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4. Representations of sl2(C)

We start by analyzing an easy but fundamental case, namely the Lie algebra sl2(C).
It is a three-dimensional complex Lie algebra.

The importance of focusing on this particular case stems for example from the
following:

• The complex Lie algebra sl2(C) is isomorphic to the complexification of the
real Lie algebras so3 and su2, i.e., so3 ⊗ C = sl2(C) and su2 ⊗ C = sl2(C).
As such, the complex representations of so3 and su2 are exactly the same
as those of sl2(C). In particular, by understanding the representations
of sl2(C), we will ultimately understand the representations of the very
important Lie groups SO3 and SU2, whose Lie algebras are so3 and su2.
• The complex Lie algebra sl2(C), viewed as a six-dimensional real Lie alge-

bra, is isomorphic to the Lie algebra of the Lorentz group, i.e. the group of
linear transformations of the Minkowski space-time.
• The analysis of all semisimple Lie algebras g and their representations will

be achieved by finding subalgebras in g isomorphic to sl2(C), and applying
our knowledge of the representation theory of sl2(C). Despite the impor-
tance of sl2(C) for its own sake (witnessed, e.g., by the previous examples),
this is really the fundamental reason for studying it!

4.1. The Lie algebra sl2(C)

Recall that sl2(C) is the set

sl2(C) =
{
M ∈ C2×2 ∣∣ tr(M) = 0

}
of traceless (complex) two-by-two matrices, equipped with the Lie bracket [M1,M2] =
M1M2 −M2M1. As a (complex) vector space, it is three dimensional (cf. Exercise
[???]), and we will use the basis

H =

[
1 0
0 −1

]
, E =

[
0 1
0 0

]
, F =

[
0 0
1 0

]
(II.7)

for it. The brackets of these basis elements are

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (II.8)

The chosen basis elements are quite simple matrices, but more importantly this
basis choice is a fundamental instance of a canonical basis that can be chosen for
any semisimple Lie algebra. This should become clear gradually, and at least by the
time we treat the general structure of semisimple Lie algebras.

We can immediately give two examples of representations of sl2(C).

Example II.20. The space V = C2 is naturally a representation of sl2(C): any elementX ∈ sl2(C)
is a 2× 2-matrix, which we let act on any vector v ∈ V = C2 by matrix multiplication Xv.
This two-dimensional representation is called the standard representation of sl2(C).

Example II.21. The adjoint representation of sl2(C) is the vector space V = sl2(C) equipped
with the adjoint action: for X ∈ sl2(C) and Y ∈ V = sl2(C), we set

X(Y ) = adX(Y ) = [X,Y ].

This is a three-dimensional representation of sl2(C).
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Concretely, in the basis E,H,F of sl2(C), the adjoint representation ρ : sl2(C)→ End (sl2(C))
becomes, in view of (II.8),

ρ(E) =

 0 −2 0
0 0 1
0 0 0

 , ρ(H) =

 2 0 0
0 0 0
0 0 −2

 , ρ(E) =

 0 0 0
−1 0 0
0 2 0

 .

4.2. The irreducible representations of sl2(C)

Let V be a finite dimensional representation of sl2(C). We will use:

Fact II.10. The action of H on V is diagonalizable.

This fact follows from the preservation of Jordan form (see [FH91]), but it is also
not particularly difficult to verify directly either.

By Fact II.18, we have an eigenspace decomposition

V =
⊕
µ

Vµ, (II.9)

where µ runs over the eigenvalues of H on V , a priori some finite collection of
complex numbers, and Vµ are the corresponding eigenspaces for H

Vµ =
{
v ∈ V

∣∣ Hv = µv
}
,

The decomposition (II.9) completely describes the action of H on V , and the re-
maining task is to describe the action of E and F — in particular, to see what E and
F do to the H-eigenspaces Vµ. Suppose that v ∈ Vµ. Consider the vector Ev ∈ V .
We can figure out the action of H on it by an easy but important calculation which
uses the commutator of H and E given by the bracket (II.8).

Fundamental calculation (first time):

H(Ev) = E(Hv) + [H,E]v

= E(µv) + 2Ev

= (µ+ 2)Ev.

This calculation shows that if v is an eigenvector of H with eigenvalue µ, then Ev
is an eigenvector of H with eigenvalue µ + 2 (although not necessarily a non-zero
vector). In other words, for any µ we have

E : Vµ → Vµ+2.

By an entirely similar calculation we see that F : Vµ → Vµ−2.

If we assume that V is an irreducible representation, then it follows that the eigen-
values µ of H differ from each other by integer multiples of two. Indeed, if µ′ ∈ C
is one eigenvalue of H, then the subspace⊕

n∈Z

Vµ′+2n

is invariant not only for H but also for E and F , and therefore actually invariant for
the entire sl2(C). Thus the subspace is a subrepresentation, and by irreducibility
it must be the entire V . In fact we can conclude a little more. For irreducible V
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the H-eigenvalues µ must form an uninterrupted string of complex numbers, of the
form

ζ, ζ + 2, ζ + 4, . . . , ζ + 2(k − 1), ζ + 2k,

since otherwise the direct sum of only a subset of eigenspaces would be invariant for
H, E, and F , and would thus be a proper subrepresentation of V .

So, assume from now on that V is a finite dimensional irreducible representation of
sl2(C). Denote by λ = ζ + 2k the last number in the above string of H-eigenvalues
— a priori we have λ ∈ C, but we will soon see that λ must be a non-negative
integer. Choose a non-zero vector v0 ∈ Vλ. Note that Vλ+2 = {0}, so necessarily we
have Ev0 = 0. We will need to understand the action of F on v0, and concerning
that, we have the following:

Claim II.11. Denote vm = Fmv0, for m ∈ Z≥0. Then the vectors v0, v1, v2, . . . span
V .

Proof. Let W ⊂ V be the subspace spanned by the above vectors, W = span {Fmv0 |m ∈ Z≥0}.
By irreducibility of V , it suffices to show that W is invariant under H, E, and F . By
definition W is invariant under F . Since Fmv0 ∈ Vλ−2m, it is also invariant under H. It
suffices to check that EW ⊂W . We calculate

E(Fmv0) = [E,F ](Fm−1v0)− F
(
E(Fm−1v0)

)
= H(Fm−1v0)− F

(
E(Fm−1v0)

)
. (II.10)

We know that the first term, H(Fm−1v0) =
(
λ− 2(m− 1)

)
Fm−1v0, is in W . If we already

knew that E(Fm−1v0) is in W , we could thus conclude that also the second term is in W ,
and thus that E(Fmv0) ∈ W . This is proved by induction on m. Equation (II.10) serves
as the induction step, and to complete the proof, we note that in the case m = 0 we have
E(F 0v0) = Ev0 = 0 ∈ W by an earlier observation. In fact by this induction we can prove
not only that E(Fmv0) ∈W , but we moreover obtain the explicit formula

E(Fmv0) = (λ−m+ 1)m Fm−1v0. (II.11)

�

The calculation above has some interesting consequences.

Observation II.12. All eigenspaces Vµ of H are one-dimensional.

Proof. Indeed, µ = λ− 2m for some m ∈ Z≥0 and Vλ−2m = span {Fmv0}. �

Observation II.13. The representation V is determined by the number λ.

Proof. Indeed, if d is the smallest power of F that annihilates v0, then we see that the vectors
Fmv0 for m = 0, 1, 2, . . . , d− 1 form a basis of V . We have described explicitly the action of
H, E, and F on each basis vector, and the matrix elements of H, E, and F only involved λ
as a parameter. �

Observation II.14. The dimension of V is λ + 1, and in particular λ is a non-
negative integer, λ = dim(V )− 1 ∈ Z≥0.

Proof. Let again d be the smallest power of F that annihilates v0. Note that d = dim (V ). The
calculation (II.11) is perfectly valid also for m = d, so we get

0 = E(F dv0) = (λ− d+ 1) d F d−1v0.



32 II. LIE GROUPS AND THEIR LIE ALGEBRAS

But since F d−1v0 6= 0, the prefactor on the right-hand-side must vanish, (λ− d+ 1) d = 0.
Also d > 0, so we must have λ− d+ 1 = 0, that is d = λ+ 1. �

The final obsevation below follows directly from the earlier ones.

Observation II.15. The eigenvalues of H on V are

λ, λ− 2, λ− 4, . . . ,−λ+ 4,−λ+ 2,−λ

and the multiplicity of each eigenvalue is one. In particular, the H-eigenvalues
are all integers, they all have the same parity, and they are symmetric about
the origin (i.e. if µ is an eigenvalue, then so is −µ).

We conclude by the following complete description of all irreducible representations
of sl2(C).

Theorem II.22. For each λ ∈ Z≥0 there exists an irreducible λ + 1-dimensional
representation of sl2(C) with basis v0, v1, . . . , vλ and the actions of H, E, and
F on this basis given by

Fvm =

{
vm+1 for 0 ≤ m < λ

0 for m = λ

Evm =

{
0 for m = 0

(λ−m+ 1)mvm−1 for 0 < m ≤ λ

Hvm = (λ− 2m) vm for all m.

Denote this representations by L(λ), Any irreducible finite-dimensional repre-
sentation of sl2(C) is isomorphic to L(λ), for some λ ∈ Z≥0.

Proof. We have almost proven this already: L(λ) is the representation we have analyzed in this
section. We have shown that any finite dimensional irreducible representation of dimension
d ∈ Z>0 must be L(λ) for λ = d − 1. However, we have not yet strictly speaking shown
that such a representation ideed exists. To show the existence, it remains to check that the
formulas given above for the linear operators H, E, and F on the vector space L(λ) with
basis v0, v1, . . . , vλ actually do define a representation of sl2(C). The only thing to check is
that for any Z,W ∈ sl2(C) the action of the bracket [Z,W ] on L(λ) equals the commutator
of the actions of Z and W . By looking at the calculations done in this section again, you
will notice that we have in fact done everything that is needed in such a check. �

Let us make some final observations which are useful in analyzing representations
of sl2(C) that we might encounter. We will use the following fact.

Fact II.16. Any (finite dimensional) representation of sl2 is a direct sum of irre-
ducible representations.

This is the general property of complete reducibility for semisimple Lie algebras,
see [???]. It could also be verified more directly in the present case, see Exercise [???].

Observation II.17. We have:
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• Any representation of sl2(C), in which the H-eigenvalues have the same
parity and occur with multiplicity one, is necessarily irreducible.
• The number of irreducible subrepresentations of a (finite dimensional) rep-

resentation of sl2(C) is the sum of multiplicities of 0 and 1 as H-eigenvalues.

4.3. Examples of representations of sl2(C)

4.3.1. The standard representation

In Example II.20, we noted that the space V = C2 is a representation of sl2(C), when
the elements of sl2(C) are understood as 2 × 2-matrices such as in (II.7), and the
action of such a matrix on a vector in C2 is by the usual matrix-vector multiplication.
This representation is called the standard representation of sl2(C). If x = [1 0]> and
y = [0 1]> are the standard basis, then we have Hx = x and Hy = −y, so that the
H-eigenvalues are +1 and −1, and the corresponding eigenspaces are Cx and Cy.
From Observation II.17 it follows that the standard representation V is irreducible,
so by dimensionality in fact V ∼= L(1).

4.3.2. The tensor square of the standard representation

As above, denote by V = C2 = L(1) the standard representation. Consider the
representation V ⊗ V . The H-eigenvalues on V ⊗ V are +2 with multiplicity one
(eigenvector x⊗ x), 0 with multiplicity two (eigenvectors x⊗ y and y ⊗ x), and −2
with multiplicity one (eigenvector y ⊗ y). Note that because of the multiplicities,
Observation II.17 shows that V ⊗ V is not irreducible, but instead decomposes into
a direct sum of two irreducible subrepresentations.

Note that V ⊗ V = Sym2V ⊕
∧2 V as a vector space, and also as a representation

of sl2(C). The two irreducible subrepresentations of the tensor square V ⊗ V of
the standard representation are the symmetric square7 Sym2V ∼= L(2), and the
alternating square8

∧2 V ∼= L(0). Here,
∧2 V ∼= L(0) in fact coincides with the

trivial representation.

4.3.3. The adjoint representation

In Example II.21, we noted that The vector space sl2(C) is a representation of the
Lie algebra sl2(C) by the adjoint action. Note that adH(E) = 2E, adH(H) = 0,
and adH(F ) = −2F , so that the H-eigenvalues are +2, 0, and −2, each with
multiplicity one. The corresponding H-eigenspaces are CE, CH, and CF . From
Observation II.17 it follows that the adjoint representation is irreducible, in fact
isomorphic to L(2), by dimensionality again.

7Note that dim(Sym2V ) = 3, basis x2, xy, y2.
8Note that dim(

∧2
V ) = 1, basis x ∧ y.
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5. Lifting representations from Lie algebra to Lie group

We now illustrate how, in practice, the understanding of representations of a complex
Lie algebra (such as sl2(C) in the previous section) allows us to study continuous
symmetries that are described by a real Lie group (such as SU2 or SO3).

First of all, we want to note that as long as one is interested in complex representa-
tions, we are allowed to replace a real Lie algebra by its complexification.

Lemma II.23. Let g be a real Lie algebra, and gC = g ⊗R C = g ⊕ i g its com-
plexification. Then any complex representation of g has a unique structure
of representation of gC (which restricts back to g to the original one), and
Homg(V,W ) = HomgC(V,W ). In other words, the categories of complex repre-
sentations of g and gC are equivalent.

Proof. Let ρ : g→ End (V ) be a representation of g on a complex vector space V . The only C-linear
way to extend it to gC is to define ρC : gC → End (V ) by setting ρC(X+iY ) = ρ(X)+i ρ(Y ).
We leave it to the reader to check that this extension maps brackets in gC to commutators
in End (V ), and thus defines a representation of gC. Note that the converse direction is clear
— any representation of gC restricts to a representation of g ⊂ gC.

As for morphisms of representations, if fC : V → W is a morphism of gC-representations,
then a fortiori it is a morphism of g-representations. We only need to show the other
direction, that if f : V →W is a morphism of g-representations, then it is also a morphism
of gC-representations. But this is clear by C-linearity of f and the way the representations
ρVC and ρWC extend ρV and ρW . �

Example II.24. Recall that the three-dimensional real Lie algebras su2 and so3 are isomorphic.
We next observe that the complexification of either one is the three-dimensional complex
Lie algebra sl2(C).

Consider for example so3 with basis Rx, Ry, Rz such that [Rx, Ry] = Rz, [Ry, Rz] = Rx,
and [Rz, Rx] = Ry, see Example II.17. The complexification so3(C) = so3 ⊗R C has a
corresponding basis (now over C), which we for clarity denote here by Rxc = Rx ⊗ 1, Ryc =
Ry ⊗ 1, Rzc = Rz ⊗ 1. The Lie brackets of these basis elements in so3(C) are just

[Rxc , R
y
c ]so3(C) = Rzc , [Ryc , R

z
c ]so3(C) = Rxc , [Rzc , R

x
c ]so3(C) = Ryc .

We now change to another basis. Denote R0 = −2iRzc and R+ = Rxc + iRyc and R− =
Rxc − iRyc — clearly R0, R+, R− also forms a basis of so3(C). The brackets of these new
basis elements are easily calculated using the C-bilinearity of [·, ·]so3(C) and the brackets of
Rxc , R

y
c , R

z
c — we get

[R0, R+]so3(C) = 2R+, [R0, R−]so3(C) = 2R−, [R+, R−]so3(C) = R+.

Comparing with the brackets of H,E, F in sl2(C) given in Equation (II.8), we immediately
see that the map so3(C)→ sl2(C) defined by linear extension of R0 7→ H, R+ 7→ E, R− 7→ F
is a Lie algebra isomorphism, so3(C) ∼= sl2(C). Similarly we have su2(C) ∼= sl2(C).

In particular we have equivalences

{complex rep’ns of su2} ↔ {complex rep’ns of sl2(C)} ↔ {complex rep’ns of so3} .

Recall that we found that the finite dimensional irreducible representations of the three-
dimensional complex Lie algebra sl2(C) are L(λ), with λ ∈ Z≥0. By Lemma II.23, then,
these are also the finite dimensional irreducible complex representations of the real Lie
algebras su2 and so3.

The fact that allows to get from representations of Lie algebras to representations
of Lie groups is the following consequence of our two principles for Lie groups.
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• Let G be a Lie group and g its Lie algebra.
(i) Every representation % : G → Aut(V ) of the Lie group G defines a

representation ρ = (d%)|e : g → End(V ) of the Lie algebra g, and any
intertwining map of representations of G is an intertwining map of
representations of g.

(ii) If G is simply connected, then % 7→ ρ = (d%)|e gives an equivalence of
categories of representations of G and representations of g. In partic-
ular, every representation of the Lie algebra g is the derivative at e of
some representation of the Lie group G.

Example II.25. Recall that SU2 is simply connected by Theorem II.12. As a special case of the
theorem above we get the equivalence

{representations of SU2} ↔ {representations of su2} .
In particular, the irreducible complex representations of SU2 are L(λ), λ ∈ Z.

The easiest way to give the explicit SU2 action on L(λ) is perhaps to realize that L(λ) =

SymλC2 is a symmetric tensor product of the standard representation C2. The action of
SU2 on the standard representation C2 is the obvious matrix-vector multiplication, and
the action on the symmetric tensor power can be read off from here. The example of the
three-dimensional irreducible L(2), for example, in the basis x2, xy, y2, gives that[

ξ1 + iξ2 −ξ3 + iξ4
ξ3 + iξ4 ξ1 − iξ2

]
∈ SU2

is represented by the matrix ξ21 + 2iξ2ξ1 − ξ22 −ξ1ξ3 − iξ2ξ3 + iξ1ξ4 − ξ2ξ4 ξ23 − 2iξ4ξ3 − ξ24
2ξ1ξ3 + 2iξ2ξ3 + 2iξ1ξ4 − 2ξ2ξ4 ξ21 + ξ22 − ξ23 − ξ24 −2ξ1ξ3 + 2iξ2ξ3 + 2iξ1ξ4 + 2ξ2ξ4

ξ23 + 2iξ4ξ3 − ξ24 ξ1ξ3 − iξ2ξ3 + iξ1ξ4 + ξ2ξ4 ξ21 − 2iξ2ξ1 − ξ22

 .
Although the statement of the previous fact appears to only concern simply con-
nected Lie groups, it can in fact be used for any connected Lie groups G. We only
need to pass through the universal cover G̃.

Example II.26. The group SO3 of rotations of the Euclidean space R3 is connected but not
simply connected: by Theorem ?? its universal cover is SU2, and the kernel of the covering
map φ : SU2 → SO3 is the two element subgroup Γ = {±I2} of the center of SU2. We have
SO3 = SU2/Γ.

By Example II.25, the irreducible complex representations of SU2 are the same as the irre-
ducible representations of sl2(C), i.e., L(λ) for λ ∈ Z≥0. To get the irreducible representa-
tions of SO3, the remaining question is: which ones among L(λ) are trivial on Γ?

The solution is easy once we notice that

−I2 = exp(2πSz) ∈ SU2, where Sz = − i

2
σ3 =

[
− i

2 0
0 i

2

]
∈ su2.

To lift a representation ρ : su2 → End(V ) to a representation of % : SU2 → Aut(V ), we must
set %(exp(X)) = exp(ρ(X)). In particular we have %(−I2) = exp

(
2πρ(Sz)

)
. On L(λ), the

operator ρ(Sz) = 1
2 i ρ(H) is diagonalizable with eigenvalues i λ2 , i (λ2−1), . . . ,−i λ2 . If λ is an

even integer, then these are integer multiples of i and %(−I2) = exp
(
2πρ(Sz)

)
is the identity

operator on the representation, so the representation is trivial on Γ = {±I2}. If λ is an odd
integer, then the eigenvalues of Sz are half-integer multiples of i, and %(−I2) = exp

(
2πρ(Sz)

)
is minus identity, so the representation is non-trivial on Γ = {±I2}.

We conclude that the irreducible complex representations of SO3 are L(λ) with λ ∈ 2Z≥0.
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6. Representations of sl3(C)

We already showed how to find and construct all irreducible representations of
sl2(C), and how to apply the results to representations of Lie groups, whose Lie
algebras have sl2(C) as their complexification, e.g., SU2 and SO3.

We will proceed to treat more complicated (semisimple) Lie algebras. We start
in this section by considering sl3(C). The representations of sl3(C) are needed
for example in quantum chromodynamics (QCD), the theory of strong interactions
that govern the atomic nucleai. Besides their direct relevance, the analysis of the
structure and representations of sl3(C) will serve as a wonderful example of what
happens with semisimple Lie algebras in full generality.

We will follow a similar strategy as in the case of sl2(C) to analyze the structure of
sl3(C) and its representations. We only require some new ideas, or rather reinter-
pretations of a few concepts and arguments. These ideas turn out to be powerful —
with them, we will be able to handle any semisimple Lie algebra.

6.1. The Lie algebra sl3(C)

Recall that sl3(C) is the set

sl3(C) =
{
M ∈ C3×3

∣∣ tr(M) = 0
}

of traceless (complex) three-by-three matrices, equipped with the Lie bracket [M1,M2] =
M1M2 −M2M1. As a (complex) vector space, it is eight dimensional

dim
(
sl3(C)

)
= 8.

Indeed, the nine entries Xi,j, 1 ≤ i, j ≤ 3, of a matrix X ∈ sl3(C) can be chosen
arbitrarily subject to just one linear condition, tr(X) = X1,1 +X2,2 +X3,3 = 0.

Remark II.27. For calculations below, we recall the definition and properties of the elementary
matrices Ekl. For a general dimension n ∈ N and for 1 ≤ k, l ≤ n, the elementary matrix
Ekl ∈ Kn×n is the matrix whose (k, l)-entry is one, and all other entries are zeroes, Eklij =
δk,i δl,j . The products of such matrices are

EklEk
′l′ = δl,k′ E

kl′ ,

as is verified by the following direct calculation(
EklEk

′l′
)
ij

=
∑
m

EklimE
k′l′

mj =
∑
m

δk,i δl,m δk′,m δl′,j = δl,k′ δk,i δl′,j

= δl,k′ E
kl′

ij .

The n2 elementary matrices Ekl form a basis of gln(K), and the brakets in gln(K) (and thus
also in any Lie subalgebra g ⊂ gln(K)) read

[Ekl, Ek
′l′ ] = EklEk

′l′ − Ek
′l′Ekl

= δl,k′ E
kl′ − δl′,k Ek

′l. (II.12)

In our analysis of sl3(C), we will follow steps modelled on those that we took in the
analysis of sl2(C) in the previous lecture. For sl2(C), our analysis relied first of all on
a good choice of basis H,E, F — we split any representation (including the adjoint
representation on sl2(C) itself) to eigenspaces of H, and figured out how E and F
acted on the eigenspaces. The task now is to find the appropriate generalizations.
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The good idea turns out to be not to pick just one element to diagonalize, but
rather to take an entire subspace h ⊂ sl3(C) to be diagonalized simultaneously.
Such a simultaneous diagonalization in any representation succeeds if all the needed
operators commute with each other, which is guaranteed if h is an abelian subalgebra
of sl3(C). We choose h to consist of all diagonal matrices in sl3(C), i.e.,

h =


 a1 0 0

0 a2 0
0 0 a3

 ∣∣∣∣∣ a1, a2, a3 ∈ C, a1 + a2 + a3 = 0

 . (II.13)

All diagonal matrices indeed commute with each other, so [h, h] = 0, and the simul-
taneous diagonalization of the action of all H ∈ h is possible.

Since we are not considering the diagonalization of a single linear operator, but
an entire space of operators, the concept of eigenvalue needs to be appropriately
generalized. If V is a representation, and v ∈ V is a simultaneous eigenvector for
the action of all H ∈ h, then we have

Hv = µ(H)v ∀H ∈ h, (II.14)

where µ(H) denotes the eigenvalue of the action of H ∈ h. Obviously µ(H) depends
linearly on H, and so defines a linear functional µ : h→ C, i.e., an element µ ∈ h∗ of
the dual of h. This is the appropriate generalization of eigenvalues and eigenvectors.
We call µ ∈ h∗ a weight and v ∈ V satisfying (II.14) a weight vector (of weight µ).
Analogously to the decomposition (II.9), any finite-dimensional representation V of
sl3(C) has a decomposition

V =
⊕
µ

Vµ, (II.15)

where µ runs over weights V , a priori some finite collection of linear functionals
µ ∈ h∗, and Vµ are the corresponding weight spaces for h

Vµ =
{
v ∈ V

∣∣ ∀H ∈ h : Hv = µ(H)v
}
. (II.16)

We have dim(h) = 2, and to be concrete we can take a basis H1,2 = E1,1 − E2,2,
H2,3 = E2,2 − E3,3 for h. It is convenient to write the dual elements as linear
combinations of ηi, i = 1, 2, 3, defined on all diagonal 3× 3-matrices by

ηi(
3∑
j=1

ajE
j,j) = ai.

As a basis of the dual, we can then take for example η1 − η2 and η2 − η3, but we
remark that all ηi, i = 1, 2, 3, make sense as elements of h∗.9

Example II.28. The space V = C3 is naturally a representation of sl3(C): any elementX ∈ sl3(C)
is a 3× 3-matrix, which we let act on any vector v ∈ V = C3 by matrix multiplication Xv.
This three-dimensional representation is called the standard representation of sl3(C).

The standard basis vectors e1, e2, e3 ∈ C3 are weight vectors, with respective weights
η1, η2, η3. The weight space decomposition of the standard representation C3 of sl3(C)
is thus

C3 = Ce1 ⊕ Ce2 ⊕ Ce3 = (C3)η1 ⊕ (C3)η2 ⊕ (C3)η3 .

9Acting on h, the elements η1, η2, η3 are not linearly independent, of course, since η1(H) +
η2(H) + η3(H) = 0 holds for any traceless diagonal matrix H.
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Example II.29. Recall that if V is a representation of a Lie algebra g, then the dual V ∗ becomes a
representation by defining, for any X ∈ g and ϕ ∈ V ∗, the dual element X.ϕ as v 7→ −ϕ(X.v)
for all v ∈ V .

The dual V ∗ of the standard representation V = C3 of sl3(C) is thus a three-dimensional
representation. Let ϕ1, ϕ2, ϕ3 ∈ V ∗ be the dual basis to the standard basis e1, e2, e3 ∈ V ,
i.e. ϕj(ei) = δi,j for all i, j ∈ {1, 2, 3}. If H ∈ h, then(

H.ϕj
)
(ei) = −ϕj(H.ei) = −ϕj

(
ηi(H) ei

)
= −ηi(H) δi,j = −ηj(H)ϕj(ei),

which implies that H.ϕj = −ηj(H)ϕj . The basis vectors ϕ1, ϕ2, ϕ3 are thus weight vectors,
with respective weights −η1,−η2,−η3, and the weight space decomposition of the dual of
the standard representation of sl3(C) is

V ∗ = Cϕ1 ⊕ Cϕ2 ⊕ Cϕ3 = (V ∗)−η1 ⊕ (V ∗)−η2 ⊕ (V ∗)−η3 .

In particular (unlike for sl2(C)), a representation of sl3(C) and its dual are generally not
isomorphic to each other (even the weights in V and V ∗ are different).

Example II.30. The adjoint representation of sl3(C) is the vector space V = sl3(C) equipped
with the adjoint action: for X ∈ sl3(C) and Y ∈ V = sl3(C), we set

adX(Y ) = [X,Y ], which defines ad: sl3(C)→ End
(
sl3(C)

)
.

This is an eight-dimensional representation of sl3(C).

We will next address the weight space decomposition in this case.

6.2. Representations of sl3(C)

We will use the following two facts about finite dimensional representations of sl3(C).

Fact II.18. On any finite dimensional representation V of sl3(C), the actions of all
H ∈ h ⊂ sl3(C) are simultaneously diagonalizable.

The proof of this fact follows from general theory of semisimple Lie algebras, but it is
also not difficult to deduce from the corresponding fact for sl2(C). The simultaneous
eigenspaces are the weight spaces (II.16) in the decomposition (II.15).

Fact II.19. Any finite-dimensional representation of sl3(C) is a direct sum of its
irreducible subrepresentations.

This fact follows from general theory of semisimple Lie algebras, which we will treat
later.

6.2.1. The adjoint representation and roots for sl3(C)

In particular, the adjoint representation V = sl3(C) admits a decomposition to
weight spaces

sl3(C) =
⊕
µ

(
sl3(C)

)
µ

as we will verify now. The (abelian) subalgebra of diagonal matrices clearly consists
of vectors that have eigenvalue 0 for the adjoint action of any other diagonal matrix,
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so we have h ⊂
(
sl3(C)

)
0
. For an elementary matrix Eij, and diagonal matrix

H =
∑

k akE
kk, we calculate

[H,Eij] =
∑
k

ak [Ekk, Eij] =
∑
k

ak (δkiE
kj − δjkEik)

= (ai − aj)Eij, (II.17)

which shows that the one-dimensional subspace CEij, for i 6= j, is a simultaneous
eigenspace for all H ∈ h, with eigenvalues given by the weight ηi − ηj ∈ h∗. This in
fact concludes the weight space decomposition: the eight-dimensional space sl3(C)
has six one-dimensional weight spaces of different non-zero weights, and the two-
dimensional subspace h of zero weight:

sl3(C) = h⊕
⊕
i 6=j

CEij. (II.18)

The non-zero weights appearing in the adjoint representation are called roots , and
denoted traditionally by α. The set of roots is denoted by Φ: for sl3(C) we have

Φ =
{
η1 − η2, η1 − η3, η2 − η3, η2 − η1, η3 − η1, η3 − η2

}
. (II.19)

For the adjoint representation, the weight spaces other than h are called root spaces .
The decomposition (II.18) is also called the root space decomposition.

6.2.2. Irreducible representations of sl3(C)

Let again V be a finite-dimensional representation of sl3(C), and assume moreover
that it is irreducible. The decomposition V =

⊕
µ Vµ to weight spaces

Vµ =
{
v ∈ V

∣∣ ∀H ∈ h : Hv = µ(H)v
}

tells exactly how any H ∈ h acts on V . In view of the root space decomposi-
tion (II.18) of sl3(C), the remaining task is to describe how the root vectors Eij,
i 6= j, act on V .

Let now v ∈ Vµ be a weight vector of weight µ ∈ h∗, and consider the action of Eij

on v. Denote by αij = ηi − ηj the corresponding root, and let H ∈ h.

Fundamental calculation (second time):

H(Eijv) = Eij(Hv) + [H,Eij]v

= Eij
(
µ(H)v

)
+ αij(H)Eijv

=
(
µ+ αij

)
(H)Eijv.

This calculation shows that if v is a weight vector with weight µ, then Eijv is a
weight vector with weight µ + αij (although not necessarily a non-zero vector). In
other words, for any µ and for any i 6= j we have

Eij : Vµ → Vµ+αij .

As with sl2(C) we can immediately conclude something about the differences of any
two weights appearing in an irreducible representation.

Observation II.20. In an irreducible representation of sl3(C), any two weights
µ, µ′ differ by an integer linear combination of roots, µ′ = µ +

∑
i 6=j nij α

ij

with some nij ∈ Z.
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This can be reformulated as saying that the weights in an irreducible lie in some
translate of the root lattice

ΛR =
∑
α∈Φ

Zα = Zα12 ⊕ Zα23. (II.20)

For the latter expression we used the fact that α13 = α12 + α23, by virtue of which
all roots can in fact be expressed as integer linear combinations of α12 and α23.
We call these α12 and α23 simple roots (a choice has been made here). The set
∆ = {α12, α23} of simple roots forms a Z-basis of the root lattice ΛR. Roots which
are non-negative (resp. non-positive) integer linear combinations of simple roots are
called positive roots (resp. negative roots), and their set is denoted by

Φ+ = Φ ∩
⊕
α∈∆

Z≥0 α (resp. Φ− = −Φ+).

Concretely, here we have Φ+ = {α12, α23, α13} = {αij | i < j}.
To continue with comparisons to the case of sl2(C), recall that at this stage we
showed that in an irreducible representation, any non-zero vector from the H-
eigenspace with maximal eigenvalue λ generated the entire representation, which
was in fact determined by λ. Such a vector v satisfied Ev = 0 and then succes-
sive action by F on v was enough to span the representation. What is the correct
generalization to the present situation?

The eigenvalues have been replaced by weights µ ∈ h∗, and it is not a priori clear
which should be though of as maximal. Let us make an arbitrary looking choice:
choose numbers r1 > r2 > r3 such that r1 +r2 +r3 = 0, and define a linear functional
` on h∗ by

`(a1η
1 + a2η

2 + a3η
3) = a1r1 + a2r2 + a3r3.

The choice made above is such that the positive roots evaluate to positive numbers,
in particular for the two simple roots we have `(α12) = r1 − r2 > 0 and `(α23) =
r2 − r3 > 0. Let us agree to say that a maximal weight is the one with the largest
value of (the real part of) `. To ensure that there is a unique maximal choice, we
assume furthermore r1, r2, r3 chosen so that ` : ΛR → R has a trivial kernel (` is
irrational with respect to the lattice ΛR).

Then in a finite-dimensional representation V there exists a unique maximal weight,
denote it by λ. Note that since `(αij) > 0 for all i < j, we must have EijVλ = 0.
The root spaces of the positive roots thus annihilate the weight space with maximal
weight. We introduce some terminology:

Definition II.21. If V is any representation of sl3(C), then a (non-zero) vector
v ∈ V which satisfies Eijv = 0 for all i < j, and Hv = µ(H)v for all H ∈ h
and some λ ∈ h∗ is called a highest weight vector , and the weight λ ∈ h∗ is
called its highest weight .

Observation II.22. In any irreducible finite-dimensional representation V 6= 0 of
sl3(C), there exists a non-zero highest weight vector.

Proof. Take λ the maximal weight in V =
⊕

µ Vµ, and choose a non-zero v ∈ Vλ. �

Example II.31. In the standard representation V = C3 of sl3(C), the vector e1 a highest weight
vector of highest weight η1.
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Example II.32. In the dual V ∗ of the standard representation the vector ϕ3 a highest weight
vector of highest weight −η3.

Example II.33. In the adjoint representation sl3(C), by Equations (II.12) and (II.17), the vector
E13 a highest weight vector of highest weight α13 = η1 − η3.

A highest weight vector v ∈ Vλ is annihilated by half of the root vectors, and like
for sl2(C), applying repeatedly on it the other half of the root vectors, we generate
the entire irreducible representation.

Claim II.23. Let 0 6= v ∈ Vλ. Then V is spanned by the vectors obtained by
successively applying E21, E32, and E31 on v.

Proof. Let W be the linear span of vectors obtained by successively applying E21, E32, and E31 on
v. Note that since E31 = −[E21, E32], alternatively W could have been defined as the linear
span of vectors obtained by successively applying only E21 and E32 on v. For an inductive
argument, let Wn denote the linear span of vectors obtained by successively applying on v a
word of at most n letters, each equal to E21 or E32. Then W is the sum of Wn, as n ranges
over natural numbers. By definition we have E21Wn ⊂ Wn+1 and E32Wn ⊂ Wn+1, and
then using the fact that E31 = −[E21, E32] we get that E31Wn ⊂Wn+2. Also for any H ∈ h
we have HWn ⊂ Wn, since the vector obtained by applying a word on the highest weight
vector, is a weight vector (of weight λ plus the sum of the negative roots corresponding
to the letters of the word), and such vectors span Wn. It follows that W =

∑
nWn is an

invariant subspace for the action of all H ∈ h and E21, E32, and E31. It remains to see what
the positive root vectors E12, E23, and E13 do to Wn. Moreover, since E13 = [E12, E23], it
in fact suffices to consider E12 and E23.

We claim that E12Wn ⊂ Wn−1 and E23Wn ⊂ Wn−1. The proofs are entirely similar, so
consider the first case. The case n = 0 is clear, since W0 = Cv is the one-dimensional space
spanned by the highest weight vector, which is annihilated by E12 and E23. Proceed by
induction on n. Suppose that w is a vector obtained by applying on v a word of n letters,
each equal to E21 or E32. Depending on the last letter, we have either w = E21w′ or
w = E32w′, with w′ ∈Wn−1. Consider first the first case. Then

E12w = E12E21w′ =
(
E21E12 + [E12, E21]

)
w′ =

(
E21E12 +H12

)
w′

= E21E12w′ +H12w′ ∈ E21Wn−2 +Wn−1 ⊂Wn−1

where we used the induction assumption E12Wn−1 ⊂ Wn−2 and the fact that h preserves
Wn−1. In the second case,

E12w = E12E32w′ =
(
E32E12 + [E12, E32]

)
w′ =

(
E32E12 + 0

)
w′

= E32E12w′ ∈ E32Wn−2 ⊂Wn−1,

where we again used the induction assumption E12Wn−1 ⊂ Wn−2. By induction, we thus
establish that E12Wn ⊂ Wn−1 and E23Wn ⊂ Wn−1, and as a consequence also E13Wn ⊂
Wn−2. Therefore W =

∑
nWn is invariant also for E12, E23, and E13, and is therefore a

subrepresentation. �
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Observation II.24. The weights µ appearing in an irreducible finite-dimensional
representation V of sl3(C) lie in a cone (a 1

3
-plane, in fact) seen from the

maximal weight λ, namely in

λ− (R≥0α12 + R≥0α23).

By Observation II.22 any irreducible representation contains a highest weight vec-
tor, and by Claim II.23 the subspace spanned by vectors obtained by successively
applying E21, E32, and E31 on the highest weight vector is a subrepresentation — in
particular an irreducible representation is generated by successively applying E21,
E32, and E31 on a highest weight vector. Actually a little more is true:

Proposition II.34. If V is any representation of sl3(C), and v ∈ V is a non-zero
highest weight vector, then the subspace W ⊂ V spanned by vectors obtained
by successively applying E21, E32, and E31 on v is an irreducible subrepresen-
tation.

Proof. Let λ be the highest weight of v, i.e. v ∈ Vλ. We have shown that W ⊂ V is a subrep-
resentation, and clearly Wλ is one-dimensional, Wλ = Cv. If W would not be irreducible,
then by complete reducibility (Fact II.19) we would have W = W ′ ⊕W ′′, with W ′ and W ′′

non-zero subrepresentations. But since the projections to W ′ and W ′′ commute with the
action of h, we have Wλ = W ′λ ⊕W ′′λ . By one-dimensionality, one of these has to be zero,
and so v belongs to either W ′ or W ′′, and thus W is either W ′ or W ′′. �

Corollary II.35. The highest weight λ of an irreducible representation is uniquely
determined, and the highest weight vector is unique up to a multiplicative con-
stant.

Proof. If an irreducible representation V would contain a (non-zero) highest weight vector of
highest weight λ′ other than the maximal weight λ (according to the ordering given by the
real part of ` : h → C), then the subrepresentation W generated by it could not contain
vectors in Vλ, and thus would be a proper subrepresentation. This shows the uniqueness of
the highest weight. The uniqueness up to constants of a highest weight vector follows from
Claim II.23. �

Corollary II.36. An irreducible representation of sl3(C) is determined by its high-
est weight.

Proof. Suppose that V and W are irreducible representations with the same highest weight λ. Take
non-zero highest weight vectors v ∈W and w ∈W . Consider the representation V ⊕W , and
the subrepresentation U ⊂ V ⊕W generated by the vector v + w. Since v + w is a highest
weight vector, U is an irreducible representation by Proposition II.34. Let πV : V ⊕W → V
be the projection to V . Since πV (v + w) = v 6= 0, by Schur’s lemma we have U ∼= V .
Similarly one shows U ∼= W . This shows V ∼= W . �

Let us summarize what we know up to now about irreducible finite-dimensional
representations of sl3(C). By Observation II.22 we know that an irreducible repre-
sentation contains highest weight vectors, by Corollary II.35 we know that they have
a unique highest weight, and by Corollary II.36 we know that the irreducible repre-
sentation is determined by the highest weight. Thus the classification of irreducible
representations has been reduced to answering:
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Which elements λ ∈ h∗ can serve as highest weights of finite-
dimensional irreducible representations?

Also we should obtain a more detailed and concrete understanding of the represen-
tation. Let us first proceed with the study of the weights and their multiplicities in
a finite-dimensional irreducible highest weight representation with highest weight λ.

From Corollary II.35 we know that the multiplicity of the highest weight λ is one
in an irreducible representation. Let us continue looking at the weights along the
borders of the cone in which all weights of the representation are known to reside
by Observation II.24. The weight space Vλ−k α12 , k ∈ Z≥0, is necessarily spanned
by (E21)kv (any application of E32 or E31 would move the weight away from that
border of the cone). In particular, among weights of the form λ − kα12, there is
one uninterrupted string, with k = 0, 1, 2, . . . , d− 1, where d is the smallest positive
integer such that (E21)dv = 0.

We can actually now apply our knowledge of sl2(C). Denote H12 = E11 − E22 ∈ h,
and recall calculations (II.12) and (II.17), which give

[H12, E12] = 2E12, [H12, E21] = −2E21, [E12, E21] = H12.

In other words, the span of the three elements E12, H12, , E21 is a Lie subalgebra
s12 ⊂ sl3(C) which is isomorphic to sl2(C).

The action of the subalgebra s12 ⊂ sl3(C) only shifts weights in the directions ±α12,
and the sum of weight spaces

d−1⊕
k=0

Vλ−k α12

is a representation of s12 ∼= sl2(C). From the previous lecture, we then know that
the dimension d of it relates to the maximal H12 eigenvalue λ(H12) ∈ Z≥0 by d =
λ(H12) + 1.

Observation II.25. The highest weight λ ∈ h∗ of an irreducible finite-dimensional
representation of sl3(C) takes non-negative integer values on the basis H12, H23

of h ⊂ sl3(C):

λ(H12) = a ∈ Z≥0, λ(H23) = b ∈ Z≥0,

and consequently also on H13 = H12 +H23:

λ(H13) = λ(H12) + λ(H23) = a+ b ∈ Z≥0.

Proof. Indeed, from above we see that λ(H12) = d − 1 =: a, where d is the dimension of the
representation of s12 ∼= sl2(C) consisting of weight spaces along one border of the cone in
weight space. Similarly, by looking at another border of the cone and the subalgebra s23 ∼=
sl2(C) spanned by E23, H23, E32, one concludes that λ(H23) is a non-negative integer. �

This gives a necessary condition for an element λ ∈ h∗ to be the highest weight of
an irreducible finite-dimensional representation of sl3(C). In fact, it turns out that
the condition is also sufficient.

Theorem II.37. For any a, b ∈ Z≥0, let λa,b = a η1 − b η3 ∈ h∗, i.e., λ(H12) = a,
λ(H23) = b. Then there exists a unique irreducible finite-dimensional repre-
sentation L(λa,b) of sl3(C) with highest weight λa,b. Moreover, any irreducible
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finite-dimensional representation of sl3(C) is isomorphic to L(λa,b) for some
a, b ∈ Z≥0.

Proof. We have shown all other parts of the assertion except the existence of a finite-dimensional
representation with highest weight λa,b. Recall from Example ?? that the highest weight of
the standard representation V = C3 is η1 = λ1,0, and the highest weight of the dual V ∗ is
−η3 = λ0,1. Consider the tensor product

V ⊗ · · · ⊗ V︸ ︷︷ ︸
a times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
b times

of a copies of V and b copies of V ∗. In it, the vector

e1 ⊗ · · · ⊗ e1 ⊗ ϕ3 ⊗ · · · ⊗ ϕ3

is annihilated by E12, E23, and E13, and it is an eigenvector of any H ∈ h, with eigenvalue
a η1(H) − b η3(H). Therefore, this vector is a highest weight vector of highest weight λa,b,
and the subrepresentation generated by it is an irreducible highest weight representation of
dimension at most 3a+b, the dimension of the tensor product. �

We have thus in principle classified all irreducible finite-dimensional representations,
but our description of them is so far not satisfactory in terms of explicitness — we
have not for example told what are the different weights appearing in the irreducible
L(λa,b), or what is its dimension.

6.2.3. More about the weights in irreducible representations

We found that the irreducible representations were labeled by their highest weights,
the possible values of which form the set of dominant weights

Λ+
W =

{
µ ∈ h∗

∣∣∣ µ(H12) ∈ Z≥0, µ(H23) ∈ Z≥0
}
. (II.22)

All weights must be obtained from these by translating by some integer linear com-
binations of roots. Since the roots αij satisfy αij(H12) ∈ Z and αij(H23) ∈ Z, we
see that all weights of any finite-dimensional representations of sl3(C) must belong
to the weight lattice

ΛW =
{
µ ∈ h∗

∣∣∣ µ(H12) ∈ Z, µ(H23) ∈ Z
}
. (II.23)

It is useful to have in mind the picture of h∗ with the discrete set Φ of roots, the
lattice ΛR generated by them, the lattice ΛW of possible weights which refines the
root lattice ΛR, and the cone Λ+

W of dominant weights

Φ ⊂ ΛR ⊂ ΛW ⊂ h∗, and Λ+
W ⊂ ΛW ⊂ h∗.

Recall also that in the irreducible representation L(λ) with highest weight λ ∈ Λ+
W,

all weights are known to lie in the cone (in fact a 1
3
-plane)

λ− (Z≥0α12 + Z≥0α23),

by Observation II.24.

By Claim II.23 we got that along the borders of that cone the multiplicities of
weights are equal to one, until at some point they terminate

dim(L(λ)λ−kα12) = 1, for k = 0, 1, . . . , kmax

dim(L(λ)λ−kα23) = 1, for k = 0, 1, . . . , k′max,
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but as already indicated, we do in fact get more precise information by making use
of the subalgebras s12 ⊂ sl3(C) and s23 ⊂ sl3(C) isomorphic to sl2(C). We now turn
to that.

Consider thus again for example the subalgebra s12 ∼= sl2(C), spanned by E12, H12,
and E21 in sl3(C). Suppose that µ ∈ h∗ is a weight appearing in a representation
V . The subspace ⊕

k∈Z

Vµ+kα12

consisting of the weight spaces with weight µ translated by an integer multiple of the
root α12, is a representation of s12, by virtue of our “fundamental calculation” (II.20).
Let us apply the symmetry of eigenvalues of sl2(C) to this representation. Note that
the H12-eigenvalue of any w ∈ Vµ is the integer µ̃ = µ(H12). Similarly, the H12-
eigenvalue of w ∈ Vµ+kα12 is is µ(H12) + kα12(H12) = µ̃+ 2k. The reflected weight,
−µ̃, in particular, is obtained by setting k = −µ̃ = −µ(H12). This H12-eigenspace
in the above representation of s12 is the weight space with weight µ − µ(H12)α12.
We define the operation

σ12 : h∗ → h∗, σ12(µ) = µ− µ(H12)α12.

The dimensions of the weight spaces L(λ)µ and L(λ)σ12(µ) must be equal.

An entirely similar analysis of the subalgebra s23 ∼= sl2(C), spanned by E23, H23,
E32, and of the subalgebra s13 ∼= sl2(C), spanned by E13, H13, E31, shows that the
dimensions of the weight spaces are also unchanged by the operations

σ23 : h∗ → h∗, σ23(µ) = µ− µ(H23)α23

σ13 : h∗ → h∗, σ13(µ) = µ− µ(H13)α13

on weights. Let W be the group generated by σ12, σ23, σ13, the Weyl group. Then
the multiplicities of weights in any representation V of sl3(C), are symmetric under
the action of the Weyl group

dim(Vµ) = dim(Vσ(µ)) for any σ ∈ W .

Note that the operation σ12 on h∗ is actually a reflection across the line determined by
Ω12 =

{
µ ∈ h∗

∣∣ µ(H12) = 0
}

, and similarly σ23 and σ13 are reflections across lines

Ω23 =
{
µ
∣∣ µ(H23) = 0

}
and Ω13 =

{
µ
∣∣ µ(H13) = 0

}
, respectively. Applying the

invariance of weight multiplicities under Weyl groupW to the adjoint representation,
we find that each σ ∈ W permutes the set Φ of roots. As an example, we calculate

σ12(α
12) = α12 − α12(H12)α12 = α12 − 2α12 = −α12

σ12(α
23) = α23 − α23(H12)α12 = α23 + α12 = α13

σ12(α
13) = α13 − α13(H12)α12 = α13 − α12 = α23. (II.24)

Exercise II.4. Show that the group W is isomorphic to the symmetric group S3 on three letters.

Let us return to the analysis of the irreducible representation V = L(λ) with highest
weight λ ∈ Λ+

W. The highest weight vector v in the one-dimensional weight space
Vλ is annihilated by E12 and E23 and consequently also by E13 = [E12, E23]. This
lead to Observation II.24 that all weights of L(λ) must lie in the cone

λ− (Z≥0α12 + Z≥0α23).
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Consider then a vector v′ in the one-dimensional weight-space Vλ′ with the reflected
weight λ′ = σ12(λ). Note that σ12 ◦ σ12 = idh∗ , and therefore σ12(λ

′) = λ. The first
calculation in Equation (II.24) then has the significant consequence that

σ12(λ
′ − α12) = σ12(λ

′)− σ12(α12) = λ+ α12,

from which we infer that dim(Vλ′−α12) = dim(Vλ+α12) = {0}, and in particular that
E21v′ = 0. Similarly, the third calculation in Equation (II.24) implies that

σ12(λ
′ + α13) = σ12(λ

′) + σ12(α
13) = λ+ α23

from which we infer that dim(Vλ′+α13) = dim(Vλ+α23) = {0}, and in particular that
E13v′ = 0. Consequently we also get E23v′ = 0, since E23 = [E21, E13]. This makes
v′ ∈ Vλ′ something like a highest weight vector, but with respect to a different
choice of what is meant by the maximal weight. By performing an analysis similar
to Claim II.23, we may conclude that the weights of V lie in a certain cone seen
from λ′, namely

λ− (Z≥0α21 + Z≥0α13).

We can play a similar game with each of the 6 elements of the Weyl group W .
Vectors vσ, σ ∈ W , in the one-dimensional weight spaces Vσ(λ) are annihilated by
three of the six root spaces, and all weights must lie in a cone seen from σ(λ). The
intersection of these cones is a hexagon in the weight lattice, whose corners are
the images of the highest weight λ under the action of the Weyl group, i.e., σ(λ)
with σ ∈ W . Although the general case is a genuine hexagon, note that some side
length may degenerate to zero if λ lies on one of the lines across which the Weyl
group generators reflect weights. This happens if either λ(H12) = a or λ(H23) = b
vanishes. The hexagon then degenerates to a triangle, or even a single point in the
particular case of the trivial representation L(0) = L(λ0,0).
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