c.f.) The following are equivalent for any proper B(U, Y)-valued
function P :

(i) P has a right factorization.

(ii) P has a normalized weakly right coprime factorization.

(iii) P has an output-stabilizable realization.

(iv) P has a stabilizable realization.

(v) P has a realization that satisfies the Finite Cost Condition (10).

Moreover, a realization
( A B

C D

)
of P is output-stabilizable if and only if there exists

a nonnegative solution P ∈ B(X) of the LQR Riccati equation

A∗PA−P + C∗C = (C∗D + A∗PB)(I + D∗D + B∗PB)−1(D∗C + B∗PA). (3)

Let
( A B

C D

)
be such. Then there exists a smallest nonnegative solution Pmin. Set

S := I + D∗D + B∗PminB, F := −S−1(D∗C + B∗PminA). (4)

Then 


A + BF B[
C + DF

F

] [
D
I

]

 , (5)

is a realization of [ N
M ], where NM−1 is a weakly right coprime factorization of P .

Moreover, if we set S := I + D∗D + B∗PminB ∈ B(U) then (NS−1/2)(MS−1/2)−1 is a
normalized weakly right coprime factorization of P .

One more equivalent condition is that the (generalized) Hankel range of P is con-
tained in the (generalized) Toeplitz range of P plus H2 (Theorem 5.1). Further equiv-
alent conditions are given in [Mik08].

For example, the proper function P (z) =
√

z + 1/2 does not satisfy (i)–(v), being
not meromorphic on D. However, without (i)–(v) most typical control problems on P
do not have any solutions.

From Theorem 1.2 we conclude that the normalized w.r.c.f. of any function corre-
sponds to the LQ-optimal state-feedback for some system.

Theorem 1.2 provides a constructive formula for the w.r.c.f. Moreover, the result
shows that the factorization determined by the LQ-optimal state-feedback operator F
is always weakly coprime. It need not be Bézout coprime (Example 7.2). Both facts
have previously been unknown (cf. [OC05, p. 1208]), even in the scalar-valued case
U = C = Y.

In the last result of this section, we shall present a similar equivalence on Bézout
coprime factorizations. A map [ X N

Y M ] ∈ H∞(Y×U) such that [ X N
Y M ]−1 ∈ H∞ and M(0)

is invertible is called a d.c.f. (doubly coprime factorization) of NM−1. It obviously
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follows that NM−1 is a r.c.f. (If we set
[

M̃ −Ñ

−Ỹ X̃

]
:= [ X N

Y M ]−1, then M̃(0) is invertible

and M̃−1Ñ is called a l.c.f. of NM−1.) The conditions (iii)–(v) below are defined in
Section 4, which also contains the proof.

Theorem 1.3 (r.c.f.) The following are equivalent for a (proper) function P :

(i) P has a r.c.f. (right coprime factorization).
(ii) P has a d.c.f. (doubly coprime factorization).
(iii) P has an output-stabilizable and input-detectable realization.
(iv) P has a stabilizable and detectable realization.
(v) P has a jointly stabilizable and detectable realization.

A sixth equivalent condition is that P is dynamically stabilizable (i.e.,
[

I −Q
−P I

]−1 ∈
H∞ for some proper Q), as will be shown in [Mik07a] using Theorems 1.1 and 1.3.
For matrix-valued functions the sufficiency of dynamic stabilization was established in
[Ino88] and [Smi89], the necessity and more in [Tre92] (whose extension to the matrix-
valued case is contained in [Vas71], as noted in [Qua04]).

Notes
Naturally, to every “right” definition (e.g., “r.c.f.”) or result in this article there exists

a corresponding “left” definition or result, by duality (replace P (resp., M, N, . . .) by
P d (resp., Md, Nd, . . .), where P d(z) := P (z̄)∗). In particular, the existence of a “l.c.f.”
is one more equivalent condition in Theorem 1.3.

We call here N, M ∈ H∞ gcd-coprime if (1) holds for every square-matrix-valued
V (if it holds for the other V ∈ H∞ too, then N and M are actually Bézout coprime:
set [ A

B ] = [ I 0
0 I ], V = [ N

M ] to observe this). For gcd-coprime factorizations, the first
result of Theorem 1.1 was established in [vR77] in the scalar-valued case (by showing
that H∞(C) is a greatest common divisor domain) and in [Ino88] and [Smi89] in the
matrix-valued case, independently.

In control theory, the word “coprime” has been reserved to Bézout coprimeness.
Therefore, the “more natural” coprimeness concept, “gcd-coprime”, has been called
“weakly coprime” [Ino88] [Smi89]. In the matrix-valued case that coincides with our
definition, namely with the “quasi-coprime” of [Mik02] and [Mik06], by Theorem 6.14.
In the operator-valued case “gcd-coprime” coincides with “(Bézout) r.c.” [Mik08], so
the term “weakly coprime” can be reserved, instead, to our definition (of “w.r.c.”) also
in that case. Moreover, our definition is exactly the one satisfied by the factorization
determined by the LQ-optimal control, thus generalizing many classical results on
rational transfer functions or on finite-dimensional systems.

The main contribution of Theorem 1.1 is the existence of a w.r.c.f. (in our terms);
the rest of the theorem is fairly straight-forward. We are grateful to one of the referees
for pointing out to us the existence of [Qua05] and [Qua06] and that one obtains an
alternative proof of the existence of a w.r.c.f. (and of Theorem 6.14) in the scalar-valued
case from [Qua05, Proposition 8 & Corollary 5], whose proofs can be applied to the
matrix-valued case too when combined with [Qua06, Theorem 1]. Our Theorem 1.1
was first reported in [MS04] (which is completely due to the author but was presented
by O. Staffans).

The contribution of this article to Theorem 1.2 lies in the three appearances of
the term “weakly right coprime”. The rest of the theorem is contained in [Mik02],
and at least the Riccati equation part has been well known earlier (see, e.g., [CZ95]),
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being a straightforward extension from the finite-dimensional case (of rational transfer
functions). Moreover, for the classical definition of weak coprimeness, the equivalence
of (i) and (ii) was already established in [Ino88] and [Smi89] as mentioned above.

In the matrix-valued case, the implication “(i)⇔(ii)” in Theorem 1.3 is a direct
consequence of Tolokonnikov’s Lemma [Tol81]. The lemma was extended to operator-
valued functions in [Tre04] (the nonseparable case in [Mik09]), from which we derive
the equivalence in Section 4. The implication “(iii)⇒(ii)” was established in [CO06],
and the equivalence “(ii)⇔(v)” in [Sta98] (both in continuous time, but the same ideas
apply here too). The remaining implications are trivial.

In Section 2 we present the basic properties of discrete-time systems, and in Sec-
tion 3 we study the LQR problem and prove Theorems 1.1 and 1.2. In Section 4 we
prove Theorem 1.3 and explore its conditions (i)–(v) in further detail. There we also
present the “power stabilizability” forms of Theorems 1.2 and 1.3.

The Hankel range condition mentioned below Theorem 1.2 is discussed and estab-
lished in Section 5. There we also show that every “H2

strong function” has a realization
as an output-stable system (and that the converse holds). Moreover, constructive al-
gorithms are provided for a w.r.c.f. and for an output-stabilizable realization (resp.,
for a r.c.f., a d.c.f., a robust stabilizing controller and a stabilizable and detectable
realization) of a function satisfying the assumptions of Theorem 1.2 (resp., of Theorem
1.3).

The readers not interested in state-space control theory may skip Sections 2–5.
In Section 6 we present further algebraic and function-theoretic properties of w.r.c.f.’s

and a similar factorization for general H∞ functions; this variant of the inner-outer
factorization guarantees the property (2) (“weak left-invertibility”) for the inner factor
but weakens the requirement on outerness. We also show how the w.r.c.f. is a strictly
stronger tool than the (dual) inner-outer factorization. Certain counter-examples are
given in Section 7.

With the exceptions mentioned above and in the notes to Section 6, the results
in this article (minus Proposition 3.1, Lemma 3.5 and Example 7.1) seem to be new,
although part of the results were reported in proceedings [MS04] without proofs and
some minor facts were presented in [Mik02].

The continuous-time counterparts of the results in this article (and more) are pro-
vided in [Mik08], which is built on the results in this article, with the class of well-posed
linear systems [Sta05] [SW02] [Sal89] [Wei94] as the class of realizations. The main
exception is that in continuous time the Riccati condition in Theorem 1.2 (is slightly
different and) may become very complicated if B is highly unbounded [Mik06] [WZ98]
(yet the rest of Theorem 1.2 holds). Moreover, in that article “proper” means “bounded
on some right half-plane”, and “some right half-plane” takes the role of “some neigh-
borhood of the origin”. Thus, e.g., the invertibility of a function M at the origin is
replaced by “M−1 is proper”; the details are given in the article. There are also slight
additional changes in results 6.11–6.14 and 6.18.

Also further discrete-time results on coprimeness and on weak coprimeness can be
found in [Mik08]. For frequency-domain weak coprimeness results on matrix-valued
functions, particularly for other algebras in place of H∞, the reader can consult
Quadrat’s articles including those mentioned above.

Notation. We define the following terminology in the following order. Section 1:
I, U, X, Y, D, B, H∞, H2, proper, right factorization, w.r.c.f., r.c.f., normalized, inner,
T, realization, Riccati equation, LQ-optimal d.c.f. Section 2: discrete-time system,( A B

C D

)
, N, input u, state x, output y, transfer function D̂ , Z-transform û, state feed-
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A B

C D
F 0

x·+1 = Ax + Bu

y = Cx + Du

?
x

¾x·+1 6

τ−1

¾y

¾Fx r

?c+
+-uª -u = Fx + uªr

6

Figure 1: State-feedback connection

back, closed-loop system, output stable, stable, [output-]stabilizable. Section 3: LQR
problem, Finite Cost Condition. Section 4: GB, G H∞, [input-]detectable, dual, jointly
stabilizable and detectable, power stabilizing, power stable. Section 5: H∞r , H2

r , Z,
`2r, π+, π−, Z−, τ , DP , π̂+, π̂−, H2

1/r,−, cc, ek, `1, G ∗ u, H2
strong. Section 6: weakly

left-invertible, coercive, left-invertible, α-proper, α-weakly left-invertible, α-w.r.c., α-
right factorization, α-r.c.f., α-w.r.c.f., outer, irreducible, gcd-coprime, dual inner-outer
factorization.

2 Discrete-time systems
In this section we recall some well-known details on linear, time-invariant discrete-time
systems and state feedback.

A discrete-time system on (U, X, Y) is a quadruple
( A B

C D

) ∈ B(X × U, X × Y). Set
N := {0, 1, 2, . . .}. By `2(N; U) we denote sequences u : N → U such that ‖u‖2`2 :=∑

k∈N ‖uk‖2U < ∞. For each input u ∈ `2(N; U) and initial state x0 ∈ X we associate the
state trajectory x : N→ X and the output y : N→ Y through

{
xk+1 = Axk + Buk,

yk = Cxk + Duk,
k ∈ N. (6)

The transfer function D̂(z) := D+C(z−1−A)−1B = D+zC(I−zA)−1B of
( A B

C D

)

is holomorphic r−1D→ B(U, Y), where r−1D = {z ∈ C
∣∣ |z| < r−1} and r := r(A) is the

spectral radius of A. The Z-transform û of u : N → U is defined by û(z) :=
∑

n znun

(for those z for which the sum converges absolutely). For x0 = 0 we have ŷ = D̂ û on
D ∩ r−1D for every u ∈ `2(N; U), hence the name transfer function.

State feedback means that, for some state-feedback operator F ∈ B(X, U), we use the
function u := Fx + uª as the input, where uª : N → U denotes an exogenous input
(or disturbation) uª, as in Figure 1. Thus, equation (6) together with u = Fx + uª
defines the “closed-loop system” that maps x0 and uª to x and [ y

u ]; we just have to
replace

( A B

C D

)
by (5). By the above definition, the transfer function of the closed-loop

system (5) is given by
[
N̂ (z)
M̂ (z)

]
:=

[
D
I

]
+

[
C + DF

F

]
(z−1 −A−BF )−1B. (7)

It follows that D̂ = N̂ M̂−1, and M̂−1 = I − F (·−1 −A)−1B.
The system

( A B

C D

)
is called output stable if y ∈ `2 whenever x0 ∈ X and u = 0 (or

equivalently, if there exists K < ∞ such that ‖CA·x0‖2 ≤ K‖x0‖X (x0 ∈ X)); stable if
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y ∈ `2 and x is bounded whenever x0 ∈ X and u ∈ `2(N; U), or equivalently, if there
exists K < ∞ such that

‖xn‖X + ‖y‖2 ≤ K (‖x0‖X + ‖u‖2) (n ≥ 0, x0 ∈ X, u ∈ `2(N; U)). (8)

The system
( A B

C D

)
is called output-stabilizable (resp., stabilizable) if, for some F ∈

B(X, U), the closed-loop system (5) becomes output-stable (resp., stable).

3 The LQR problem
In this section we prove Theorems 1.1 and 1.2. This requires us to first present the
solution of the LQR problem and to show that its solution possesses certain interesting
properties.

The LQR problem (Linear Quadratic Regulator problem) refers to the minimization
of the cost function ∞∑

k=0

(‖y‖2Y + ‖u‖2U
)

= ‖y‖22 + ‖u‖22. (9)

over all u ∈ `2(N; U) for a fixed initial state x0 ∈ X. For the problem to be solvable, we
must obviously assume the Finite Cost Condition:

for each x0 ∈ X there exists u ∈ `2(N; U) such that y ∈ `2. (10)

The following is well known (see, e.g., [OC05, Corollary 5.8] or [Mik02, Theorem
9.9.1(g2)]):

Proposition 3.1 (LQR) The Finite Cost Condition holds if and only if the system
is output-stabilizable, or equivalently, if and only if there exists a nonnegative solution
of (3).

Assume the Finite Cost Condition. Set (4), where Pmin stands for the smallest
nonnegative solution of (3). Then F is output-stabilizing, D̂ = N̂ M̂−1 is a right fac-
torization, and D̂ = (N̂ S−1/2)(M̂S−1/2)−1 is a normalized right factorization. More-
over, the state-feedback un = Fxn (or equivalently, un = F (A + BF )nx0) minimizes
the cost ‖y‖22 + ‖u‖22, the minimum being 〈x0,Pminx0〉.

Next we define the time-domain counterparts of D̂ and M̂ (the latter depending on
the F ∈ B(X, U) chosen). For x0 = 0 and u ∈ `2(N; U), we denote by Du (resp., M−1u)
the signal y = Cx + Du (resp., uª = u − Fx). (We may have Du, M−1u 6∈ `2.) By
M we denote the inverse of the map M−1. Obviously, M̂−1u = M̂−1û near 0 for any
u ∈ `2(N; U).

Now we show that M−1 maps “admissible” inputs into `2.

Lemma 3.2 Let x0 = 0. With the assumption and notation of Proposition 3.1, for
any u ∈ `2(N; U) such that y ∈ `2, we have 〈xn,Pminxn〉X → 0, as n → +∞, and
M−1u ∈ `2 and 〈M−1u, SM−1u〉`2(N;U) = ‖y‖22 + ‖u‖22.

Proof: 1◦ Given n ∈ N, define ũ ∈ `2(N; U) and ỹ ∈ `2(N; Y) by ũk := un+k, ỹk :=
yn+k (k ∈ N). Then ỹ equals the output with initial state xn and input ũ. Therefore,
‖ỹ‖22 + ‖ũ‖22 ≥ 〈xn,Pminxn〉, by Proposition 3.1. But ‖ỹ‖22 + ‖ũ‖22 → 0, as n → ∞,
hence 〈xn,Pminxn〉 → 0.
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2◦ Set v := M−1u = u− Fx. Then, for any n ∈ N, we have

〈vn, Svn〉 = 〈un, Sun〉+ 〈Fxn, SFxn〉 − 2Re 〈un, SFxn〉 (11)

= ‖un‖2 + ‖Dun‖2 + 〈Bun,PBun〉 (12)

+ 〈Axn,PAxn〉 − 〈xn,Pxn〉+ ‖Cxn‖2 + 2Re 〈un, (D∗C + B∗PA)xn〉
(13)

= ‖un‖2 + ‖yn‖2 + 〈xn+1,Pxn+1〉 − 〈xn,Pxn〉. (14)

Thus,
∑k

n=0 〈vn, Svn〉 =
∑k

n=0 ‖un‖2 +
∑k

n=0 ‖yn‖2 + 〈xk+1,Pxk+1〉−〈x0,Px0〉. Since
x0 = 0, by 1◦ we get that

∑∞
n=0 〈vn, Svn〉 = ‖u‖22 + ‖y‖22 < ∞, hence v ∈ `2 (because

S ≥ I). ¤

Finally, we observe that domain of the part of D in `2 equals M [`2].

Lemma 3.3 Set U := {u ∈ `2(N; U)
∣∣ Du ∈ `2}. With the assumption and nota-

tion of Proposition 3.1, M−1[U ] = `2(N; U). Moreover, N̂ M̂−1 is a w.r.c.f. and
N̂ S−1/2(M̂S−1/2)−1 is a normalized w.r.c.f.

Proof: 1◦ By Lemma 3.2, M−1 maps U into `2. Set N := DM . If v ∈ `2(N; U) and
we set u := M v, then Du = N v ∈ `2 (because N̂ v = N̂ v̂ ∈ H2), hence then u ∈ U .
Thus, M−1 maps U onto `2.

2◦ Assume that v̂ is proper, û := M̂ v̂ ∈ H2 and N̂ v̂ ∈ H2. Then D̂u = D̂ û =
N̂ v̂ ∈ H2, hence u ∈ U , hence v = M−1u ∈ `2, i.e., v̂ ∈ H2. Thus, N̂ M̂−1 is a
w.r.c.f.

By Lemma 3.2, we have ‖N v‖2`2 + ‖M v‖2`2 = 〈v, Sv〉`2 . Set [ N
M ] :=

[
N̂ S−1/2

M̂S−1/2

]
. For

any u0 ∈ U and φ ∈ `2(N;C) we have ‖φ [ N
M ]u0‖2 = ‖φu0‖2 (set v := φu0), hence [ N

M ]
is inner. ¤

It is straight-forward and well known that any H∞ function has a stable shift-
semigroup realization.

Lemma 3.4 Let P ∈ H∞(U, Y). Then a stable realization of P is given by
(

A B

C D

)
:=

(
SL z−1·
π0P P (0)

)
∈ B(~X× U, ~X× Y), (15)

where ~X := H2
−(Y) := {∑−1

k=−∞ akzk
∣∣ a ∈ `2(Z−; U)} = ̂̀ 2(Z−; U), π0

∑
k zkak := a0

and SL is the left shift
∑−1

k=−∞ zkak 7→
∑−2

k=−∞ zkak+1.

Here π0Pf := π0(Pf), where P is the multiplication operator H2
−(U) 3 f 7→ Pf ∈

L2(T; Y) (it is well-known that P extends to a bounded multiplication operator on H2
−,

even on L2(T; U) = {∑∞
k=−∞ akzk

∣∣ a ∈ `2(Z−; U)}).
Further results on realizations are provided in Theorems 5.2 and 5.5 and in Remark

5.6.
Proof of Theorem 1.2: 1◦ “(i)⇒(iv)”: Assume (i) and redefine N and M to have
M(0) = I. Let

(
Aª B

[Cª
F

] [ D
I ]

)
be a stable realization of [ N

M ] (e.g., use Lemma 3.4). Set

A := Aª −BF, C := Cª −DF to define a system
( A B

C D

)
. This system is stabilizable

(by F ) and its transfer function is NM−1, as noted below (7).
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2◦ Implications “(ii)⇒(i)” and “(iv)⇒(iii)” are trivial and “(iii)⇒(ii)” follows from
Lemma 3.3. From Proposition 3.1 we obtain the equivalence “(v)⇔(iii)” and all claims
below (v) except the fact that the N and M defined by (5) (i.e., by (7))) are w.r.c.,
which follows from Lemma 3.3. ¤

The stabilizable realization in the above proof was constructed in terms of N and
M . For an output-stabilizable realization in terms of P only, see Theorem 5.2.

Bounded multiplication operators on H2 are H∞ functions:

Lemma 3.5 If V is a proper B(X, U)-valued function and V f ∈ H2(U) for each f ∈
H2(X), then V ∈ H∞(X, U).

(Actually, the same lemma and proof apply to Hp in place of H2 when 1 ≤ p ≤ ∞.)
Proof: Note thatH2(X) 3 f 7→ f(z) is bounded for every z ∈ D [HP57, Theorem 6.4.2].
From this and the closed-graph theorem we observe that MV : f 7→ V f is bounded
H2(X) → H2(Y) (if fn → f and V fn → g in H2, as n → ∞, then g = limn V fn = V f
pointwise near the origin). We conclude that the formula R(z)x0 := (V x0)(z) defines
a function R : D→ B(X, U) and R = V (near the origin). By [HP57, Theorem 3.10.1],
R is holomorphic. Trivially, ‖MV ‖ ≤ ‖R‖H∞ ≤ ∞, and it is not difficult to verify that
‖R‖H∞ ≤ ‖MV ‖ < ∞. ¤

The property (2) works for H∞ too:

Lemma 3.6 If NM−1 is a w.r.c.f. with M ∈ H∞(U), R is a proper B(X, U)-valued
function, and NR,MR ∈ H∞, then R ∈ H∞.

(By Theorem 6.13, the above property is also sufficient for weak coprimeness.)
Proof: For each f ∈ H2 we have NRf, MRf ∈ H2, hence Rf ∈ H2. By Lemma 3.5,
R ∈ H∞. ¤

It is well known that invertible inner functions are constants [Sta97, Lemma 18(iii)]:

Lemma 3.7 If V, V −1 ∈ H∞(U) and V is inner, then V ∈ B(U).

Proof of Theorem 1.1: The equivalence follows from Theorem 1.2. If P = N0M
−1
0

is a right factorization and we set V := M−1M0, then N0 = PM0 = PMV = NV ,
hence NV, MV ∈ H∞, hence V ∈ H∞, by Lemma 3.6.

By the above, V −1 ∈ H∞ if also N0M
−1
0 is a w.r.c.f. If, in addition, [ N

M ] and
[

N0
M0

]
are inner, then so is V , hence then V ∈ B(U), by Lemma 3.7.

Conversely, if V, V −1 ∈ H∞, then (NV )(MV )−1 is obviously a w.r.c.f. (even a Bé-
zout r.c.f. if N and M are Bézout coprime). ¤

Notes for Section 3
In Lemmata 3.2 and 3.3 we showed that the “LQ-optimal” N and M form a w.r.c.f.

In an alternative proof one can show that if the elements (uª)0, (uª)1, . . . , (uª)n−1 ∈ U
of the closed-loop input (see Section 2) are fixed, with initial state x0 = 0, then the
minimal cost ‖y‖22+‖u‖22 is achieved by setting 0 = (uª)n, (uª)n+1, (uª)n+2, . . .. (This
must be shown to all sequences uª : N→ U for which u, y ∈ `2.)

Indeed, whenever G := [ N
M ] ∈ H∞(U, Y) is inner, then, to minimize ‖Gf‖H2(Y) over

f ∈ H2(U) with f(z) =
∑∞

k=0 zkfk for fixed f0, f1, . . . , fn ∈ U, we obviously have to
take 0 = fn+1, fn+2, . . .. If we drop the requirement f ∈ H2(U), then the same holds if
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and only if, in addition, N and M are weakly right coprime (it is not difficult to show
this).

Moreover, as mentioned in the introduction, the LQ-optimal state feedback reduced
regulation problems to the stable case without loss of generality. We explain this below.

Given an output-stabilizable system, we can use the state feedback (4) to (output-
and I/O-)stabilize it. For any initial state x0 ∈ X, the inputs uª ∈ `2 to the closed-loop
system (5) correspond one-to-one to the set of admissible inputs for the original system( A B

C D

)
, i.e., to those inputs u ∈ `2 that result in an y ∈ `2 output (see (6)), because

of weak coprimeness. Also any other (output- and I/O-)stabilizing state feedback
that makes N and M w.r.c. allows one to reduce any control problem over admissible
inputs to a control problem for a “stable” system (over uª ∈ `2(N; U)). Moreover, such
“weakly coprime stabilization” is the weakest form of stabilization with this reduction
property—this was the motivation behind the concept in [Mik02] before the equivalence
and the other results of this article were known and behind its wide implicit use in
the literature. However, sometimes one wants to optimize over power-stabilizing (or
exponentially stabilizing) inputs only; for such control problems an analogous result
holds without any coprimeness assumptions [Mik02, Lemma 8.4.5(e)].

Finally, we mention that the LQ-optimal state feedback F maximizes the robustness
margin (to ‖S‖−1/2) for state-feedback controllers (even for the feedback û = Kx̂
for arbitrary proper B(X, U)-valued function K) with normalized right weakly coprime
factor uncertainty in the sense of [KS94]. This generalizes [KS94] to output-stabilizable
and infinite-dimensional plants (the proof is analogous and hence omitted).

4 Doubly coprime factorizations and joint stabiliz-
ability

In this section we define the concepts in Theorem 1.3 and present its proof.
We set GV = {G ∈ V

∣∣ there exists G−1 ∈ V} when V = B or V = H∞.

Lemma 4.1 If N ∈ H∞(U, Y) and M ∈ H∞(U) are r.c., then there exist a closed
subspace Y2 ⊂ Y and functions X, Y ∈ H∞ such that [ X N

Y M ] ∈ G H∞(Y2 × U, Y× U).
If dim U < ∞ or M(z) ∈ GB(U) for some z ∈ D, then we can choose X and Y above

so that Y2 = Y.
In particular, any r.c.f. can be extended to a d.c.f.

Proof: 1◦ The first claim follows from [Tre04]. ([Mik09, Theorem 4.3] in the nonsep-
arable case).

Note that here [ X N
Y M ] ∈ . . . means that there exists G ∈ H∞(Y × U, Y2 × U) such

that [ X N
Y M ] G = [ I 0

0 I ] ∈ H∞(Y× U) and G [ X N
Y M ] = [ I 0

0 I ] ∈ H∞(Y2 × U).
2◦ We first note that if there exists some operator T ∈ GB(Y, Y2), then we can

replace [ X N
Y M ] by [ X N

Y M ] [ T 0
0 I ] ∈ G H∞(Y× U) to satisfy the also second sentence of the

lemma.
3◦ Assume that dim U < ∞. We have dim Y2 × U = dim Y × U (because GB(Y2 ×

U, Y×U) is nonempty). Therefore, dim Y2 = dim Y (by dim Y we refer to the (necessarily
unique) cardinality of an arbitrary orthonormal basis of Y). Consequently, GB(Y, Y2) is
nonempty ([Mik02, Lemma A.3.1(a5)]), and hence the trick in 2◦ applies.

4◦ Assume, instead, that M(z) ∈ GB(U) for some z ∈ D. Then f := X −NM−1Y

is defined and invertible at z (because [ X N
Y M ] = [ I N

0 M ]
[

X−NM−1Y 0
M−1Y I

]
at z, and [ X N

Y M ]
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and [ I N
0 M ] are invertible at z), i.e., T := f(z)−1 ∈ GB(Y, Y2), hence the trick in 2◦

applies.
5◦ If NM−1 is a r.c.f. of a function P , then M(0) ∈ GB(U) and hence we can extend

it to a d.c.f. of P , by the first two sentences of the lemma. ¤

(The assumption dim U < ∞ in is not extraneous: if dim Y ≤ dim U = ∞, then there
exists an invertible [ M

N ] ∈ B(U, U × Y), thus making Y2 = {0} the only possible choice
of Y2.)

In [Mik02] and [Sta05] it is explained how to extend a fixed l.c.f. and a fixed r.c.f.
to a d.c.f. or how to obtain all r.c.f.’s or d.c.f.’s of a given function P .

Output-stabilizability (Section 2) of a system and its dual leads to a doubly coprime
factorization of the transfer function:

Lemma 4.2 If
( A B

C D

)
and

(
A∗ C∗

B∗ D∗

)
are output stabilizable, then D̂ := D + C(·−1 −

A)−1B has a d.c.f.

By Theorem 1.1, the “optimal LQR feedback” factorization NM−1 of Theorem 1.2
(or of Proposition 3.1) is then a r.c.f. of D̂ .
Proof of Lemma 4.2: By [OC05, Lemma 6.7], the Hankel norm of

[
NS−1/2

MS−1/2

]
is

strictly smaller than one (the separability assumption in [OC05] is not needed there).
By [Mik09, Corollary 4.5], this implies that MS−1/2 and NS−1/2 are r.c., hence so are
M and N . By Lemma 4.1, D̂ has a d.c.f. ¤

Also the converse result holds, by Theorem 1.3.
Now we present some terminology needed in this section (and Theorem 1.3) only.

A system
( A B

C D

) ∈ B(X × U, X × Y) is called [input-]detectable if its dual
(

A∗ C∗

B∗ D∗

)
is

[output-]stabilizable (Section 2). The system is called jointly stabilizable and detectable
if there exist F ∈ B(X, U) and H ∈ B(Y, X) such that the systems




A + BF H B

C + DF 0 D
F 0 0


 and




A + LC L B + LD

C 0 D
F 0 0


 (16)

are stable. By removing the middle row or the bottom column, we observe that this
means that

( A B

C D

)
and

(
A∗ C∗

B∗ D∗

)
are stabilizable, that the state-feedback operator F

also stabilizes the additional input corresponding to L, and that L∗ satisfies the dual
condition.

If F and L∗ are power stabilizing to the two systems, respectively, (i.e., r(A+BF ) <
1 and r(A+LC) < 1, where r stands for the spectral radius), then they are necessarily
jointly stabilizing and detecting in the above sense. In that case also the standard
formulae yield a d.c.f. of D̂ . However, it is not known whether the functions defined
by the standard formulae for X, Y, X̃, Ỹ are bounded on D in the setting of Lemma 4.2
[CO08] [CO07] [CO06]. Nevertheless, in [CO08], nonstandard formulae for (alternative,
bounded) Bézout factors X, Y, X̃, Ỹ are provided (partially also in [CO07], continuous-
time in [CO06]).

From the proof below one sees that, given a d.c.f. of P , we can actually choose a
realization

( A B

C D

)
of P so as to have the two systems in (16) strongly stable.
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Proof of Theorem 1.3: Implication “(iii)⇒(ii)” is Lemma 4.2, implication “(i)⇒(ii)”
is from Lemma 4.1, and implications “(v)⇒(iv)⇒(iii)” and “(ii)⇒(i)” are trivial, so we
assume (ii) and prove (v).

Let the first system in (16) be some stable realization (Lemma 3.4) of
[

I−X N
−Y M−I

]
(in particular, set A := Aª−BF, C := Cª−DF , where Aª, Cª and F constitute the
first column of this realization). As in the proof of [Sta98, Theorem 4.4] (or in that of
[Mik02, Theorem 6.6.28]), one verifies that the second system in (16) is a realization

of
[

M̃−I Ñ

−Ỹ I−X̃

]−1

and that both realizations are stable. ¤

Notes for Section 4
A system

( A B

C D

)
on (U, X, Y) is called power stable if r(A) < 1 and power stabilizable

if r(A + BF ) < 1 for some F ∈ B(X, U). We call an element of H∞ power stable if it
has a holomorphic extension to an open set containing D. We call a right factorization
NM−1 power stable if N and M are power stable.

Theorem 1.3 also holds in its “power form”: P has a power stable r.c.f. if and
only if it has a power stable d.c.f. (i.e., one with [ X N

Y M ] and [ X N
Y M ]−1 power stable),

or equivalently, P has a [jointly] power-stabilizable and power-detectable realization.
(The proof is essentially the same.)

Also most of Theorem 1.2 holds in its “power form”. In particular, P has a power-
stable right factorization if and only if it has a power-stabilizable realization. Similarly,
in (10) we have to replace y by x to have (v) equivalent to the existence of a power-
stabilizable realization. Power-stabilizability of

( A B

C D

)
is equivalent to (3) with C = I

and D = 0 having a nonnegative solution P (which is necessarily unique). With the
original C and D in (4) this P defines a power-stable right factorization (of P =
D + C(·−1 −A)−1B), which need not be a w.r.c.f.

The scalar function P := NM−1 in Example 7.1 has the w.r.c.f. NM−1 and a
“w.l.c.f.” (namely M−1N) but no d.c.f. In particular, to have a d.c.f. it is not suffi-
cient to have a stabilizable realization and a (different) detectable realization. In the
operator-valued case this holds also for power-stabilizability and power-detectability.
However, a matrix-valued “power w.r.c.f.” is a “power r.c.f.”, by Theorem 6.6(i)&(iii)
below.

5 Realizations and Hankel operators
In Theorem 5.1 we shall extend Theorem 1.2 by further equivalent conditions. In
Theorem 5.2 we shall construct an output-stabilizable realization of the function P in
Theorem 1.2 without reference to a factorization. If P has a r.c.f., then the algorithm
in Remark 5.3 yields a r.c.f., a d.c.f., a robust stabilizing controller and a stabilizable
and detectable realization of P , constructively. In Theorem 5.5 we characterize the
functions that have output-stable realizations.

To do the above, we first need a few state-space definitions and well-known results,
for this section only.

Given r > 0, by H∞r (U, Y) we denote the Banach space of bounded holomorphic
functions rD→ B(U, Y) with supremum norm and by H2

r(U) the Hilbert space of holo-
morphic functions rD→ B(U, Y) having sup ‖f‖H2

r
:= sup0<t<r ‖f(tei·)‖L2 < ∞. Thus,

H∞ = H∞1 and H2 = H2
1. Moreover, we define the Hilbert space `2r(Z; U) of weighted
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square-summable sequences on Z := {0,±1,±2, . . .} by setting

‖u‖2`2r :=
∞∑

k=−∞
r−k‖uk‖2U. (17)

We set `2 := `21, (π+u)k :=
{

uk, k ≥ 0;

0, k < 0
, π− := I−π+, Z− := Z\N, (τu)k := uk+1. The

Z-transform u 7→ û :=
∑

k zkuk is an isomorphism of `2r(N; U) onto H2
1/r(U). Therefore,

every P ∈ H∞1/r(U, Y) corresponds (isometrically) to a unique DP ∈ B(`2r(N; U), `2r(N; U))

through D̂P u = Pû. Moreover, DP has a unique shift-invariant (i.e., τDP = DP τ)
extension DP ∈ B(`2r(Z; U), `2r(Z; U)). This extension satisfies π−DP π+ = 0 (causality).
We set π̂+

∑∞
k=−∞ ukzk :=

∑∞
k=0 ukzk, π̂− := I − π̂+. Note that π̂+u = π̂+û and that

the functions in the space H2
1/r,−(U) := {∑−1

k=−∞ akzk
∣∣ a ∈ `2r(Z−; U)} are holomorphic

on r−1Dc
. We equip H2

1/r,−(U) with the topology coinduced from `2r.
Now we can show that Theorem 1.2(i) holds if and only if the “generalized Hankel

range” π+DP π− lies in the “generalized Toeplitz range” π+DP π+ plus `2(N; U), i.e., if
and only if “the Toeplitz range of P stabilizes the Hankel range of P ”:

Theorem 5.1 Let P ∈ H∞1/γ(U, Y) for some γ ≥ 1. Then also each of the following
conditions is equivalent to the existence of a right factorization of P :

(vi) There exists r ≥ γ such that π+DP π−[`2r] ⊂ π+DP π+[`2] + `2(N; Y).

(vi’) There exists r ≥ γ such that for any v ∈ `2r(Z−; U) there exists u ∈ `2(N; U)
such that DP (v + u) ∈ `2.

(vi”) There exists r ≥ γ such that for any v ∈ `2r(Z−; U), there exists u ∈
`2(N; U) such that π+DP (v + u) ∈ `2.

(vi” ’) There exists r ≥ γ such that for every w ∈ H2
1/r,−(U) there exists f ∈

H2(U) such that π̂+P (f + w) ∈ H2(Y).

(In (vi” ’), for every w ∈ H2
1/r,−(U) and f ∈ H2(N; U) we have f + w ∈ L2(r−1T; U)

and P (f + w) ∈ L2(r−1T; Y), hence π̂+P (f + w) ∈ H2
1/r(Y).)

Proof: 1◦ (vi)–(vi”’), (i): Now π−DP (v + u) = π−DP v ∈ `2r(Z−; Y) ⊂ `2 (because
r ≥ 1), hence one easily observes that (vi)–(vi” ’) are equivalent (even with the same
r). By Theorem 5.2 below, (vi” ’) implies Theorem 1.2(iii) (which is equivalent to (i)).

2◦ (i)⇒(vi’): Assume (i). Take r ≥ 1 such that M and M−1 are bounded on r−1D.
Let v ∈ `2r(Z−; U) be arbitrary. Then ṽ := π−D−1

M v ∈ `2r(Z−; U) ⊂ `2(Z−; U), hence
ũ, ỹ ∈ `2, where ũ := π+DM ṽ, ỹ := π+DN ṽ. But v = π−DMD−1

M v = π−DM ṽ, hence

π+DP (v + ũ) = π+DP (π−DM ṽ + π+DM ṽ) = π+DP DM ṽ = ỹ ∈ `2. (18)

Therefore, (vi’) holds (set u := ũ). ¤

In the proof of Theorem 1.2, a stabilizable realization of P was constructed using a
right factorization of P . Even if no such factorization is given, we can use the following
formula to obtain an output-stabilizable realization.

Theorem 5.2 If the condition (vi” ’) in Theorem 5.1 holds, then the realization (15)
with state space X := H2

1/r,−(U) is output-stabilizable.
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This follows from Proposition 3.1, because the condition (vi” ’) is equals the Finite
Cost Condition for this realization.

For any function P having a right factorization (resp. a r.c.f.), we remark below
constructive formulae of 1. a stabilizable realization, 2. normalized w.r.c.f. (resp.
3. normalized r.c.f., 4. stabilizable and detectable realization, 5. d.c.f. and robust
stabilizing controllers). In 2., 3. and 5., one can also start from any fixed realization
that satisfies certain weak stabilizability conditions.

Remarks 5.3 (Constructive formulae)
1. (Stabilizable realization) If a function P has a right factorization, then The-

orem 5.2 provides the formula for an output-stabilizable realization of P , and the proof
of Theorem 1.2 provides the formula for a stabilizable realization of P .

2. (Normalized w.r.c.f.) Given an output-stabilizable realization of P , a nor-
malized w.r.c.f. of P is constructed in Theorem 1.2 (the corresponding nonnormalized
w.r.c.f. is given by (7)).

3. (Normalized r.c.f.) If P has a r.c.f., then 1.–2. provide a normalized r.c.f. of
P , by Theorem 1.1.

4. (Stabilizable and detectable realization) If (and only if) P has a r.c.f., then
also the dual of the stabilizable realization mentioned in 1. is stabilizable (this will be
shown in [Mik07b]).

5. (D.c.f. and robust controllers) Assume that a system Σ :=
( A B

C D

)
and its

dual are output-stabilizable (e.g., that Σ is the realization constructed in 4. above).
Then constructive formulae for a d.c.f. (and its inverse) of the transfer function of Σ are
provided in [CO08] (partially already in [CO07]; cf. [CO06]). Moreover, their assump-
tion D = 0 can always be made, we just have to later replace [ M Y

N X ] by [ I 0
D I ] [ M Y

N X ].)
Finally, constructive formulae for robust stabilizing controllers for the transfer func-

tion of Σ can be found in [CO07] and in [CO08]. /

In a follow-up article (summarized in [Mik07c]) the author shall show that if, in 1.
above, we start with a function P that is real-symmetric, i.e., whose Fourier coefficients
are real, then we obtain a real system

( A B

C D

)
. If we start with a real system in 2., then,

in 2.–5., all operators are real and all functions are real-symmetric (e.g., if Σ is real,
then so are the operators P, F and S of Theorem 1.2). Thus, the numerous control
and factorization problems associated with Remark 5.3 and with Theorems 1.1–1.3 all
have real/real-symmetric solutions (if they have any solutions at all) provided that the
original data is real.

We also need the following lemma, which is of independent interest too. It requires
the following additional notation. By cc(Z; U) we denote the sequences Z → U with
compact support. By ek’s we denote the canonical basis of `2(Z) determined by (ek)j :=
δj,k. We set ‖u‖`1 :=

∑
j∈Z ‖uj‖, (G∗u)k :=

∑
j∈ZGk−juj . We write P ∈ H2

strong(U, Y)
if P : D→ B(U, Y) is such that Pu0 ∈ H2(Y) for every u0 ∈ U.

If P ∈ H∞, then DP maps `2 → `2. If P ∈ H2
strong, then P is “almost H∞”, namely

DP π− maps `2r into `2 for any r > 1:

Lemma 5.4 Let P be a proper B(U, Y)-valued function and set D := DP . Assume that
P ∈ H2

strong(U, Y) (or equivalently, that D(u0e0) ∈ `2(Z; Y) for all u0 ∈ U).
Then the function Gu0 := D(u0e0) satisfies G ∈ B(U, `2(N; Y)), hence for any s, r >

0 such that s < 1 < r we have the following: P ∈ H∞r , and Du = G ∗ u for every
u ∈ cc; moreover, D : `1 → `2, Dπ+ : `2s → `2, and Dπ− : `2r → `2, continuously.

(The condition G ∈ B(U, `2(N; Y)), is obviously equivalent to P ∈ H2
strong.)
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Proof: Pick t such that P ∈ H∞1/t, i.e., that D ∈ B(`2t , `2t ). Then G : U → `2t contin-
uously and G[U] ⊂ `2, hence G : U → `2 continuously, by the closed-graph theorem.
Obviously, Du = G ∗ u and ‖Du‖22 ≤

∑
k ‖D(ukek)‖2 ≤ ‖G‖2‖u‖21 for u ∈ cc. The

remaining claims follow easily, because π+ : `2s → `1, and π− : `2r → `1, continuously.
¤

Further properties of such functions and an alternative proof are given in [Mik02,
Lemma 13.1.3(d)].

Using the notation of Lemma 3.4 we now can characterize the class of transfer
functions of output-stable realizations as H2

strong:

Theorem 5.5 The transfer function of any output-stable system lies in H2
strong. Con-

versely, any P ∈ H2
strong(U, Y) has the output-stable realization (15) with state-space

X := H2
1/r,−(U) for any r > 1.

Proof: If
( A B

C D

)
is output-stable on (U, X, Y), then H2(Y) 3 f := ĈA·Bu0 = C(I −

·A)−1Bu0 = z−1(D̂ −D)u0, hence D̂u0 = (D + zf)u0 ∈ H2(Y), for every u0 ∈ U.
Conversely, if P ∈ H2

strong(U, Y), then Σ is output-stable, by Lemma 5.4, because
CA·x0 = π̂+P (π̂−)x0 ∈ ̂̀ 2(N; Y) = H2(Y) for every x0 ∈ X = ̂̀ 2

r(Z−; U). ¤

Theorem 5.5 will be applied in [Mik08] to show that if M,N ∈ H2
strong and M(0) ∈

GB, then NM−1 has a w.r.c.f. This is a formally weaker but equivalent condition to
Theorem 1.2(i). Also the Nevanlinna class can be used in place of H2

strong.
The following facts on shift-semigroup realizations [Fuh81] are more or less well

known, but we record them here for easy reference:

Remark 5.6 (Realization) If P ∈ H∞r (U, Y), r > 0, then (15) defines a (possibly
unstable) realization of P with X = H2

r,−(U). Conversely, the transfer function of any
system is proper, i.e., H∞r for some r > 0.

Moreover, if P ∈ H∞r (U, Y), r > 0, then also the system
(

SL SLP

π0 P (0)

)
is a realization

of P on (U, X, Y), where X := H2
r(Y) = ̂̀ 2

1/r(N; U). With r = 1 this realization becomes
strongly stable. This means that it is stable and xk → 0, as k → +∞, for any x0 ∈ X
when u = 0.

As obvious from the proofs, in the same sense the word “strongly” could be added
to Theorem 1.2(iv) and to Theorem 1.3(iv)&(v) (“[jointly] strongly stabilizable and
strongly detectable” [Sta05] [Mik02]). More on discrete- and continuous-time shift-
semigroup realizations can be found in, e.g., [Sta98] [Sta05] [Fuh81] [Sal89] [Mik07b].

6 Weak left-invertibility and w.r.c.
In this section we present further properties of weak right-coprimeness and of its gen-
eralization, weak left-invertibility.

We call F ∈ H∞(U, Y) weakly left-invertible if Ff ∈ H2 =⇒ f ∈ H2 for every proper
U-valued f , and F (0) is coercive (i.e., F (0)∗F (0) ≥ εI for some ε > 0). Note that a right
factorization NM−1 is a w.r.c.f. (resp., r.c.f.) if and only if [ N

M ] is weakly left-invertible
(resp., left-invertible, i.e., GF = I for some G ∈ H∞(Y, U)). Thus, all our results
for weak left-invertibility trivially lead to analogous corollaries on weak coprimeness,
although those of Corollaries 6.3 and 6.4 and Theorem 6.11 are not interesting.

A weakly left-invertible function is one-to-one on D and coercive on the boundary:
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Theorem 6.1 (No zeros) If F ∈ H∞(U, Y) is weakly left-invertible, then there exists
ε > 0 such that, for every u0 ∈ U \ {0}, we have ‖Fu0‖ ≥ ε‖u0‖ a.e. on T and
F (z)u0 6= 0 for every z ∈ D.

Thus, w.r.c. functions do not have “common zeros” on D. The converse is not
true; e.g., F (z) = exp(−(1 − z)/(1 + z)) is coercive on D and inner but not weakly
left-invertible (since FF−1 ∈ H2 but F−1 6∈ H2). Moreover, the radial limit of an
inner weakly left-invertible function may be zero at some points on the boundary T,
by Example 7.1. A Tauberian converse to Theorem 6.1 is given in Theorem 6.6.
Proof of Theorem 6.1: If a ∈ D\{0} and F (a)u0 = 0, then f(z) := (z+a)(z−a)−1u0

is proper and Ff ∈ H2, hence f ∈ H2 (if F is weakly left-invertible), hence u0 = 0.
Also F (0) is one-to-one, being coercive, by assumption.

Assume then that the ε > 0 in the lemma does not exist. Then there exist poly-
nomials fk ∈ H2(U) such that ‖fk‖2 = 1 but ‖Ffk‖2 < 2−k, for each k ∈ N. Write
fk =:

∑mk

j=0 fk
j zj . Set n0 := 0. For each k ≥ 1, pick nk > nk−1 + mk−1 such

that ‖znkfk(z)‖ ≤ 2−k when |z| < 1 − 1/k. Set gl(z) :=
∑l

k=1 znkfk(z) ∀l. Then
gl(z) → f(z) :=

∑∞
k=1 znkfk(z), as l → +∞, for each z ∈ D, and the function f is

holomorphic D→ U. But ‖gl‖22 = l and hence ‖f‖2 = ∞ (since their coefficients consist
of those of each fk, possibly with zeros in between). However, ‖Fgl‖2 < 1 and the
sum Fgl converges in H2, as l → +∞, hence the limit equals Ff (pointwise on D), so
‖Ff‖2 ≤ 1. This shows that then F is not weakly left-invertible. ¤

Lemma 6.2 If F ∈ H∞(U, Y) is weakly left-invertible and R is proper and B(X, U)-
valued, then FR ∈ H∞ ⇔ R ∈ H∞. Moreover, then FR is weakly left-invertible if and
only if R is weakly left-invertible.

(Here the holomorphicity assumption on R could be removed. Recall that U can be
identified with B(C, U). A converse to the lemma is given in Theorem 6.13.)
Proof: If FR ∈ H∞, then FRf ∈ H2 for all f ∈ H2, hence then Rf ∈ H2 for all
f ∈ H2, hence R ∈ H∞, by Lemma 3.5. The proof of the second claim is similar.

¤

Recall that by G we denote the subset of invertible elements. (Left-)invertibility in
H∞ obviously implies weak left-invertibility. We get the equivalence by assuming that
F is invertible at the origin:

Corollary 6.3 If F ∈ H∞(U, Y) is weakly left-invertible and F (0) ∈ GB(U, Y), then
F ∈ G H∞.

(Indeed, then FF−1 ∈ H∞, hence F−1 ∈ H∞, by Lemma 6.2.)
If F (0) is a square matrix, then the second assumption becomes redundant, by

Theorem 6.1:

Corollary 6.4 If F ∈ H∞(Cn) is weakly left-invertible, then F ∈ G H∞.

However, weak left-invertibility does not imply left-invertibility for non-square func-
tions, by Example 7.1, nor for elements of H∞(U) with dim U = ∞, by Example 7.4.

The “Corona condition” lies between weak and usual left-invertibility:

Lemma 6.5 (Corona) Let F ∈ H∞(U, Y).
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(a) If GF = I for some G ∈ H∞(Y, U), then there exists ε > 0 such that
F ∗F ≥ εI on D. The converse holds if dim U < ∞.

(b) If F ∗F ≥ εI on D, then F is weakly left-invertible.

Proof: (a) Take ε := 1/‖G‖2. The converse is Vasunin’s Corona Theorem [Tol81].
(b) Let f 6∈ H2(U) be proper. Then there exists g : N → U be such that ĝ = f ,

where ĝ(z) =
∑∞

k=0 zkgk. By the Monotone Convergence Theorem, there exist r1 <
r2 < r3 < · · · such that 0 < rn < 1 and ∞ > ‖r·ng·‖`2 > n for every n. But then
‖(Ff)(rnei·)‖L2 ≥ √

2πεn for every n, hence Ff 6∈ H2. ¤

If dim U = ∞, then the converse in Lemma 6.5(a) is no longer true [Tre89]. The
converse to (b) is not true at all, by (a) and Example 7.1.

For functions in the (matrix-valued) disc algebra, hence for all rational functions,
weak left-invertibility is equivalent to left-invertibility as well as to F having no zeros
on D:

Theorem 6.6 (Disc algebra) Assume that dim U < ∞ and F ∈ H∞(U, Y). If F is
continuous on K := D, or F is continuous on some (other) compact K ⊂ D and there
exists ε > 0 such that F ∗F ≥ εI on D \K, then the following are equivalent:

(i) GF = I for some G ∈ H∞.
(ii) For any open Ω ⊂ D and any function f : Ω → U we have Ff ∈ H2 =⇒

f ∈ H2.
(iii) F is weakly left-invertible.
(iv) F (z)u0 6= 0 for all z ∈ K and all u0 ∈ U \ {0}.

(Recall in (ii) that “∈ H2” means being a restriction of an H2 function.)
Because of this fact, the difference between a r.c.f. and a w.r.c.f. becomes redundant

in the finite-dimensional systems and control theory (cf. [Fra87]).
Proof of Theorem 6.6: 1◦ “(i)⇒(ii)”: Assume (i). Now g := GFf ∈ H2(U) and
g = f on Ω, hence “f ∈ H2(U)”.

2◦ “(ii)⇒(iii)⇒(iv)”: The first implication is trivial (except that coercivity at 0
follows as in the proof of Theorem 6.1), the second follows from Theorem 6.1 and
continuity.

3◦ “(iv)⇒(i)”: Assume (iv). Then we have εK := 1/ minK ‖(F ∗F )−1F ∗‖ > 0, and
‖F (z)u0‖ ≥ εK‖u0‖ (z ∈ K, u0 ∈ U). By Lemma 6.5(a), (i) follows. ¤

Now we repeat our definitions with an arbitrary but fixed α ∈ D taking the role
of the origin 0 ∈ D. (This generalization essentially changes nothing as shown below.)
Thus, an α-proper function means a holomorphic function on a neighborhood of α.
We call F ∈ H∞(U, Y) α-weakly left-invertible if F (α) is coercive and we have Ff ∈
H2(Y) =⇒ f ∈ H2(U) for every α-proper U-valued function f . Let N ∈ H∞(U, Y) and
M ∈ H∞(U). We call N and M α-w.r.c. if [ N

M ] is α-weakly left-invertible. We call
NM−1 an α-right factorization if M(α) ∈ GB(U). If, in addition, N and M are r.c.
(resp., α-w.r.c.), then we call NM−1 an α-r.c.f. (resp., α-w.r.c.f.).

Lemma 6.7 Let α ∈ D. The function φα : D→ D given by φα(z) := z+α
1+zᾱ is an inner

conformal map, and φ(0) = α. Moreover, f 7→ f ◦ φα is an isomorphism of H∞(U, Y)
onto H∞(U, Y) and of H2(U) onto H2(U), because ε ≤ ‖φ′α‖ ≤ ε−1 on D for certain
ε > 0. Furthermore, f ◦ φα ◦ φ−α = f .
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Note that NM−1 is an α-w.r.c.f. if and only if (N ◦ φα)(M ◦ φα)−1 is a (0-)w.r.c.f.
A similar claim applies to the other definitions too. (Moreover, “α-left-invertible” and
“α-right coprime” are independent of α, whereas “α-r.c.f.” requires that M(α) ∈ GB.)
This implies that any “0-result” provides an “α-result” too:

Remark 6.8 (α-w.r.c.) Let α ∈ D. Then all above results in this section also hold
if we make the following substitutions: “proper” 7→”α-proper”, “weakly” 7→”α-weakly”,
“w.r.c.” 7→”α-w.r.c.”, “F (0)” 7→”F (α)”, “r.c.f.” 7→”α-r.c.f.” and “right factorization” 7→”α-
right factorization”.

Naturally, the same holds also for Theorems 1.1, 6.13 and 6.15–6.17 and Lemmata
3.5 and 3.6 i.e., to all applicable results in this article (see also Remark 6.18). /

We omit the simple proof (just apply the original statements to M ◦ φα, N ◦ φα

etc.). We shall use Remark 6.8 without further mention.
These α-variants form a bridge between the discrete- and continuous-time results

but they are also important themselves when we do not have (or know about) invert-
ibility/coercivity at the point 0.

An α-w.r.c.f. is a z-w.r.c.f. for any reasonable z ∈ D:
Theorem 6.9 Let α ∈ D, M ∈ H∞(U). Then the following hold:

(a) Assume that NM−1 is an α-right factorization, N0M
−1
0 is an α-w.r.c.f. of

NM−1, Ω ⊂ D is open and connected and α ∈ Ω. If M is invertible on
Ω, then so is M0; if M−1 is uniformly bounded on Ω, then so is M−1

0 .

If dim U < ∞, then Ω need not be connected above.

(b) If NM−1 is an α-w.r.c.f. and M is invertible on an open and connected
Ω ⊂ D such that α ∈ Ω, then NM−1 is a z-w.r.c.f. for every z ∈ Ω.

If dim U < ∞, then Ω need not be connected above and, in addition, N
and M are z-w.r.c. for every z ∈ D.

Proof: (a) 1◦ Now N = N0V, M = M0V for V := M−1
0 M ∈ H∞, by Theorem 1.1.

But the function V M−1 is holomorphic on Ω and it equals the inverse of M0 near α,
hence on the whole Ω.

2◦ Even if Ω is not connected, we have M = M0V on D. If dim U < ∞, this implies
that V and M0 must be invertible on Ω.

(b) Let N0M
−1
0 be a z-w.r.c.f. of NM−1 (which is z-proper). Then N = N0V, M =

M0V (on D) for some V ∈ H∞ (hence V := M−1
0 M near z and wherever M−1

0 exists),
by Theorem 1.1. By (a), N0M

−1
0 is an α-right factorization, hence V −1 ∈ H∞ (being

equal to M−1M0 near α), by Theorem 1.1, hence also NM−1 is a z-w.r.c.f.
If dim U < ∞, z ∈ D, f is z-proper and U-valued, and Nf, Mf ∈ H2, then detM 6= 0

a.e., hence det M(z′) 6= 0 for some z′ such that f is z′-proper, hence f ∈ H2 (because
NM−1 is a z′-w.r.c.f.). ¤

From Theorem 6.1 it follows that the outer factor of F is invertible (by [Sta97,
Lemma 18(ii)] or [Mik09, Theorem 5.11]). Therefore, F can be normalized as follows:

Lemma 6.10 (Inner) If α ∈ D and F ∈ H∞(U, Y) is α-weakly left-invertible, then
there exists S ∈ G H∞(U) such that FS is α-weakly left-invertible and inner.
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A function F ∈ H∞(U, Y) is called outer if and only if {Ff
∣∣ f ∈ H2(U)} is dense in

H2(Y). This is equivalent to the classical scalar-valued definition if U = C = Y [Nik02,
p. 43].

Any F ∈ H∞ that is bounded below at some point α ∈ D can be factorized as
follows.

Theorem 6.11 (F=FwFr) (a) If F ∈ H∞(U, Y), and F (α) is coercive for some α ∈
D, then F = FwFr, where Fw ∈ H∞(U, Y) is inner and α-weakly left-invertible, Fr ∈
H∞(U) and Fr(α) ∈ GB(U).

All such factorizations are given by F = (FwV )(V −1Fr), where V ∈ B(U) is unitary
(or V ∈ G H∞(U) if we do not require Fw to be inner). In particular, if some left factor
FwV is left-invertible in H∞, then so is every FwV .

(b) If F ∈ H∞(Cn, Y), then there exist α ∈ D and m ≤ n such that F = FwFrFo,
where Fo ∈ H∞(Cn,Cm) is outer, Fw ∈ H∞(Cm, Y) is inner and z-weakly left-invertible
for every z ∈ D, Fr ∈ H∞(Cm) is inner, and Fr(α) ∈ GB(Cm).

All such factorizations are given by F = (FwV )(V −1FrW
−1)(WFo), where V,W ∈

B(Cm) are unitary.
(c) In (a) we have Fw = J [ N

M ], where J ∈ B(Y1 × U, Y) is unitary, Y1 ⊂ Y is a
closed subspace, Y⊥1 is isometric to U and NM−1 is a B(U, Y1)-valued α-w.r.c.f.

Proof of Theorem 6.11: (a) 1◦ Set Y2 := F (α)[U], Y1 := Y⊥2 . Fix some unitary
J2 ∈ B(U, Y2). Then

[
N1
M1

]
:=

[
I 0
0 J∗2

]
F ∈ H∞(U, Y1 × U), and M1(α) is coercive and

onto, hence M1(α) ∈ GB(U). By Theorem 1.1 (and Remark 6.8),
[

N1
M1

]
= [ N

M ] V , where
NM−1 is a α-w.r.c.f., V ∈ H∞(U) and V −1 is α-proper. Thus, F =

[
I 0
0 J2

]
[ N
M ] V =

WV , where W :=
[

I 0
0 J2

]
[ N
M ] is α-weakly left-invertible.

By Theorem 6.1 and Lemma 6.10, W = FwS−1, where S ∈ G H∞(U) and Fw is
inner and α-weakly left-invertible. Set Fr := SV .

2◦ Uniqueness: If F = FwFr = F ′wF ′r, where both factorizations are as in (a),
then Fw = F ′wV and F ′w = FwV −1, where V := F ′rF

−1
r , hence V, V −1 ∈ H∞(U), by

Lemma 6.2. But V and V −1 are inner (since Fw and F ′w are inner), hence V ∈ B(U)
(hence it is unitary), by Lemma 3.7.

(b) Let F = FiFo be an inner-outer factorization [RR85]. Then Fo ∈ H∞(Cn, Z),
Fi ∈ H∞(Z, Y) for some Hilbert space Z, and Fo(z) has a dense range for each z, so Z
can be replaced by Cm, m ≤ n. Pick z ∈ T such that Fi(z)∗Fi(z) = I. Then Fi(α)
is coercive for any α ∈ D near z, so Fi = FwFr as in (a). Since Fi and Fw are inner,
so is Fr. The inner-outer factorization is unique modulo a unitary W , so we get the
uniqueness as in (a) (and m is unique).

(c) This follows from the above (by uniqueness) by setting J :=
[

I 0
0 J2

]
and replac-

ing [ N
M ] by [ NS

MS ]. N.B.: N(α) = 0. ¤

Remarks: If, in (a), we form an inner-outer factorization Fr = FiFo (or F d
r = FiFo),

then Fi(α), Fo(α) ∈ GB(U). In (b) we might, instead, have Fr co-outer and Fo co-inner.
If dim U < ∞ (not in general, by Example 7.3), then the point α ∈ D does not have

a special role:

Lemma 6.12 (Every α) If F ∈ H∞(Cn, Y) is α-weakly left-invertible for some α ∈
D, then F is z-weakly left-invertible for every z ∈ D.
Proof of Lemma 6.12: By Theorem 6.11(a)&(c), F = J [ N

M ] (right-multiplied by
Fr = V ∈ G H∞, by (a)), where NM−1 is an α-w.r.c.f. (hence z-w.r.c.f. for every z ∈ D,
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by Theorem 6.9(b)) and J is unitary. ¤

In Lemma 6.12, a third equivalent condition is Theorem 6.6(ii) (or the same condi-
tion with H∞ in place of H2).

Weak left-invertibility (or w.r.c.f.’s) could be defined with H∞ in place of H2:

Theorem 6.13 Assume that F ∈ H∞(U, Y), F (0) is coercive and X 6= {0}. Then F
is weakly left-invertible if and only if FR ∈ H∞ ⇒ R ∈ H∞ for every proper B(X, U)-
valued function R.

(The coercivity assumption is not redundant (take F (z) = z). Moreover, an analo-
gous result holds with Hp or Hp

strong in place of H∞.)
Proof of Theorem 6.13: 1◦ “Only if” is from Lemma 6.2.

2◦ Conversely, assume that FR ∈ H∞ ⇒ R ∈ H∞ for every proper B(X, U)-valued
function R, hence for every proper U-valued function R (if R is such and FR ∈ H∞(Y),
pick x ∈ X and L ∈ X∗ such that Lx = 1; then FRL ∈ H∞, hence then RL ∈ H∞(X, U),
hence then R = RLx ∈ H∞(C, U)), hence for R = R̃u0 whenever u0 ∈ U and R̃ is
proper and B(U)-valued, hence for every proper B(U)-valued function R, by the uniform
boundedness theorem (use R̃ in place of R).

Let F = FwFr be as in Theorem 6.11(a) with α = 0. Then F−1
r ∈ H∞ (because

FF−1
r ∈ H∞), hence F is weakly left-invertible (since so is Fw). ¤

Now we present the classical definition of weak coprimeness (of matrix-valued
functions) [Fuh81] [Ino88] [Smi89] and show that it is equivalent to ours. We call
F ∈ H∞(Cn, Y) irreducible if Ff ∈ H∞ =⇒ f ∈ H∞ holds for every function of the
form f = g−1G, where 0 6≡ g ∈ H∞(C), G ∈ H∞(C,Cn). If dim Y < ∞, then F is
irreducible if and only if 1 is a gcd of all highest order minors of F [Smi89, Lemma 4].
We call functions N ∈ H∞(Cn, Y) and M ∈ H∞(Cn) gcd-coprime if and only if [ N

M ] is
irreducible. That is the classical definition of (right) “weak coprimeness”.

The following theorem shows that the factorization of [Smi89, Lemma 5] is a special
case of that in Theorem 6.11(a). Consequently, the weakly coprime right factorization
of [Smi89, p. 1007] is the same as a w.r.c.f. (when dim U,dim Y < ∞, as [Smi89] as-
sumes).

Theorem 6.14 (gcd-coprime) Let F ∈ H∞(Cn, Y). Then F is irreducible if and
only if for some (hence every) α ∈ D the function F is α-weakly left-invertible.

In particular, functions M ∈ H∞(Cn) and N ∈ H∞(Cn, Y) are gcd-coprime if and
only if they are α-w.r.c. for some (hence every) α ∈ D.
Proof of Theorem 6.14: The other direction follows from Lemmata 6.2 and 6.12,
so assume that F is irreducible. It easily follows that F is injective everywhere, hence
so is Fr ∈ H∞(Cn), where F = FwFr as in Theorem 6.11(a). But F−1

r ∈ H∞ (because
FF−1

r ∈ H∞), hence F is α-weakly left-invertible for all α ∈ D (since so is Fw, by
Lemma 6.12). ¤

We set F d(z) := F (z̄)∗. Every F ∈ H∞(U, Y) has a dual inner-outer factorization
F = F d

o F d
i (or F d = FiFo), where Fi ∈ H∞(U0, Y) is inner, Fo ∈ H∞(U, U0) is outer

and U0 is a closed subspace of U [RR85] [Nik02] [Mik09]. At least when dim U < ∞,
that factorization (and its dual) is a strictly weaker factorization than that of Theorem
6.11(a) in what comes to the left factor:
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Theorem 6.15 (Outer) If F ∈ H∞(Cn, Y) is weakly left-invertible, then F d is outer.

The converse does not hold, because the function F (z) = 1 − z = F d(z) is outer
but F is not weakly left-invertible.

Similarly, the w.r.c.f. is a strictly stronger tool than that provided by the dual inner-
outer factorization. Indeed, if M(z) = 1 − z = N(z) (z ∈ D), then a dual inner-outer
factorization of [ N

M ] is given by [ N
M ]·I, whereas in a w.r.c.f. N0M

−1
0 of NM−1 the maps

N0 and M0 necessarily become invertible in H∞ (and identical), by Theorem 1.1. As
in that example, a dual inner-outer factorization

[
N0
M0

]
V of [ N

M ] removes the common
zeros of N and M inside the disc but not those on the boundary, whereas a w.r.c.f.
removes both (and more) in the sense of Theorem 6.1.
Proof of Theorem 6.15: Let F d = FiFo be an inner-outer factorization. Then
F = F d

o F d
i , hence F d

i ∈ H∞(Cn, U0) is weakly left-invertible (here U0 ⊂ Cn), because
F d

i (0) must be coercive (since F (0) is) and F d
i f ∈ H2 =⇒ Ff = F d

o F d
i f ∈ H2 =⇒

f ∈ H2. Because F d
i (0) is coercive, we have dim U0 = n, hence F d

i is invertible in H∞,
by Corollary 6.4. Therefore, F d is outer too. ¤

One can easily verify that F d is outer if and only if the anti-Toeplitz operator
(π̂−Fπ̂− in terms of Section 5) of F is injective. But F is left-invertible if and only if
the anti-Toeplitz operator of F is coercive [Arv75] [SF76]. Thus, weak left-invertibility
is strictly between these two conditions (at least when dim U < ∞).

As mentioned above, all above results on weak left-invertibility contain analogous
results on weak right coprimeness. Now we go on with right-factorization-specific
results.

We identify M ∈ H∞(U) with the multiplication operator M : f 7→ Mf on H2(U).
If(f) NM−1 is a w.r.c.f., then M [H2] = DP := {f ∈ H2

∣∣ Pf ∈ H2}:
Theorem 6.16 (Graph) Let P = NM−1 be a right factorization and M ∈ H∞(U).
Then N and M are w.r.c. if and only if the graph [ I

P ] [DP ] equals [ M
N ] [H2(U)].

This is why a w.r.c.f. allows one to reduce optimization problems to the stable case
[Mik02].
Proof of Theorem 6.16: If g ∈ H2(U), then f := Mg ∈ DP , because Pf = Ng ∈ H2.
Thus, [ M

N ] [H2(U)] ⊂ [ I
P ] [DP ]. Conversely, if f ∈ DP , then g := M−1f satisfies

h := [ M
N ] g = [ I

P ] f ∈ H2. All such h’s are in [ M
N ] [H2(U)] if and only if all such g’s are

in H2(U), i.e., if and only if N and M are w.r.c. ¤

For P = NM−1 to be an α-right factorization, any poles (and essential singularities)
of P on D must be contained in M−1 (to have N ∈ H∞). For N and M to be w.r.c.,
the function M−1 must not contain any other poles, i.e., the functions N = PM and
M may not have common zeros (this necessary condition is not sufficient for general
non-rational functions). If U is finite-dimensional, then the poles of M−1 on D are
isolated and hence then we can formulate that part simply:

Theorem 6.17 If NM−1 is a w.r.c.f. and M ∈ H∞(Cn), n ∈ N, then the nonremov-
able singularities of M−1 on D are the same as those of P := NM−1.

Proof of Theorem 6.17: Obviously, any singularity of P = NM−1 on D must
be a singularity of M−1. Assume then that z ∈ D and u0 ∈ U \ {0} are such that
M(z)u0 = 0. Let f ∈ H2(C) be such that f(z) 6= 0.

Set g := Mfu0 ∈ DP (see Theorem 6.16). Then g(z) = f(z)M(z)u0 = 0 but
(Pg)(z) = f(z)N(z)u0 6= 0, by Theorem 6.1, hence P must have a singularity at z
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(otherwise we would have (Pg)(z) = P (z)g(z) = 0). ¤

The coercivity assumption on F (α) seems somewhat artificial (and it has not been
used explicitly before this article). For an α-right factorization, it is redundant, but
in general it is needed to avoid labeling the function F (s) := s − α as α-weakly left-
invertible. However, even if we dropped this requirement, most results would still
hold:

Remark 6.18 Redefine weak and α-weak left-invertibility by dropping the coercivity
requirement. Then all above results hold (with the same proofs) except that Corollary
6.4, Lemma 6.12 and Theorems 6.6, 6.11(b), 6.14 and 6.15 become false and in The-
orem 6.1 we must require that z 6= 0 (or that z 6= α in the setting of Remark 6.8).
/

Proof: The positive claim is self-explaining. The “except” part holds strictly, be-
cause in this weaker sense the function F (z) := z − α is α-weakly left-invertible but
not irreducible, invertible, co-outer nor z-weakly left-invertible for any z 6= α (take
f(z) = (z − α)−1 to have Ff ∈ H2 ∩H∞). ¤

This weaker concept was called “quasi-left-invertibility” in [Mik02, Chapter 4, Sec-
tions 6.4–6.5; Theorem 13.3.13], where further results are given (in the continuous- and
discrete-time settings). Note that weak coprimeness and the above “quasi coprimeness”
of N and M are equivalent when M−1 is proper.

One can easily show that a constant F ∈ B(U, Y) is quasi-left-invertible if and only
if it is coercive (left-invertible).

Notes for Section 6
For the conditions in Theorem 6.6, we always have (i)⇒(ii)⇒(iii) (see Theorem 6.1

for (iv)). However, if we dropped the assumption dim U = ∞ or continuity, then
(ii)⇒(i) would become false. Conditions (ii) and (iii) are equivalent when dim U < ∞,
by Lemma 6.12. Without continuity, being inner and without zeros on D is no longer
sufficient for (iii) (take F (z) = e−(1−z)/(1+z)). It is well known that (iv) is equivalent to
(i) in Theorem 6.6 when K = D, but the general case covers much more general systems,
because in control-theoretic applications often M is boundedly invertible outside some
compact set (particularly in continuous-time parabolic PDE systems).

In Theorem 6.9(a) the function M0 need not have a radial limit at, e.g., 1 ∈ T
even if N , M and M−1 were entire and scalar-valued. Indeed, let N = M = I, take
F ∈ H∞(C) without limit at 1, and set N0 := M0 := F + 2‖F‖∞ to obtain these.
Moreover, the assumption dim U = ∞ in the last claim of (b) is not superfluous, by
Example 7.3.

In the matrix-valued case (dim U, dim Y < ∞), part of Theorem 6.11 would follow
from the results of [Smi89] through Theorem 6.14, which, however, is a corollary of
Theorem 6.11.

Lemma 6.12 is not true for F ∈ H∞(U, Y) in general (when dim U = ∞). However,
we do not know if the analogies of Theorems 6.17, 6.15 and 6.11(b) can be extended
to the operator-valued case.

Theorem 6.16 (which was reported in [Mik06]) is related to [GS93, Proposition 1],
which, in the matrix-valued case, establishes the identity [ I

P ] [DP ] = [ M
N ] [H2] but not

the fact that M can be chosen to be square under our assumptions.
The algebraic approach illustrated by [Vid85], [Ino88], [Smi89], [GS93] and, most

up-to-date, several recent articles by Alban Quadrat, including [Qua03a], [Qua03b]
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and [Qua04], provide additional results and insight on many forms of factorizations,
particularly with other algebras (e.g., the disc algebra, the Wiener class, the Callier–
Desoer class, absolutely converging Taylor series) in place of H∞.

Reward. Does a holomorphic function V : D → B(U) exist such that V (1/2) is
invertible and V (0) is coercive (V (0)∗V (0) ≥ εI) but not invertible? The author pays
$10 for a proof or a disproof (at least in the case of separable U). A disproof would
extend some of our results from the matrix-valued to the operator-valued case.

7 Counter-examples
In this section we provide examples that show it impossible to extend or reverse certain
implications presented above.

By the (Cayley) substitution z 7→ 1−z
1+z (and some modifications) the example of

[Smi89] becomes a scalar-valued w.r.c.f. that is not a r.c.f.:

Example 7.1 (Scalar w.r.c.f. 6⇒ r.c.f.) The functions N(z) := (1 − z)e−
1−z
1+z and

M(z) := 1+ z form a w.r.c.f., by [Smi89] and Theorem 6.14 (the gcd’s of the inner and
outer factors are both equal to the identity), but not a r.c.f., because N(−1+) = 0 =
M(−1). /

As mentioned in the introduction, the w.r.c.f. determined by the LQ-optimal feed-
back need not be Bézout coprime:

Example 7.2 (LQ-optimal feedback is not coprime) (a) By Theorem 1.2, the
function P := NM−1 of Example 7.1 has an output-stabilizable realization. The
LQ-optimal state-feedback for this realization determines a w.r.c.f. N1M

−1
1 of P , by

Theorem 1.2, but that w.r.c.f. is not a r.c.f., because P does not have an r.c.f., by the
last claim in Theorem 1.1.

(b) If, in (a), we use Example 7.3 in place of Example 7.1, then the same conclusions
hold and, in addition, we have

[
N1
M1

]
(1/5) noncoercive, because

[
N1
M1

]
= [ N

M ] V for some
V ∈ G H∞, by Theorem 1.1. /

(Note that the above is true whether by N1 and M1 we refer to the “N ” and “M ”
or to the “NS−1/2” and “MS−1/2” of Theorem 1.2.)

By Theorem 6.1, [ N
M ] is injective on D for any w.r.c.f. NM−1. It need not be

coercive on D even if N,M are continuous on D, unlike in the finite-dimensional case
(cf. Theorem 6.6):

Example 7.3 (Continuous w.r.c.f 6⇒ r.c.f.) (a) Let U := `2(N) =: Y. There exists
a normalized w.r.c.f. NM−1 such that [ N

M ] (1/5)ek → 0, as k → ∞ (hence [ N
M ] (1/5)

is not coercive), and N and M are continuous D→ B(U) but not r.c.
(b) For F := [ N

M ] ∈ H∞(U, Y × U), conditions (ii)–(iv) of Theorem 6.6 hold (with
K = D) but not (i), and NM−1 is not a 1/5-w.r.c.f.

(c) In fact, N and M are α-w.r.c. for every α 6= 1/5. Moreover, M(z) ∈ GB(U) ⇔
z ∈ E := {0} ∪ { 5+9k

1+45k

∣∣ k ∈ N}. In particular, P := NM−1 is an α-w.r.c.f. for every
α ∈ D \ E but P does not have an α-w.r.c.f. for any α ∈ E.

(d) If we replace [ N
M ] by [ N

M ] ◦φ−1/5, we get a normalized 1/5-w.r.c.f. NM−1 such
that [ N

M ] (0) is not coercive and the conditions (ii) and (iv) of Theorem 6.6 hold but
not (i) nor (iii).

(e) Moreover, [ N
M ] and [ N

M ] ◦ φ1/5 are holomorphic on 3D, hence they belong to
the operator-valued “disc algebra”, even to the “Wiener class” (of uniformly absolutely
converging sequences). /
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Proof: We construct the 1/5-w.r.c.f. Replace [ N
M ] by [ N

M ]◦φ1/5 to obtain the 0-w.r.c.f.
(Actually, we make N and M inner, so they should be divided by

√
2 to make them

normalized.)
1◦ Set ak := −1/9k, bk := 1/9k (k ∈ N). Then ak → 0 and bk → 0, as k → ∞.

Set Nk := φak
, Mk := φbk

(k ∈ N), where φa(z) := (z + a)/(1 + zā), and let N,M ∈
H∞(U) be the (diagonal) inner functions determined by N(z)ek = Nk(z)ek, M(z)ek =
Mk(z)ek (z ∈ D, k ∈ N), where ek := χ{k}. Then |Nk(0)| = |Mk(0)| = 1/9k → 0,
as k → ∞, hence ‖ [ N

M ] (0)ek‖ → 0 (hence N and M are not r.c., by Lemma 6.5(a)).
Moreover, Mk(1/5) ≥ 1/5/2 ∀k, hence M(1/5)−1 exists, i.e., NM−1 is a 1/5-right
factorization. Similarly, M(z), N(−z) ∈ GB(U) whenever z ∈ E′ := {0} ∪ {bk

∣∣ k ∈ N}.
2◦ But Nk and Mk are r.c., by Theorem 6.6. Thus, if Ω ⊂ D is open and f : Ω → U

satisfies [ N
M ] f ∈ H2, then fk ∈ H2 (k ∈ N), where fk is the kth component of f .

Furthermore, ‖ [ N
M ] fkek‖22 = 2‖fk‖22 ∀k ∈ N (because Nk and Mk are inner), hence

‖ [ N
M ] f‖22 = 2‖f‖22, hence f ∈ H2. We conclude that N and M are α-w.r.c. for

every α ∈ D \ {0} (recall 2◦) and NM−1 is a α-w.r.c.f. for every α 6= 0 such that
α 6= bk ∀k ∈ N.

(c) By Theorem 6.9(a), NM−1 cannot have a z-w.r.c.f. for any z ∈ E. The rest of
(c) was shown above.

(e) Note that M(z) and N(−z) have poles only at 9k (k ∈ N), hence F := [ N
M ]◦φ1/5

has its poles at z = −5+24/(5−9n), n = ±1,±2,±3, . . .. Therefore, it is holomorphic
on 3D.

¤

By applying different φα functions (Lemma 6.7) we can have any β ∈ D in place of
1/5 above. It is not difficult to show that, by using such functions as diagonal elements
of bigger operators N1 and M1 (with separable input and output spaces), given an open
set Ω ⊂ D, we can have N1 and M1 to be z-w.r.c. for every z ∈ Ω and yet

[
N1
M1

]
(z)

non-coercive for every z ∈ D \ Ω (use a countable dense set of β’s in D \ Ω).
A common right divisor V ∈ H∞(U, X) of N ∈ H∞(U, Y) and M ∈ H∞(U) (see (1))

is square if X = U. If NM−1 is a w.r.c.f., then such a divisor V is obviously weakly
left-invertible (hence invertible if dim U < ∞). In the operator-valued case it need not
be left-invertible (nor right-invertible):

Example 7.4 (divisor not left-invertible) Let N,M, U, Y be as in Example 7.3.
Then V := J−1 [ N

M ] ∈ H∞(U) is weakly left-invertible for any J ∈ GB(U, Y× U). How-
ever, [ N

M ] = JV , but V is not left-invertible; in fact, V (1/5) ∈ B(U) is not left-invertible
(nor right-invertible). Nevertheless, V (z) is left-invertible for every z ∈ D \ {1/5}. /

This also shows that Corollary 6.4 cannot be extended to the infinite-dimensional
case.

Notes for Section 7
Example 7.1 is adapted from [Smi89], where the first example of a non-r.c. w.r.c.f.

was constructed. The first example based on definition (2) was due to Sergei Treil
(personal communication, 2003, before the equivalence Theorem 6.14).

Further “counter-examples” are given in the previous sections below certain results
and at the end of Section 6.
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