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iv CONTENTS

Foreword

These lecture notes are primarily intended for the regular Master’s level course Large
Random Systems at Aalto University. The notes grew out of lectures of three courses
given by us at the University of Helsinki in 2014 and at Aalto University in 2015
and 2016.

One of the principal aims of the course is to learn to apply probability theory to
interesting probabilistic models. We thus assume familiarity with measure theo-
retic probability as well as various undergraduate level topics in mathematics. To
facilitate the study of the main content of the lectures, we nevertheless also recall
some of the needed background in the Appendices. Our preference is to include a
large number of different models in the lectures, but therefore none of the models
can be studied in great depth. We devote no more than two lectures for any given
model, and we can therefore only establish some basic results about each model. We
refer the interested reader to more specialized texts about further results. Besides
treating specific models, the course contains some development of general theory, in
particular related to weak convergence and tightness.

The notes are still in a very preliminary and incomplete form, and it is our goal to
gradually improve and extend them. The notes will in particular be frequently up-
dated during the current course. Please send all feedback about mistakes, misprints,
needs for clarification etc. to Kalle Kytölä (kalle.kytola@aalto.fi).



Lecture I

Introduction

In this introductory lecture we will discuss two examples:

• Random permutations: different applications
• Random walk: recurrence and transience depending on dimension

The two examples are treated in different fashion.

For random permutations the objective is not to prove any theorems, but rather to
illustrate how such apparently very simple random objects are relevant to modeling
various interesting phenomena. Along as we describe the modeling, we also state a
few known mathematical results relevant to the analysis of the models.

For random walks, instead, our focus is on proving Pólya’s theorem: a basic result
which shows a qualitative difference in the long time behavior properties of the
random walk depending on the dimensionality of the space. Some applications of
random walks and Pólya’s theorem will be encountered later on in this course, and
with some imagination the reader will have no trouble finding other applications.

The examples in this lecture are thus intended as introductions to the topic of large
random systems from the perspectives of modeling and of mathematical analysis.

1. Random permutations as large random systems

As a preparation, we recall some facts about permutations and fix notation.

A permutation of a set X is a bijective function σ : X → X. The set of permuta-
tions of X is denoted by S(X), and it naturally has the structure of a group: the
group operation is the composition of functions. We are commonly interested in
permutations of a finite set X, and if the number of elements of that set is n, it is
conventional to choose X = {1, 2, . . . , n} for simplicity. For this case, we use the
special notation

Sn =
{
σ : {1, . . . , n} → {1, . . . , n} bijective

}
. (I.1)

The group Sn is called the symmetric group on n symbols. It is a finite group: the
number of different permutations of n symbols is

#Sn = n! = n · (n− 1) · · · 2 · 1. (I.2)

Since Sn is a finite group, there is one particularly natural probability measure on it:
the uniform measure, which associates probability 1

n!
to each permutation σ ∈ Sn.

If σ is a random variable with values in Sn, whose law is this uniform measure on
Sn, we say that σ is a uniform random permutation of n symbols.

To get a feeling for uniform random permutations, here are two problems that you
should think about.
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2 I. INTRODUCTION

Exercise I.1. Let σ be a uniformly distributed random permutation of the set {1, 2, . . . , n}.
Compute the following quantities about its cycle decomposition.1

(a) Let L be the length of the cycle that contains the element 1. What is the distribution
of L, i.e. probabilities P[L = `]? Calculate also E[L].

(b) Let S be the number of cycles in the cycle decomposition. Calculate E[S].
(c) What is the probability that elements 1 and 2 belong to the same cycle?

Exercise I.2.

(a) Let E1, . . . , En ⊂ Ω be events. Prove the inclusion-exclusion formula:

P
[ n⋃
j=1

Ej

]
= −

∑
J⊂{1,...,n}

J 6=∅

(−1)#J P
[ ⋂
j∈J

Ej

]

=
∑

1≤j1≤n

P[Ej1 ]−
∑

1≤j1<j2≤n

P[Ej1 ∩ Ej2 ] +
∑

1≤j1<j2<j3≤n

P[Ej1 ∩ Ej2 ∩ Ej3 ]− · · · .

(b) What is the probability that a uniformly distributed random permutation of the set
{1, 2, . . . , n} has a fixed point, i.e., a cycle of length 1? Compute the limit of this
probability as n→∞.

Hint. In part (a), you may want to use indicator random variables and consider the complementary

event. In part (b), set Ej = {the point j is a fixed point}.

1.1. Sorting algorithms

A common problem in programming and computer science is to sort a list of n ele-
ments, often for n very large. There are various sorting algorithms for this purpose,
e.g., “Quicksort”, “Merge sort”, “Insertion sort”, . . . . Roughly speaking, a sorting
algorithm is a procedure which makes pairwise comparisons between the order of
elements in the list, and then makes rearrangements of the order of the list accord-
ing to the results of the comparisons, so that eventually the list becomes completely
sorted, i.e., its elements appear in an increasing order.

The performance of an algorithm is measured by its use of computational resources,
mainly by the amount of processor time used before the algorithm outputs a sorted
list (one could also consider other aspects such as memory requirement etc.). For
sorting algorithms, the required processor time is (usually) well approximated by
the number C of pairwise comparisons that were needed.

The number C of comparisons depends on the input, i.e. the original list provided
to the algorithm, which was to be sorted. In the absence of any further information
about the input, it is reasonable to assume that the input list is equally likely to
be in any possible order — thus represented by a uniform random permutation of
n elements. We thus model the input as being random. Although there may be
nothing random about the behavior of the algorithm for a given input, for example
the required number of comparisons needed depends on the random input, and as
such becomes random.

To give some concreteness to the above discussion of sorting algorithm performance,
in Example I.1 below we briefly consider the average case performance of a widely
used Quicksort algorithm. The interested reader will find more details both about

1Recall: A permutation can be written as a composition of disjoint cycles so that each element
appears in exactly one cycle, and up to the order of cycles this cycle decomposition is unique.



1. RANDOM PERMUTATIONS AS LARGE RANDOM SYSTEMS 3

sorting algorithms in general and also specifically on the analysis of QuickSort in
the excellent book [Knu97].

Example I.1 (QuickSort). Quicksort is a recursive algorithm, the simplest variant of which is
informally described as follows:

• The input to the algorithm QuickSort is a list of element a = (a1, . . . , an) in some set
X with a total order relation ≤.

• If the input list contains no more than one element, then just output the list itself.
Specifically, for a one element list (a1) return QuickSort(a1) := (a1), and for an empty
list ∅ return QuickSort(∅) := ∅.

• Otherwise the input list contains more than one element. Then choose one element ar
from the list, and compare it to all other elements: the other elements aj with aj ≤ ar
form a list a− of length at most n − 1, and those with aj > ar form another list a+ of
length at most n− 1.

• Apply the Quicksort to the (shorter) sublists a− and a+, to get the sorted sublists
QuickSort(a−) and QuickSort(a+).

• Output the list constructed from the sorted sublist a−, the element ar, and the sorted
sublist a−

QuickSort(a) :=
(
QuickSort(a−); ar; QuickSort(a+)

)
.

As the comparison element ar one could take the first element a1, but it is often safer to
actually take a randomly chosen element of the list.

Consider the performance of the QuickSort algorithm above for an input of n elements in a
uniformly random order, with the simplifying assumption that the list can not contain two
equal elements. Denote the random number of comparisons by Cn. We can first of all ask
about the expected number of comparisons needed,

mn = E[Cn].

This represents the average case performance of QuickSort. It is also important to know
how big are the random fluctuations around the average case, and for this purpose one can
compute the variance

vn = Var(Cn).

The numbers mn and vn can be calculated as solutions to recursive equations. The recursion
for mn, for example, is the following. To sort a list of n elements, the algorithm first needs
to compare one chosen element ar to n − 1 other elements. Then we obtain two sublists,
of lengths k and n − 1 − k, where k ∈ {0, 1, . . . , n− 1} is uniformly random, because the
comparison element was the k + 1:st smallest with probability 1

n . The total number of
comparisons is n − 1 plus the number of comparisons needed to sort the sublists, and the
expected value is

mn = n− 1 +
1

n

n−1∑
k=0

(
mk +mn−1−k

)
. (I.3)

With initial conditions m0 = 0 and m1 = 0, the solution to this recursion is (verify by
yourself)

mn = 2(n+ 1)

n∑
j=1

1

j
− 4n, (I.4)

whose asymptotic behavior for large n is

mn ∼ 2n log(n). (I.5)

One can similarly show that

vn ∼ c× n2, where c ≈ 0.4202.

In particular, for large n, the typical random fluctuations of Cn around the expected value
mn ∼ const. × n log(n) are on a scale

√
vn ∼ const. × n. Since

√
vn/mn → 0, the random

number of comparisons Cn is well concentrated around the average case value mn.
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Exercise I.3. Check that mn given by (I.4) satisfies the recursion (I.3)

Exercise I.4. Check that the asymptotical behavior of mn given by (I.4) is as stated in (I.5), or
more precisely, show that

lim
n→∞

mn

n log(n)
= 2.

1.2. Interface in a disordered material

As our second example of random permutations in interesting applications, we will
discuss a model of disordered material, with an interface in it.

The model we will consider is visualized in Figure I.1, and is formally described as
follows. Consider the unit square S = [0, 1]× [0, 1] in the plane. Let Zj = (Xj, Yj),
j = 1, . . . , n, be n independent random points uniformly distributed in the square
S. Our object of interest will be a certain directed path γ from the bottom left
corner (0, 0) ∈ S to the top right corner (1, 1) ∈ S whose both coordinates are
non-decreasing functions, i.e., the direction of the path is restricted to the North-
East quadrant. We want this path γ to go through as many of the random points
Z1, . . . , Zn ∈ S as possible. There may not be a unique such path, but the maximal
number ` of points on any such path is well defined, given the locations of the points.
Optimal paths γ in various samples of random points are drawn in the illustrations
of Figure I.1.

This is a simple model used in disordered materials physics. The easiest interpreta-
tion is that the square S represents a piece of some material, and the the random
points Z1, . . . , Zn ∈ S represent impurities in this material. The material is consid-
ered to be weaker at the locations of the impurities, so it is easier to break at the
locations of the impurities: the energy needed to break the material along a path γ
could be a negative constant times the number of impurities on γ, so that it requires
less energy to break along paths with many impurities. The optimal interface γ is
then the fracture that will actually be formed when the material is torn apart, and
the number of impurities on it is the amount of energy needed to tear the material.
Alternatively the interface could be modeling a directed polymer in a disordered
environment or a domain wall between two phases that are enforced by boundary
conditions. The reader can find more about modeling disordered materials and
interfaces in them for example in [KZ87].

The maximal number of points that the directed path can pass through depends
on the randomly chosen points Z1, . . . , Zn, and is therefore itself a random variable,
which we denote by Ln, to emphasize the underlying choice of n random points. In
the disordered materials interpretation this random number represents the energy
advantage that the interface can get by making use of the randomly located impuri-
ties. We will next explain that Ln arises in a simple way from random permutations.

Fix the random points Z1 = (X1, Y1), . . . , Zn = (Xn, Yn). It is convenient to order
these points by the values of their x-coordinates, so let us agree to relabel them so
that 0 < X1 < X2 < · · · < Xn < 1 (note that the x-coordinate values are almost
surely different, so no equalities arise with probability one). Then there is no reason
for the y-coordinates to be in any specific order, and instead the rearrangement
σ ∈ Sn such that 0 < Yσ(1) < Yσ(2) < · · · < Yσ(n) < 1, is a uniform random
permutation.



1. RANDOM PERMUTATIONS AS LARGE RANDOM SYSTEMS 5

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

(a) A sample of n = 15 points in a square, and
a NE path through ` = 7 of them.
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(b) A sample of n = 100 points in a square,
and a NE path through ` = 17 of them.
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(c) A sample of n = 500 points in a square,
and a NE path through many of them.
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(d) A sample of n = 1500 points in a square,
and a NE path through very many of them.

Figure I.1. North-East directed paths through maximal numbers of
points in random samples of different sizes.

An increasing subsequence in a permutation σ ∈ Sn is a sequence (i1, i2, . . . , i`)
of indices such that 1 ≤ i1 < i2 < · · · < i` ≤ n and σ(i1) < σ(i2) < · · · <
σ(i`). A longest increasing subsequence in σ is such a sequence, where the length
` of the sequence is maximal. Again, for a given permutation σ there may not
exist a unique longest increasing subsequence, but the maximal length ` = `(σ)
of increasing subsequences is well defined. Now suppose that X1 < · · · < Xn

and Yσ(1) < · · · < Yσ(n) as above. Then note that for any (i1, i2, . . . , i`) such that
1 ≤ i1 < i2 < · · · < i` ≤ n, the existence of a NE-directed path γ through points
(Xi1 , Yi1), . . . , (Xi` , Yi`) is equivalent to σ(i1) < σ(i2) < · · · < σ(i`). This says that
(Xi1 , Yi1), . . . , (Xi` , Yi`) lie on some NE-directed path γ if and only if (i1, i2, . . . , i`)
is an increasing subsequence of the permutation σ which is needed to rearrange to
y-coordinate values to an increasing order. We conclude that the random number
Ln of points that can be visited by an interface γ is the same as the length `(σ) of
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the longest increasing subsequence in the uniform random permutations σ ∈ Sn,

Ln = `(σ).

Recall that the quantity Ln is of importance, for example as the energy advantage
of the interface due to the impurities. In a big piece of material, the number of
impurities n becomes large, so we should study the behavior of Ln as n → ∞. It
can be shown that the asymptotic behaviors of the expected value and variance of
Ln are

E[Ln] ∼ 2
√
n and Var(Ln) ∼ const.× n1/3.

Moreover, a celebrated result of Baik, Deift, and Johansson [BDJ99] says that as
n→∞ the laws of the random variables

Ln − 2
√
n

n1/6

tend to a limit known as the Tracy-Widom distribution. We refer the interested
reader the original article [BDJ99] and a nice solitaire reinterpretation [AD99] of
it. To get some feel for the problem, here is an exercise for the interested reader.

Exercise I.5. For n ∈ N, consider a uniform random permutation σ ∈ Sn. We say that k
distinct indices 1 ≤ j1 < j2 < · · · < jk ≤ n form a length k increasing subsequence of

π if π(j1) < π(j2) < · · · < π(jk). We denote by X
(n)
k the number of length k increasing

subsequences of σ, and by

Ln = max
{
k
∣∣∣ σ has a length k increasing subsequence

}
the length of the longest increasing subsequence of σ.

(a) Show that for all k ∈ N we have k! ≥ kke−k.

Hint: Compare log(k!) =
∑k
j=1 log(j) and the integral

∫
log(x) dx.

(b) Calculate the expected number of length k increasing subsequences E
[
X

(n)
k

]
, and derive

the upper bound E
[
X

(n)
k

]
≤
(
ne2

k2

)k
for it.

(c) Show that if c > e, then we have P
[
Ln ≥ c

√
n
]
→ 0 as n→∞.

1.3. Shufflings of a deck of cards

We finally consider a perhaps obvious application of random permutations, namely
a shuffled deck of cards. A perfectly shuffled deck may be an idealization, and more
interesting questions arise from studying how some common shuffling procedures
gradually bring a deck of cards closer to being perfectly shuffled. So we will study
shuffling as a process. The ideal output of a shuffling process is precisely the opposite
of a sorting algorithm — sorting should bring the deck to a perfect order, whereas
shuffling aims at bringing the deck to a perfect disorder.

Before studying the process, we should discuss how does one measure the distance
from perfect disorder.

Total variation distance on a finite set

Let X be a finite set, and let µ, ν be two probability measures on X. Define the total
variation distance between the measures µ and ν as

%TV(µ, ν) = max
E⊂X

∣∣µ[E]− ν[E]
∣∣. (I.6)
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This can be interpreted as the largest error in the probability of any event that
would be made, if the probabilities ν were used instead of the probabilities µ. It is
natural to say that measures µ and ν are close if such errors are small.

Exercise I.6.

(a) Show that the total variation distance between the measures µ and ν can be expressed
as

%TV(µ, ν) =
1

2

∑
x∈X

∣∣µ[{x}]− ν[{x}]
∣∣. (I.7)

(b) Prove that the total variation distance is a metric on the space of probability measures
on X.

Random order of cards in a deck

In a deck of n cards, the order of cards can be represented by a permutation π ∈ Sn.
We choose the following way to do this. The n cards are given labels 1, 2, . . . , n, and
π(`) denotes the position of the card with label ` in the deck (counting from the top
of the deck, for example).2

In a well shuffled deck of cards, all possible orders should be equally probable. This
corresponds to the uniform probability measure νunif on Sn,

νunif [{π}] =
1

n!
for all π ∈ Sn. (I.8)

If the random order of the deck follows a distribution ν instead, we can use the
total variation distance %TV(ν, νunif) to measure how far the deck is from being well
shuffled. The fully ordered deck is described by the delta-measure δid at the identity
permutation id ∈ Sn. This, or any other non-random order, is very far from well
shuffled since we have %TV(δid, νunif) = 1− 1

n!
.

One shuffle

The operation of shuffling a deck is modeled by applying a random permutation σ
to the current order π of the deck. The card at position p is moved by the shuffle
σ to the new position σ(p), and thus the position of the card with label ` after the
shuffle is σ(π(`)). In other words, the shuffle takes the current order π to the new
order σ◦π. How exactly the shuffling is performed determines the distribution of the
permutation σ applied to the order of the deck.3 For simplicity, we will only consider
one very simple method of shuffling described below — the interested reader can
invent more realistic shuffles or find them in the literature.

2An alternative description would be to denote by λ(p) the label of the card at position p.
This description of the order of the deck is related to our convention by taking the inverse of the
permutation, namely λ = π−1.

3If the shuffle σ would itself be uniformly distributed, i.e., it would have the law ν given in
(I.8), then regardless of the order π of the deck initially, the deck would be well shuffled after just
one shuffle. Note that real methods used for shuffling do not have this law! In fact e.g. the most
common shuffle, known as “riffle shuffle” or “dovetail shuffle” starts by dividing the deck in a top
part and a bottom part, and then letting the two parts interlace. In such a shuffle the order of
cards in the same part of the deck is not changed. In particular, if i < j < k are three positions,
then in a riffle shuffle σ it is impossible to have σ(j) < σ(i) < σ(k). Thus, in fact, the riffle shuffle
gives probability zero to a large number of permutations.
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Example I.2 (Top-to-middle shuffle). A very simple method of shuffling would take the top card
and place it to a uniformly random position in the deck. If that position is m, then the
permutation of the order of the deck is τ (m), given by

τ (m)(p) =


m for p = 1

p− 1 for 1 < p ≤ m
p for p > m

,

so that the law µ of the top-to-middle shuffle σ is µ[
{
τ (m)

}
] = 1

n for all m and µ[{τ}] = 0

for all other permutations τ ∈ Sn \
{
τ (1), . . . , τ (n)

}
.

Repeated shuffles

A single shuffle does not make an ordered deck well-shuffled, but the idea is to shuffle
repeatedly, i.e. apply a large number of independent shuffles one after another.
Given the method of shuffling, i.e., the law µ of the shuffle σ, repeated shuffling
defines a Markov chain on Sn, whose transition probabilities are4

Pπ,π′ = µ[
{
π′ ◦ π−1

}
] for π, π′ ∈ Sn.

We want that a shuffle of an already well-shuffled deck produces a well-shuffled
deck, which amounts to requiring that the uniform measure (I.8) is a stationary
measure for the Markov chain. If, moreover, the Markov chain is irreducible and
aperiodic, then by the basic theory of finite state space Markov chains we have that
the distribution of the deck after s shuffles tends to uniform as s → ∞. This, of
course, is the rationale behind shuffling a deck of cards.

Exercise I.7. Check that the uniform measure (I.8) is stationary for the top-to-middle shuffle
given in Example I.2.

Exercise I.8. Check that the top-to-middle shuffle given in Example I.2 defines an irreducible
and aperiodic Markov chain on Sn.

Example I.3 (Convergence of top-to-middle shuffling). Let now π0 ∈ Sn be the initial order
of the deck, and define the Markov chain as before with the top-to-middle shuffle given in
Example I.2. Denote the (random) order of the deck after s shuffles by πs, and its law by
νs = δπ0P

s. By general Markov chain theory we have %TV(νs, νunif)→ 0 exponentially fast
as s→∞.

We next analyze how the convergence happens more precisely. In particular, it turns out
that there is a rather sharply defined treshold for the number of shuffles so that the deck is
not well shuffled much before the treshold but is well shuffled soon after the treshold. This
is a general phenomenon in shuffling, and it is of practical importance to find the treshold,
because it provides an answer to the question:

How many shuffles are needed?

Our analysis is based on looking at the random time T at which the original bottom card
(with label π−1

0 (n)) is at the top of the deck for the first time,

T = min
{
s ∈ N

∣∣ πs(π−1
0 (n)) = 1

}
.

The reason this is useful is that T + 1 is a “strong uniform time”, which means that on the
event {T = s} we have that πs+1 follows exactly the uniform distribution (the proof is not
difficult, and is left to the reader). This implies that the total variation distance between

4We may note that the transition probabilities are invariant under the right-action of the group
Sn on itself, i.e., we have Pπ◦τ,π′◦τ = Pπ,π′ for any τ ∈ Sn. These types of Markov chains on
general groups G are known as random walks on groups.
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the law νs of πs and the uniform measure νunif can not be more than the probability that
the original bottom card has not yet been at the top of the deck,

%TV(νs, νunif) ≤ P
[
T ≥ s

]
.

Thus the convergence can be controlled once the distribution of T is controlled.

With a little bit of thinking, one can calculate the expected value and variance of T . Denote

by Hn =
∑n
m=1

1
m is the n:th harmonic number, and by H

(2)
n =

∑n
m=1

1
m2 . We then have

E
[
T
]

= nHn−1 and Var
[
T
]

= n2H
(2)
n−1 − nHn−1.

Let us just notice the following estimates: Hn ≤ 1 + log(n) and H
(2)
n ≤ π2

6 . With these, the
Chebyshev inequality yields

P
[
T ≥ n log(n) + cn

]
≤ P

[
(T − E[T ]) ≥ (c− 1)n

]
≤ Var[T ]

(cn)2
≤ π2

6(c− 1)2
.

Combining with the above observation about the total variation distance, we get the con-
clusion that the deck becomes shuffled soon after n log(n) top-to-middle shuffles. More
precisely, if s ≥ n log(n) + cn for some c > 1, then the law νs of πs satisfies

%TV(νs, νunif) ≤
π2

6(c− 1)2
.

One can also show conversely that the deck will not be well shuffled much before n log(n)
shuffles.

The phenomenon of sharp cutoff in the number of shuffles needed was made partic-
ularly well known by the work of Bayer and Diaconis [BD92], who studied a rather
realistic “dovetail shuffle” or a “riffle shuffle”. For the practical player with a deck of
52 cards, their analysis of the rate of convergence of the corresponding Markov chain
could be summarized as: “seven shuffles is not enough, but eight or nine shuffles
is already very good”. The conclusion was quite surprising, as few players actually
give more than seven shuffles in practise. The consequences to e.g. bridge hands
have been considered, and there are even magic tricks making use of an insufficient
shuffling.
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Figure I.2. A random walk on Z.

(a) Integer lattice (b) Square lattice (c) Cubic lattice

Figure I.3. Hypercubic lattices Zd in dimensions d = 1, 2, 3.

2. Random walk

Random walks are some of the most basic probabilistic models used in a wide variety
of contexts. Here we will study the behavior of random walks on the d-dimensional
integer lattices Zd, i.e., the hypercubic lattices . A good textbook about random
walks is [LL10].

2.1. The simple random walk on d-dimensional lattice

Fix a dimension d ∈ Z>0. Consider the lattice

Zd =
{

(x1, . . . , xd)
∣∣∣ x1, . . . , xd ∈ Z

}
of points with integer coordinates in the d-dimensional Euclidean space Rd. These
lattices are illustrated for d = 1, 2, 3 in Figure I.3, and they are also called hypercubic
lattices. For clarity in this first lecture, we use the vector notation

~0 = (0, 0, . . . , 0) ∈ Zd
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for the origin of Zd and

~e (1) = (1, 0, . . . , 0) ∈ Zd

~e (2) = (0, 1, . . . , 0) ∈ Zd

...

~e (d) = (0, 0, . . . , 1) ∈ Zd

for the standard basis vectors, although later in the course we will omit the vector
symbols for simplicity. We denote the Euclidean norm on Rd by

‖(x1, . . . , xd)‖ =
√
x2

1 + · · ·+ x2
d.

The set of nearest neighbors of the origin ~0 is

N =
{
~v ∈ Zd

∣∣∣ ‖~v‖ = 1
}
.

The #N = 2d nearest neighbors of the origin are just the positive and negative
standard basis vectors ±~e (j), j = 1, . . . , d.

The simple random walk on Zd is the following stochastic process. The time of the
process is discrete, t ∈ Z≥0, and the position of the random walk at time t is a random
point Xt ∈ Zd of the lattice. The random walk, then, is a stochastic process, i.e., a
collection of random variables

(
Xt)t∈Z≥0

indexed by time t. To construct the random

walk, first take a sequence ~ξ1,
~ξ2, . . . of independent steps uniformly distributed on

the set N of nearest neighbors of the origin,

P
[
~ξs = ±~e (j)

]
=

1

2d
.

The position random walk at time t ∈ Z≥0 is then defined as the sum of the first t
steps,

X(t) =
t∑

s=0

~ξs. (I.9)

One dimensional random walk

As a warm-up, consider the case d = 1. The random walk X =
(
X(t)

)
t∈Z≥0

on Z
is illustrated in Figure I.2. This should be a very familiar object, but even simple
questions aboutX may require some thinking. The reader will surely have no trouble
verifying that the law of the position X(t) at a fixed time t is the following.

Exercise I.9. Show that for the random walk X on Z, for a fixed t ∈ Z≥0 and x ∈ Z we have

P
[
X(t) = x

]
=

{(
t
m

)
2−t if x = t− 2m for some m = 0, 1, . . . , t

0 otherwise.

A little bit more thinking is needed for example for the following.

Exercise I.10. Show that for the random walk X on Z, for t ∈ Z≥0 and x ∈ Z≥0 we have

P
[
X(t) = x and X(s) ≥ 0 for all s ≤ t

]
=

(
t

1
2 (t+ x)

)
2−t −

(
t

1
2 (t+ x) + 1

)
2−t.
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2.2. Recurrence and transience of simple random walk

Our main goal for this lecture is to prove the following result about the behavior of
the random walk at large times.

Theorem I.4 (Pólya’s theorem). Let X =
(
X(t)

)
t∈Z≥0

be a simple random walk on

the d-dimensional hypercubic lattice Zd.
If d ≤ 2, then the random walk X is recurrent, which means that the walk will
almost surely return to its starting point:

P
[
for some t > 0 one has X(t) = ~0

]
= 1.

If d > 2, then the simple random walk is transient, which means that the walk
has a positive probability to never return to its starting point:

P
[
for some t > 0 one has X(t) = ~0

]
< 1.

Proof. Denote briefly

p = P
[
for some t > 0 one has X(t) = ~0

]
.

Consider the number of times t at which the random walk is at the origin,

L = #
{
t ∈ Z≥0

∣∣∣ X(t) = ~0
}

=

∞∑
t=0

I{X(t)=~0},

and its expected value

E
[
L
]

=

∞∑
t=0

P
[
X(t) = ~0

]
.

Let τ = min
{
t > 0

∣∣X(t) = ~0
}

be the first time at which the walk returns to the origin.

Then we can write p = P[τ < ∞]. Provided that τ < ∞, the continuation
(
X(τ + s)

)
s∈N

of the walk after its first return to the origin has the same law as the original random walk(
X(s)

)
s∈N, and is independent of the steps before. In particular the continuation will return

to the origin with the same probability p. Thus realizing L as a sum of the independent
trial returns with a probability of success p, we see that P[L ≥ k] = pk−1 for all k ∈ Z≥0.
The expected value of L is now calculated as

E
[
L
]

=

∞∑
k=1

P
[
L ≥ k

]
=

∞∑
k=1

pk−1 =

{
1

1−p if p < 1

+∞ if p = 1
,

where the first equality is due to the familiar identity (B.3) from Appendix B. By this
calculation we conclude that the finiteness of the expected value of L characterizes transience:

X is recurrent ⇐⇒ E
[
L
]

= +∞
X is transient ⇐⇒ E

[
L
]
< +∞. (I.10)

We thus seek to calculate E
[
L
]
. It turns out to be convenient to first generalize slightly: for

λ ∈ (0, 1) a parameter and ~x ∈ Zd a point on the lattice, defined the λ-weighted number of
visits to ~x by

Lλ(~x) =

∞∑
t=0

λt I{X(t)=~x},

and consider its expected value

Gλ(~x) = E
[
Lλ(~x)

]
=

∞∑
t=0

λt P
[
X(t) = ~x

]
.
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By the parameter λ < 1 we keep these quantities conveniently finite,

Lλ(~x) ≤
∞∑
t=0

λt =
1

1− λ
< +∞.

In the end we will take the limit λ→ 1

lim
λ↑1

Gλ(~0) = E
[
L
]
.

by Monotone Convergence Theorem (Theorem A.9 in Appendix A). Besides finiteness, the
advantage is that Gλ(~x) is not difficult to calculate by a Fourier transform.

By considering separately the 2d possibilities ±~ej for the first step of the random walk and
then the continuation after the first step, we obtain the following difference equation for
Gλ(~x)

Gλ(~x) =

∞∑
t=0

λt P
[
X(t) = ~x

]
= δ~x,~0 +

∞∑
t=1

λt P
[
X(t) = ~x

]
= δ~x,~0 +

1

2d

(
λGλ(~x+ ~e1) + λGλ(~x− ~e1) + · · ·+ λGλ(~x− ~ed)

)
= δ~x,~0 +

λ

2d

d∑
j=1

(
Gλ(~x+ ~ej) +Gλ(~x− ~ej)

)
.

The discrete Fourier transform with respect to ~x is

Ĝλ(~θ) =
∑
~x∈Zd

e−i ~θ·~xGλ(~x) (~θ ∈ Rd),

and the inverse transform expresses Gλ(~x) as

Gλ(~x) =
1

(2π)d

∫
[−π,π]d

ei ~θ·~x Ĝλ(~θ) dd~θ.

Multiplying the difference equation by e−i ~θ·~x and summing over ~x we obtain an equation
for the Fourier transform

Ĝλ(~θ) = 1 +
λ

2d

d∑
j=1

(
ei ~θ·~ej + e−i ~θ·~ej

)
Ĝλ(~θ),

which is easily solved

Ĝλ(~θ) =
1

1− λ
d

∑d
j=1 cos(θj)

,

We then get

Gλ(~x) =
1

(2π)d

∫
[−π,π]d

ei ~θ·~x

1− λ
d

∑d
j=1 cos(θj)

dd~θ.

We are interested the finiteness of E[L], which is recovered by letting λ→ 1 as

E
[
L
]

= lim
λ↑1

Gλ(~0) = lim
λ↑1

1

(2π)d

∫
[−π,π]d

1

1− λ
d

∑d
j=1 cos(θj)

dd~θ. (I.11)

Recurrence and transience thus reduce to the question of whether this integral (I.11) diverges

or converges. Note that outside of any neighborhood U ⊂ [−π, π]d of the point ~θ = ~0 ∈
[−π, π]d, the expression

(
1 − λ

d

∑d
j=1 cos(θj)

)−1
is bounded uniformly in λ, so dominated

convergence (Theorem A.10 in Appendix A) guarantees that the integral over [−π, π]d \ U
tends to a finite limit as λ → 1. Only the contribution of a neighborhood of ~θ = ~0 could
possibly make the limit (I.11) infinite. We will thus study the integral over a ball U = Bε(~0)

centered at ~θ = ~0 with a small radius ε > 0.
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Note that if ε < π
2 and ~θ ∈ Bε(~0), then cos(θj) > 0 for all j = 1, . . . , d. Therefore the

integrand in the following is pointwise monotone increasing, and the limit may be exchanged
with the integral by monotone convergence (Theorem A.9 in Appendix A)

lim
λ↑1

∫
Bε(~0)

1

1− λ
d

∑d
j=1 cos(θj)

dd~θ =

∫
Bε(~0)

1

1− 1
d

∑d
j=1 cos(θj)

dd~θ. (I.12)

Now note also that if |α| < π
4 , then we have the “up to constant bounds estimate”

1− cos(α) � α2

(the “up to constant bounds” notation f(x) � g(x) means that there exists positive con-
stants C1, C2 > 0 such that C1g(x) ≤ f(x) ≤ C2g(x) for all x, for example here one could

specifically show that 1
2
√

2
≤ 1 − cos(α) ≤ 1

2α
2). Therefore for ~θ ∈ Bε(~0) with ε < π

4 we

have
1

1− 1
d

∑d
j=1 cos(θj)

=
1

1
d

∑d
j=1

(
1− cos(θj)

) � 1∑d
j=1 θ

2
j

=
1

‖~θ‖2
.

This gives us up to constant bounds estimate for the integral (I.12):∫
Bε(~0)

1

1− 1
d

∑d
j=1 cos(θj)

dd~θ �
∫
Bε(~0)

1

‖~θ‖2
dd~θ =

∫ ε

0

1

r2
×Ad rd−1 dr,

where the integral was performed in the latter step in radial coordinates, and Ad > 0 is the
d − 1-dimensional area of the unit sphere in d-dimensional Euclidean space. This integral
proportional to

∫ ε
0
rd−3 dr diverges if d ≤ 2 and converges if d > 2.

We conclude that E[L] = +∞ if d ≤ 2 E[L] < +∞ if d > 2. By the characterization (I.10)
this says that X is recurrent if d ≤ 2 and transient if d > 2. �



Lecture II

Percolation

Percolation can be thought of as a model of porous material. In a percolation
configuration, different spacial locations (of the material) are declared either open
or closed, independently with some fixed probability. We may think that water can
penetrate a connected set of open locations. Figure II.1 illustrates percolation in
two-dimensions.

(a) Bond percolation on Z2 with probability
of open bonds p = 0.25.

(b) Bond percolation on Z2 with probability
of open bonds p = 0.6.

Figure II.1. Bond percolation on Z2 illustrated.

Alternatively, we could be modeling for example a forest fire (or a disease, or some-
thing else) in such a way that burning locations (or infected locations) are able to
transmit fire (or disease) to nearby locations provided the passage between them is
open. Again, fire (or disease) then spreads to a connected set of open locations.

In the standard setup, the model is defined on an infinite spacial domain. The
simplest fundamental question is whether an infinite connected component of open
locations exists. The configuration is then said to “percolate”. This is interpreted
as e.g. water being able to pass through the material, or forest fire (or disease)
being able to spread. Formulated this way, percolation is obviously a large random
system — in fact an infinite one. Our main goal is to show a phase transition result
for a percolation model in dimensions at least two: the model has a percolating
phase when the probability of open locations is higher than a certain critical value,
and a non-percolating phase when this probability is lower. The key technique is
Kolmogorov’s 0-1–law, which we recall in Appendix E, Theorem E.1.

Great textbooks on percolation are for example [Wer09, Gri99, DC12]. They of
course develop the theory much further than we can do in just one lecture.

15
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1. Bond percolation on hypercubic lattice

For definiteness, we consider the model of bond percolation on a d-dimensional
integer lattice

Zd =
{
x = (x1, . . . , xd)

∣∣ x1, . . . , xd ∈ Z
}

(the hypercubic lattice). By a site, we mean a point x ∈ Zd, and by a bond we mean
an unordered pair of two sites at unit distance from each other. We denote the set
of bonds by

E(Zd) =
{
{x, y}

∣∣∣ x, y ∈ Zd, ‖x− y‖ = 1
}
.

In bond percolation we say that each bond e ∈ E(Zd) can be open or closed, rep-
resented by a variable ωe taking value 1 or 0, respectively. A parameter p ∈ [0, 1]
gives the probability of a bond to be open, P[ωe = 1] = p, P[ωe = 0] = 1 − p. The
states of bonds are taken to be independent.

Thus, the sample space is

Ω = {0, 1}E(Zd) =
{
ω = (ωe)e∈E(Zd)

∣∣∣ ωe ∈ {0, 1} ∀e} ,
and P is the infinite product measure Bernoulli(p)⊗E(Zd). The σ-algebra is the prod-
uct σ-algebra (also called the cylinder σ-algebra), i.e., the smallest σ-algebra with
respect to which all coordinate projections ω 7→ ωe are measurable.

Given two sites x, y ∈ Zd, a path of length ` on the lattice Zd from x to y is a
sequence of ` + 1 distinct sites z0, z1, . . . , z`−1, z` ∈ Zd such that for all j = 1, . . . , `
we have ‖zj − zj−1‖ = 1. The ` bonds of the path are ej = {zj−1, zj}, j = 1, . . . , `.
The path is said to be an open path for the configuration ω = (ωe)e∈E(Zd) if all its

bonds are open, i.e., we have ωej = 1 for all j. The sites x, y ∈ Zd are said to
be connected (in the configuration ω), if there exists an open path from x to y.
This is denoted by x! y. Note that ! is a (random) equivalence relation. It
divides the set of sites to (random) equivalence classes, which we call the connected
components (or clusters) of the configuration. The component of x ∈ Zd is the set
of sites connected to x,

Cx =
{
y ∈ Zd

∣∣ x! y
}
.

Figure II.2 illustrates a connected component in a percolation configuration.

Exercise II.1. Check the following measurability properties in the cylinder σ-algebra.

• The event {x! y} that x is connected to y is measurable.
• The size #Cx of the connected component of x, is a measurable random variable.
• The event that there exists an infinite connected component is measurable.

As a warning against a too naive definition of what it means for a configuration to
percolate, consider the following exercise.

Exercise II.2. For the bond percolation on Zd with any parameter p < 1, show that

P
[
all sites x ∈ Zd belong to the same component

]
= 0.
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Figure II.2. A connected component in a bond percolation config-
uration on Z2.

1.1. Monotone coupling for percolation with different parameters

We introduced the probability measures Pp of percolation with a parameter p ∈ [0, 1].
Increasing p increases the probability that any given bond is open. It seems obvious
that it also increases the probability of any connection x! y, and moreover that
it increases the sizes of all clusters, etc, because of independence of the bonds. We
make this intuition precise here, by our first (simple) monotonicity result.

The set of configurations Ω = {0, 1}E(Zd) carries a natural partial order �. Namely,
a configuration ω ∈ Ω is said to be smaller than a configuration ω′ ∈ Ω, denoted
ω � ω′, if for all e ∈ E(Zd) we have ωe ≤ ω′e.

A function f : {0, 1}E(Zd) → R is said to be increasing (w.r.t. �) if we have f(ω) ≤
f(ω′) whenever ω � ω′. An event E is said to be increasing if its indicator IE is
an increasing function. This amounts to saying that changing any closed bonds to
open could never undo the occurrence of the event E. The following monotonicity
result is a corollary of a monotone coupling we construct in Proposition II.5 below.

Proposition II.1. If f : {0, 1}E(Zd) → R is an increasing function, then the ex-
pected value Ep[f ] (w.r.t. measure Pp) is an increasing function of p. In par-
ticular, if E is an increasing event, then the probability Pp[E] is increasing in
p.
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Example II.2. All of the following are increasing functions of p:

p 7→ Pp
[
x! y

]
p 7→ Pp

[
there exists an infinite connected component

]
p 7→ Pp

[
#C0 ≥ s

]
p 7→ Ep

[
#C0

]
,

etc.

The tool we use is a coupling of the probability measures Pp for different values of
p ∈ [0, 1].

Definition II.1. A coupling of two probability space (Ω1,F1,P1) and (Ω2,F2,P2)

is a new probability space (Ω̃, P̃, F̃) equipped with two random variables

X1 : Ω̃ → Ω1 and X2 : Ω̃ → Ω1, such that the law of X1 is P1 and the law
of X2 is P2.

Remark II.3. Another common definition of a coupling of (Ω1,F1,P1) and (Ω2,F2,P2) is a
probability space (Ω1 × Ω2,F1 ⊗ F2,Pcpl) (the sample space is a Carthesian product, and
the σ-algebra is the product σ-algebra) such that the two marginals are P1 and P2, i.e.,

∀E1 ∈ F1 : Pcpl

[
E1 × Ω2

]
= P1

[
E1

]
∀E2 ∈ F2 : Pcpl

[
Ω1 × E2

]
= P2

[
E2

]
.

These definitions are essentially equivalent. This second definition is indeed a special case of

the first (take Ω̃ = Ω1×Ω2 and X1, X2 the projections to the two components). Conversely,
in the first definition, the law of the pair (X1, X2) is a probability measure on Ω1×Ω2 which
satisfies the requirements of Pcpl.

Remark II.4. The product measure space (Ω1×Ω2,F1⊗F2,P1⊗P2) is a coupling, but not a very
useful one as the two components are independent. Couplings of two probability measures
are usually best if some relation holds between the two components, which allows to make
comparisons between the original measures.

For monotonicity we construct a coupling of the percolation measures Pp1 and Pp2 ,
with two different parameters p1 ≤ p2. The key is that the two components of the
coupling can be made respect the partial order � on Ω.

Proposition II.5. Let 0 ≤ p1 ≤ p2 ≤ 1. There exists a probability space (Ω̃, P̃, F̃)

and {0, 1}E(Zd)-valued random variables ω(1) and ω(2) on it such that the laws of
ω(1) and ω(2) are Pp1 and Pp2, respectively, and such that we have ω(1) � ω(2).

Proof. The idea is to take for each bond e ∈ E(Zd) an independent uniform random variable Ue
on the unit interval [0, 1]. Thus the sample space is Ω̃ = [0, 1]E(Zd), a countable product of

intervals. The probability measure P̃ is just the countable product of uniform measures on

[0, 1], and the sigma algebra F̃ is the countable product sigma algebra.

We then set ω
(1)
e = I{Ue≤p1}. The partial order relation ω(1) � ω(2) holds for these indicators.

Clearly P̃[ω
(1)
e = 1] = p1 by uniformity of Ue, and clearly ω

(1)
e are independent for different

e ∈ E(Zd), because they are determined by the independent random variables Ue. Therefore

the law of ω
(1)
e is Pp1 . Similarly we have ω(2) ∼ Pp2 . �
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Proof of Proposition II.1. Use the above monotone coupling to write Ep[f ] = Ẽ
[
f(ω(p))

]
, where Ẽ

is expected value w.r.t. P̃. If p < p′, we have ω(p) � ω(p′), and thus f(ω(p)) ≤ f(ω(p′)), since
f is increasing. We get the conclusion

Ep[f ] = Ẽ
[
f(ω(p))

]
≤ Ẽ

[
f(ω(p′))

]
= Ep′ [f ].

�

1.2. Phase transition by a zero-one law

We will show that there is the following phase transition in the parameter p, at a
critical value1 p = pc ∈ [0, 1].

Theorem II.6. Let d ∈ Z>0. Then there exists a pc ∈ [0, 1] such that:

• For p < pc, almost surely all components Cx, x ∈ Zd, are finite.
• For p > pc, almost surely there exists an infinite connected component.

Proof. First we remark that indeed there is a zero-one law. The event that there exists an infinite
connected component does not depend on the states of any finite number of bonds. Thus
this event belongs to the tail σ-algebra T , see (E.1) (we can use any enumeration of the
bonds, the tail σ-algebra does not depend on the choice). As a consequence of Kolmogorov’s
0-1–law, Theorem E.1 in Appendix E, we have

Pp
[
there exists an infinite connected component

]
∈ {0, 1} . (II.1)

This probability is an increasing function of p by Proposition II.1, and since it can only
assume values 0 or 1, it must remain 0 for p less than some pc, and become 1 for p greater
than pc. �

Remark II.7. The theorem does not tell whether an infinite cluster exists at the critical point
p = pc or not. Note also the possibility that the transition happens at a trivial place pc = 0
or pc = 1. Fortunately, it turns out that such a triviality does not happen except in one
dimension, d = 1.

Example II.8. As the simplest example, let d = 1, i.e., consider percolation on Z. Any n
consecutive bonds are open with probability pn. If p < 1, then pn → 0 as n → ∞, so
any given site almost surely does not belong to an infinite component. Since there are only
countable number of sites in Z, almost surely no component is infinite. If p = 1, however,
almost surely all bonds are open, so the entire infinite graph Z forms a connected component.
Thus in d = 1 we have pc(Z) = 1.

We will prove below that for d ≥ 2 the phase transition occurs at a non-trivial
critical value pc(Zd) ∈ (0, 1).

Theorem II.9. Let d > 1. Then the critical point of percolation on Zd is nontrivial,
pc ∈ (0, 1).

1Note, that the critical value depends on dimension d, and in more general context it would
also depend on the graph which we consider, so for definiteness we sometimes write pc(Zd) for the
critical value on Zd.
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To prove this, we study the connected component C0 of the origin 0 ∈ Zd, and
especially its size #C0. We denote by

θ(p) = P
[
#C0 =∞

]
the probability that the origin belongs to an infinite open cluster. To obtain an
equivalent characterization of the critical point pc, we claim that θ(p) is positive if
and only if the probability in (II.1) is one.

Lemma II.10. We have

θ(p) > 0 ⇔ P
[
there exists an infinite connected component

]
= 1.

Proof. First of all, the probability (II.1) is clearly at least θ(p). Thus if θ(p) > 0, then the
probability can not be zero, so by the 0-1 law it has to be one. On the other hand, if
θ(p) = 0, i.e., the cluster of origin is almost surely finite, then by translation invariance the
cluster of any point x is almost surely finite

P
[
#Cx =∞

]
= 0.

Since there are only countably many points, this allows us to conclude that the probability
of existence of an infinite cluster is

P
[
∃x ∈ Zd such that #Cx =∞

]
≤
∑
x∈Zd

P
[
#Cx =∞

]
=
∑
x∈Zd

0 = 0.

This concludes the proof of the lemma. �

The proof of II.9 will be done in two parts: we first show that pc > 0 and then that
pc < 1.

1.3. Non-percolation for small p

Denote the set of self-avoiding lattice paths of n steps starting from the origin by

Γn =
{
γ = (γ(j))nj=0

∣∣∣ γ(0) = 0, ∀j : γ(j) ∈ Zd,

∀j : ‖γ(j)− γ(j − 1)‖ = 1, ∀j 6= k : γ(j) 6= γ(k)
}
.

The key observation for showing non-percolation for small p is to observe that for
the cluster C0 of the origin to be infinite, we would need to have self-avoiding open
paths of arbitrary length n.

Lemma II.2. For p < 1
2d

we have θ(p) = 0.

Proof. The number of self-avoiding paths of length n from the origin can obviously be bounded
above by #Γn ≤ (2d)n. We then note that for any n

θ(p) = Pp
[
#C0 =∞

]
≤ Pp

[
there exists γ ∈ Γn s.t. ω{γ(j−1),γ(j)} = 1 for j = 1, . . . , n

]
≤
∑
γ∈Γn

Pp
[
ω{γ(j−1),γ(j)} = 1 for j = 1, . . . , n

]
= (#Γn) pn ≤ (2dp)n.

If p < 1
2d , then this upper bound (2dp)n tends to zero as n→∞, showing θ(p) = 0. �
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1.4. Percolation for large p in two dimensions

We will first consider the two-dimensional case, d = 2. In two dimensions we can
exploit a duality argument. The (planar) dual lattice of Z2 is the lattice (Z + 1

2
)2

of midpoints of the faces of the original square lattice Z2, and its bonds are {q, r}
with q, r ∈ (Z + 1

2
)2 such that ‖q − r‖ = 1. Note that each such dual bonds {q, r}

crosses exactly one bonds {z, w} of Z2 (the one with the same midpoint, z+w
2

= q+r
2

).

A percolation configuration ω ∈ {0, 1}E(Z2) on Z2 determines a dual configuration

ω∗ ∈ {0, 1}E((Z+ 1
2

)2) by the rule ω∗{q,r} = 1− ω∗{z,w}.

(a) The square lattice Z2 and its dual (Z+ 1
2 )2. (b) A finite open cluster is surrounded by an

open circuit in the dual configuration.

Figure II.3. Duality of the planar lattice Z2 and of a percolation
configuration on it.

The next key observation is illustrated in Figure II.3(b) — the finiteness of the com-
ponent of the origin is equivalent to the existence of a dual open circuit surrounding
the origin. By a dual circuit we mean a closed path (starting point and end point
coincide) of the dual lattice (Z+ 1

2
)2, modulo cyclic reparametrization (any point on

the closed path could be chosen as the starting point, and we identify such paths).
Indeed, if the dual configuration ω∗ contains an open circuit γ∗ surrounding the ori-
gin, then the cluster C0 of the origin is finite (its has to be contained in the interior
of the dual open circuit γ∗, because the bonds crossing the dual bonds of the circuit
are all closed). Also the converse holds, if the cluster C0 is finite, then there is a
open circuit γ∗ surrounding the origin in the dual configuration ω∗ (the duals of the
bonds connecting the cluster to its complement form such a circuit).

The set of dual circuits of length n that surround the origin is denoted by Γ◦n. As
an upper bound on their number, we use #Γ◦n ≤ n

2
4n. This is seen by noting that a

circuit has to cross the positive real axis at some minimal point k− 1
2

with k ∈ Z>0,
and surrounding origin requires length n ≥ 2k + 2. This minimal intersection point
k− 1

2
can thus be chosen in at most n

2
ways. The circuit can be viewed as an n step

lattice path starting from just below k− 1
2
, and as such there are at most 4n choices

for it.

Lemma II.3. For p > 3
4

+ 1
4
√

2
we have θ(p) > 0.
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Proof. We estimate

1− θ(p) = Pp
[
#C0 <∞

]
= Pp

[
for some n there exists dual open circuit γ∗ ∈ Γ◦n

]
≤
∑
n

∑
γ∗∈Γ◦n)

Pp
[
γ∗ is dual open

]
=
∑
n

(#Γ◦n) (1− p)n

≤ 1

2

∑
n

n
(
4(1− p)

)n ≤ 1

2

1(
1− 4(1− p)

)2 .
If p > 3

4 + 1
4
√

2
≈ 0.927, then this upper bound is less than one, showing θ(p) > 0. �

1.5. Proof of non-triviality of the critical point

We now combine the above results to prove Theorem II.9.

Proof of Theorem II.9. By Lemma II.2 we have θ(p) = 0 for p < 1
2d . By Lemma II.10 this implies

pc ≥ 1
2d .

It remains to show that pc < 1. For d ≥ 2, the d-dimensional percolation on Zd contains a
two-dimensional percolation configuration on Z2 — if the latter has an infinite open cluster,
then the former must have one as well. Thus it is sufficient to consider d = 2. By Lemma II.3
we have θ(p) > 0 for p > 3

4 + 1
4
√

2
. By Lemma II.10 this implies pc ≤ 3

4 + 1
4
√

2
< 1. �

2. Percolation on a regular infinite tree

The model of percolation can be defined on any graph. On a regular infinite tree
T of degree B, depicted in Figure II.4, percolation becomes particularly simple. In
fact the analysis is essentially the the same as that of a Galton-Watson branching
process.

In the case B = 2 the tree coincides with the integer lattice, T = Z, and the
triviality of this model was discussed already. Interesting cases are when the degree
is large enough, B ≥ 3. Percolation on a regular infinite tree T of any degree B ≥ 3
behaves in some sense like percolation on Zd for a very high dimension d.

Formally, the tree T can be defined as follows. The set of its sites is the set of
finite words (b1, b2, . . . , b`) of any possible length ` ∈ Z≥0, with first letter b1 ∈
{1, 2, . . . , B} and other letters bj ∈ {1, 2, . . . , B − 1} for j = 2, 3, . . . , `. The word
of 0 letters is denoted by ∅, and it corresponds to a chosen root of the tree (e.g.
the vertex in the middle of Figure II.4). Two vertices are adjacent if the word of
one is the extension of the word of the other by one letter. The distance of a site
from the root is the length of the corresponding word. In the percolation model,
the pairs of adjacent vertices are declared open or closed, with probabilities p and
1− p, independently.

Exercise II.3. Consider percolation with parameter p ∈ [0, 1] on the regular infinite tree T of
degree B ≥ 3. Denote by C∅ the connected component of the root vertex ∅, and by #C∅ its
size. Calculate E[#C∅] as a function of p. At which value of p does E[#C∅] become infinite?

Exercise II.4. Consider percolation with parameter p on the regular infinite tree T of degree
B ≥ 3. Denote by C∅(r) the set of sites at distance r from the root which are connected to
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∅

(a) Tree of degree three.

∅

(b) Tree of degree five.

Figure II.4. Regular infinite trees.

the root, and denote by C∅ the set of all sites which are connected to the root. Define also
θ(p) = Pp[#C∅ =∞].

(a) Show that if p < 1
B−1 , then θ(p) = 0 (use the previous exercise).

(b) For all r ∈ N, define the generating functions Gr(z) = E[z#C(r)], where z ∈ (0, 1]. Show
that Gr+1(z) = Gr(g(z)), where g is the generating function g(z) = E[zN ] of a binomial
random variable N ∼ Bin(B − 1, p).

(c) Show that we may express the probability of the root being connected to some site at
distance r as follows: P[#C(r) > 0] = 1− limz↘0Gr(z).

(d) Let g be as in part (b). Show that the sequence 0, g(0), g(g(0)), g(g(g(0))), . . . of
iterates converges to the smallest fixed point of g in (0, 1].

(e) Show that g defined in part (b) has a fixed point ξ < 1 if p > 1
B−1 .

(f) Show that if p > 1
B−1 , then θ(p) > 0.





Lecture III

Law of iterated logarithm

With Borel-Cantelli lemmas, Lemma E.1 in Appendix E, we will prove the following
statement about the almost sure behavior of a random walk after a large number
of steps. The same result would hold for the symmetric simple random walk with
steps ±1. but to simplify the proof we assume instead that the steps have Gaussian
distribution. Thus we set

Xn =
n∑
k=1

ξk, (III.1)

where (ξk)k∈N are i.i.d. and ξk ∼ N(0, 1).

Theorem III.1. Set λ(n) =
√
n log(log(n)). Let (Xn)n∈Z≥0

be the random walk
with Gaussian steps as above. Then we have, almost surely,

lim sup
n→∞

Xn

λ(n)
=
√

2.

Figure III.1. A random walk with Gaussian steps. The shaded
region bounded by the orange curves is |x| ≤

√
2n, and the red curves

are the law of iterated logarithm tresholds ±
√

2λ(n) =

±
√

2n log log(n).
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1. Auxiliary estimates

We will need the estimates about the tail of the distribution of Xn. In the Gaussian
steps case, these reduce to the following simple Lemma.

Lemma III.1. Let ξ ∼ N(0, 1) be a standard Gaussian random variable. Then we
have, for any x > 0,

P
[
ξ > x

]
≤ e−

1
2
x2 (III.2)

Also, for any C < 1√
2π

there exists x0 such that for all x > x0 we have

P
[
ξ > x

]
≥ Cx−1e−

1
2
x2 . (III.3)

Proof. For any θ > 0, by Markov inequality, we get

P
[
ξ > x

]
= P

[
eθξ > eθx

]
≤ e−θx E

[
eθξ
]
.

A direct calculation gives E[eθξ] = e
1
2 θ

2

, which we substitute above to obtain

P
[
ξ > x

]
≤ e 1

2 θ
2−θx.

Now it is a matter of optimizing θ to get the best inequality: the minimum of θ 7→ 1
2θ

2− θx
is at θ = x, and substituting this value, we obtain the desired inequality.

The second inequality is merely calculus. Write

P
[
ξ > x

]
=

1√
2π

∫ ∞
x

e−
1
2 s

2

ds.

Then note that d
ds (s−1e−

1
2 s

2

) = −s−2e−
1
2 s

2 − e− 1
2 s

2

, and use this to do integration by parts∫ ∞
x

e−
1
2 s

2

ds =
1

x
e−

1
2x

2

−
∫ ∞
x

s−2e−
1
2 s

2

ds.

We see that ∫∞
x
e−

1
2 s

2

ds

x−1e−
1
2x

2
−→ 1 as x→∞.

Therefore, for any C < 1 we have, for large enough x∫ ∞
x

e−
1
2 s

2

ds ≥ Cx−1e−
1
2x

2

,

which upon dividing by
√

2π becomes the second asserted inequality. �

Exercise III.1. Use integration by parts as in the proof above, to derive the following more precise
asymptotics of Gaussian tails: for any x > 0 show that(

1

x
− 1

x3

)
exp

(
−x

2

2

)
≤
∫ ∞
x

exp

(
−y

2

2

)
dy ≤ 1

x
exp

(
−x

2

2

)
.

With Gaussian steps as in Equation III.7, we have Xn ∼ N(0, n). Thus we can
immediately translate the above to bounds on the tail of Xn.

Lemma III.2. For any x > 0, we have

P
[
Xn > x

]
≤ e−

1
2n
x2 (III.4)

For any C < 1√
2π

there exists x0 > 0 such that for all x > x0

P
[
Xn > x

]
≥ C

√
n

x
e−

1
2n
x2 . (III.5)
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Also, we have

P
[
|Xn| > x

]
≤ 2e−

1
2n
x2 . (III.6)

Exercise III.2. Let now (Xn)n∈Z≥0
be the symmetric simple random walk with ±1 steps, i.e.

Xn =

n∑
k=1

ξk, (III.7)

where (ξk)k∈N are i.i.d. and P
[
ξk = +1

]
=

1

2
, P
[
ξk = −1

]
=

1

2
.

Prove that

P
[
Xn > x

]
≤ e− 1

2nx
2

.

Exercise III.3. Let λ be the function

λ(n) =
√
n log

(
log(n)

)
.

Let α > 1 and for k ∈ N let nk = bαkc. Calculate the limits

lim
k→∞

nk
αk
, lim

k→∞

λ(nk)

λ(nk+1)
, lim

k→∞

λ(nk+1 − nk)

λ(nk+1)
.

2. Upper bound

In Theorem III.1 we claim that almost surely,

lim sup
n→∞

Xn

λ(n)
=
√

2,

where λ(n) =
√
n log(log(n)). Our first goal is to establish the upper bound,

lim sup
n→∞

Xn

λ(n)
≤
√

2.

We proceed in two steps — first treat an exponentially growing subsequence of values
of n, and then fill in the gaps.

The result about an exponentially growing subsequence is a simple application of
Borel-Cantelli lemma and the upper bound for the tail of Xn given in Lemma III.2.

Lemma III.2. For any α > 1 denote by nk = bαkc the integer part of αk. Then
we have, for any β >

√
2,

P
[

lim sup
k→∞

Xnk

λ(nk)
≤ β

]
= 1.

Proof. By the inequality (III.4) we have

P
[ Xn

λ(n)
> β

]
≤ exp

(
− β2λ(n)2

2n

)
= log(n)−

β2

2 .

The sequence defined by nk = bαkc grows exponentially, nk ≥ Cαk, and thus log(nk) grows

linearly, log(nk) ≥ ak+ c with a = log(α) > 0. For β >
√

2 the following series is summable

∞∑
k=0

P
[ Xnk

λ(nk)
> β

]
≤
∞∑
k=0

log(nk)−
β2

2 ≤
∞∑
k=0

(ak + c)−
β2

2 <∞.
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Borel-Cantelli Lemma (Lemma E.1) then guarantees that
Xnk
λ(nk) > β only for finitely many

k, or in other words,

lim sup
k→∞

Xnk

λ(nk)
≤ β.

�

To fill in the gaps between nk and nk+1, we use the following auxiliary result.

Lemma III.3 (Lévy’s inequality). Suppose that (ζu)u∈N are independent. Set St =∑t
u=1 ζu. Fix m ∈ N and consider max1≤t≤m St. Assume that for some σ > 0

and ρ > 0 we have, for all t ≤ m, P
[
|Sm − St| ≤ σ

]
≥ ρ. Then we have

P
[

max
1≤t≤m

|St| > 2σ
]
≤ 1

ρ
P[|Sm| > σ].

Proof. We will split according to the first time t at which St > 2σ. Define the events

At = {|S1| ≤ 2σ, . . . , |St−1| ≤ 2σ, |St| > 2σ}
Bt = {|Sm − St| ≤ σ} .

The events At and Bt are independent (the former depends on ζ1, . . . , ζt and the latter on
ζt+1, . . . , ζm), and the events A1, . . . , An are disjoint. Since {|Sm| > σ} ⊃

⋃m
t=1(At ∩ Bt),

we get

P
[
|Sm| > σ

]
≥

m∑
t=1

P[At]P[Bt] ≥ ρ
m∑
t=1

P[At] = ρP
[

max
1≤t≤m

|St| > 2σ
]
.

�

We are then ready to prove the upper bound along the entire sequence by filling in
the gaps.

Proposition III.4. We have

P
[

lim sup
n→∞

Xn

λ(n)
≤
√

2
]

= 1.

Proof. Let β >
√

2 and ε > 0. We will use Lemma III.2 for a subsequence nk = bαkc with a
suitably chosen α > 1, and we will fill in the gaps up to tolerance ε with Lévy’s inequality.

To see what happens between nk and nk+1, we seek to bound the probability

P
[

max
nk<i≤nk+1

|Xi −Xnk | > 2ελ(nk)
]
.

For this, set Sm = Xnk+m −Xnk and n = nk+1 − nk, and denote

δk = max
nk<i≤nk+1

P
[
|Xi −Xnk+1| > ελ(nk)

]
.

Lemma III.3 then gives

P
[

max
nk<i≤nk+1

|Xi −Xnk | > 2ελ(nk)
]

≤
P
[
|Xnk −Xnk+1| > ελ(nk)

]
minnk<i≤nk+1

P
[
|Xi −Xnk+1| ≤ ελ(nk)

] ≤ δk
1− δk

.

We estimate δk by the inequality (III.6)

δk ≤ max
nk<i≤nk+1

(
2 exp

(
− ε2 λ(nk)2

2(nk+1 − i)
))

≤ 2 exp
(
− ε2 nk log(log(nk))

2(nk+1 − nk)

)
= 2 log(nk)

− ε2nk
2(nk+1−nk) .
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We have nk
nk+1−nk →

1
(α−1) and log(nk)

k → log(α) > 0, as k → ∞. Therefore, if we choose

α < 1 + ε2

2 (for definiteness, e.g., α = 1 + ε2

4 ), we again have summable probabilities

∞∑
k=0

P
[

max
nk<i≤nk+1

|Xi −Xnk | > 2ελ(nk)
]
<∞.

Recall from Lemma III.2 that we have |Xnk |/λ(nk) ≤ β for all but finitely many k, and note
in addition that by the summability of the above probabilities and Borel-Cantelli lemma
we have that maxnk<i≤nk+1

|Xi −Xnk | ≤ 2ελ(nk) for all but finitely many k. In fact, both
conditions hold simultaneously for all but finitely many k, and then for nk ≤ i ≤ nk+1, we
have

|Xi|
λ(i)

≤ |Xnk |+ |Xi −Xnk |
λ(nk)

≤ β + 2ε.

This says that

lim sup
i→∞

|Xi|
λ(i)

≤ β + 2ε.

Since β >
√

2 and ε > 0 were arbitrary, we obtain that in fact

lim sup
i→∞

|Xi|
λ(i)

≤
√

2.

�

3. Lower bound

In Theorem III.1 we claim that almost surely,

lim sup
n→∞

Xn

λ(n)
=
√

2,

where λ(n) =
√
n log(log(n)). We have established the upper bound in the previous

section, so the remaining task is to establish the lower bound

lim sup
n→∞

Xn

λ(n)
≥
√

2.

Because of the lim sup, it is enough to just find some subsequence of indices n for
which the walk has large values. We will use an exponentially growing subsequence,
as before.

So again for α > 1, we set nk = bαkc, the smallest integer less than αk. We then
have

nk
αk
−→ 1, as k →∞.

The idea is to use the lower bound (III.5), which gives

P
[ Xn

λ(n)
> β

]
≥ C

√
n

βλ(n)
exp

(
− β2λ(n)2

2n

)
=
C

β

1√
log(log(n))

log(n)−β
2/2.

When β <
√

2, the sum of these probabilities along the subsequence (nk) diverges.
We are almost in a position to use the converse Borel-Cantelli lemma, except that
Xnk

are not really independent. Therefore, we consider the increments

Rk = Xnk+1
−Xnk

, (III.8)
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instead. The sequence (Rk)k∈N is independent, and the law of Rk is the same as the
law of X∆k

, where

∆k = nk+1 − nk. (III.9)

Also these time increments ∆k are exponentially growing,

∆k

αk
−→ α− 1 > 0, as k →∞. (III.10)

Carefully combining these observations leads to a proof of the lower bound.

Proposition III.5. We have

P
[

lim sup
n→∞

Xn

λ(n)
≥
√

2
]

= 1.

Proof. Let β <
√

2. Recall that Rk is distributed like X∆k
, and use the inequality (III.5) to

estimate

P
[ Rk
λ(∆k)

> β
]
≥ C

β

1√
log(log(∆k))

log(∆k)−β
2/2

(at least for for k large enough). By (III.10) we see that for large enough k then P
[
Rk/λ(∆k) >

β
]
≥ const.× k−1, and in particular

∞∑
k=1

P
[ Rk
λ(∆k)

> β
]

=∞.

By the independence of (Rk)k∈N and the second Borel-Cantelli lemma, we conclude that
Rk/λ(∆k) > β for infinitely many values of k.

However, because of the upper bound established in Lemma III.2 (applied to −Xnk), we

have, for any β′ >
√

2 almost surely

Xnk ≥ −β′λ(nk)

for all but finitely many k. Thus there are (almost surely) infinitely many values of k for
which both of the above hold, and for these values of k we see that

Xnk+1
= Xnk +Rk ≥ βλ(∆k)− β′λ(nk).

Here, note that

βλ(∆k)− β′λ(nk)

λ(nk+1)
−→
k→∞

β

√
α− 1

α
− β′

√
1

α
−→
α→∞

β.

Therefore, for any ε > 0 we can choose α large enough so that for large enough k we have
βλ(∆k)− β′λ(nk) > (β − ε)λ(nk+1). From the above argument we get

lim sup
k→∞

Xnk+1

λ(nk+1)
≥ β − ε.

Since β <
√

2 and ε > 0 were arbitrary, this concludes the proof. �

4. Proof of Theorem III.1

The combination of Propositions III.4 and III.5 yields Theorem III.1.

Exercise III.4. Prove Theorem III.1 for the simple symmetric random walk with ±1 steps.



Lecture IV

Weak convergence on the real line

Weak convergence (of probability measures) is a notion that allows one to speak of
limits of distributions of random variables — as opposed to just limits of probabilities
of certain events, or limits of certain expected values. The notion of weak conver-
gence not only theoretically convenient, but also the underlying idea is practically
motivated: random variables are said to converge if all sufficiently well behaved
observables of them converge. In the definition of weak convergence, sufficiently
well behaved observables are taken to mean bounded continuous functions on the
appropriate space.

We remark that weak convergence of a sequence (Xn)n∈N of random variables makes
sense whenever all Xn take values in the same topological space X, since the defi-
nition of weak convergence only requires a notion of continuous functions. In this
chapter, however, we only discuss real-valued random variables. The real valued case
is often important in practise, provides a more concrete introduction, and allows cer-
tain useful approaches such as characteristic functions and cumulative distribution
functions that are not available generally. We return to the general theory in Lec-
ture ??.

Recall that the law (or distribution) of a real-valued random variable X is a Borel
probability measure νX on the real axis R, defined by νX [B] = P[X ∈ B]. We make
the following comment on terminology. Below the weak convergence of probability
measures is defined and studied. By weak convergence of a sequence (Xn)n∈N of
random variables we then mean the weak convergence of the sequence of measures
(νXn)n∈N (the laws of the random variables). Note also that in such a setting, the
random variables (Xn)n∈N need not be defined on the same probability space, their
laws are measures on R anyway.

1. The idea and definition of weak convergence

It is natural to say that a sequence of systems converge, if any observable that we
can measure about the systems converges. We idealize the situation by declaring
that the measurable observables are the expected values of sufficiently well behaved
functions of the random state of the system. Note that for example probabilities
of events, or means and variances of random variables can often be expressed in
terms of such expected values. For weak convergence specifically, as the idealization
of sufficiently well behaved observables, we take the bounded continuous functions
(continuity guarantees in particular Borel-measurability and boundedness guaran-
tees the existence of expected value).

Definition IV.1. A sequence (νn)∞n=1 of probability measures on R converges weakly
to a probability measure ν∞ if for all bounded continuous functions f : R→ R

31
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we have ∫
R
f dνn −→

n→∞

∫
R
f dν∞. (IV.1)

We then denote νn
w→ ν∞.

Remark IV.1. The condition (IV.1) uniquely characterizes the limit, a Borel probability measure
ν∞ on R (this follows from Theorem IV.3 below, see also ??).

Remark IV.2. If (Xn)∞n=1 is a sequence of random variables with laws (νn)∞n=1, and X∞ is a

random variable with law ν∞, then we also denote Xn
w→ X∞ if (IV.1) holds. Unraveling

the definition, this just means that for all bounded continuous functions f : R → R the
expected values converge

E[f(Xn)] −→ E[f(X∞)].

This definition is meaningful even if the random variables Xn, n ∈ N ∪ {∞}, are not defined
on the same probability space — we can have Xn : Ωn → R to be defined on (Ωn,Fn,Pn), al-
though then a better notation for the expected values would also be En[f(Xn)]→ E∞[f(X∞)].

2. Equivalent characterizations of weak convergence

Below we give different conditions, which are equivalent with weak convergence
as defined above. In practice it is often convenient to verify weak convergence
on R using either the fifth or sixth characterization below, i.e. with cumulative
distribution functions or characteristic functions.

Theorem IV.3. Let νn, n ∈ N, and ν be probability measures on R, Fn and F
their respective cumulative distribution functions R → [0, 1], and ϕn and ϕ
their respective characteristic functions R → C. The following conditions are
equivalent:

(i) The sequence of probability measures converges weakly

νn
w−→

n→∞
ν.

(ii) For all open subsets U ⊂ R we have ν(U) ≤ lim infn→∞ νn(U).
(iii) For all closed subsets F ⊂ R we have ν(F ) ≥ lim supn→∞ νn(F ).
(iv) For all Borel subsets B ⊂ R such that ν[∂B] = 0, we have νn(B)→ ν(B).
(v) The cumulative distribution functions converge pointwise

Fn(x) −→
n→∞

F (x) at all continuity points x of F .

(vi) The characteristic functions converge pointwise

ϕn(θ) −→
n→∞

ϕ(θ) for all θ ∈ R.
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Remark IV.4. Our proof of equivalence of the conditions is in principle organized according to
the following road map:

(i) oo // (iii)

$d
$d
$d
$d
$d

(ii)&(iii) // (iv)

��
(vi)
��

Proposition IV.6

OO

(ii)
��

OO

:z
:z
:z
:z
:z
:z

(v)oo

.

However, the proof of equivalence of conditions (i), (ii), (iii) and (iv) will be postponed to
Lecture ??, since the proof remains identical in the more general context of probability mea-
sures on a general metric space (X, %). Below we therefore prove the implications (iv)⇒ (v)
and (v) ⇒ (ii), and separately in Proposition IV.6 a slightly strengthened version of the
equaivalence (i) ⇔ (vi).

Proof of implication (iv) ⇒ (v) in Theorem IV.3. Assume condition (iv), i.e. νn[B]→ ν[B] when-
ever B ⊂ R is a Borel subset such that ν[∂B] = 0. We want to prove condition (v), i.e.
Fn(x) → F (x) for all continuity points x of F . Write Fn(x) = νn

[
(−∞, x]

]
and note that

the boundary of a semi-infinite interval is a singleton, ∂(−∞, x] = {x}. Then note that
x ∈ R is a continuity point of F if and only if ν[{x}] = 0. For continuity points x of F ,
then, we have

Fn(x) = νn
[
(−∞, x]

]
−→ ν

[
(−∞, x]

]
= F (x).

�

Proof of implication (v) ⇒ (ii) in Theorem IV.3. Assume condition (v), i.e. Fn(x)→ F (x) for all
continuity points x of F .

First consider the case when U = (a, b) is an open interval, with a < b — we allow a = −∞
or b = +∞ but keep the simple notation. Approximate (a, b) from inside: choose real
sequences (ak)k∈N and (bk)k∈N such that a < ak < bk < b for all k and ak ↓ a and bk ↑ b as
k →∞. Then (ak, bk) ↑ (a, b) is an increasing limit of sets, so by monotone convergence of
measures we have

ν
[
(ak, bk)

]
→ ν

[
(a, b)

]
as k →∞.

In particular for any ε > 0 we can find kε so that

ν
[
(akε , bkε)

]
≥ ν

[
(a, b)

]
− ε.

Note also that the increasing function F can have at most countably many points of disconti-
nuity (Exercise H.3), so that there exists some continuity points a′ ∈ (a, akε) and b′ ∈ (bkε , b)
of F , and we still have by monotonicity of measure

ν
[
(a′, b′)

]
≥ ν

[
(a, b)

]
− ε.

Now using the fact that a′, b′ are continuity points of F , and the assumption (v), we get

ν
[
(a, b)

]
− ε ≤ ν

[
(a′, b′)

]
= lim
b′′↑b′

(
F (b′′)− F (a′)

)
= F (b′)− F (a′)

(v)
= lim

n→∞

(
Fn(b′′)− Fn(a′)

)
= lim
n→∞

νn
[
(a′, b′]

]
≤ lim inf

n→∞
νn
[
(a, b)

]
.

We then consider a general open subset V ⊂ R. It is an easy fact that the open set V is a
disjoint union of at most countably many open intervals Vj (Exercise H.2). The case of a
finite union is very easy, so assume that

V =

∞⋃
j=1

Vj ,

where each Vj is an open interval, and the intervals Vj , j ∈ Z>0, are disjoint. Fix ε > 0.
The case of a single open interval treated above implies that for any j we have

ν
[
Vj
]
− 2−j ε ≤ lim inf

n→∞
νn
[
Vj
]
.
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Summing over j and using Fatou’s lemma (Lemma A.8 in Appendix A) we get

ν
[
V
]
− ε =

∞∑
j=1

(
ν
[
Vj
]
− 2−jε

)
≤
∞∑
j=1

lim inf
n→∞

νn
[
Vj
]

≤ lim inf
n→∞

∞∑
j=1

νn
[
Vj
]

= lim inf
n→∞

νn
[
V
]
.

Since ε > 0 was arbitrary, (ii) follows. �

The following two exercises illustrate situations in which it is convenient to verify
weak convergence by criteria (v) or (vi).

Exercise IV.1.

(a) Let P ∼ Poisson(λ), i.e., P
[
P = k

]
= λk

k! e
−λ for k ∈ Z≥0. Calculate the characteristic

function ϕP (θ) = E
[
ei θP

]
.

(b) Let B ∼ Bin(n, p), i.e., P
[
B = k

]
=
(
n
k

)
pk (1 − p)n−k for k = 0, 1, . . . , n. Calculate the

characteristic function ϕB(θ) = E
[
ei θB

]
.

(c) For n ∈ N, let Bn ∼ Bin(n, pn), and assume npn → λ as n → ∞. Calculate the limit
limn→∞ E

[
ei θBn

]
.

Exercise IV.2. Let Xj , j ∈ Z>0, be independent identically distributed random variables with
Xj ∼ Exp(λ). Denote the maximum of the first n of them by Mn = max1≤j≤nXj , and
consider the shifted maxima Rn = Mn − 1

λ log(n). Calculate the cumulative distribution
functions Fn(x) = P[Rn ≤ x], n ∈ Z>0, and show that they converge pointwise as n →
∞. Calculate also the limit, and show that it is a cumulative distribution function (recall
Proposition A.4).

3. Tightness

Tightness is a condition which guarantees that no probability mass escapes to infinity
— it states that up to an arbitrarily small error, the entire mass of each member of
a family of probability measures can be found in the same compact set.

Definition IV.2. A collection (νi)i∈I of probability measures on R is tight , if for
any ε > 0 there exists some R > 0 such that

νi

[
R \ [−R,R]

]
< ε ∀i ∈ I.

The following lemma is an obvious reformulation of the definition of tightness in
terms of cumulative distribution functions.

Lemma IV.3. Let (νi)i∈I be a collection of probability measures on R, and let
(Fi)i∈I be the corresponding cumulative distribution functions. The collection
(νi)i∈I is tight if and only if for any ε > 0 there exists some R such that

Fi(−R) < ε and Fi(R) > 1− ε ∀i ∈ I.

Tightness is essentially a precompactness property for the topology of weak conver-
gence. The following is a practical formulation.
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Theorem IV.5. Let (νn)n∈N be a tight sequence of probability measures on R. Then
there exists a subsequence (νnk

)k∈N which converges weakly.

Proof. In the case of probability measures on the real line, this can be proved with cumulative
distribution functions, see Exercise IV.3. We later return to this in a more general case. �

Exercise IV.3 (Convergent subsequence for a tight cdf sequence). Let Fn : R → [0, 1] be cumu-
lative distribution functions, for n ∈ N.

(a) Show that the sequence (Fn)n∈N has a subsequence (Fnk)k∈N, which converges pointwise
to an increasing function F : R→ [0, 1] at all continuity points of F .

(b) Suppose furthermore that the probability measures associated to the cumulative distri-
bution functions Fn constitute a tight family. Show that in part (a), one can choose the
subsequential limit F to be a cumulative distribution function.1

Hint : First form a subsequence which converges in a countable dense subset of R, using the
compactness of the unit interval and a diagonal extraction. Construct from this a right-
continuous function F , and show, that F it is the desired subsequential limit at its points
of continuity.

4. Weak convergence with characteristic functions

The goal of this section is to prove a characterization of weak convergence and
with characteristic functions, i.e. the equivalence of conditions (i) and (vi) in Theo-
rem IV.3. This is one of the most practical among the equivalent conditions. Note,
however, that characteristic functions are defined only for real valued random vari-
ables (or slightly more generally, for vector valued random variables), and we do not
have a similar characterization in the generality of Lecture ?? (random variables
with values in general metric spaces).

Proposition IV.6. Let (νn)n∈N be a sequence of probability measures on R, and
ϕn : R→ C the corresponding characteristic functions ϕn(θ) =

∫
R e

iθx dνn(x).

The sequence on probability measures (νn)n∈N converges weakly if and only if
the sequence of functions (ϕn)n∈N converges pointwise to a function ϕ : R→ C,
which is continuous at θ = 0. Then ϕ is the characteristic function of the weak
limit measure.

Remark IV.7. From this proposition, we obtain in particular the equivalence of conditions (i)
and (vi) in Theorem IV.3: the “only if” part shows that (i) ⇒ (vi), and the “if” part shows
that (vi) ⇒ (i). Concerning the latter, the result here is in fact stronger: we do not need
to assume a priori that the pointwise limit ϕ is a characteristic function of some probability
measure. The condition is thus more convenient to verify in practice.

Remark IV.8. The non-trivial part of the claim is the “if” part: we want to deduce the conver-
gence of the sequence (νn)n∈N of probability measures. The strategy is common, but very
important — we verify two things:

(1) We show the precompactness (in this case the tightness of the family (νn)n∈N), which
implies that any subsequence contains a convergent further subsequence.

1Which functions can serve as cumulative distribution functions is addressed in Proposition A.4
in Appendix A.
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(2) We concretely characterize the limit of any subsequence (in this case by showing that the
characteristic function of any subsequential limit is ϕ), and deduce that all convergent
subsequences have a common limit.

By usual topological arguments it then follows that the entire sequence (νn)n∈N converges
(see Exercise H.9).

Proof. “Only if”: Assume the weak convergence νn
w−→ ν. Since x 7→ eiθx is bounded and con-

tinuous (treat real and imaginary parts separately), by definition we have
∫
R e

iθx dνn(x)→∫
R e

iθx dν(x), i.e. the characteristic functions ϕn converge to the characteristic function ϕ
of the measure ν, which is continuous at the origin.

“If”: Assume that ϕn(θ)→ ϕ(θ) for all θ ∈ R, where

lim
θ→0

ϕ(θ) = ϕ(0) = lim
n→∞

ϕn(0) = 1.

We first show the tightness of the sequence (νn)n∈N of probability measures. For this, we
use the following auxiliary calculation∫ u

−u
(1− eiθx) dθ = 2u− 2 sin(ux)

x
.

Divide both sides by u, integrate the variable x with respect to the measure νn, apply
Fubini’s theorem on the left hand side, and estimate the right hand side from below, to get

1

u

∫ u

−u
(1− ϕn(θ)) dθ = 2

∫
R

(
1− sin(ux)

ux

)
︸ ︷︷ ︸
≥0, because

sin(ξ)
ξ ≤1

dνn(x)

≥ 2

∫
R\(− 2

u ,
2
u )

(
1− sin(ux)

|ux|
)

)
︸ ︷︷ ︸
≥ 1

2 , when |x|≥2/u

dνn(x)

≥ νn
[
R \ (− 2

u
,

2

u
)

]
.

This inequality gives an upper bound for the measure of the complement of the interval
(− 2

u ,
2
u ) in terms of the characteristic function. Next we use the assumption ϕ(θ) → 1 as

θ → 0. For any ε > 0 we may thus choose u > 0 small enough to guarantee

1

u

∫ u

−u
(1− ϕ(θ)) dθ ≤ ε.

Since ϕn(θ) → ϕ(θ), it follows from the dominated convergence theorem (domination by a
constant function will do) that for all n sufficiently large we have

1

u

∫ u

−u
(1− ϕn(θ)) dθ ≤ 2ε.

From an earlier inequality we conclude that with u as above and for all n sufficiently large
we have

νn

[
R \ (− 2

u
,

2

u
)

]
≤ 2ε.

The tightness of the sequence (νn)n∈N follows, because finitely many first members of the
sequence may be handled separately, and ε was arbitrary.

We have shown that (νn)n∈N is tight, so it follows that there are convergent subsequences
(νnk)k∈N. We claim that for such a convergent subsequence νnk → ν the characteristic
function of the limit is ϕ. Namely, we have again

ϕ(θ) = lim
k→∞

ϕnk(θ) = lim
k→∞

∫
R
eiθx dνnk(x) =

∫
R
eiθx dν(x).

This implies that the limits of all convergent subsequences are equal. It follows that the
sequence (νn)n∈N converges. �



Lecture V

Curie-Weiss model

The topic of this lecture is the Curie–Weiss model — arguably the simplest pos-
sible model of ferromagnetism. The model has a large number N of constituent
elementary magnetic units, representing for example atoms in a material. These
elementary magnetic units are conventionally called spins . For simplicity, each spin
is allowed to be in one of just two possible states, thought of as it being magnetized
in one of two opposite directions. All spins “interact” with each other in the sense
that the probabilities of the configurations of all spins depend on how many spins
are in the same state. The interaction is “ferromagnetic”, in the sense that the
probabilities of configurations are higher when there is more agreement among the
spins, i.e. more pairs of with equal states. Our main results show that the model has
a phase transition with respect to a parameter of the model that has the interpreta-
tion of temperature. In high temperature the model has “paramagnetic behavior”
in the limit N → ∞ of a large system: the average magnetization concentrales
at zero. In low temperature the model has “ferromagnetic behavior” in the limit
N →∞: the average magnetization concentrates at non-zero values. We also show
that near the critical temperature of transition between the above paramagnetic and
ferromagnetic phases, the magnetization has a power law type dependence on the
parameters of the model — thus establishing what is known as critical exponents in
physics.

The Curie–Weiss model disregards all possible spacial structure of the magnetic ma-
terial — none of the spins are thought to be near or far from each other, but all
pairs interact alike with each other. This obviously is a simplification in the model,
which makes the model easier to study mathematically. Fortunately, even with such
a simplification, there is a correct phase transition between the ferromagnetic and
paramagnetic behaviors. Unfortunately, however, the values of the critical expo-
nents turn out not to be the correct ones for magnetic materials in three, two, or
one dimensions. The famous Ising model of ferromagnetism, which we will study in
a later lecture, is essentially obtained by adding spacial structure to the Curie–Weiss
model. It has also the correct critical behavior to account for materials known as uni-
axial ferromagnets, but it becomes significantly harder to analyze mathematically.
Because of the lack of spacial structure, the Curie–Weiss model is in physics called
a mean field model of ferromagnetism (a mean field version of the Ising model).

The analysis of the Curie–Weiss model essentially boils down to large deviations
estimates (see Appendix F for a very brief introduction to large deviations). The
large deviations rate functions here also have physical interpretations as certain
thermodynamic potentials.

The Curie–Weiss model is treated in many physics textbooks, and a good mathe-
matical treatment of it can be found for example in [FV15].

37
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1. Definition and key properties of the Curie–Weiss model

The models has N spins (representing some sort of elementary magnetic units),
each with two possible values +1 and −1. The sample space will therefore be
ΩN = {−1,+1}N , and the possible outcomes ~σ = (σi)

N
i=1 ∈ ΩN are thought of as

states of the physical system. In the Curie–Weiss model , the energy of a state ~σ is
taken to be

HN(~σ) = − J

N

N∑
i,j=1

σiσj −B
N∑
i=1

σi, (V.1)

where the parameters J > 0 and B ∈ R are respectively called coupling strenght and
external magnetic field , respectively. The Boltzmann distribution with parameter

β > 0 is now a probability measure µ
(N)
β on the finite sample space ΩN , such that

the individual outcomes have probabilities

µ
(N)
β [{~σ}] =

1

ZN(β)
e−βHN (~σ) (V.2)

and the partition function ZN(β) normalizes the total probability to one,

ZN(β) =
∑
~σ∈ΩN

e−βHN (~σ). (V.3)

The parameter β > 0 in Boltzmann distributions is (proportional to) 1
T

, where T
is the temperature of the material. We will call β the inverse temperature. With a
suitable choice of units (of energy), we may assume J = 1.

In thermodynamics, it is relevant to describe the state of the system as a whole,
instead of keeping track of the individual microscopic constituents. For this purpose
the relevant random variable is the empirical magnetization

MN =
1

N

N∑
i=1

σi. (V.4)

This is the average of the random values of the individual spins, but note that unlike
common situations for for example laws of large numbers or central limit theorems,
the terms in the sum are not independent — this is exactly what the ferromagnetic
interactions are about!

We will prove the following results about the thermodynamical limit (N → ∞) of
the Curie–Weiss model. The first two theorems below express in slightly different
ways the fact that in the absence of external magnetic field (i.e., when B = 0) the
model has a phase transition at the critical value

βc =
1

2
,

of the inverse temperature parameter β, and that the model behavior is

paramagnetic when β < βc (and B = 0)
ferromagnetic when β > βc (and B = 0)

.

More precisely, the first theorem states that in the thermodynamical limit without
external magnetic field, in the paramagnetic phase β < βc the empirical magneti-
zation concenrates to the value zero, whereas in the ferromagnetic phase β > βc it
concentrates at non-zero values ±m̄(β) (spontaneous magnetization), with a random
sign. The second theorem says that in the thermodynamical limit with an external
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magnetic field B > 0 in the positive direction, the empirical magnetization concen-
trates at a positive value m̃(β,B) > 0, whose limit as the external magnetic field is
removed, B ↓ 0, is zero in the paramagnetic phase and a non-zero constant m̄(β) > 0
in the ferromagnetic phase. The first two results thus express a qualitative phase
transition. The third theorem concerns the critical behavior quantitatively: it gives
the values of certain critical exponents , for which we will use the symbols b and d.1

According to this result, near the critical point the spontaneous magnetization has
the following behavior: m̄(β) ∼ |β − βc|b and m̃(βc, B) ∼ |B|1/d, where b = 1

2
and

d = 3.

Theorem V.1. Let β > 0 and B = 0. As N → ∞, the empirical magnetizations
MN of the Curie–Weiss model converge weakly to a random variable M∞,
whose law depends on β as follows:

• If β < βc, then M∞ = 0 almost surely.
• If β > βc, then there exists a spontaneous magnetization m̄ = m̄(β) > 0

such that P[M∞ = +m̄] = 1
2

and P[M∞ = −m̄] = 1
2
.

Theorem V.2. Let β > 0 and B > 0. As N → ∞, the empirical magnetizations
MN of the Curie–Weiss model converge weakly to a deterministic constant
m̃(β,B) > 0. As B ↓ 0, we have

lim
B↓0

m̃(β,B) =

{
m̄(β) > 0 if β > βc
0 if β < βc

,

where m̄(β) > 0 is the same spontaneous magnetization as in the previous
theorem.

Theorem V.3. The functions m̄ and m̃ in the previous two theorems have the
following asymptotic behavior in the vicinity of the critical point β = βc = 1

2
,

B = 0:

lim
β↘βc

m̄(β)

|β − βc|b
6= 0 where b =

1

2

lim
B↘0

m̃(βc, B)

B1/d
6= 0 where d = 3.

1.1. Analysis of the Curie–Weiss model

We begin by observing that the energy HN given by (V.1) can be written in terms
of the empirical magnetization MN given by (V.4)

HN(~σ) = −N
(
MN(~σ)2 +BMN(~σ)

)
= N Ψ(MN(~σ)),

where Ψ(m) = −m2 −Bm.

1The conventional symbols for these two critical exponents are β and δ, which unfortunately
have other established uses already. Our non conventional choice of symbols here is an attempt to
avoid confusion.
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Therefore the partition function (VIII.3) can be written as

ZN(β) =
∑

m∈MN

zN(m)e−NβΨ(m),

where

MN =

{
−N
N

,
2−N
N

,
4−N
N

, . . . ,
N − 2

N
,
N

N

}
i.e.

{
MN = [−1, 1] ∩ 2

N
Z for N even

MN = [−1, 1] ∩ 2
N

(Z + 1
2
) for N odd

is the set of all possible values of the empirical magnetization, and

zN(m) = #

{
~σ ∈ ΩN

∣∣∣ 1

N

N∑
i=1

σi = m

}
=

(
N

N 1+m
2

)
=

N !

(N 1+m
2

)! (N 1−m
2

)!
.

is a binomial coefficient, which accounts for the number of different configurations
of the spins that give rise to the value m of the empirical magnetization.

To analyze the limit N →∞, we need asymptotics of the binomial coefficients. We
observe that the Stirling approximation n! ∼

(
n
e

)n√
2πn (Theorem G.1 in Appen-

dix G) can be used to show (Exercise F.3 in Appendix F) implies the following

log (zN(m)) = N (log(2)− I(m)) + o(N), (V.5)

where I(m) is the Cramèr entropy

I(m) =
1 +m

2
log (1 +m) +

1−m
2

log (1−m) . (V.6)

Note that I : [−1, 1] → R is continuous: the limits m → +1 and m → −1 are
obtained with the help of the familiar fact x log(x)→ 0 as x↘ 0.

The magnetic Gibbs free energy FN = − 1
β

log(ZN), or rather the contribution 1
N
FN

per spin, can now be calculated in the limit N →∞ from the partition function

ZN(β,B) =
∑

m∈MN

zN(m) e−NβΨ(m)

=
∑

m∈MN

exp
(
−Nβ

(
g(β,m)−Bm

)
+ o(N)

)
, (V.7)

where

g(β,m) =
I(m)− log(2)

β
−m2 (V.8)

is called the magnetic Helmholtz free energy. The following Proposition says that
the Gibbs free energy f = limN→∞

1
N
FN is a Legendre transform of the Helmholtz

free energy g.

Proposition V.4. Let β > 0 and B ∈ R. As N →∞, we have

f(β,B) := lim
N→∞

(
−1

βN
log (ZN(β,B))

)
= inf

m∈[−1,1]
(g(β,m)−Bm) .
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Proof. To prove the asserted equality, we prove inequalities in both directions separately.

Let us start from a lower bound for the Gibbs free energy, which is obtained from an upper
bound for the partition function

ZN (β,B) =
∑

m∈MN

exp
[
−Nβ

(
g(β,m)−Bm

)
+ o(N)

]
≤ (N + 1) max

m∈MN

(
exp

[
−Nβ

(
g(β,m)−Bm

)
+ o(N)

])
.

Taking logarithms, dividing by N , and collecting together terms that are negligible in the
limit N →∞, we obtain

1

N
log (ZN (β,B)) ≤ β max

m∈MN

(−g(β,m) +Bm) + o(1)

≤ β sup
m∈[−1,1]

(−g(β,m) +Bm) + o(1).

By further dividing by −β and letting N →∞ we get the desired lower bound for f(β,B)

lim inf
N→∞

−1

βN
log (ZN (β,B)) ≥ inf

m∈[−1,1]
(g(β,m)−Bm) .

An upper bound for the Gibbs free energy is correspondingly obtained from the following
lower bound on the partition function, where we only keep the largest term in the sum that
defines the partition function

ZN (β,B) ≥ max
m∈MN

(
exp

[
−Nβ

(
g(β,m)−Bm

)
+ o(N)

])
.

Again taking logarithms and dividing by N we obtain

1

N
log (ZN (β,B)) ≥ − β max

m∈MN

(g(β,m)−Bm) + o(1).

The function m 7→ g(β,m) − Bm is continuous on the interval [−1, 1]. By compactness,
it achieves its minimum at some point. In the subset MN ⊂ [−1,+1] there are points
at distance at most 2

N from the point at which the minimum is achieved. Therefore by
continuity we have

min
m∈MN

(g(β,m)−Bm) −→
N→∞

inf
m∈[−1,1]

(g(β,m)−Bm).

Again dividing by −β and letting N → ∞ we get the desired upper bound for the Gibbs
free energy f(β,B)

lim sup
N→∞

−1

βN
log (ZN (β,B)) ≤ inf

m∈[−1,1]
(g(β,m)−Bm) .

From the two inequalities above, we conclude the the thermodynamical limit of the Gibbs
free energy

f(β,B) = lim
N→∞

(
−1

βN
log (ZN (β,B))

)
exists, and is given by the asserted formula infm∈[−1,1](g(β,m)−Bm). �

Let us comment on the interpretation for the quantities above. The Helmholtz
free energy g expresses the rate of large deviations of the empirical magnetization:
roughly speaking the probability that the empirical magnetization assumes a given
value is exponentially small

µ
(N)
β,B

[
MN ≈ m

]
∼ exp

[
−Nβ

(
g(β,m)−Bm− f(β,B)

)]
.

A precise formulation of this is given below.

Proposition V.5. For any open set A ⊂ [−1, 1] we have

lim
N→∞

−1

N
log
(
µ

(N)
β,B

[
MN ∈ A

])
= β

[
inf
m∈A

(g(β,m)−Bm)− f(β, h)

]
.
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Proof. The probability that MN ∈ A is

µβ,B [MN ∈ A] =
1

ZN (β,B)

∑
m∈A∩MN

zN (m)eNβ(m2+Bm).

By estimating the sum on the right hand side as in the proof of the previous theorem, we
get

1

N
log

( ∑
m∈A∩MN

zN (m)eNβ(m2+Bm)

)
= − β inf

m∈A
(g(β,m)−Bm) + o(1).

The asserted formula follows by taking logarithms and using also the previous result about
the asymptotics of the logarithm of the partition function. �

We are essentially ready to proceed to the proofs our main results. Let us summarize
the startegy. The minima of the Helmholz free energy (i.e. the zeroes of the large
deviation rate function) are the points at which the distribution of MN concentrates
— anywhere else the probabilities are exponentially small. The minima of the
Helmholz free energy will be found by straightforward calculations. We formulate
the following auxiliary results for the implementation of this strategy.

Lemma V.6. Assume that a sequence (Xn)n∈N of real random variables converges

weakly, Xn
w−→ X, and that the sequence satisfies a large deviations upper

bound

lim sup
n→∞

logP[Xn ∈ A]

n
≤ − inf

x∈A
φ(x) for all open sets A ⊂ R,

where the large deviations rate function φ : R → [0,∞) is continuous. Then
the limit random variable X takes values in the set N = {x ∈ R |φ(x) = 0} of
zeroes of the rate function, i.e., we have P[X ∈ N ] = 1.

Proof. Define the opens sets Aε = {x ∈ R |φ(x) > ε} for ε > 0. Since infx∈Aε φ(x) ≥ ε (by
continuity), we infer from the large deviations upper bound that P[Xn ∈ Aε]→ 0 as n→∞
(these probabilities tend to zero exponentially fast). Thus by the characterization (ii) of
Theorem IV.3 we have P[X ∈ Aε] ≤ lim inf P[Xn ∈ Aε] = 0. Since the complement of the
set N is a countable union of sets of the form Aε, we get the desired conclusion

P[X /∈ N ] = P
[
X ∈

∞⋃
k=1

A1/k

]
≤
∞∑
k=1

P[X ∈ A1/k]︸ ︷︷ ︸
=0

= 0.

�

Figure V.1 illustrates the Helmholtz free energy function m 7→ g(β,m), and es-
pecially the dependence of the locations of the minima on the parameter β. The
needed auxiliary results are formulated in the following.

Lemma V.7. For fixed β > 0 and B = 0, the large deviations rate function
φ(m) = β(g(β,m)−f(β, 0)) determined by the Helmholtz free energy g(β,m) =
I(m)−log(2)

β
−m2 has the following properties:

(a) φ : [−1, 1]→ R is continuous and its minimum is 0.
(b) If β ≤ 1

2
, then the only zero of the function φ is at m = 0.

(c) If β > 1
2
, then the equation φ′(m) = 0 has a unique positive solution m =

m̄(β), and the only two zeroes of φ are at m = +m̄(β) and m = −m̄(β).
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-1.0 - 0.5 0.5 1.0

(a) High temperature

-1.0 - 0.5 0.5 1.0

(b) Temperature slightly above critical

-1.0 - 0.5 0.5 1.0

(c) Low temperature

-1.0 - 0.5 0.5 1.0

(d) Temperature slightly below critical

Figure V.1. Curie–Weiss model Helmholtz free energy m 7→ g(β,m)
gives the rate of large deviations for the empirical magnetization: in
the paramagnetic phase β < βc = 1

2
its minimun is at m = 0, and

in the ferromagnetic phase β > βc = 1
2

there are two minima at
m = ±m̄(β). Figure V.1(a): β = 0.25, Figure V.1(b): β = 0.46,
Figure V.1(d): β = 0.56, Figure V.1(c): β = 0.75.

Proof. The continuity of the function φ is clear from the continuity of the function I on the interval
[−1, 1]. Proposition V.4 implies that f(β, 0) is the minimum of the function m 7→ g(β,m),
so the minimum of φ is 0, and part (a) follows.

Moreover, φ is C∞ on the open interval (−1, 1), and it is an even function, φ(−m) = φ(m).
Thus clearly φ′(0) = 0. An easy calculation gives I ′′(m) = 1

1−m2 , and we get φ′′(m) =
1

1−m2 − 2β. We see that for β ≤ 1
2 we have φ′′(m) ≥ 0, and the only minimum is at m = 0.

Correspondingly for β > 1
2 , the second derivative is negative on an interval around zero and

non-negative elsewhere, so the function φ has a local maximum at zero and minima at the
other two zeroes of the derivative. �

Proof of Theorem V.1. We wish to show that the empirical magnetizations MN converge weakly
towards the asserted law. Note first that the sequence (MN )N∈N of random variables is tight
(recall Lecture IV, Section 3), because the values of each MN are on the interval [−1, 1].
Theorem IV.5 implies that any subsequence (MNk)k∈N has some further subsequence which
is convergent. It suffices to show that the limit of any convergent subsequence is of the
asserted form.

In the case β ≤ βc = 1
2 , is MNk

w−→ M∞, it follows from Lemma V.6, Proposition V.5 and
Lemma V.7(b) that P[M∞ = 0] = 1. Since any subsequential limit is of the asserted form

(deterministic constant zero), we conclude MN
w−→ 0.

In the ase β > βc = 1
2 , if MNk

w−→ M∞, then by Lemma V.6, Proposition V.5 and
Lemma V.7(c) we have that P[M∞ ∈ {−m̄,+m̄}] = 1. Moreover, when B = 0 we obviously
have the symmetry P[MN < 0] = P[MN > 0], which implies the corresponding symmetry
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(a) Spontaneous magnetization as a function
of the inverse temperature β
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(b) Magnetization at critical temperature as a
function of the external magnetic field B

Figure V.2. The critical exponents b and d of the Curie–Weiss
model describe the power law behavior of the magnetization in the
vicinity of the critical point β = βc = 1

2
, B = 0. Figure V.2(a):

β 7→ m̄(β), Figure V.2(b): B 7→ m̃(βc, B).

for the limit random variable M∞, and therefore P[M∞ = +m̄] = 1
2 = P[M∞ = −m̄]. Again

we conclude the weak convergence to the asserted limit. �

Proof of Theorem V.2. The proof is essentially the same as above. The only difference is that
for B > 0, the minimum of the Helmholz free energy is at the unique positive solution
m̄(β,B) > 0 of the equation ∂

∂m

(
g(β,m)

)
−Bm) = 0. �

Proof of Theorem V.3. We leave the rest of the proof as Exercise V.1. �

Exercise V.1. For the Curie-Weiss model, the Helmholtz free energy reads

g(β,m) =
1

β

(1 +m

2
log(1 +m) +

1−m
2

log(1−m)− log(2)
)
−m2.

(a) For a fixed β > 1
2 , let m̄ = m̄(β) be the unique positive solution of ∂

∂mg(β,m) = 0.

Calculate limβ↘ 1
2

m̄(β)

(β− 1
2 )1/2

.

(b) For fixed B > 0 and β > 0, let m̃ = m̃(β,B) be the unique positive solution of
∂
∂m

(
g(β,m)−Bm

)
= 0. Calculate limB↘0

m̃( 1
2 ,B)

B1/3 .



Lecture VI

Weak convergence on metric spaces

We will next turn to probability theory on more general spaces. A natural generality
for theory and applications will be that of Polish spaces (topological spaces which
are separable and admit a complete metric). Relevant background in the topology
of metric spaces is recalled in Appedix H.

We will in particular study weak convergence of probability measures. The definition
of weak convergence would make sense on any topological spaces, but on Polish
space we maintain the fundamental relation between tightness and precompactness
(in the topology of weak convergence). Important applications of weak convergence
on Polish spaces are for example the following two, which we impressionistically
illustrate in Figure VI.1 and treat in later lectures:

• Donsker’s theorem (Lecture VII):
– Donsker’s theorem states that appropriately rescaled random walks

converge to Brownian motion.
– This statement will be interpreted in terms of weak convergence of

probability measures on the space C([0, T ]) of continuous functions.
• Ising model thermodynamical limit (Lecture VIII):

– The idea is to define the Ising model on the infinite lattice Zd by a
limit of Ising models on increasing finite subgraphs of the lattice.

– This requires weak convergence on the countable product of finite

spaces {−1,+1}Z
d

.
– Remarkably, the phase transition in the Ising model (and other models)

is related to the (non-)uniqueness of such an infinite volume limit.

The excellent textbook [Bil99] is entirely devoted to the topic of weak convergence
of probability measures in a general setup.

1. Weak convergence of probability measures

Recall the idea: what is considered reliably measurable by observations about a ran-
dom system (in our mathematical idealization) are the expected values of bounded
continuous functions. Weak convergence means exactly the convergence of all such
observable quantities. For this definition, we only need X to be a topological space,
so that we may talk about continuous functions on it.

Definition VI.1. A sequence (ν)n∈N of probability measures on a topological space
X converges weakly to ν, if for all bounded continuous functions f : X→ R we
have ∫

X

f dνn −→
∫
X

f dν.
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(a) The Brownian motion is a random element
of a space of continuous functions.
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(b) The thermodynamical limit of the Ising
model is a random assignment of ±1 spins to
the sites of the lattice Zd.

Figure VI.1. Many stochastic models are random objects on some
spaces, which have the structure of a complete separable metric space.

Although the definition makes sense without metric, we will now assume that the
space X is equipped with a metric % which gives its topology.

Remark VI.1. The weak limit ν is unique, if it exists. This follows from part (ii) of Exercise H.5
in Appendix H.

There are several equivalent characterizations of weak convergence.

Theorem VI.2 (Portmanteau theorem). Let νn, n ∈ N, and ν be probability mea-
sures on a metric space (X, %). Then the following are equivalent:

(i) The sequence of probability measures converges weakly νn
w−→

n→∞
ν.

(ii) For all open sets G ⊂ X we have ν[G] ≤ lim infn→∞ νn[G].
(iii) For all closed sets F ⊂ X we have ν[F ] ≥ lim supn→∞ νn[F ].
(iv) For all Borel sets E ⊂ X, for which ν[∂E] = 0, we have νn[E]→ ν[E].

Remark VI.3. The special case X = R completes the proof of Theorem IV.3 in Lecture IV, by
establishing the implications whose proofs were omitted.

Proof of Theorem VI.2.
(ii)⇔(iii): The equivalence of conditions (ii) and (iii) is clear by setting F = X \ G and
vice versa: then ν[F ] = 1− ν[G] and similarly for νn.

(ii)&(iii)⇒(iv): We assume the two equivalent conditions (ii) and (iii), and prove (iv).
Suppose E ∈ B, and ν[∂E] = 0. Denote by E the closure and by E◦ the interior of E. We
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have E◦ ⊂ E ⊂ E, and since ν[E \ E◦] = ν[∂E] = 0, the measures of all three are equal,
ν[E◦] = ν[E] = ν[E]. Assuming (ii) and (iii), we get the inequalities

lim inf νn[E] ≥ lim inf νn[E◦]
(ii)

≥ ν[E◦]

= ν[E]

= ν[E] ≥
(iii)

lim sup νn[E] ≥ lim sup νn[E].

We conclude that limn→∞ νn[E] exists and equals ν[E].

(iv)⇒(iii): Suppose F ⊂ X is closed. For δ > 0, denote Fδ =
{
x ∈ X

∣∣ %(x, F ) ≤ δ
}

.

Since X \ F =
⋃
δ>0

{
x ∈ X

∣∣ %(x, F ) = δ
}

is a disjoint union, and ν[X \ F ] ≤ 1, the sets{
x ∈ X

∣∣ %(x, F ) = δ
}

can have positive ν-measure for only countably many values of δ.

Note that ∂Fδ ⊂
{
x ∈ X

∣∣ %(x, F ) = δ
}

, so also ∂Fδ can have positive ν-measure for only
countably many values of δ. We can thus find a sequence (δk)k∈N such that δk ↘ 0 and
ν[∂Fδk ] = 0 for all k ∈ N. Assuming (iv), we then have νn[Fδk ] → ν[Fδk ] as n → ∞.
Therefore, for any k,

lim sup
n→∞

νn[F ] ≤ lim
n→∞

νn[Fδk ] = ν[Fδk ].

We have Fδk ↓ F as k →∞, so the right hand side tends to ν[F ], and we deduce (iii).

(i)⇒(iii): Suppose that F ⊂ X is closed. For δ > 0, denote Fδ =
{
x ∈ X

∣∣ %(x, F ) ≤ δ
}

.
By Lemma H.3 one can find a continuous function fδ : X→ [0, 1] such that fδ(x) = 1 for all
x ∈ F and fδ(x) = 0 if %(x, F ) ≥ δ, that is,

IF ≤ fδ ≤ IFδ .

We thus have

νn[F ] ≤
∫
X

fδ dνn and

∫
X

fδ dν ≤ ν[Fδ].

Since fδ is continuous and bounded, assuming (i) we have

lim sup
n→∞

νn[F ] ≤ lim
n→∞

∫
X

fδ dνn
(i)
=

∫
X

fδ dν ≤ ν[Fδ].

We have Fδ ↓ F as δ ↘ 0, so the right hand side tends to ν[F ], establishing property (iii).

(ii)⇒(i): Suppose that f : X→ R is continuous and bounded. Assuming (ii), we will first
show that

lim inf
n→∞

∫
X

f dνn ≥
∫
X

f dν. (VI.1)

Then applying the same to the function −f , we can deduce that lim sup
∫
X
f dνn ≤

∫
X
f dν.

Combining the two, we get limn→∞
∫
X
f dνn =

∫
X
f dν, which will establish property (i). It

thus suffices to show that (ii) implies (VI.1). Without loss of generality, we can assume that
the function f is non-negative, since adding a constant to f does not change the validity
of (VI.1).

Assume (ii), i.e., that for all open G ⊂ X we have ν[G] ≤ lim inf νn[G]. Now on the
probability space (X,B(X), ν) consider the function x 7→ f(x) as a non-negative real-valued
random variable. Apply Equation (B.2) to calculate its expected value∫

X

f dν =

∫ ∞
0

ν
[ {
x ∈ X

∣∣ f(x) > s
} ]

ds.

By continuity of f , the set {x ∈ X | f(x) > s} is open, so by (ii) and Fatou’s lemma (Lemma A.8
in Appendix A) we can estimate∫

X

f dν ≤
∫ ∞

0

lim inf
n→∞

νn

[ {
x ∈ X

∣∣ f(x) > s
} ]

ds

≤ lim inf
n→∞

∫ ∞
0

νn

[ {
x ∈ X

∣∣ f(x) > s
} ]

ds = lim inf
n→∞

∫
X

f dνn.

This shows (VI.1), and therefore proves the implication (ii) ⇒ (i). �
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2. Metrizability of weak convergence

Weak convergence, Definition VI.1, says which sequences of probability measures
on a metric space X converge. This defines a topology on the set M1(X) of Borel
probability measures on X (this is called the topology of weak convergence). In
general, a topology may or may not come from a metric (and if it does, there are
many different metrics giving rise to the same topology) — a topology is said to
be metrizable if it does. Metrizable topologies have many good properties, and a
metric makes many things more concrete.

The topology of weak convergence turns out to be metrizable if the underlying space
X is separable. This will follow from the following exercises.

Let (X, %) be a metric space, and letM1(X) be the set of Borel probability measures
on X. For a Borel set E ∈ B and δ > 0, denote Eδ =

{
x ∈ X

∣∣ %(x,E) < δ
}

, where

%(x,E) = infy∈E
(
%(x, y)

)
. For µ, ν ∈M1(X), define

d(µ, ν) = inf
{
δ > 0

∣∣∣ ∀E ∈ B : µ[E] ≤ ν[Eδ] + δ and ν[E] ≤ µ[Eδ] + δ
}
.

This d is called the Lévy-Prohorov metric.

Exercise VI.1. Show that d is a metric on M1(X).

The following exercise says that the topology induced by the metric d on the space
M1(X) of probability measures is always at least as strong as the topology of weak
convergence.

Exercise VI.2. Assume that νn ∈ M1(X), n ∈ N, are such that for some ν ∈ M1(X) we have
d(νn, ν)→ 0 as n→∞.

(a) Show that there exists a decreasing sequence (δn)n∈N of real numbers tending to zero,
such that for all Borel sets E ⊂ X we have νn[E] ≤ δn + ν[Eδn ].

(b) Show that for any Borel set E ⊂ X we have, as n→∞, ν[Eδn ]↘ ν[Ē].
(c) Show that for any closed set F ⊂ X we have lim supn→∞ νn[F ] ≤ ν[F ].
(d) Conclude that νn converges weakly to ν as n→∞.

Conversely, we show that under the assumption of separability of X, the topology of
weak convergence is at least as strong as the topology induced by the metric d. In
this setup, then, d metrizes the topology of weak convergence on the space M1(X)
of probability measures.

Exercise VI.3. Assume that the metric space (X, %) is separable. Assume that νn ∈ M1(X),
n ∈ N, are such that νn converges weakly to some ν ∈M1(X) as n→∞. Let ε > 0.

(a) Show that there exists a countable dense set
{
xi
∣∣ i ∈ Z>0

}
⊂ X and a radius r ∈ ( ε4 ,

ε
2 )

such that ν[∂Br(xi)] = 0 for all i ∈ Z>0.

(b) Show that there exists some k ∈ Z>0 such that ν
[⋃k

i=1Br(xi)
]
≥ 1− ε.

(c) Show that there exist finitely many disjoint sets A1, . . . , Ak ⊂ X such that ν[∂Ai] = 0

and diam(Ai) < ε for all i = 1, . . . , k, and ν
[
X \

⋃k
i=1Ai

]
≤ ε.

(d) Define the collection A =
{⋃

i∈I Ai
∣∣ i ⊂ {1, . . . , k}} of subsets of X. Show that for any

A ∈ A we have νn[A] → ν[A] as n → ∞. Conclude that there exists N > 0 such that∣∣νn[A]− ν[A]
∣∣ ≤ ε for all A ∈ A and n ≥ N .

(e) Let E ⊂ X be a Borel set. Choose A ∈ A as A =
⋃
i∈IE Ai, where IE =

{
i
∣∣ Ai ∩ E 6= ∅}.

Show that A ⊂ Eε, and that E ⊂ A ∪ E′, where ν[E′] ≤ ε and νn[E′] ≤ 2ε for n ≥ N .
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(f) Show that for n ≥ N we have νn[E] ≤ ν[Eε] + 3ε and ν[E] ≤ νn[Eε] + 2ε.
(g) Conclude that d(νn, ν)→ 0 as n→∞.

Recall that a coupling of probability measures µ, ν ∈M1(X) is a probability measure
λ on X×X such that for all E ∈ B we have λ[E ×X] = µ[E] and λ[X×E] = ν[E].
The next exercise will help get an intuition of the meaning of the above metric d on
the space M1(X) of probability measures. It says that if two probability measures
can be coupled so that the realizations of the two components are very close with a
very high probability, then the probability measures are very close.

Exercise VI.4. Assume that there exists a coupling λ of µ and ν in which

λ
[ {

(x1, x2) ∈ X× X
∣∣ %(x1, x2) ≥ ε

} ]
≤ ε.

Show that then d(µ, ν) ≤ ε.

3. Tightness and Prohorov’s theorem

We recall that an often practical strategy for proving convergence is that of Ex-
ercise H.9: show precompactness of the sequence under consideration and identify
uniquely any subsequential limit. Precompactness in the topology of weak conver-
gence is closely related to the more concrete notion of tightness , defined below. Keep
in mind our results in the case of weak convergence on the real axis, in particular
Definition IV.2, Theorem IV.5, and Exercise IV.3. This section generalizes these to
the context of probability measures on complete separable metric spaces.

Definition VI.2. A collection (νi)i∈I of probability measures on a metric space X
is tight , if for any ε > 0 there exists some compact subset K ⊂ X such that

νi

[
K
]
> 1− ε ∀i ∈ I.

The collection (νi)i∈I is said to be precompact (in the topology of weak con-
vergence), if any sequence (νin)n∈N of probability measures from the collection
has a subsequence which converges weakly.

Theorem VI.4 (Prohorov’s theorem). If a collection (νi)i∈I of probability measures
on a metric space X is tight, then it is precompact.

Proof. Assume that (νn)n∈N is a sequence from a tight collection of probability measures on X.
We want to show that some subsequence (νnk)k∈N converges weakly.

First, by tightness, choose compact sets K1 ⊂ K2 ⊂ K3 ⊂ · · · ⊂ X such that νn[Km] > 1− 1
m

for all n,m. Each compact Km is separable (Exercise H.8) so the countable union
⋃
mKm

is also separable. This union contains all the probability mass of all all members of the
sequence, νn

[⋃
mKm

]
= 1 for all n. We can therefore essentially only work on the separable

subset
⋃
mKm ⊂ X.

Instead of working directly with all Borel sets, we will start with a certain good countable
collection of subsets. First, let S ⊂

⋃
mKm be a countable dense set of points in the

separable set
⋃
mKm. Let A consist of all open balls Br(s) with r ∈ Q ∩ (0,∞) and s ∈ S.

Note that A is indeed countable. It has the following important property: if G ⊂ X is an
open set and x ∈ G ∩

⋃
mKm, then there exists some A ∈ A such that x ∈ A ⊂ A ⊂ G.
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Indeed, for such G and x we can first find some ε > 0 such that Bε(x) ⊂ G, and then s ∈ S
such that %(x, s) < ε

2 and r ∈ Q ∩ (%(x, s), ε2 ). Then A = Br(s) works: clearly x ∈ A and

Br(s) ⊂ Br+ε/2(x) ⊂ Bε(x) ⊂ G. This collection A is a fair starting point, but even better

is the collection H which consists of all finite unions A1∪· · ·∪An of closures of sets from the
collection A (the empty set ∅ is allowed, as a union of closures of zero sets). The collection
H is also countable, and also stable under finite unions.

Our task is to find a subsequence of
(
νn
)
n∈N which converges weakly. We will first make sure

that the measures of the sets from the collection H converge. For any H ∈ H, the sequence
(νn[H])n∈N is bounded, so we can find a convergent subsequence, and by diagonal extraction
we find a subsequence

(
νnk
)
k∈N such that for all sets H in the countable collection H, the

limits

α[H] := lim
k→∞

νnk [H]

exist. The remaining task is to show that there exists a Borel probability measure ν on X
such that for all open sets G we have

ν[G] = sup
H⊂G

α[H].

Once we have such a probability measure ν, the proof will in fact be complete. Namely, note
that if G is open and H ⊂ G with H ∈ H, then α[H] = limk→∞ νnk [H] ≤ lim infk→∞ νnk [G],
so we also have ν[G] ≤ lim infk→∞ νnk [G]. This establishes criterion (ii) of Theorem VI.2,
so we may conclude that

νnk
w−→

k→∞
ν.

The measure ν as above can be constructed as follows (following the idea in Proposition H.5
that a set can be well approximated from the inside with closed sets and from the outside
with open sets). For open sets G we define

β[G] = sup
H⊂G

α[H],

and for arbitrary subsets E ⊂ X define

γ[E] = sup
G⊃E

β[G].

It can be shown that this γ is an outer measure, and when restricted to Borel sets it defines
our desired probability measure ν. The details of this check can be found in [Bil99]. �



Lecture VII

Random walks and Brownian motion

Consider the simple random walk, defined using a sequence (ξ`)`∈N of steps, which are
independent and indentically distributed with law P

[
ξ` = −1

]
= 1/2 = P

[
ξ` = +1

]
,

and the sums of steps S = (Sk)k∈Z≥0

Sk =
k∑
`=1

ξ`.

From these values of the random walk at integer times, we extend piecewise linearly
to a function defined for all times t ∈ [0,∞) by setting

St = Sbtc +
(
t− btc

)
ξbtc+1,

where btc ∈ Z denotes the integer part of the real number t ∈ R. Fixing a scale pa-

rameter a > 0 (imagine a very small), we then consider the walkX(a) =
(
X

(a)
t

)
t∈[0,∞)

,

with steps of magnitude
√
a occurring with time interval a, i.e., we define

X
(a)
t =

√
aSt/a. (VII.1)

This linear interpolation and scaling of random walks is illustrated in Figure VII.1.
Our goal is to prove the following result (the precise formulation and proof will be
given after some preparations).

Donsker’s theorem. The scaled random walks X(a) defined by
(VII.1) converge weakly as a ↓ 0 to Brownian motion, on a space
of continuous functions.

The proof strategy is the usual one, “precompactness plus identification of subse-
quential limits” (recall Exercise H.9 in Appendix H):

• Verify that the laws of the processes X(a) for different a > 0 form a tight
family, and thus obtain by Prohorov’s theorem (Theorem VI.4) that any
sequence X(am) with am ↓ 0 has convergent subsequences.
• Characterize explicitly any subsequential limit of the processes X(a).

In Section 1 we give the defining properties of Brownian motion. In Section 2 we
consider generalities about determining a Borel probability measure on the space
of continuous functions, study compact subsets of a space of continuous functions,
and establish a criterion for tightness. In Section 3 we give the precise statement of
Donsker’s theorem and finish the proof by proving tightness of the laws of X(a) for
different a > 0 and showing that any subsequential limit is a Brownian motion.

51



52 VII. RANDOM WALKS AND BROWNIAN MOTION

n

Sn

10

√
10

(a) A random walk up to time n = 10.

n

Sn

100

10

(b) A continuation of the same walk up to time
n = 100.

n

Sn

1000

10
√

10

(c) A continuation of the same walk up to time
n = 1000.

Figure VII.1. A random walk in different temporal and spatial
scales. The plots include the curves (t,±

√
t), which remain invari-

ant under the scaling given in formula (VII.1).

1. Brownian motion

In general, a (real-valued) stochastic process is a collection (Xt)t∈T of random vari-
ables Xt : Ω → R (defined on the same probability space Ω) indexed by a “time
parameter” t. The set T ⊂ R of allowed time parameter values may be either a
discrete set or an interval, and the process is correspondingly said to have discrete
or continuous time. We interpret Xt ∈ R as the (random) position of the process
at time t, dependent as usual on the (random) outcome ω ∈ Ω. An outcome ω ∈ Ω
determines in fact a function t 7→ Xt(ω) of time, called the trajectory or path of the
process. Often 0 ∈ T and T ⊂ [0,+∞), and we think that the process is started at
time t = 0 from position X0 ∈ R, which may in general be random, although it is
common to consider processes started deterministically from the origin, for example.

Brownian motion (Bt)t≥0 is a stochastic process, which is crucial to a great num-
ber of applications — from finance to physics. In this section we will give defining
properties of Brownian motion. The Brownian motion not only has a number of dif-
ferent applications, it also has a number of equivalent definitions. We first separately
discuss the following properties

• Gaussianity of a process
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• stationarity and independence of the increments of a process
• continuous paths of a process

and then give two equivalent definitions by requiring some combinations of such
properties. It will not be immediately obvious that any process satisfying the re-
quirements exist. There are various ways of proving the existence of Brownian
motion, all of which require some amount of work. We will be able to conclude the
existence by showing that the rescaled random walks VII.1 have a limit as a ↓ 0
which satisfies the defining properties of a Brownian motion.

Gaussian processes

Recall from Appendix G.2 that a random vector X in a finite dimensional vector
space Rd is said to have a Gaussian distribution if all one-dimension projections
a ·X (for a ∈ Rd) of it are one-dimensional Gaussian random variables. In a similar
vein, we define a process Gaussian process by the condition that the collection of its
values on any finite set of times is a Gaussian vector.

Definition VII.1. A stochastic process X = (Xt)t∈T is a Gaussian process , if for
all n and t1, t2, . . . , tn ∈ T, the vector (Xt1 , Xt2 , . . . , Xtn) is a Gaussian vector.

The laws of (Xt1 , Xt2 , . . . , Xtn) for various choices t1, t2, . . . , tn ∈ T are called the
finite dimensional distributions of the process.

Example VII.1. The random walk with Gaussian steps considered in Lecture III is a Gaussian
process with T = Z≥0.

Stationary and independent increments

Suppose now that for the process (Xt)t∈T the set of allowed time parameter values
T ⊂ R is an additive semigroup, i.e., 0 ∈ T and whenever t, s ∈ T then also
s+ t ∈ T (for example T = Z≥0 or T = R or T = [0,∞)). Then for a given t, s ∈ T
we can consider the increments Xs+t − Xs from time s to time s + t. Stationarity
of increments says that such increments over all time intervals of the same duration
t have the same distribution (and more generally a similar property for the joint
law of several increments). Independence of increments says that the increments on
time intervals that do not overlap are independent random variables.

Definition VII.2. A stochastic process X = (Xt)t∈T has stationary increments , if
for all n and t1, t2, . . . , tn ∈ T and s ∈ T, the vector (Xs+t1−Xs, . . . , Xs+tn−Xs)
has the same law as the vector (Xt1 −X0, . . . , Xtn −X0).

Definition VII.3. A stochastic process X = (Xt)t∈T has independent increments ,
if for all n and t0, t1, . . . , tn ∈ T with t0 < t1 < · · · < tn the collection

(
Xtj −

Xtj−1

)n
j=1

of random variables is independent.
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Continuity of a process

Suppose that T is an interval, for example T = [0, T ], or T = [0,∞), or T = R.
In such a setup of continuous time, it is meaningful to consider te continuity of the
paths of a process (Xt)t∈T.

Definition VII.4. A stochastic process X = (Xt)t∈T has continuous paths , if

P
[{

ω ∈ Ω
∣∣∣ t 7→ Xt(ω) is continuous

}]
= 1.

Remark VII.2. Note that in the above definition, the event
{
ω ∈ Ω

∣∣ t 7→ Xt(ω) is continuous
}

must first of all be measurable. Since T is an interval, this event depends on values Xt of the
process at uncountably many times t, so the probability space (Ω,F ,P) can not be chosen
carelessly!

Defining properties of Brownian motion

Proposition VII.3. For a stochastic process X = (Xt)t∈[0,∞) the following are
equivalent:

(i) X has stationary and independent increments, and Xt ∼ N(0, t) for all
t ≥ 0

(ii) X is a Gaussian process with E[Xt] = 0 and E[XsXt] = min(s, t), for all
s, t ≥ 0.

Proof. (i) ⇒ (ii): Let 0 = t0 < t1 < · · · < tm and a1, . . . , am ∈ R. Then
∑m
k=1 akXtk =∑m

k=1 bk
(
Xtk −Xtk−1

)
for certain coefficients b1, . . . , bm ∈ R. By assumption (i), the incre-

ments Xtk − Xtk−1
, k = 1, . . . ,m, are independent Gaussians with zero mean. It follows

that the linear combination is also Gaussian with zero mean. This shows that (Xt)t∈[0,∞)

is a Gaussian process and E[Xt] = 0 for any t ≥ 0. It remains to compute the covariance,
which is done using the independence of increments, for s ≤ t

E
[
XsXt

]
= E

[
Xs

(
Xs +Xt −Xs

)]
= E

[
X2
s

]
+ E

[
Xs

(
Xt −Xs

)]
= E

[
X2
s

]
+ E

[
Xs

]
E
[
Xt −Xs

]
= s+ 0 · 0 = s = min(s, t).

Thus the property (ii) follows.

(ii) ⇒ (i): Suppose that (Xt)t∈[0,∞) is a Gaussian process with E[Xt] = 0 and E[XsXt] =
min(s, t). Then the increment Xt −Xs for s ≤ t is Gaussian with mean

E
[
Xt −Xs

]
= E

[
Xt

]
− E

[
Xs

]
= 0− 0 = 0

and variance

E
[
(Xt −Xs)

2
]

= E
[
X2
t

]
− 2E

[
XtXs

]
+ E

[
X2
s

]
= t− 2 min(s, t) + s = t− 2s+ s = t− s.

This shows that indeed Xt ∼ N(0, t) and Xt − Xs ∼ Xt−s for s ≤ t. Finally consider, for
0 = t0 < t1 < · · · < tm, the vector

(Xt1 −Xt0 , . . . , Xtm −Xtm−1),



2. PROBABILITY MEASURE ON A SPACE OF CONTINUOUS FUNCTIONS 55

which is Gaussian. The non-diagonal covariances are (assume 1 ≤ j < k ≤ m)

E
[(
Xtj −Xtj−1

) (
Xtk −Xtk−1

)]
= min(tj , tk)−min(tj−1, tk)−min(tj , tk−1) + min(tj−1, tk−1)

= tj − tj−1 − tj + tj−1 = 0.

Since these non-diagonal covariances vanish, the Gaussian components (here increments)
are independent byt Proposition G.2. This calculation also implies the stationarity of the
increments. �

Definition VII.5. A stochastic process B = (Bt)t∈[0,∞) is a standard Brownian
motion, if it has the following properties

• B has continuous paths
• B satisfies the equivalent conditions of Proposition VII.3.

Remark VII.4 (On the existence of standard Brownian motion). It is not a priori clear that the
two requirements in Definition VII.5 can be simultaneously satisfied, i.e., it is not clear if a
standard Brownian motion exists. The equivalent conditions of Proposition VII.3 could in
principle rule out the possibility of continuous paths (and they indeed rule out for example
differentiable paths: a standard Brownian motion is everywhere non-differentiable almost
surely). We will, however, later in this lecture be able to conclude that a standard Brownian
motion exists.

Remark VII.5 (On the uniqueness of standard Brownian motion). Besides existence of a standard
Brownian motion, another issue is whether the two requirements in Definition VII.5 uniquely
specify the law of the stochastic process B = (Bt)t∈[0,∞) in question, since the conditions
only address the “finite dimensional distributions”, i.e., laws of (Bt1 , . . . , Btn) involving
finitely many times t1, . . . , tn ∈ [0,∞). Our answer to this issue will be to view the law of
B as a probability measure on a space of continuous functions. This is reasonable in view
of the fact that by the property of continuous paths, all the probability mass is supported
on the set of continuous functions. On such spaces, the finite dimensional distributions do
determine a Borel probability measure, as we will discuss below.

Remark VII.6 (A counterexample). Suppose that B = (Bt)t∈[0,∞) is a standard Brownian mo-
tion, for which the two conditions of Definition VII.5 hold. Let τ be a positive random
variable which has a probability density (a “continuous random variable”), independent

of B. Define B̃ = (B̃t)t∈[0,∞) by

B̃t =

{
Bt if t 6= τ

Bt + 1 if t = τ.

Then B̃ has the same finite dimensional distributions as B (since P[τ ∈ {t1, . . . , tn}] = 0),

and in particular B̃ satisfies the equivalent conditions of Proposition VII.3. However, since

P[t 7→ Bt is continuous] = 1, we have P[t 7→ B̃t is continuous] = 0, so B̃ is not a standard
Brownian motion.

2. Probability measure on a space of continuous functions

The Brownian motion B = (Bt)t∈[0,∞) can be naturally considered on the semi-
infinite time interval [0,∞). For convenience, we will however first restrict our
attention to a compact time interval [0, T ], and consider the space

C([0, T ]) = {f : [0, T ]→ R continuous}
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of continuous functions of time. This space C([0, T ]) is equipped with the metric
%(f1, f2) = ‖f1−f2‖∞, and it is a complete separable metric space, see Appendix H.3.
We equip the space C([0, T ]) with its Borel sigma algebra B

(
C([0, T ])

)
, and consider

probability measures on it.

Finite dimensional distributions and Borel sigma algebra

We first address the concern raised in Remark VII.5 by showing that finite dimen-
sional distributions uniquely specify a Borel probability measure on C([0, T ]).

Proposition VII.7. Suppose that ν and ν̃ are two Borel probability measures on
C([0, T ]) which coincide on events of the form

Φt1,...,tn(x1, . . . , xn; r1, . . . , rn) =
{
f ∈ C([0, T ])

∣∣∣ |f(tj)− xj| < rj for all j
}

for all 0 ≤ t1 < t2 < · · · < tn ≤ T and x1, x2, . . . , xn ∈ R and r1, r2, . . . , rn > 0.
Then we have ν = ν̃.

Proof. Note first that the sets Φt1,...,tn(x1, . . . , xn; r1, . . . , rn) are open and thus indeed Borel mea-
surable. We can write

Φt1,...,tn(x1, . . . , xn; r1, . . . , rn) =

n⋂
j=1

Φtj (xj ; rj)

so clearly events of this form are stable under finite intersections (they form a π-system).
By Dynkin’s identification theorem it therefore suffices to show that the sigma algebra
generated by events of this form contains the Borel sigma algebra. Recall that the Borel
sigma algebra is generated by open sets, and any open set in the separable space C([0, T ])
is a countable union of closed balls by Exercise H.4. It is therefore sufficient to show that
for any g ∈ C([0, T ]) and any r > 0, the closed ball Br(g) of radius r > 0 around g is in
the sigma algebra generated by the above collection. But we can write, by continuity of the
functions f and g involved,

Br(g) =
{
f ∈ C([0, T ])

∣∣∣ |f(t)− g(t)| ≤ r for all t ∈ [0, T ]
}

=
⋂

s∈[0,T ]∩Q
q∈(r,∞)∩Q

{
f ∈ C([0, T ])

∣∣∣ |f(s)− g(s)| < q
}

=
⋂

s∈[0,T ]∩Q
q∈(r,∞)∩Q

Φs(g(s); q),

a countable intersection of events from the collection. This finishes the proof. �

Since a standard Brownian motion B = (Bt)t∈[0,∞) has continuous paths (almost
surely), it determines a law ν on continuous functions as follows. For all Borel
subsets E ⊂ C([0, T ]) we would like to set

ν[E] = P

[{
ω ∈ Ω

∣∣∣ (t 7→ Bt(ω)
)
∈ E
}]

. (VII.2)

By the almost sure continuity, we get that ν
[
C([0, T ])

]
= 1, so ν indeed has a

chance of being a probability measure on C([0, T ]). We should just make sure that
for any Borel set E ⊂ C([0, T ]) the event

{
ω ∈ Ω

∣∣ (t 7→ Bt(ω)
)
∈ E
}

is measurable.
This follows by an argument essentially identical to the proof of Proposition VII.7,
starting from the random variables Bt for t ∈ [0, T ], and the assumed measurability
of the event {

ω ∈ Ω
∣∣∣ t 7→ Bt(ω) is continuous

}
.
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In particular, Brownian motion B = (Bt)t∈[0,∞) determines via (VII.2) a unique
Borel probability measure on the space C([0, T ]). Donsker’s theorem states that the
laws of rescaled random walks X(a) restricted to the time interval [0, T ] converge to
this law as a ↓ 0.

Compactness and tightness on the space of continuous functions

The first of the two main steps of the proof of Donsker’s theorem is establishing
tightness of the laws of the rescaled random walks X(a). Recall that tightness means
that apart from an arbitrarily small remainder, the probability mass of all these
laws are carried by the same compact subset. Arzelà-Ascoli theorem characterizes
compact subsets in the space C([0, T ]) of continuous functions. We express the
conditions of Arzelà-Ascoli theorem by the modulus of continuity.

Definition VII.6. For a function f : [0, T ] → R, the modulus of continuity is the
function wf defined for δ > 0 as

wf (δ) = sup
t,s∈[0,T ]
|s−t|≤δ

|f(s)− f(t)|. (VII.3)

Remark VII.8. The following are familiar special cases of specific forms of modulus of continuity:

• f is Lipschitz continuous if and only if wf (δ) = O(δ), i.e., if for some C > 0 we have
wf (δ) ≤ C δ.

• f is Hölder continuous of exponent α if and only if wf (δ) = O(δα), i.e., if for some C > 0
we have wf (δ) ≤ C δα.

• f is uniformly continuous if and only if wf (δ) = o(1), i.e., if we have limδ↓0 wf (δ) = 0.

A family of functions Φ ⊂ C([0, T ]) is said to be equicontinuous if

lim
δ↓0

sup
f∈Φ

wf (δ) = 0.

This condition is just a reformulation of the property (2) in Arzelà-Ascoli Theorem,
Theorem H.10. For the present purposes, a convenient equivalent way of stating
that theorem is the following.

Theorem VII.9. A subset Φ ⊂ C([0, T ]) is precompact if and only if the following
two conditions are satisfied:

sup
f∈Φ
|f(0)| <∞ (VII.9-i)

lim
δ↓0

sup
f∈Φ

wf (δ) = 0. (VII.9-ii)

The above conditions for (pre)compactness in C([0, T ]) translate to the following
conditions of tightness of probability measures on C([0, T ]).
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Proposition VII.10. A sequence (νn)n∈Z>0 of probability measures on C([0, T ]) is
tight if and only if the following conditions hold:

∀ε > 0 ∃M <∞, n0 ∈ Z>0 : n ≥ n0 ⇒ νn

[ {
f
∣∣ |f(0)| ≥M

} ]
≤ ε (VII.10-i)

∀ε, η > 0 ∃δ > 0, n0 ∈ Z>0 : n ≥ n0 ⇒ νn

[ {
f
∣∣ wf (δ) ≥ η

} ]
≤ ε. (VII.10-ii)

Proof. “only if”: Assume that (νn)n∈Z>0
is tight. Fix ε > 0. Choose a compact subset Φ ⊂

C([0, T ]) so that νn[Φ] ≥ 1− ε for all n ∈ Z>0. By Theorem VII.9, for large enough M > 0
we have Φ ⊂

{
f
∣∣ |f(0)| < M

}
. This shows that (VII.10-i) holds. Fix also η > 0. By

Theorem VII.9, for small enough δ > 0 we have Φ ⊂
{
f
∣∣ wf (δ) < η

}
. This shows that

(VII.10-ii) holds.

“if”: Assume conditions (VII.10-i) and (VII.10-ii). Note that in both cases we can take
n0 = 1 by increasing M < ∞ and decreasing δ > 0, if necessary. Fix ε > 0. Choose M
so that the subset Ψ =

{
f
∣∣ |f(0)| ≥M

}
satisfies νn[Ψ] ≤ ε for all n. For every k ∈ Z>0

choose δk > 0 such that Ψk =
{
f
∣∣ wf (δk) ≥ 1

k

}
satisfies νn[Ψk] ≤ 2−kε for all n. Then the

intersection of the complements Φ = Ψc ∩
⋂
k Ψc

k satisfies the conditions of Theorem VII.9,

so its closure Φ is compact, and we see that for all n

νn
[

Φ
]
≥ νn

[
Φ
]

= 1− νn
[
Ψ ∪

⋃
k

Ψk

]
≥ 1− ε−

∑
k

2−kε = 1− 2ε.

This shows that (νn)n∈Z>0 is tight. �

3. Proof of Donsker’s theorem

Recall that our goal is to show the convergence of the piecewise linearly interpolated
random walks

X
(a)
t =

√
a

( bt/ac∑
`=1

ξ` +
( t
a
−
⌊ t
a

⌋)
ξbt/ac+1

)
. (VII.4)

with steps (ξ`)`∈N and scale parameter a ↓ 0. The two parts of the proof are tightness
and identification of subsequential limits.

Tightness of scaled random walks

We now present lemmas which help us verify tightness of the laws of X(a) in C([0, T ])
by the conditions of Proposition VII.10.

We will obtain bounds for the modulus of continuity ultimately by the following.

Lemma VII.7. Suppose that 0 = t0 < t1 < t2 < · · · < tk = T are such that
min1≤j≤k(tj − tj−1) ≥ δ. Then for any f ∈ C([0, T ]) we have

wf (δ) ≤ 3 max
1≤j≤k

max
s∈[tj−1,tj ]

|f(s)− f(tj−1)|.

Proof. Denote, for brevity, the maximum on the right hand side by

M = max
1≤j≤k

max
s∈[tj−1,tj ]

|f(s)− f(tj−1)|.

Suppose that s, t ∈ [0, T ] are such that |s − t| ≤ δ, so they need to be considered in the
definition (VII.3) of wf (δ). Assume without loss of generality that s < t. There are two
different cases: either s, t ∈ [tj−1, tj ] for some j, or s ∈ [tj−1, tj ] and t ∈ [tj , tj+1] for some j.
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If s, t ∈ [tj−1, tj ], then by triangle inequality

|f(s)− f(t)| ≤ |f(s)− f(tj−1)|+ |f(tj−1)− f(t)| ≤ 2M.

If s ∈ [tj−1, tj ] and t ∈ [tj , tj+1], then by triangle inequalities

|f(s)− f(t)| ≤ |f(s)− f(tj−1)|+ |f(tj−1)− f(tj)|+ |f(tj)− f(t)| ≤ 3M.

In either case |f(s)− f(t)| ≤ 3M and thus wf (δ) ≤ 3M . �

To verify the important condition (VII.10-ii) for the random walks (VII.4), we use
two more lemmas, formulated below with slightly different assumptions about the
sequence (ξ`)`∈N of steps.

Lemma VII.11. Suppose that (ξ`)`∈N is a stationary sequence, i.e., for any `′ ∈ N
and L ∈ N, (ξL+1, . . . , ξL+`′) has the same law as (ξ1, . . . , ξ`′). Suppose also
that (an)n∈N is a sequence of scales an > 0 tending to zero, an ↓ 0. Then the
laws of

(
X(an)

)
n∈N defined by (VII.4) for t ∈ [0, T ] are tight if

lim
λ→∞

lim sup
h→∞

λ2 P
[

max
1≤`′≤h

∣∣ `′∑
`=1

ξ`
∣∣ ≥ λ

√
h
]

= 0. (VII.5)

Proof. Condition (VII.10-i) holds trivially for the laws of
(
X(an)

)
n∈N given by (VII.4) sinceX

(an)
0 =

0 for all n. We only need to verify condition (VII.10-ii), i.e. that for all η > 0

lim
δ↓0

lim sup
n→∞

P
[
wX(an)(δ) ≥ η

]
= 0.

Now fix δ > 0. By Lemma VII.7, we may estimate

P
[
wX(an)(δ) ≥ 3ε

]
≤

k∑
j=1

P
[

max
s∈[tj−1,tj ]

|X(an)
s −X(an)

tj−1
| ≥ ε

]
when 0 = t0 < t1 < · · · < tk ≥ T are such that tj − tj−1 ≥ δ for all j. For the given
δ and n ∈ N, we define the integers h = hn = dδ/ane and k = dT/δe, and choose time
discretization points tj = jhnan for j = 0, 1, . . . , k. Note that hnan → δ as n → ∞, so for

large enough n we have an ≤ 2δ
hn

.

The function s 7→ |X(an)
s − X

(an)
tj−1
| on s ∈ [tj−1, tj ] attains its maximum at some point

s ∈ anZ ∩ [tj−1, tj ]. The estimate based on Lemma VII.7 then reads

P
[
wX(an)(δ) ≥ 3ε

]
≤

k∑
j=1

P

[
max
`′∈Z

(j−1)hn<`
′≤jhn

∣∣∣√an `′∑
`=(j−1)hn+1

ξ`

∣∣∣ ≥ ε]

= k P

[
max
`′∈Z

0<`′≤hn

∣∣∣ `′∑
`=1

ξ`

∣∣∣ ≥ ε
√
an

]

where the last equality uses stationarity. Recall that for large enough n we have an ≤ 2δ
hn

and also k ≤ 2T
δ , since only δ ≤ T are meaningful. We can thus further estimate the last

expression to get the upper bound

P
[
wX(an)(δ) ≥ 3ε

]
≤ 2T

δ
P

[
max
`′∈Z

0<`′≤hn

∣∣∣ `′∑
`=1

ξ`

∣∣∣ ≥ ε
√
hn√
2δ

]
.
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Now for a fixed η > 0, set ε = η
3 above, and denote λ = ε√

2δ
= η√

18 δ
, so that δ ↓ 0

corresponds to λ ↑ ∞. Then rewrite the estimate as

P
[
wX(an)(δ) ≥ η

]
≤ 36T

η2
λ2 P

[
max
`′∈Z

0<`′≤hn

∣∣∣ `′∑
`=1

ξ`

∣∣∣ ≥ λ√hn].
By the assumption (VII.5), we can make the right hand side here arbitrarily small apart
from finite number of exceptional n, by choosing a sufficiently small δ > 0 (i.e., sufficiently
large λ). This finishes the proof. �

We also use the following Etemadi’s inequality, very similar to Lévy’s inequality
(Lemma III.3) in Lecture III.

Lemma VII.12. Suppose that (ξ`)`∈N are independent. Denote Sk =
∑k

`=1 ξ`. Then
for all h ∈ Z>0 and Λ > 0 we have

P
[

max
1≤k≤h

∣∣Sk∣∣ ≥ 3Λ
]
≤ 3 max

1≤k≤h
P
[∣∣Sk∣∣ ≥ Λ

]
.

With the auxiliary results above we can show that the laws of the scaled random
walks X(a) are tight on C([0, T ]).

Proposition VII.13. Suppose that (an)n∈N is a sequence of scales tending to zero,
an ↓ 0, and consider the scaled random walks X(an) with i.i.d. steps (ξ`)`∈N
such that P

[
ξ` = +1

]
= 1

2
= P

[
ξ` = −1

]
. Then the laws of X(an) form a tight

family of probability measures on C([0, T ]).

Proof. Tightness of the laws is equivalent to the conditions (VII.10-i) and (VII.10-ii), which we
will verify using Lemma VII.11.

Denote again Sk =
∑k
`=1 ξ`. Note that since E[ξ`] = 0 and (ξ`) are i.i.d., we have

E
[
S4
k

]
=

k∑
`=1

E
[
ξ4
`

]
+ 6

∑
1≤`<m≤k

E
[
ξ2
`

]
E
[
ξ2
m

]
= k E

[
ξ4
1

]
+ 3k(k − 1)E

[
ξ2
1

]2
Noting that |ξ1| = 1, the expected values are trivial to compute, and we can in particular
deduce the upper bound E

[
S4
k

]
≤ 3k2.

Then set Λ = 1
3λ
√
h in Lemma VII.12, and use furthermore Markov’s inequality to get

P
[

max
1≤k≤h

∣∣Sk∣∣ ≥ λ√h] ≤ 3 max
1≤k≤h

P
[∣∣Sk∣∣ ≥ 1

3
λ
√
h
]

≤ 3 max
1≤k≤h

3k2(
1
3λ
√
h
)4

= 36 λ−4.

From here we deduce the estimate

lim
λ→∞

lim sup
h→∞

λ2 P
[

max
1≤k≤h

∣∣Sk∣∣ ≥ λ√h] = 0,

so Lemma VII.11 implies that the laws of X(an) are tight on C([0, T ]). �
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Brownian motion as the limit of scaled random walks

Having established tightness of the laws of the scaled random walks (X(a)), the re-
maining task in the proof of Donsker’s theorem is to identify any subsequential limit
of these as the standard Brownian motion. With the definition of Brownian motion
based on Gaussianity and independent increments, this is a relatively straightfor-
ward consequence of the central limit theorem. We still state precisely Donsker’s
theorem, and then proceed directly to its proof.

Theorem VII.14. For all a > 0, let X(a) be the scaled random walk given by (VII.4)
with i.i.d. steps (ξ`)`∈N such that P

[
ξ` = +1

]
= 1

2
= P

[
ξ` = −1

]
. Then for any

T > 0, as a ↓ 0, the laws of the walks X(a)|[0,T ] restricted to the time interval
[0, T ] converge weakly on C([0, T ]) to the law of the standard Brownian motion
B|[0,T ] restricted to the same time interval.

Proof. By Proposition VII.13 and Prohorov’s theorem, from any sequence an ↓ 0 of scales, we may
extract some subsequence (ank)k∈N so that the laws of X(ank ) converge weakly to a limit.
Let X∗ denote a random process with such a limit law. We must only show that X∗ is a
standard Brownian motion, the convergence then follows by the usual argument combining
precompactness and uniqueness of subsequential limits (Exercise H.9). To avoid cumbersome

notation, denote the convergent subsequence again by (an)n∈N, to that X(an) w−→ X∗ as
n→∞.

To show that the subsequential limit X∗ is the standard Brownian motion, we will calcu-
late its finite dimensional distributions — by Proposition VII.7 these characterize the law
uniquely. So fix 0 = t0 < t1 < t2 < · · · < tm ≤ T and consider the limit as n → ∞
of laws of (X

(an)
t1 , . . . , X

(an)
tm ). Note that the piecewise linear interpolation (VII.4) is of

no significance here: if we would consider instead the piecewise constant random walk

X̄
(an)
t =

√
an
∑bt/anc
`=1 ξ`, then |X(an)

tj − X̄(an)
tj | ≤ √an → 0 so the finite dimensional distri-

butions

(X
(an)
t1 , . . . , X

(an)
tm ) and (X̄

(an)
t1 , . . . , X̄

(an)
tm )

tend to the same limit.

Now we can write the increments of X̄(an) as

X̄
(an)
tj − X̄(an)

tj−1
=
√
an

∑
` ∈ Z∩

(
tj−1
an

,
tj
an

] ξ`.

By the central limit theorem, this expression tends weakly to a centered Gaussian of variance
tj − tj−1, i.e., the law N(0, tj − tj−1). Moreover, the increments

(X
(an)
t1 −X(an)

t0 , . . . , X
(an)
tm −X(an)

tm−1
)

are independent (no two of them involve the same step ξ`, and the steps are independent),
so the joint law of the increments converges weakly to m independent centered Gaussians
with variances t1 − t0, . . . , tm − tm−1. This is the joint law of the increments of the stan-
dard Brownian motion, and obviously the joint law of the increments specifies the finite
dimensional distribution. We conclude that any subsequential limit X∗ has the finite di-
mensional distributions of a standard Brownian motion. This finishes the proof of Donsker’s
theorem. �
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Exercise VII.1. Suppose that B = (Bt)t≥0 is a standard Brownian motion and define three other

stochastic processes W (k) = (W
(k)
t )t≥0, k = 1, 2, 3, by setting

W
(1)
t = Bs+t −Bs

W
(2)
t = λ−1/2Bλt

W
(3)
t =

{
tB1/t , when t > 0

0 , when t = 0

where s ≥ 0 and λ > 0 are constants. Show that all these three stochastic processes

W (k) = (W
(k)
t )t≥0, k = 1, 2, 3, are also standard Brownian motions.

Hint: You may use results about existence and uniqueness of a standard Brownian motion.

Exercise VII.2. Suppose that B = (Bt)t≥0 is a standard Brownian motion. Define a stochastic
process X = (Xt)t∈[0,1] by setting Xt = Bt − tB1.

(a) Show that X is a Gaussian process. Calculate the mean function and the covariance
function of X, i.e., t 7→ E[Xt] and (s, t) 7→ Cov[Xs, Xt] = E[XsXt]− E[Xs]E[Xt].

(b) Show that X and B1 are independent.

Hint: The distribution of X is determined by the finite dimensional marginals P[Xt1 ∈ A1, . . . , Xtn ∈
An], for 0 ≤ t1 < · · · < tn ≤ 1 and A1, . . . , An ⊂ R Borel. Consider also using the Gaussianity of

the processes (recall: Gaussians are independent iff they are uncorrelated).

Exercise VII.3. Suppose that X = (Xt)t∈[0,1] is a continuous and Gaussian process, for which
E[Xt] = 0 for all t ∈ [0, 1] and Cov[Xs, Xt] = s(1− t) for all 0 ≤ s ≤ t ≤ 1. Let Y ∼ N(0, 1)
be a random variable independent of X. Define a stochatic process W = (Wt)t∈[0,1] by
setting Wt = Xt + tY . Show that W is a standard Brownian motion (on the time interval
[0, 1]). Define the conditional distribution of W given W1 = y by first conditioning W on
the event |W1 − y| < ε, which has positive probability, and then taking the limit ε ↘ 0.
Find the conditional distribution of W given W1 = y.



Lecture VIII

Ising model

We will now introduce and study one of the most fundamental models of statistical
physics — the Ising model. The model can be defined directly on any finite graph
G = (V,E). Its degrees of freedom are “spins” (σv) located at the sites of the graph
(v ∈ V), taking two possible values: up or down (σv = +1 or σv = −1). The
probability measure is a Boltzmann measure associated to an energy function which
essentially counts the number of neighboring vertices on the graph whose spins
do not agree with each other. Therefore the model favors alignment of spins by
assigning a greater probability to configurations with more alignment of neighbors.
The strength of this preference to alignment is determined by a parameter β, the
inverse temperature of the Boltzmann distribution.

We will study the Ising model model first on finite subgraphs of Zd, and then consider
how the model can be defined in “thermodynamical limit”, on the infinite lattice Zd
via a weak limit.

The Ising model is defined very similarly to the Curie-Weiss model studied in Lec-
ture V, and it is also a model of a ferromagnetic material. In particular, in di-
mensions d ≥ 2, the Ising model can be shown to have a phase transition between
paramagnetic and ferromagnetic phases similar to the Curie-Weiss model. The cru-
cial refinement in the definition is that the Ising model incorporates spacial structure
also, via the graph G on which the model is defined. This refinement is enough to
make the quantitative critical behavior of the Ising model correctly dependent on
the dimension d of the lattice Zd, in the sense that the critical exponents (in d = 3
and d = 2) match with those observed in uniaxial ferromagnetic materials. Note
that the Ising model is essentially the simplest possible model for a preference of
local alignment, and it is also applicable to various other phenomena besides ferro-
magnetism.

1. Ising model on finite graphs

Definition of the Ising model

Let G = (V,E) be a finite graph: V is a finite set of sites and E a set of unordered
pairs of sites called the bonds of the graph. Let β > 0 and B ∈ R be parameters,
interpreted respectively as the inverse temperature and the external magnetic field ,
like in the Curie-Weiss model in Lecture V.

Each site x ∈ V has a spin σv ∈ {−1,+1} (representing an elementary magnetic
unit at the location x) and the configuration of all spins σ = (σx)x∈V is called
the spin configuration. The sample space of the Ising model on the graph G is
the set Ω = ΩG = {−1,+1}V of all possible spin configurations. The energy of a
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64 VIII. ISING MODEL

configuration σ is taken to be

HG(σ) = −
∑
{x,y}∈E

σxσy −B
∑
x∈V

σx. (VIII.1)

The Boltzmann distribution (with parameter β > 0) is the probability measure

P = P
(G)
β,B on the finite sample space ΩG, such that the individual outcomes have

probabilities

P
(G)
β,B [{σ}] =

1

ZG(β,B)
e−βHG(σ) (VIII.2)

and the partition function ZG(β,B) normalizes the total probability to one,

ZG(β,B) =
∑
σ∈ΩG

e−βHG(σ). (VIII.3)

Exercise VIII.1. Consider the Ising model on a finite graph G. Let E
(G)
β,B denote the expected

value with respect to the probability measure P
(G)
β,B . Define the average magnetization as

M := E
(G)
β,B

[ 1

#V

∑
x∈V

σx

]
.

Show that

M =
1

β#V

∂

∂B

(
logZG(β,B)

)
,

where the partition function ZG is viewed as a function of β and B.

FKG inequality for Ising model

A key idea in the proof of existence of the thermodynamical limit is monotonicity.
To make sense of monotonicity, recall from Appendix D.2 that the sample spaces
ΩG = {−1,+1}V have natural partial orders �, and this gives a notion of increasing
functions f defined on ΩG.

Specifically, for the proof of existence of the infinite volume limit we use the following
monotonicity result known as the FKG inequality .

Theorem VIII.1 (FKG inequality for Ising model). Let G = (V,E) be a finite

graph, and let P
(G)
β,B be the Ising model probability measure on ΩG = {−1,+1}V.

Denote, for brevity, P = P
(G)
β,B and the expected value with respect to this mea-

sure by E. If f, g are increasing functions ΩG → R, then the following FKG
inequality holds

E
[
f g
]
≥ E

[
f
]
E
[
g
]
. (VIII.4)

Monotonicity will be treated more generally in Section 3.2, and the proof of the
above result in particular will be presented in Section 3.2.3. There exists also more
straightforward proofs, and the reader is invited to try to prove the FKG inequality
directly.

As a corollary, we obtain that conditioning any subset of spins to be positive increases
the probability that other spins are positive, too. This should not be surprising in
view of the fact that Ising model is intended to describe a ferromagnet. For a subset
A ⊂ V, we denote σ|A ≡ +1 if σx = +1 for all x ∈ A.
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Corollary VIII.2. Consider the Ising model on a finite graph, with notations as
in Theorem VIII.1. If A,B ⊂ V, then we have

P
[
σ|A ≡ +1

∣∣∣σ|B ≡ +1
]
≥ P

[
σ|A ≡ +1

]
.

Proof. Define f and g to be the indicators of the events
{
σ|A ≡ +1

}
and

{
σ|B ≡ +1

}
, respectively.

Then f and g are increasing functions, and

E[f ] = P
[
σ|A ≡ +1

]
E[fg]

E[g]
=

P
[
σ|A ≡ +1 and σ|B ≡ +1

]
P
[
σ|B ≡ +1

] = P
[
σ|A ≡ +1

∣∣∣σ|B ≡ +1
]
.

By Theorem VIII.1, the left hand side of the second line is greater than or equal to the left
hand side of the first line. �

2. Weak convergence on countable products of finite sets

A criterion for weak convergence

Let (X, %) be a metric space, and B = B(X) its Borel sigma algebra.

Proposition VIII.3. Suppose that E ⊂ B is a collection of Borel subsets of X such
that the following conditions hold:

E is stable under finite intersections (VIII.3a)

i.e., if E1, E2 ∈ E then also E1 ∩ E2 ∈ E
any open set G ⊂ X is a countable union of sets from E (VIII.3b)

i.e., G =
∞⋃
i=1

Ei with Ei ∈ E .

Then, a sequence (νn)n∈N of probability measures on X converges weakly to a
probability measure ν if for all E ∈ E we have νn[E]→ ν[E] as n→∞.

Proof. Assume that νn[E]→ ν[E] for all E ∈ E and that E satisfies (VIII.3a) and (VIII.3b).

Suppose that E1, . . . , Em ∈ E . Recall the inclusion-exclusion formula

νn

[ m⋃
i=1

Ei

]
=

∑
J⊂{1,...,m}

J 6=∅

(−1)#J−1 νn

[ ⋂
j∈J

Ej

]

By (VIII.3a) also the intersections
⋂
j∈J Ej are in E . Therefore, by the assumption of

convergence, as n→∞ we have

νn

[ m⋃
i=1

Ei

]
=
∑
J

(−1)#J−1 νn

[ ⋂
j∈J

Ej

]
−→

∑
J

(−1)#J−1 ν
[ ⋂
j∈J

Ej

]
= ν

[ m⋃
i=1

Ei

]
.

If G ⊂ X is an open set, then by (VIII.3b) there exists E1, E2, . . . ∈ E such that G =
⋃∞
i=1Ei.

For any m, use the calculation above to get

ν
[ m⋃
i=1

Ei

]
= lim
n→∞

νn

[ m⋃
i=1

Ei

]
≤ lim inf

n→∞
νn
[
G
]
.
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On the other hand
⋃m
i=1Ei ↑ G as m→∞, so by monotone convergence of measures the left

hand side increases to ν[G]. This establishes weak convergence νn
w−→ ν by characterization

(iii) of Portmanteau Theorem (Theorem VI.2). �

Weak convergence with cylinders

Let S be a finite set and I a countable index set, and consider the space X = SI ,
which can be made a complete separable compact metric space, as in Appendix H.4.
For the application to the Ising model, we will take S = {−1,+1} and I = Zd,
so that X = SI = {−1,+1}Z

d

is the set of all spin configurations on the infinite
hypercubic lattice Zd.
For i ∈ I, denote by πi : S

I → S the projection to the i:th coordinate. Subsets
C ⊂ SI of the form

C = π−1
i1

(S1) ∩ · · · ∩ π−1
ik

(Sk) ⊂ SI (VIII.5)

are called cylinder sets . Recall also from Appendix H.4 that the collection C of all
cylinder sets have the following properties:

(i) The collection C is countable.
(ii) The collection C is stable under finite intersections.

(iii) Any open set G ⊂ SI is the union of all cylinder sets C contained in it.
(iv) Any cylinder set C is both open and closed.

It follows from (i), (ii), (iii) that the collection C of all cylinder sets satisfies the two
properties of Proposition VIII.3.

Theorem VIII.4. A sequence (νn)n∈N of probability measures on the space SI con-
verges weakly if and only if for every cylinder set C the limit limn→∞ νn[C]
exists. The limit measure ν is uniquely determined by the property that ν[C] =
limn→∞ νn[C] for all C.

Proof. “only if”: Suppose that νn
w−→ ν, and let C ⊂ SI be a cylinder set. By property (iv)

above, C is both open and closed, and therefore C◦ = C = C and ∂C = C \ C◦ = ∅. Thus
obviously ν[∂C] = 0, so by condition (iv) of Portmanteau theorem (Theorem VI.2) we have
νn[C]→ ν[C].

“if”: As remarked above, the collection C of all cylinder sets satisfies the two properties of
Proposition VIII.3. By that proposition, then, a sufficient condition for weak convergence is
that for all cylinder sets C we have νn[C]→ ν[C], where ν is some probability measure on SI .
We are assuming that α[C] := limn→∞ νn[C] exists for all C ∈ C, so it remains to show that
α is a probability measure restricted to cylinder sets. Recall now that SI is compact, and
therefore (νn)n∈N is automatically tight. By Prohorov’s theorem (Theorem VI.4) there exists

some subsequence (νnk)k∈N which converges weakly νnk
w−→ ν. Again as in the “only if” part,

since a cylinder set C is both open and closed, we get that ν[C] = limk→∞ νnk [C] = α[C]
for all C ∈ C. This concludes the proof. �

3. Infinite volume limit by monotonicity

We will now treat the infinite volume limit of the Ising model. The idea is to define

the Ising model on the infinite graph Zd, a probability measure on {−1,+1}Z
d

, as
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a weak limit of the Ising model probability measures on an increasing sequence of
finite subgraphs of Zd.
There are certain advantages of considering the Ising model with so called “plus
boundary conditions”, and we choose to do so in the rest of this lecture. The reader
is encouraged to think of how to modify the approach below so as to work with the
so called “free boundary conditions” which are a more literal interpretation of just
defining the Ising model probability measures on finite subgraphs of Zd.

Limit via increasing sequence of finite subgraphs

We are ready to attempt to define the Ising model on the d-dimensional infinite
lattice Zd. Fix parameters β > 0 (inverse temperature) and B ∈ R (external
magnetic field), and for notational simplicity, explicit references to β and B will be
omitted below.

Fix a sequence (Gn)n∈N of finite induced subgraphs of the lattice Zd:

• Gn = (Vn,En), where Vn ⊂ Zd is a finite subset of sites and

En =
{
{x, y}

∣∣ x, y ∈ Vn, ‖x− y‖ = 1
}

is the set of bonds of the lattice connecting pairs of these sites
• to account for boundary conditions, denote also

∂En =
{
{x, y}

∣∣ x ∈ Vn, y ∈ Zd \ Vn, ‖x− y‖ = 1
}
,

the set of bonds connecting one lattice sites inside and one outside of Vn

• assume that Vn ↑ Zd, i.e. V1 ⊂ V2 ⊂ · · · and
⋃
n∈N Vn = Zd.

A spin configuration σ(n) = (σ
(n)
x )x∈Vn of the Ising model on Gn is an element of

Ωn = {−1,+1}Vn . To speak of weak convergence of the laws of σ(n), we will need to

make all of these live in the same space — namely the sample space Ω = {−1,+1}Z
d

of the Ising model on the infinite lattice Zd. With the plus boundary conditions
that we will consider, the natural way to do this is to extend a spin configuration

σ(n) = (σ
(n)
x )x∈Vn as constant +1 to the outside of the finite subset Vn ⊂ Zd, i.e. to

define the corresponding σ = (σx)x∈Zd by

σx =

{
σ

(n)
x if x ∈ Vn

+1 if x ∈ Zd \ Vn.
(VIII.6)

This way we interpret Ωn ⊂ Ω as a subset, and any probability measure Pn on
Ωn also as a probability measure of Ω (in particular the Ising model probability

measure on Gn with given parameters β,B). Note that the space Ω = {−1,+1}Z
d

is
of the form SI considered in Section 2 and Appendix H.4: its topology comes from a
complete separable metric, and we have a convenient criterion for weak convergence
in terms of probabilities of cylinder events.

Before proceeding further to the precise analysis of the Ising model on the increasing
sequance (Gn)n∈N of finite subgraphs of Zd, we make an important remark about
what one really needs to check in order to establish weak convergence of the laws of
the random spin configurations.



Appendix A

Probability theory fundamentals

1. Measure spaces and probability spaces

Theorem A.1. Dynkin’s identification theorem.

Theorem A.2. Carathéodory’s extension theorem.

2. Random variables and their laws

Let (Ω,F ,P) be a probability space and (X,Σ) a measurable space. Suppose that
X : Ω → X is a random variable, i.e., an F/Σ-measurable function. Then the law
or distribution of X is the probability measure νX on X given by

νX [A] = P
[
X ∈ A

]
(A.1)

for all A ∈ Σ.

Exercise A.1. Check that νX defined by (A.1) is indeed a probability measure on X.

Laws of real valued random variables

There are many convenient ways to describe the law of a real valued random variable.
From here on, let X : Ω → R be a real valued random variable, and let νX be its
law, a (Borel) probability measure on R.

Probability density function

The most intuitive way of describing the distribution of a real valued random variable
is the probability density function: the density is large at likely values and small at
unlikely values. More precisely, we say that (the law of) a random variable X has
probability density function pX : R→ [0,+∞] if for all Borel sets B ⊂ R we have

νX [B] = P
[
X ∈ B

]
=

∫
B

pX(x) dx. (A.2)

Clearly the function pX determines the law νX of X.

The description of a law by its density is very convenient when possible, but proba-
bility density can not be used as a general approach, since not all random variables
have probability density functions. Below we therefore turn to two other approaches:
cumulative distribution function and characteristic function. Both of them deter-
mine the law of a random variable and they exist for all real valued random variables.
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72 A. PROBABILITY THEORY FUNDAMENTALS

Cumulative distribution function

The cumulative distribution function of X is the function FX : R→ [0, 1] given by

FX(x) = νX
[
(−∞, x]

]
= P

[
X ≤ x

]
. (A.3)

The term cumulative distribution function is often abbreviated c.d.f .

Lemma A.3. The law νX of X is uniquely determined by the cumulative distribu-
tion function FX of X via

νX
[
(a, b]

]
= FX(b)− FX(a).

for all a, b ∈ R, a < b.

Proof. This is a consequence of the Dynkin’s identification theorem, Theorem A.1, with the π-
system that consists of all intervals of the form (a, b]. �

Proposition A.4. A function F : R → [0, 1] is a cumulative distribution function
of some random variable if and only if the following conditions hold

(a) F is non-decreasing, i.e., x ≤ y ⇒ F (x) ≤ F (y)
(b) F is right continuous, i.e., if xn ↓ x then F (xn)→ F (x)
(c) F (x)→ 0 as x→ −∞ and F (x)→ 1 as x→ +∞.

Characteristic function

The characteristic function of X is the function ϕX : R→ C given by

ϕX(θ) = E
[
ei θX

]
. (A.4)

Theorem A.5. The law νX of X is uniquely determined by the characteristic func-
tion ϕX of X.

Proof. See, e.g., the course MS-E1600 Probability Theory, or [Wil91]. �

Proposition A.6. A function ϕ : R→ C is a characteristic function of some ran-
dom variable if and only if the following conditions hold

(a) ϕ(0) = 1
(b) ϕ : R→ C is continuous
(c) for any z1, . . . , zn ∈ C and θ1, . . . , θn ∈ R, we have

n∑
i,j=1

zi zj ϕ(θi − θj) ≥ 0.

Example A.7 (Gaussian distribution). Let µ ∈ R and σ ≥ 0. Then the function

ϕ(θ) = exp
(

i θµ− 1

2
θ2σ2

)
(A.5)

satisfies the properties (a), (b), (c) of Proposition A.6, so it is a characteristic function of
some random variable X. The law of such an X is the Gaussian distribution (or normal
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distribution) with mean µ and variance σ2, denoted by N(µ, σ2). If σ > 0, then this law has
the probability density function

p(x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
(A.6)

in the sense of (A.2). If σ = 0, then the law is a delta measure δµ at the point µ ∈ R, i.e.,
the random variable X almost surely takes the value µ.

Exercise A.2. Suppose that X1, . . . , Xn are independent random variables, each with a Gaussian
law, Xj ∼ N(µj , σ

2
j ) for all j = 1, . . . , n. Show that the sum S = X1 + · · · + Xn is also

Gaussian, S ∼ N(
∑n
j=1 µj ,

∑n
j=1 σ

2
j ).

3. Integrals, expected values and convergence theorems

Lemma A.8. Fatou’s lemma

Theorem A.9. Monotone convergence theorem.

Theorem A.10. Lebesgue’s dominated convergence theorem.





Appendix B

Product measures

1. Product sigma-algebra

2. Products of finitely many measures

3. Fubini’s theorem

Theorem B.1. Let (X1,Σ1, µ1) and (X2,Σ2, µ2) be two σ-finite measure spaces, and
let (X1 × X2,Σ1 ⊗ Σ2, µ1 ⊗ µ2) be their product measure space.

(a) If f : X1×X2 → [0,+∞] is Σ1⊗Σ2-measurable, then we have the equalities∫
X1×X2

f d(µ1 ⊗ µ2) (B.1)

=

∫
X2

(∫
X1

f(x1, x2) dµ1(x1)

)
dµ2(x2)

=

∫
X1

(∫
X2

f(x1, x2) dµ2(x2)

)
dµ1(x1)

of numbers in [0,+∞].
(b) If f : X1×X2 → R is Σ1⊗Σ2-measurable, and if at least one of the integrals∫

X1×X2

|f | d(µ1 ⊗ µ2)∫
X2

(∫
X1

∣∣f(x1, x2)
∣∣ dµ1(x1)

)
dµ2(x2)∫

X1

(∫
X2

∣∣f(x1, x2)
∣∣ dµ2(x2)

)
dµ1(x1)

is finite, then we have the equalities (B.1) of real numbers.

Proof. See, e.g., the course MS-E1600 Probability Theory, or [Wil91]. �

Some practical consequences for the calculation of expected values are given below.

Corollary B.2. Let X : Ω→ [0,+∞] be a non-negative random variable. Then we
have

E
[
X
]

=

∫ ∞
0

P
[
X > s

]
ds. (B.2)

If X : Ω→ Z≥0 a random variable with non-negative integer values, then

E
[
X
]

=
∞∑
k=1

P
[
X ≥ k

]
. (B.3)
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Proof. For clarity we emphasize here also the dependence on the outcome ω ∈ Ω. Write, applying
Fubini’s theorem for non-negative integrands,

E
[
X(ω)

]
= E

[ ∫ X(ω)

0

1 ds
]

= E
[ ∫ ∞

0

I{s<X(ω)} ds
]

=

∫ ∞
0

E
[
I{s<X(ω)}

]
ds =

∫ ∞
0

P
[
X(ω) > s

]
ds.

This shows the first claim. The second can be proven similarly, or can be seen as an easy
consequence of the first one by noting that if X takes integer values then s 7→ P[X > s] is
constant P[X ≥ k] on the interval s ∈ [k − 1, k). �

4. Countable products of probability measures



Appendix C

Finite state space Markov processes

Stochastic processes model random phenomena with dependence on a time param-
eter. At any possible time, the state of the process is a random variable. The set S
of possible values of this random variable is called the state space of the process.

Example C.1. In this course we encounter for example stochastic processes with the following
state spaces:

• For finite state space Markov chains (and Markov processes), the set S is some finite set.
Some specific examples are:

– Shuffling of a deck of n cards defines a Markov chain on the set S = Sn of all
possible orderings of the deck.

– The thermal motion of the Ising model on a finite graph G is modeled by Glauber

dynamics, which is a Markov process on the set S = {+1,−1}G of possible spin
configurations on the graph.

• For the simple random walk, the state space is S = Z, and more generally for the
d-dimensional simple random walk the state space is S = Zd.

• For the Brownian motion the state space is S = R.
• For interacting particle systems, the state space is typically a countable product of

discrete sets: a space of the form S = SI , where I is a countable index set and S is a
finite or countable set.

Exercise C.1. Since the state of a stochastic process at a given time is a random variable with
values in S, the set S must in fact be equipped with a sigma algebra Σ. There is a standard
choice of Σ for each of the example cases above. What are these standard choices?

Hint: For the last case, note that SI has a natural topology described in Appendix H.4.

Let the underlying probability space be denoted, as usual, by (Ω,F ,P), and let
(S,Σ) be a measurable space. A stochastic process on the state space S is a collection
(Xt)t∈T of random variables Xt : Ω → S indexed by a “time parameter” t. The set
T ⊂ R of allowed time parameter values may be either a discrete set or an interval,
and the process is correspondingly said to have discrete or continuous time. The
random variable Xt is called the state of the process at time t. We often refer to
the stochastic process (Xt)t∈T simply as X.

A stochastic process is called a Markov process, if, roughly speaking, its future
does not depend on the past, but only depends on the current state of the process.
This appendix is a summary of relevant results about Markov processes on finite
state space S. Section 1 is about discrete time Markov chains, and Section 2 about
continuous time Markov jump processes.

For the rest of this appendix, we assume that the state space S is a finite set (and
Σ is the sigma-algebra of all subsets of S).
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1. Markov chains

The time of a Markov chain X is indexed by non-negative integers, T = Z≥0. The
process is started at time t = 0 from some (possibly random) state X0 ∈ S, and
time is counted in “steps” so that the (random) state after t steps is Xt ∈ S.

The most important information about a Markov chain is the probabilities of steps
from any state x ∈ S to any other state y ∈ S. These probabilities are encoded in
the transition matrix P. The rows and columns of the transition matrix are indexed
by states, so P ∈ RS×S .1

2. Continuous time Markov processes

1If the finite state space S has n elements, and if we choose an enumeration of the states so as
to identify S with {1, . . . , n}, then the transition matrix can be interpreted as a real n× n matrix
P ∈ Rn×n. This remark is only important for realizing that usual matrix operations make sense
and have familiar properties. It would usually be rather awkward to choose an enumeration of
states, and we prefer to think of P = (Px,y)x,y∈S as a matrix with rows and columns indexed by
states x and y.



Appendix D

Couplings

1. Coupling of probability measures

Definition D.1. Let (X1,Σ1, ν1) and (X2,Σ2, ν2) be two probability spaces. A
coupling of the probability measures ν1 and ν2 is a probability measure ν on
the Cartesian product space X1×X2 (equipped with the product sigma algebra
Σ1 ⊗ Σ2) such that

∀E1 ∈ Σ1 : ν
[
E1 × X2

]
= ν1[E1] (D.1)

and ∀E2 ∈ Σ2 : ν
[
X1 × E2

]
= ν2[E2].

It is often convenient to phrase a coupling equivalently with random variables as
follows.

Definition D.2. Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces and
X1 : Ω1 → X1 and X2 : Ω2 → X2 random variables on each. Let

π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2

be the projections to the first and second component, respectively. Then a
coupling of X1 and X2 is a random variable X : Ω→ X1 ×X2 on some proba-
bility space (Ω,F ,P) such that the law of the first projection π1(X) coincides
with the law of X1 and the law of π2(X) coincides with the law of X2.

2. Coupling and order

Suppose that (X,Σ) is a measurable space and � is a partial order on X, i.e., a
binary relation such that

x � y and y � x ⇐⇒ x = y (D.2)

x � y and y � z =⇒ x � z. (D.3)

Example D.1. Let S ⊂ R be a subset, and I be some index set. Then the product space SI ={
(si)i∈I

∣∣ si ∈ S for all i ∈ I
}

has a natural partial order by componentwise comparison of
values:

(si)i∈I � (s′i)i∈I ⇐⇒ si ≤ s′i for all i ∈ I.

Example D.2. The above example in fact contains a number of special cases of importance.

• For bond percolation on the hypercubic lattice Zd, we used S = {0, 1} with the interpre-
tation 1 = “open bond”, 0 = “closed bond” and I = E(Zd) the set of bonds of the lattice

Zd, so {0, 1}E(Zd)
is the set of percolation configurations such as the ones illustrated in

Figures II.1 in Lecture II.
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80 D. COUPLINGS

• For the Ising model on a graph G, we used S = {+1,−1}, the set of values of a single

spin, and I = G the set of vertices (sites) of the graph, so that {+1,−1}G is the set of
spin configurations on the graph.

TIn the setting of a set with a partial order �, we can talk about increasing (real
valued) functions. A function f : X→ R is said to be increasing if

x � y =⇒ f(x) ≤ f(y). (D.4)

Similarly, f is said to be decreasing if −f is increasing.

The fundamental use of couplings for monotonicity is based on the following ob-
servation: when two random variables taking values on a partially ordered set can
be coupled in such a way that the first is always smaller than the second, then the
expected values of all increasing functions of the first are always smaller than those
of the corresponding expected values of the second.

Lemma D.3. Let (X,Σ) be a measurable space and � a partial order on X. Suppose
that ν1 and ν2 are two probability measures on X, and suppose that there exists
a coupling ν of ν1 and ν2 such that ν

[ {
(x, y) ∈ X× X

∣∣ x � y
} ]

= 1. Then
for all increasing functions f : X→ R we have∫

X

f dν1 ≤
∫
X

f dν2.

Corollary D.4. Let (X,Σ) be a measurable space and � a partial order on X.
Let X : Ω → X × X be a random variable, and denote by X1 = π1(X) and
X2 = π2(X) its two components. Suppose that X1 � X2 almost surely. Then
for all increasing functions f : X→ R we have

E
[
f(X1)

]
≤ E

[
f(X2)

]
.

3. Holley’s criterion



Appendix E

Zero-one laws

Often in infinite random systems, some apparently random properties that are not
too sensitive to the individual components of the system become certain (they hold
with probability one). Zero-one laws are probabilistic results that guarantee such
behavior. They are particularly often used to formulate precisely phenomena of
phase transitions, where there is an abrupt change in some qualitative property of
a system as some parameter is varied.

Below we recall two such zero-one law results, Kolmogorov’s 0-1 law and Borel-
Cantelli lemmas. As applications in the lectures, we had a phase transition result
about percolation (Lecture II) and law of iterated logarithm for random walk (Lec-
ture III).

1. Tail sigma-algebra and Kolmogorov 0-1-law

Kolmogorov’s zero-one-law states roughly that in a system with infinite number of
independent components, any event that remains unchanged by changes in any finite
number of the components must be trivial in the sense that its probability is either
0 or 1. It is sometimes easier to prove that the probability is either 0 or 1 than to
decide which of these two extremes actually happens.

The general formulation is the following. Let (Ω,F ,P) be a probability space. Sup-
pose that A1,A2, . . . are sub-sigma algebras of F which are independent (meaning
that if A1 ∈ A1, . . . , An ∈ An, then P[A1 ∩ · · · ∩ An] = P[A1] · · ·P[An]). Define

Tn = σ

(⋃
m≥n

Am

)
to be the sigma algebra generated by Am, m ≥ n, and then define the tail sigma
algebra

T =
⋂
n>0

Tn. (E.1)

Then we have:

Theorem E.1 (Kolmogorov’s 0− 1 law). If E ∈ T , then P[E] ∈ {0, 1}.

Proof. See, e.g., the course MS-E1600 Probability Theory, or [Wil91]. �

The above result has an essentially equivalent more concrete reformulation, also
called Kolmogorov’s 0-1 law.
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82 E. ZERO-ONE LAWS

Corollary E.2. Suppose that X1, X2, X3, . . . are independent random variables (tak-
ing values in an arbitrary measurable space). Suppose that E is an event
that is measurable with respect to σ(Xn, Xn+1, Xn+2, . . .) for any n. Then
P[E] ∈ {0, 1}.

Proof. Set An = σ(Xn). We have Tn = σ(Xn, Xn+1, Xn+2, . . .). If E ∈ Tn for any n, then
E ∈ T =

⋂
n Tn. Thus the assertion follows from the previous formulation. �

We finally make a remark about indexing of the independent components. Suppose
that I is any countable index set, and (Ai)i∈I is a collection of independent sub-
sigma algebras of F . We can give some enumeration i1, i2, . . . of all elements of I,
and define the tail sigma algebra using this as

T =
∞⋂
n=1

σ

(⋃
m≥n

Aim

)
.

This definition of T does not depend on the chosen enumeration (exercise: prove
this!). In fact Kolmogorov’s 0-1 law is often naturally applied in such a setup.

2. Borel-Cantelli lemmas

The first Borel-Cantelli lemma states that in a sequence of events, almost surely only
finitely many occur, if the sum of probabilities is finite. The second Borel-Cantelli
lemma states that in a sequence of independent events, almost surely infinitely many
occur, if the sum of probabilities is infinite. In this sense, the Borel-Cantelli lemmas
are zero-one laws.

Recall the following terminology and notation about a sequence (An)n∈N of events.
We denote

lim sup(An) =
⋂
m∈N

⋃
k≥m

Ak (E.2)

Exercise E.1. To make sure you have understood the meaning of (E.2), verify the following:

(i) Show that the definition (E.2) is equivalent to

lim sup(An) =
{
ω ∈ Ω

∣∣ ω ∈ An for infinitely many different n ∈ N
}
. (E.3)

(ii) Show that the indicators satisfy

Ilim sup(An)(ω) = lim sup
n→∞

IAn(ω) ∀ω ∈ Ω, (E.4)

where the left-hand-side is the lim sup of the real-valued sequence of the indicator values.

In plain English, the event lim sup(An) reads “An (occurs) infinitely often”. We
abbreviate this as: An i.o.

We now recall the Borel-Cantelli lemmas.

Lemma E.1 (Borel-Cantelli lemmas). Let (An)n∈N be a sequence of events.

(i) If
∑

n P[An] <∞, then we have P
[
An i.o.

]
= 0.

(ii) If (An) are independent and
∑

n P[An] =∞, then we have P
[
An i.o.

]
= 1.
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Proof. See, e.g., the course MS-E1600 Probability Theory, or [Wil91]. �





Appendix F

Large deviations

1. The idea of large deviations

2. Simple large deviations examples

Exercise F.1. Let (Xj)j∈N be independent, Xj ∼ N(µ, σ2), and Sn =
∑n
j=1Xj .

(a) Show that for all x > 0 we have(
1

x
− 1

x3

)
exp

(
−x

2

2

)
≤
∫ ∞
x

exp

(
−y

2

2

)
dy ≤ 1

x
exp

(
−x

2

2

)
.

(b) For a > µ, calculate the following rate of large deviations

− lim
n→∞

1

n
logP[Sn ≥ na].

Exercise F.2. Recall that P ∼ Poisson(λ) if P
[
P = k

]
= 1

k!e
−λλk for all k ∈ Z≥0.

(a) Let P1, P2 be two independent Poisson distributed random variables, P1 ∼ Poisson(λ1)
and P2 ∼ Poisson(λ2). Show that P1 + P2 ∼ Poisson(λ1 + λ2).

(b) Let (Xj)j∈N be independent, Xj ∼ Poisson(1), and Sn =
∑n
j=1Xj . Show that, when

a > 1, the following rate of large deviations holds

− lim
n→∞

1

n
logP

[Sn
n
≥ a

]
= −a+ 1 + a log a.

Exercise F.3. This exercise concerns the Cramér entropy, and a related rate of large deviations
for the simple random walk.

(a) Let x ∈ (−1, 1), and suppose a sequence (kn)n∈N of integers kn satisfies kn = n
2 (1 +x) +

O(1). Using the Stirling approximation to show that

log

(
n

kn

)
= n

(
log(2)− I(x)

)
+O(log(n)),

where I(x) is the Cramér entropy

I(x) =
1 + x

2
log(1 + x) +

1− x
2

log(1− x).

(b) Consider the simple random walk, Xn =
∑n
s=1 ξs, where (ξs)s∈N are i.i.d. steps with

P
[
ξs = ±1

]
= 1

2 . Show that for 0 < a < 1 we have the following rate of large deviations

− lim
m→∞

1

2m
logP

[X2m

2m
≥ a

]
= I(a).
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Appendix G

Calculus facts

1. Stirling approximation

Consider the factorial

n! = n · (n− 1) · (n− 2) · · · 2 · 1. (G.1)

We frequently use the following well known result:

Theorem G.1 (Stirling approximation). As n→∞, we have

n! = nne−n
√

2πn
(
1 +O(n−1)

)
.

2. Multi-dimensional Gaussian distribution

Recall from Example A.7, that a real-valued random variable X is said to have a
Gaussian distribution with mean µ ∈ R and variance σ2, denoted X ∼ N(µ, σ2), if its

characteristic function is ϕ(θ) = E
[
ei θX

]
= ei θµ− 1

2
θ2σ2

. Recall also from Exercise A.2
that sums of independent Gaussian random variables are themselves Gaussian. In
view of these, the following definition of multi-dimensional Gaussian distribution is
the following.

Definition G.1. A random vector V = (V1, V2, . . . , Vn) ∈ Rn is a Gaussian vector ,
if for all vectors a = (a1, a2 . . . , an) ∈ Rn, the characteristic function of the
random variable

a · V =
n∑
k=1

akVk

is of the form E
[
ei θ a·V ] = ei θµ− 1

2
σ2θ2 for some µ ∈ R and σ ≥ 0.

The distribution of a Gaussian vector V is determined by the mean (vector), m =
(m1, . . . ,mn) ∈ Rn, and the covariance (matrix) C ∈ Rn×n

mj = E[Vj], Cij = Cov(Vi, Vj).

To see this, note that if V = (V1, . . . , Vn) is a Gaussian vector, then considering the
random variables θ · V =

∑
k θkVk, for θ ∈ Rn, and the defining property of the

Gaussian vector, we get the n-dimensional characteristic function of V

ϕ(θ) := E
[
eiθ·V

]
= eiµ− 1

2
σ2

.

But clearly µ is linear in θ, and expressible as µ = θ ·M . Similarly, σ2 is quadratic
in θ, and expressible as θ>C θ.
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A consequence of this observation is the following.

Proposition G.2. If V = (V1, V2, . . . , Vn) is a Gaussian vector, then the following
are equivalent

(1) V1, V2, . . . , Vn are independent.
(2) C = (Cjk) is diagonal, i.e., Cov(Vj, Vk) = 0 for j 6= k.

We leave it as an exercise to connect the above definition of Gaussian vectors with
the common definition in terms of densities.

Exercise G.1. Let n ∈ N, and let M ∈ Rn be a vector and C ∈ Rn×n be a symmetric and positive
definite matrix, i.e., a matrix such that Cij = Cji for all i, j = 1, . . . , n and ~v>C~v > 0 for
all non-zero v ∈ Rn. Define a function p : Rn → R by

p(x) =
1

Z
exp

(
−1

2
(x−m)> C−1 (x−m)

)
,

where Z is a constant.

(a) Calculate
∫
Rn p(x) dnx, and show that p is a (correctly normalized) probability density

on Rn if Z = (2π)n/2
√

det(C).
Hint: First do a change of variables (translation) to reduce to the case M = 0. Then do an

orthogonal change of variables to a basis in which C is diagonal.

(b) Choose Z as in part (a), and suppose that ξ = (ξ1, ξ2, . . . , ξn) is a random vector in
Rn, which has probability density1 p : Rn → R as above. Calculate the characteristic
function ϕ(θ) = E

[
ei θ·ξ], for θ ∈ Rn where θ · ξ =

∑n
j=1 θjξj denotes the inner product.

(c) Let ξ be the random vector as in (b), and let a1, . . . , an ∈ R. Show that the linear
combination

∑n
j=1 ajξj is a random number with Gaussian distribution.

Remark G.3. Recall that in the one-dimensional Gaussian case, a Gaussian random variable
with vanishing variance σ2 = 0 is almost surely a constant and does not have a probability
density. Similarly, a Gaussian random vector is degenerate if the covariance matrix C is not
invertible — the random vector almost surely belongs to an affine subspace of Rn of lower
dimension, and its law has no density with respect to the n-dimensional Lebesgue measure.

1This means that P[ξ ∈ E] =
∫
E
p(x) dnx for all Borel sets E ⊂ Rn.



Appendix H

Background in topology

1. Topological properties of the real line

Exercise H.1. Show that any open set V ⊂ R is the union of at most countably many open
intervals.

Hint: Show that every point x ∈ V is contained in some interval (a, b) ⊂ V with rational endpoints

a, b ∈ Q.

Exercise H.2. Show that any open set V ⊂ R is the union of at most countably many disjoint
open intervals.

Hint: Show that every point x ∈ V is contained in a unique maximal interval (a, b) within the set

V . Use the previous exercise to show that there are at most countably many different such maximal

intervals.

Exercise H.3. Show that a monotone function f : R→ R has at most countably many points of
discontinuity.

Hint: Consider f restricted to an interval [k, k + 1]. For a given m ∈ Z>0, how many jumps of

size at least 1
m

can f have on such an interval?

2. Metric space topology

2.1. Basic concepts of metric space topology

Recall that a metric space is a set X equipped with a metric, i.e., a function % : X×
X→ [0,∞) such that

%(x, y) = 0 ⇔ x = y (%-Sep)

%(x, y) = %(y, x) ∀x, y ∈ X (%-Sym)

%(x, y) ≤ %(x, z) + %(z, y) ∀x, y, z ∈ X. (%-Tri)

We will use the following definitions that the reader is assumed to be familiar with.

For x ∈ X and r > 0, the (open) ball of radius r centered at x is the subset
Br(x) =

{
y ∈ X

∣∣ %(x, y) < r
}

. A set A ⊂ X is open, if for all its points some ball
centered at that point is contained in the set A, and closed , if its complement X \A
is open. A sequence (xn)n∈N of points xn ∈ X converges to x ∈ X if %(xn, x)→ 0 as
n→∞— we denote xn → x or limn→∞ xn = x. A sequence (xn)n∈N of points xn ∈ X
is a Cauchy sequence, is for all ε > 0 there exists some N ∈ N such that %(xn, xm) < ε
whenever n,m ≥ N . Note that any convergent sequence is a Cauchy sequence. If
(X(1), %(1)) and (X(2), %(2)) are two metric spaces, then a function f : X(1) → X(2) is
continuous if for any convergent sequence (xn)n∈N of points xn ∈ X(1) the sequence
(f(xn))n∈N converges in X(2) and limn→∞ f(xn) = f(limn→∞ xn).
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The notions of convergence of sequences and continuity of functions can be formu-
lated in purely topological terms, without reference to metric, only using the notion
of open sets. Indeed, a sequence (xn)n∈N converges to x ∈ X if and only if, for all
open sets V ⊂ X containing x, we have xn ∈ V for all but finitely many n. Also, a
function f : X(1) → X(2) is continuous if and only if for any open set V in X(2) the
preimage f−1(V ) =

{
x ∈ X(1)

∣∣ f(x) ∈ V
}

is open in X(1).

The closure A of A ⊂ X is the intersection of all closed sets containing A, and the
interior A◦ of A ⊂ X is the union of all open sets contained in A. The boundary
of A ⊂ X is ∂A = A \ A◦. A set A is dense in X, if its closure is the whole space,
A = X.

Definition H.1. A metric space (X, %) is

• complete, if all Cauchy sequences in X converge.
• separable, is there exists a countable dense subset A ⊂ X.

Below are a few familiar examples.

Example H.1. The set of real numbers R equipped with the usual metric %(x, y) = |x − y| is a
complete separable metric space.

Example H.2. The set of rational numbers Q ⊂ R is not complete (but it is separable).

Example H.3. Denote by `∞(N) the set of all bounded sequences a = (an)n∈N of real numbers. A
natural metric is %

(
a, b
)

= ‖a− b‖∞, inherited from the uniform norm ‖a‖∞ = supn∈N |an|.
The space `∞(N) is not separable (but it is complete).

We devote separate sections to two examples that are important for some prob-
abilistic applications in the lectures. The space C([0, T ]) of continuous functions
f : [0, T ]→ R equipped with the metric inherited from the uniform norm is treated
in Section H.3 — this is the space used for the Brownian motion in Lecture VII.
Countable Cartesian products of finite sets are the topic of Section H.4 — they were
used in Lecture VIII for the Ising model, and in Lectures ?? for interacting particle
systems. Both of these are complete separable metric spaces.

2.2. Borel probability measures

Definition of the Borel sigma algebra on a topological space

Let X be a topological space (e.g., a metric space). In order to consider probability
measures on X, we need to equip it with a σ-algebra.

Definition H.2. The Borel σ-algebra B = B(X) on a topological space X is the
smallest sigma algebra which contains all open sets U ⊂ X.

Remark H.4. By the properties of σ-algebras, the Borel σ-algebra B contains all closed sets
F ⊂ X (as the complements of open sets), all countable intersections of open sets, all
countable unions of closed sets, etc.
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In what follows, we consider probability measures on topological spaces X (usually
metric spaces), equipped with their Borel σ-algebras. The probability triples are thus
of the form

(
X,B, ν

)
. Often the Borel σ-algebra is used without explicit mention,

but when we want to emphasize this choice, we call ν a Borel probability measure
on X.

Exercise H.4. Suppose that (X, %) is a separable metric space, and that G ⊂ X is an open set.

• Show that G can be written as a countable union of open balls. Conclude that the Borel
sigma-algebra B(X) is generated by open balls.

• Show that G can be written as a countable union of closed balls. Conclude that the
Borel sigma-algebra B(X) is generated by closed balls.

Regularity of Borel probability measures on metric spaces

In practise, when we do probability theory, the topology of X will always be metriz-
able. Suppose now, therefore, that the space X is equipped with a metric % which
gives its topology.

In this setup, any probability measure on X is regular in the sense that we can
approximate Borel sets from below by closed sets and from above by open sets as
follows.

Proposition H.5. Let ν be a Borel probability measure on a metric space (X, %).
For any Borel set E ⊂ X and any ε > 0, there exists a closed set F ⊂ X and
an open set G ⊂ X such that F ⊂ E ⊂ G and ν[G \ F ] < ε.

Proof. Suppose first that E is closed. Then the open sets Gδ = {x ∈ X | %(x,E) < δ} approximate
E from above: Gδ ↓ E as δ ↘ 0. Therefore we have limδ↘0 ν[Gδ] = ν[E], and we can choose
F = E and G = Gδ for some small enough δ > 0. Thus all closed sets have the desired
property. It is easy to see that the collection of sets which has the desired property forms a
σ-algebra, and it must thus be the entire Borel σ-algebra B. �

We also record the following trivial but very useful lemma.

Lemma H.3. Let (X, %) be a metric space. For any closed F ⊂ X and any ε > 0,
there exists a continuous function f : X→ [0, 1] such that f(x) = 1 if and only
if x ∈ F , and f(x) = 0 if and only if %(x, F ) ≥ ε.

Proof. When F 6= ∅, set %(x, F ) = infy∈F (%(x, y)) and use for example f(x) = max{1− %(x,F )
ε , 0}.

�

It is also frequently important to consider what information about a probability
measure is needed to fully determine the measure. We leave the following as an
exercise.

Exercise H.5. Let (X, %) be a metric space, and let ν1, ν2 be two (Borel) probability measures on
X. Then either of the following is a sufficient condition for ν1 = ν2:

(i) for all closed sets F ⊂ X we have ν1[F ] = ν2[F ]
(ii) for all bounded continuous functions f : X→ R we have

∫
X
f dν1 =

∫
X
f dν2.
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The second part of the above exercise in particular shows that the condition appear-
ing in the definition of weak limit, Definition VI.1, does indeed uniquely determine
the limit as a Borel probability measure.

2.3. Compactness and sequential compactness

For a topological space X, we give the following definitions.

Definition H.4. We say that X is sequentially compact if every sequence (xn)n∈N of
points in X has a subsequence

(
xnk

)
k∈N which converges to some limit x ∈ X,

i.e. limk→∞ xnk
= x.

We say that X is compact if every collection (Ui)i∈I of open sets Ui ⊂ X that
covers the space,

⋃
i∈I Ui = X, has a finite subcollection Ui1 , . . . , Uim which

also covers the space,
⋃m
k=1 Uik = X.

For metric spaces the two definitions are equivalent.

Proposition H.6. A metric space (X, %) is compact if and only if it is sequentially
compact.

Exercise H.6. Prove Proposition H.6 (or recall its proof).

Familiar examples of compact sets are e.g. closed intervals [a, b] ⊂ R of the real line,
and more generally, Heine-Borel theorem characterizes compact subsets of Euclidean
spaces as follows.

Example H.7. In d-dimensional Euclidean space, a subset A ⊂ Rd is compact if and only if it is
bounded and closed.

Compactness has many important consequences. A few frequently used ones are
given below.

Proposition H.8. Suppose that (X, %) is compact metric space and f : X→ R is a
continuous function. Then we have:

• f is bounded: there exists some M <∞ such that

|f(x)| ≤M for all x ∈ X.

• f attains its maximum and minimum: there exists points xmax, xmin ∈ X
such that

f(xmin) = inf
x∈X

f(x) and f(xmax) = sup
x∈X

f(x).

• f is uniformly continuous: for any ε > 0 there exists a δ > 0 such that

x, y ∈ X, %(x, y) < δ =⇒ |f(x)− f(y)| < ε.

Exercise H.7. Prove Proposition H.8 (or recall its proof).
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Exercise H.8. Show that a compact metric space is separable.

We also occasionally use precompactness.

Definition H.5. We say that a subset A ⊂ X is precompact if every sequence
(xn)n∈N of points in A has a subsequence

(
xnk

)
k∈N which converges to some

limit x ∈ X, i.e. limk→∞ xnk
= x.

Equivalently, A ⊂ X is precompact if and only if its closure A ⊂ X is sequentially
compact. Precompactness is “relative” notion: it depends not only on the set A but
also on the whole space X in which A is viewed as a subset.

At many places in the lectures we used an argument of the following type to verify
the convergence of a sequence:

Exercise H.9. Let (X, %) be a metric space. Suppose that (xn)n∈N is a sequence of points xn ∈ X,
which satisfies two conditions:

1◦) any subsequence
(
xnk
)
k∈N has a further subsequence

(
xnkj

)
j∈N that converges

2◦) the limits of any two convergent subsequences of (xn)n∈N are the same.

Prove that the sequence (xn) converges.

This can be summarized as: “precompactness plus uniqueness of subsequential limits
implies convergence”.

3. Space of continuous functions

In Lecture VII we consider Brownian motion as a random element of a space of
continuous functions. We considered the Brownian motion defined on some time
interval [0, T ], and we equipped the space of continuous real valued function on the
interval with the metric inherited from the uniform norm

Here we recall some topological properties of this space of continuous functions.

Metric on the space of continuous functions

The space

C
(
[0, T ]

)
= {f : [0, T ]→ R continuous} (H.1)

of continuous real-valued functions on the interval [0, T ] is a vector space with the
addition and scalar multiplication defined pointwise. This vector space is equipped
with the uniform norm

‖f‖∞ = sup
t∈[0,T ]

|f(t)|. (H.2)

By compactness of [0, T ], any f ∈ C([0, T ]) is bounded, so indeed ‖f‖∞ is finite. It
is easy to check that ‖ · ‖∞ is a norm, i.e.,

‖f‖∞ = 0 ⇔ f ≡ 0, ‖λf‖∞ = |λ| ‖f‖∞, ‖f1 + f2‖∞ ≤ ‖f1‖∞ + ‖f2‖∞.
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The norm is used to define a metric in the usual way: for f1, f2 ∈ C([0, T ]) we set

%(f1, f2) = ‖f1 − f2‖∞ = sup
t∈[0,T ]

|f1(t)− f2(t)|. (H.3)

Note that a sequence (fn)n∈N of functions fn ∈ C([0, T ]) converges with respect to the
metric % induced by the norm ‖ ·‖∞ if and only if it converges uniformly. A basic re-
sult in calculus states that if a sequence of continuous functions converges uniformly,
then the limit is continuous. It follows that the space

(
C([0, T ]), %

)
is complete. By

uniform continuity of any f ∈ C([0, T ]) it is easy to see that the countable collection
of piecewise linear interpolations of functions with rational values at dyadic points is
dense in C([0, T ]) (alternatively, from Weierstrass approximation theorem it follows
that the countable collection of polynomial functions with rational coefficients is
dense). Therefore we have:

Theorem H.9. The space
(
C([0, T ]), %

)
is complete and separable.

In Lecture VII we used the following characterization of compact subsets in
(
C([0, T ]), %

)
.

Theorem H.10 (Arzelà-Ascoli theorem). A subset Φ ⊂ C([0, T ]) is precompact if
and only if the following two conditions are satisfied:

(1) the collection Φ of functions is uniformly bounded: there exists M < ∞
such that for all f ∈ Φ and t ∈ [0, T ] we have |f(t)| ≤M .

(2) the collection Φ of functions is (uniformly) equicontinuous: for any ε > 0
there exists a δ > 0 such that for all f ∈ Φ and t, s ∈ [0, T ] we that that
|t− s| < δ implies |f(t)− f(s)| < ε.

4. Countable products of discrete spaces

In Lecture VIII and Lectures ?? we considered models that are defined on spaces
that are countably infinite Cartesian products of finite sets. The finite sets are nat-
urally equipped with the discrete topology, and the product space with the product
topology. In the case of countable products, the product topology is metrizable.
Here we recall some topological properties of spaces of this type.

Metric on countable product of discrete spaces

Let S be a finite or countably infinite set. We consider the Cartesian product of
copies of S

SI =
{

(si)i∈I

∣∣∣ si ∈ S} (H.4)

where I is a countable index set. In common applications we might have for example
I = Zd, but it is convenient to assume a given enumeration of I, so that we may
identify I = N. We make SI a complete separable metric space with a metric %
which depends on the chosen enumeration, but so that the topology induced by the
metric is independent of the choice.
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Exercise H.10. Define % : SN × SN → [0,∞) by the formula

%(ω, ω′) =
∑
i∈N
ωi 6=ω′i

2−i for ω, ω′ ∈ SN, ω = (ωi)i∈N, ω
′ = (ω′i)i∈N.

(a) Show that % is a metric on the set SN.
(b) Show that (SN, %) is complete.
(c) Show that (SN, %) is separable.
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equicontinuous, 57, 92
external magnetic field

of Curie–Weiss model, 38
of Ising model, 63

ferromagnetic, 38
FKG inequality, 64

Gaussian distribution, 70
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open set, 87

paramagnetic, 38
partial order, 77
path

of a stochastic process, 52
permutation, 1
precompact, 34, 35

for weak convergence, 49
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thermodynamical limit
of Curie–Weiss model, 38

tight, see also tightness, see also tightness
tightness, 34, 49
total variation distance, 6
trajectory

of a stochastic process, 52
transience

of simple random walk, 12

uniform random permutation, 1

vertex, see also site

weak convergence, 45
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