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1 Introduction

The quantum Yang-Baxter equation (QYBE) arises naturally in the setting of statistical mechanics and
quantum field theory. It was proposed by Baxter as the star-triangle relation while studying the 8-vertex
model and by Yang in the study of a quantum N -body problem.
As a simple example one can consider the state models on n×m square lattices in Z2, then the matrix
of Boltzmann weights satisfies the QYBE.

We can interpret the QYBE in a more algebraic setting, leading to the theory of quantum groups.
Consider V a vector space, we say that R ∈ End(V ⊗ V ) satisfies the QYBE if

R12R13R23 = R23R13R12

in End(V ⊗ V ⊗ V ). A solution of the QYBE is called R-matrix.
The classical analogue of the QYBE is the classical Yang-Baxter equation (CYBE)

[r12, r23] + [r13, r23] + [r12, r13] = 0,

whose solutions are called the classical r-matrices. In this case one considers the theory of Poisson-Lie
groups, a geometric interpretation given by Drinfeld [Dr].
Let R be an R-matrix, we can associate to it an algebraic structure (using the RTT construction) which
is exactly a Hopf algebra such that the universal element of a quasitriangular structure is the given
R-matrix. We call a quasitriangular Hopf algebra quantum group.
In the following report we will concentrate on a generalization of the QYBE, the quantum dynamical
Yang-Baxter equation (QDYBE). The QDYBE was introduced by G. Felder [F] and he also considered its
quasiclassical limit, the CDYBE.
Let h be a finite dimensional commutative Lie algebra over C, V a semisimple finite dimensional h-
module and R : h∗ → Endh(V ⊗ V ) a meromorphic function, then the QDYBE of step γ reads:

R12(λ− γh3)R13(λ)R23(λ− γh1) = R23(λ)R13(λ− γh2)R12(λ),

where γ ∈ C ( the notation is explained in section 3.1 ).
Similarly to the non-dynamical case, we would like to associate an algebraic structure to solutions of
the QDYBE, the dynamical quantum group.
Our aim is to understand the solutions of the QDYBE, i.e., the dynamicalR-matrices, and the dynamical
quantum groups.

In the first chapter we introduce some basic notions necessary to understand the setting of quantum
groups. Specifically we recall the quantum Yang-Baxter equation and the definition of R-matrix, we
then introduce Hopf algebras and the concept of quantum group.
In section 2.3 we present a construction, first introduced by Faddeev, Reshetikhin and Takhtajan [FRT],
that allows us to construct a quantum group starting from a given R-matrix.
In the last section we present an explicit example, the quantum group Uq(sl2).

In the second chapter we introduce the main equation, the quantum dynamical Yang-Baxter equation.
Similarly to the case of the QYBE, we would like to find an algebraic structure associated to solutions
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of the QDYBE, the dynamical R-matrices, that we will call dynamical quantum group.
We then introduce the dynamical quantum group AR, a generalization of the RTT construction in the
dynamical case. In section 3.2.3 we give a few results regarding the representation theory of AR and
linking it to that of R.
We then discuss a way to obtain solutions of the QDYBE using fusion and exchange operators.

In the last chapter we introduce the classical dynamical Yang-Baxter equation, i.e., the dynamical ana-
logue of the classical Yang-Baxter equation. We give some basics notions in order to give a geometric
interpretation to the CDYBE, introducing the concept of Poisson groupoid, a generalization of Drinfeld’s
construction for Poisson-Lie groups [Dr].
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2 Basic Tools

In this chapter we introduce the Quantum Yang-Baxter equation (QYBE) and give the definition of R-
matrices as solutions to the QYBE. We then introduce the algebraic structure behind R-matrices, i.e.,
Hopf algebras andQuantum Groups.

2.1 TheQuantum Yang-Baxter equation

Consider aK-vector space V and a linear operator R : V ⊗K V → V ⊗K V , we say that R satisfies the
quantum Yang-Baxter equation (QYBE) if:

R12R13R23 = R23R13R12,

where Rij is the operator acting as R on the ith and jth components in End(V ⊗K V ⊗K V ).

Definition 1. We define R-matrix a solution of the QYBE.

2.2 Hopf algebras

We now give the necessary definitions needed to work within the framework of Hopf algebras to better
understand the QYBE.
Fix a field K, then a K-algebra A is a K-vector space equipped with a bilinear product µ : A⊗A → A.
It is associative if the diagram

A⊗A

A⊗A⊗A A

A⊗A

µ1⊗µ

µ⊗1 µ

commutes.
If there is a map η : K → A such that

A⊗K A K⊗A

A⊗A

1⊗η η⊗1

commutes, then A is unital.
Similarly A is said to be coassociative with counit if there exist a coproduct ∆ : A → A ⊗ A and a
counit ϵ : A → K such that the diagrams

A⊗A

A⊗A⊗A A A⊗K A K⊗A

A⊗A A⊗A

1⊗∆ ∆

∆∆⊗1 1⊗ϵ ϵ⊗1
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commute.

Definition 2. If (A, ϵ,∆, µ, η) is such that (A, ϵ,∆) is a coalgebra and (A,µ, η) is an algebra, then A

is called a bialgebra.

Definition 3. A Hopf algebra is a bialgebra over K with a linear map S : H → H , called the antipode,
such that the following diagram commutes:

A⊗A A⊗A

A C A

A⊗A A⊗A

S⊗id

µ

∆

ϵ

∆

η

id⊗S

µ

We can now introduce the general algebraic structure behind R-matrices:

Definition 4. A bialgebra, or Hopf algebra, is quasitriangular if there exists an element R ∈ A ⊗ A,
called universal R-matrix, such that

R∆(x)R−1 = τ∆(x),

where τ is the transposition operator τ(a⊗ b) = b⊗ a, and

(∆⊗ 1)R = R13R23, (1⊗∆)R = R13R12.

Remark 5. Here the notation τ∆(x) is used to indicate τ∆(x)τ = ∆op(x).

Given a quasitriangular Hopf algebra, the universal R-matrix satisfies the QYBE.

Definition 6. We call a quasitriangular Hopf algebra quantum group.

2.3 The RTT construction

Suppose R is a solution of the Yang-Baxter equation, i.e., an R-matrix, then we would like to associate
to this given solution a corresponding Hopf algebra such that R determines its quasitriangular struc-
ture. To do so we follow the construction explained in detail in [FRT].

Let V be an n-dimensional C vector space and R ∈ End(V ⊗ V ) an element satisfying the QYBE.
Define A = A(R) as an associative algebra over C generated by 1, tij for i, j = 1, ..., n satisying

RT1T2 = T2T1R ,

where T = (tij) and we use the notation T1 = T ⊗ 1 and T2 = 1⊗ T .

Proposition 7. A(R) is an Hopf algebra with coproduct∆ : A → A⊗A defined by∆(1) = 1⊗ 1 and
∆(tij) =

∑n
k=1 tik ⊗ tkj .

Proof. We give an idea of the proof of the above result, a more general discussion regarding A(R) is
present in [K, VIII.6].
The above formulas define a unique algebra map∆ : A → A⊗A and the counit is given by ϵ(tij) = δij .
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It is sufficient to check coassociativity on the generators tij and extend by linearity.
Define I as the ideal generated by the RTT relations, we need to check that I is a coideal, i.e., that
∆(I) ⊂ I ⊗ Ã+ Ã⊗ I , where Ã is the free algebra without the relations on the generators.
Define Smn

ij :=
∑

k,l R
kl
ij tkmtln −

∑
k,l tiktjlR

mn
kl , then we have that:

∆(Smn
ij ) =

∑
k,l,p,q

Rkl
ij tkptlq ⊗ tpmtqn −

∑
k,l,p,q

tiptjq ⊗ tpktqlR
mn
kl =

=
∑

k,l,p,q

Spq
ij ⊗ tpmtqn +

∑
k,l,p,q

tiktjlR
pq
kl ⊗ tpmtqn+

+
∑

k,l,p,q

tiptjq ⊗ Smn
pq −

∑
k,l,p,q

tiptjq ⊗Rkl
pqtkmtln =

=
∑

k,l,p,q

Spq
ij ⊗ tpmtqn +

∑
k,l,p,q

tiptjq ⊗ Smn
pq

We observe that R controls the non-commutativity of the generators tij of A(R).

2.4 The quantum group Uq(sl2)

In this section we compute an explicit example of quantum group and R-matrix.

Consider g = sl2 and q ∈ C, q ̸= 0, such that q is not a root of unity. Define Uq(sl2) as the alge-
bra generated by E,F,K± with the following relations:

KK−1 = K−1K = 1,

KEK−1 = q2E,

KFK−1 = q−2F,

EF − FE =
K −K−1

q − q−1
.

Proposition 8. U = Uq(sl2) is a Hopf algebra.

Proof. Define on U the following structure:

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F, ∆(K) = K ⊗K

ϵ(E) = ϵ(F ) = 0, ϵ(K) = 1

S(E) = −K−1E, S(F ) = −KF, S(K) = K−1

∆, ϵ and S defined as above give U an Hopf algebra structure.
We check that ∆([E,F ]) = [∆(E),∆(F )]:

[∆(E),∆(F )] = [E ⊗ 1 +K ⊗ E,F ⊗K−1 + 1⊗ F ] =

= [E,F ]⊗K−1 +K ⊗ [E,F ] + [K ⊗ E,F ⊗K−1] =

=
K −K−1

q − q−1
⊗K−1 +K ⊗ K −K−1

q − q−1
+KF ⊗ EK−1 − FK ⊗K−1E =

=
K ⊗K −K−1 ⊗K−1

q − q−1
=

= ∆(
K −K−1

q − q−1
) = ∆([E,F ]).
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So we conclude.

We denote τ : U ⊗ U → U ⊗ U to be the transposition operator τ(a ⊗ b) = b ⊗ a. Observe that
the opposite coproduct is given by

∆op(E) = E ⊗K + 1⊗ E, ∆op(F ) = F ⊗ 1 +K−1 ⊗ F.

Remark 9. One would like to recover the universal enveloping algebra U(sl2) from the quantized
Uq(sl2) when q → 1, to do so we need to consider the formal version of Uq(sl2) defined starting from
E,F,H and relations on their brackets [K, XVII. 4]. With this definition the element K is K = eqH

and for q = 1 we get U(sl2).

Let V = C2 and consider the tautological representation given by:

E =

(
0 1

0 0

)
F =

(
0 0

1 0

)
K =

(
q 0

0 q−1

)
.

We are looking for an element R ∈ U ⊗ U such that R∆op(u) = ∆(u)R for all u ∈ U . We take
advantage of the tautological representation and look for such an R in End(V ⊗ V ).

Consider V ⊗V with basis {x⊗x, x⊗y, y⊗x, y⊗y}, then U acts on V ⊗V in the following way:

E(v ⊗ w) = ∆(E)(v ⊗ w), F (v ⊗ w) = ∆(F )(v ⊗ w), K(v ⊗ w) = ∆(K)(v ⊗ w)

As matrices we get:

E =


0 q 1 0

0 0 0 1

0 0 0 q−1

0 0 0 0

 F =


0 0 0 0

1 0 0 0

q−1 0 0 0

0 q 1 0

 K =


q2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 q−2

 .

The R-matrix preserves the eigenspaces of K so it will be of the form

R =


a 0 0 0

0 b c 0

0 d e 0

0 0 0 f

 ∈ End(V ⊗ V ).

We then have the following:

R∆op(E) =


a 0 0 0

0 b c 0

0 d e 0

0 0 0 f



0 1 q 0

0 0 0 q−1

0 0 0 1

0 0 0 0

 =


0 a qa 0

0 0 0 c+ bq−1

0 0 0 e+ dq−1

0 0 0 0



∆(E)R =


0 q 1 0

0 0 0 1

0 0 0 q−1

0 0 0 0



a 0 0 0

0 b c 0

0 d e 0

0 0 0 f

 =


0 d+ qb e+ qc 0

0 0 0 f

0 0 0 fq−1

0 0 0 0


6



R∆op(F ) =


a 0 0 0

0 b c 0

0 d e 0

0 0 0 f




0 0 0 0

q−1 0 0 0

1 0 0 0

0 1 q 0

 =


0 0 0 0

c+ bq−1 0 0 0

e+ dq−1 0 0 0

0 f qf 0



∆(F )R =


0 0 0 0

1 0 0 0

q−1 0 0 0

0 q 1 0



a 0 0 0

0 b c 0

0 d e 0

0 0 0 f

 =


0 0 0 0

a 0 0 0

aq−1 0 0 0

0 d+ qb e+ qc 0


Imposing the condition on R we obtain the following systems:

a = d+ qb

qa = e+ qc

f = c+ bq−1

fq−1 = e+ dq−1


a = c+ bq−1

aq−1 = e+ dq−1

f = d+ qb

fq = e+ qc

.

One then gets 

a = f

d = a− qb

c = a− bq−1

e = q−1(a− d)

b = q−1(a− d)

,

so, up to scalars, the matrix of R is

R =


1 0 0 0

0 b 1− q−1b 0

0 1− qb b 0

0 0 0 1

 .

Consider b = q, we obtain a triangular matrix satisfying the QYBE:

R =


1 0 0 0

0 q 0 0

0 1− q2 q 0

0 0 0 1


Remark 10. The R-matrix we obtained is the image in End(V ⊗ V ) of an element in the extended
U⊗̃U and not in U ⊗ U . This implies that Uq(sl2) is not quasitriangular in a purely algebraic sense,
but an R-matrix can be found in the completed tensor product.
Specifically, one finds [K, Theorem XVII 4.2]

R =

∞∑
n=0

(q−1 − q)nq−n(n−1)/2

[n]!
Fn ⊗ En.

This infinite sum lives in U⊗̃U but for V finite dimensional representation of sl2, since E,F act nilpo-
tently on V , the image of R is in End(V ⊗ V ).
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Viceversa, as in [Fa], suppose given the matrix

R =


q 0 0 0

0 1 0 0

0 q − 1
q 1 0

0 0 0 q

 ,

let T be the matrix T = {tij}i,j∈{1,2}, then the RTT relations reduce to the following 6 formulae (out
of 16 only 6 are independent):

t11t12 = qt12t11

t12t21 = t21t12

t11t21 = qt21t11

t22t12 =
1

q
t12t22

t22t21 =
1

q
t21t22

t11t22 − t22t11 = (q − 1

q
)t12t21

Consider the q-determinant of T given by

detq(T ) =
∑
σ∈Sn

(−q)l(σ)t1σ(1) . . . tnσ(n) = t11t22 − qt12t21,

imposing detq(T ) = 1 we obtain the quantum group SLq(2), which is dual to Uq(sl2) [K, VII.5].
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3 The quantum dynamical case

In this chapter we introduce the quantum dynamical Yang-Baxter equation (QDYBE), a generalization
of the QYBE arising from mathematical physics, in which additional parameters appear.
Similarly to the case of quantum groups, we introduce the solutions of the QDYBE, i.e., dynamical R-
matrices, and see how one can associate to such a solution an algebraic structure, which will be called
a dynamical quantum group.

3.1 The quantum dynamical Yang-Baxter equation

Unlike the QYBE, the dynamical version is not an algebraic equation but a difference one, where the
R-matrix is a matrix-valued function on an abelian Lie algebra instead of a matrix with scalar entries.

Let h be a finite dimensional commutative Lie algebra over C, γ ∈ C and V a semisimple finite
dimensional h-module. Let R : h∗ → Endh(V ⊗ V ) be a meromorphic function, then on V ⊗ V ⊗ V

the QDYBE of step γ reads:

R12(λ− γh3)R13(λ)R23(λ− γh1) = R23(λ)R13(λ− γh2)R12(λ),

where hi is the dynamical notation, i.e., R12(λ− γh3)(v1 ⊗ v2 ⊗ v3) := (R12(λ− γµ)(v1 ⊗ v2))⊗ v3

if v3 has weight µ, and similarly for h1, h2.
If h = 0 we obtain the usual QYBE.

A function Rij : h
∗ → End(Vi ⊗ Vj) is of zero weight if

[Rij(λ), h⊗ 1 + 1⊗ h] = 0

for all h ∈ h and λ ∈ h∗.

Definition 11. A Quantum dynamical R-matrix R : h∗ → End(V ⊗ V ) is a generically invertible
solution of the QDYBE of zero weight .

3.1.1 Representation of quantum dynamical R-matrices

The following notions were introduced by Felder and Varchenko [FV], and later discussed in [EV2].

LetMh∗ be the space of meromorphic functions on h∗, fix γ ∈ C.
Denote byVh the category of h-vector spaces, with objects the diagonalizable h-modules andmorphisms
defined by HomVh

(X,Y ) = Homh(X,Y ⊗C Mh∗).
Consider the bifunctor:

⊗̄ : Vh × Vh → Vh

defined on objects by taking the usual tensor product and for any two morphisms f : X → X ′ and
g : Y → Y ′ as

f⊗̄g : X ⊗ Y → X ′ ⊗ Y ′

f⊗̄g(λ) = f1(λ− γh2)(1⊗ g(λ)), (1)

9



where
f1(λ− γh2)(1⊗ g(λ))(x⊗ y) = (f(λ− µ)x)⊗ g(λ)y

for g(λ)y of weight µ. The category Vh equipped with the bifunctor ⊗̄ is a tensor category.

Definition 12. LetR : h∗ → End(V ⊗V ) be a quantum dynamical R-matrix,i.e., a meromorphic func-
tion satisying QDYBE. A representation of R is an objectW ∈ Vh together with an invertible morphism
L ∈ EndVh

(V ⊗̄W ), called L-operator, such that

R12(λ− γh3)L13(λ)L23(λ− γh1) = L23(λ)L13(λ− γh2)R12(λ)

in EndVh
(V ⊗̄V ⊗̄W ).

Definition 13. Let (W,LW ) and (U,LU ) be representations of R, a morphism A ∈ HomVh
(W,U) is

an R-morphism if
(1⊗A(λ))LW (λ) = LU (λ)(1⊗A(λ− γh1)).

The representations of R form a category which we denote by Rep(R).
The tensor product of two given representationsW,U ∈ Rep(R) is given by the pair (W ⊗U,LW⊗U ),
where LW⊗U (λ) := L12

W (λ− γh3)L13
U (λ).

Proposition 14. [EV2, Lemma 3.2] The pair (W ⊗ U,LW⊗U ) is itself a representation of R.

Proof. We need to check that for LW⊗U on EndVh
(V ⊗̄V ⊗̄(W ⊗ U)) the following holds:

R12(λ− γh3)L13
W⊗U (λ)L

23
W⊗U (λ− γh1) = L23

W⊗U (λ)L
13
W⊗U (λ− γh2)R12(λ).

On the rhs we have:

R12(λ− γh̃3)L13
W⊗U (λ)L

23
W⊗U (λ− γh1) =

= R12(λ− γh̃3)L13
W⊗U (λ)L

23
W (λ− γ(h1 + h4))L24

U (λ− γh1) =

= R12(λ− γh̃3)L13
W (λ− γh4)L14

U (λ)L23
W (λ− γ(h1 + h4))L24

U (λ− γh1).

Note that we write h̃3 to indicate that we are using the weight of elements z ∈ W ⊗U , while we write
h3, h4 when we consider z ∈ W ⊗ U as z = w ⊗ u.
The lhs is:

L23
W⊗U (λ)L

13
W⊗U (λ− γh2)R12(λ) =

= L23
W (λ− γh4)L24

U (λ)L13
W (λ− γ(h2 + h4))L14

U (λ− γh2)R12(λ).

Using the fact that LW and LU satisfy the defining relation of a representation of R we conclude.

Proposition 14 gives a structure of tensor category to Rep(R).
We also introduce the notion of left and right dual representation:

Definition 15. Let (W,LW ) ∈ Rep(R), the right dual representation toW is given by the pair (W ∗, LW∗),
whereW ∗ is the h-graded dual of W and

LW∗ = L−1
W (λ+ γh2)t2 ,

where t2 denotes dualization in the second component. Dually the left dual representation of W is given
by (∗W,L∗W ) with ∗W = W ∗ and

L∗W = Lt2
W (λ− γh2)−1.

10



Note that LW∗ and L∗W are obtained by applying three different operations to LW : inversion,
shifting and dualization in the second component. To define the dual representation one must then
have LW or Lt2

W invertible.

3.2 h-Hopf algebroid

In this section we introduce the algebraic structures necessary to define the dynamical equivalent of
quantum groups, the dynamical quantum groups, as given in [EV2]. We also introduce a construction
that associates to a given meromorphic function R : h∗ → End(V ⊗ V ) an h-bialgebroid called the
dynamical quantum group corresponding to R.
The term algebroid comes from the fact that in the classical case one obtains, as dynamical analogues
of Poisson-Lie groups, the Poisson groupoids (51). The term creates a parallelism between the classical
and quantized version of the YBE and DYBE.

3.2.1 h-bialgebras

Let h be a finite dimensional commutative Lie algebra on C, let Mh∗ denote the field of meromorphic
functions on h∗. Fix γ ∈ C with γ ̸= 0.

Definition 16. An h-algebra of step γ is an associative algebra A over C with unit, endowed with an
h∗-bigrading called the weight decomposition

A =
⊕

α,β∈h∗

Aαβ ,

and left and right moment maps, i.e., two algebra embeddings µl, µr : Mh∗ → A00 such that ∀a ∈ Aαβ

and f ∈ Mh∗ we have

µl(f(λ))(a) = aµl(f(λ+ γα)), µr(f(λ))(a) = aµr(f(λ+ γβ)).

Definition 17. A morphism between h-algebras is an algebra homomorphism φ : A → B preserving
the moment maps.

Given two h-algebras A,B we define a third h-algebra given by the following operation:

Definition 18. The matrix tensor product of A,B is the h-algebra A⊗̃B where

(A⊗̃B)αδ =
⊕
β

Aαβ ⊗Mh∗ Bβδ.

Here ⊗Mh∗ is the usual tensor product modulo the following relation:

µA
r (f)a⊗ b = a⊗ µB

l (f)b

for any f ∈ Mh∗ , a ∈ A, b ∈ B.

On A⊗̃B define the moment maps as:

µA⊗̃B
l (f) = µA

l (f)⊗ 1, µA⊗̃B
r (f) = 1⊗ µB

r (f).

Definition 19. A coproduct on an h-algebra A is an homomorphism of h-algebras ∆ : A → A⊗̃A.

11



We give now a simple nontrivial example of an h-algebra that will be used to give a monoidal
category structure to the category of h-algebras.

Example 20. Let Dh be the algebra of difference operators Mh∗ → Mh∗ , i.e., operators of the form∑n
i=1 fi(λ)Tβi

where fi ∈ Mh∗ and ∀β ∈ h∗ we denote Tβ the field of automorphisms of Mh∗ given
by (Tβf)(λ) = f(λ+ γβ).
On Dh we define the weight decomposition as

Dh =
⊕

(Dh)αβ ,

where (Dh)αβ = 0 if α ̸= β and (Dh)αα = {f(λ)T−1
α : f ∈ Mh∗}. The moment maps are given by

the tautological isomorphism
µl = µr : Mh∗ → (Dh)00,

in fact (Dh)00 = {f(λ)T−1
0 : f ∈ Mh∗} = {f(λ) : f ∈ Mh∗} ∼= Mh∗ .

By definition of Dh one has A⊗̃Dh and Dh⊗̃A isomorphic to A.
The h-algebra Dh is the unit object of the monoidal category of h-algebras.

Definition 21. A counit on an h-algebra A is a homomorphism of h-algebras ϵ : A → Dh.

Definition 22. An h-bialgebroid is an h-algebra A equipped with a coassociative coproduct ∆,i.e.,
(∆⊗ IdA) ◦∆ = (IdA ⊗∆) ◦∆, and a counit ϵ such that (ϵ⊗ IdA) ◦∆ = (IdA ⊗ ϵ) ◦∆ = IdA.

Remark 23. Note that an h-bialgebroid is defined using the matrix tensor product ⊗̃, this allows mul-
tiplication by elements of Mh, i.e., meromorphic functions and not only holomorphic.

Example 24. Dh is an h-bialgebroid with coproduct ∆ : Dh → Dh⊗̃Dh the canonical isomorphism
and counit ϵ = Id.

Consider A an h-algebra, a linear map S : A → A is an antiautomorphism of h-algebras if it is an
antiautomorphism of algebras and µr ◦ S = µl and µl ◦ S = µr .

Definition 25. Let A be an h-bialgebroid, an antipode on A is an antiautomorphism of h-algebras
S : A → A such that for any a ∈ A and any presentation of ∆(a) one has∑

i

a1iS(a
2
i ) = µl(ϵ(a)1),

∑
i

S(a1i )a
2
i = µr(ϵ(a)1).

Where ϵ and∆ are the counit and coproduct on A and for a ∈ A we have∆(a) =
∑

i a
1
i ⊗ a2i .

Definition 26. An h-bialgebroid with an antipode is called an h-Hopf algebroid.

3.2.2 The dynamical quantum group AR

Let h be a finite dimensional commutative Lie algebra, consider V =
⊕

α∈h∗ Vα a finite dimensional
diagonizable h-module.
LetR : h∗ → End(V ⊗V ) be ameromorphic function such that for a generic λwe haveR(λ) invertible.
Similarly to the RTT construction 2.3, we want to define an h-bialgebroid AR associated to R that we
will call the dynamical quantum group corresponding to R, i.e., a dynamical analogue of the quantum
group attached to an R-matrix [EV2].
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Define AR as the quotient of the algebra Ã freely generated byMh∗ ⊗Mh∗ and new generators which
are matrix elements of the operators L± ∈ End(V )⊗AR, Lab and (L−1)ab for a, b = 1, ..., dimV .
For f ∈ Mh∗ we denote f(λ1) and f(λ2) the elements of respectively the first and second copy ofMh∗

inAR. We denote the weight components of L± with respect to the natural h-bigrading on End(V ) as
(L±)αβ , so that (L±)αβ ∈ HomC(Vβ , Vα)⊗AR.
We quotient Ã by the ideal defined by the following relations:

f(λ1)Lαβ = Lαβf(λ
1 + γα) f(λ2)Lαβ = Lαβf(λ

2 + γβ) [f(λ1), g(λ2)] = 0 (2)

LL−1 = L−1L = 1 (3)

R12(λ1)L13L23 =: L23L13R12(λ2). (4)

The third relation is called the dynamical Yang-Baxter relation and should be read in the following way:
if {vα} is a homogeneous basis of V , and L =

∑
Eab ⊗Lab, R(λ)(va ⊗ vb) =

∑
Rab

cd(λ)vc ⊗ vd, then∑
Rxy

ac (λ
1)LxbLyd =

∑
Rbd(λ2)xyLcyLax

summing over repeated indices.
To give AR the structure of an h-algebra we define the moment maps as follows:

µl(f(λ)) = f(λ1), µr(f(λ)) = f(λ2).

The weight decomposition is given by f(λ1), f(λ2) ∈ (AR)00 and Lαβ ∈ HomC(Vβ , Vα)⊗ (AR)αβ .

We want to give AR a h-bialgebroid structure, to do so we define a coproduct ∆ : AR → AR⊗̃AR

as
∆(L) = L12L13, ∆(L−1) = (L−1)13(L−1)12,

where∆ is applied to the second component of L±.

Remark 27. Compare the∆ here defined to that of Proposition 7: similarly to the RTT case, the idea is
to define the coproduct on the generators and to extend it. Note that here, in the Yang-Baxter relation,
we are acting on V ⊗ V ⊗ V whereas in the RTT relation we had T 1, T 2 acting on V ⊗ V .
Similarly to Proposition 7 one must check that the given coproduct preserves the defining relations.

Proposition 28. [EV2, Proposition 4.2] ∆ extends to a well defined homomorphism AR → AR⊗̃AR.

Proof. By definition∆(Lαβ) =
∑

γ L
12
αγL

13
γβ .We need to show that∆ preserves the defining relations

of AR.
Relations 2 and 3 are invariant by definition of ∆. Consider relation 4, we have

R12(λ1
1)L

13L14L23L24 = R12(λ1
1)L

13L23L14L24

=: L13L23R12(λ2
1) : L

14L24

= L13L23R12(λ1
2)L

14L24

= L23L13 : L24L14R12(λ2
2) :

=: L23L24L13L14R12(λ2
2) :

,

where the pedices on λ indicate that the functions are taken from the first or second component of
AR⊗̃AR. Since AR⊗̃AR is in the tensor product AR ⊗Mh∗ AR we can replace λ1

2 with λ2
1 in the
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equation.
We have then checked that

R12(λ1
1)L

13L14L23L24 =: L23L24L13L14R12(λ2
2) :

so the proposition is proved.

We define the counit ϵ : AR → Dh by the formula:

ϵ(Lαβ) = δαβIdVα
⊗ T−1

α ,

ϵ((L−1)αβ) = δαβIdVα
⊗ Tα.

Similarly to the coproduct ϵ annihilates the relations 2 and 3 by definition. Relation 4 reduces to proving
the following:

(
∑

R12(λ)(IdVα ⊗ IdVβ
))⊗ T−1

α+β = (
∑

(IdVα ⊗ IdVβ
)R12(λ))⊗ T−1

α+β ,

but R has zero weight, so the equation is satisfied.

Proposition 29. [EV2, Proposition 4.3]The counit ϵ satisfies the counit axiom (ϵ⊗Id)◦∆ = (Id⊗ϵ)◦∆ =

Id for AR.

Combining Proposition 28 and 29 , we therefore have that AR is an h-biequivariant bialgebroid,i.e.,
it is an h-bialgebroid and we have a pair of commuting actions of h on AR that behave well with the
moment maps ([EV2, chapter 5]). We call it the dynamical quantum group corresponding to R.

To have an h-Hopf algebroid we need an antipode on AR.

Definition 30. An invertible zero weight matrix function R is rigid if the element L ∈ End(V )⊗AR

is strongly invertible.

Consider X ∈ B ⊗A, with A,B algebras with unit and i(X) the inverse, let I be the group freely
generated by i, i∗ with i2 = i2∗ = 1. The element X is said to be strongly invertible if ∀g ∈ I the
element g(X) is well defined.
The following proposition holds:

Proposition 31. [EV2, Proposition 4.4] R is rigid if and only if AR admits an antipode S such that
S(L) = L−1. In this case, S2n(L) = (i∗i)n(L) and S2n+1(L) = i(i∗i)n(L).
In particular, S(L−1) = i∗i(L).

Consequently, under the assumption of rigidity, AR is an h-Hopf algebroid.
Although AR is an h-Hopf algebroid, for a generic R rigid zero weight function this algebra does not
have interesting dynamical representations, however in the case of R a dynamical quantum R-matrix
the category Rep(R) is nontrivial, and so is Rep(AR).
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3.2.3 The dynamical representation

Suppose W is a diagonizable h-module, then we define Dα
h,W ⊂ HomC(W,W ⊗Dh) to be the space

of all difference operators on h∗ with coefficients in EndC(W ) and weight α with respect to the action
of h inW .
Define Dh,W :=

⊕
α Dα

h,W algebra with weight decomposition Dh,W =
⊕

α,β(Dh,W )αβ defined by

(Dh,W )αβ := {gT−1
β : g ∈ HomC(W,W ⊗Mh∗) of weight β − α},

and moment maps µr(f(λ)) = f(λ) and µl(f(λ)) = f(λ− γh), where f(λ− γh)w = f(λ− γµ)w if
w ∈ W (µ).

Lemma 32. [EV2, Lemma 4.3] There is a natural embedding of h-algebras Dh,W ⊗̃Dh,U → Dh,W⊗U ,
given by the formula fTβ ⊗ gTδ → (f⊗̄g)Tδ . This embedding is an isomorphism if W,U are finite-
dimensional.

The product f⊗̄g is defined in 1.

Definition 33. Let A be an h-algebra, a dynamical representation of A is a diagonalizable h-moduleW
endowed with an h-algebra homomorphism πW : A → Dh,W .
A homomorphism of dynamical representation of A is a map φ ∈ HomC(W1,W2 ⊗ Mh∗) such that
φ ◦ πW1(x) = πW2(x) ◦ φ for all x ∈ A.

We would now like to prove the following:

Proposition 34. [EV2, Proposition 4.6] The tensor categories Rep(AR) and Rep(R) are equivalent.

To do so we introduce a few results on Rep(AR).
Let A be an h-Hopf algebroid, if (W,πW ) is a dynamical representation of A we denote by π0

W the
map π0

W : A → Hom(W,W ⊗Mh∗) given by π0
W (x)w = πW (x)w for all w ∈ W , i.e., the difference

operator πW restricted to constant functions.

Definition 35. Let (W,πW ) be a dynamical representation of A, the right dual representation to W is
(W ∗, πW∗), where W ∗ is the h-graded dual to W and

π0
W∗(x)(λ) = π0

W (S(x))(λ+ γh− γα)t ∀x ∈ Aαβ .

The left dual representation to W is the pair (∗W,π∗W ) with ∗W = W ∗ and

π0
∗W (x)(λ) = π0

W (S−1(x))(λ+ γh− γα)t ∀x ∈ Aαβ .

Proposition 36. [EV2, Proposition 4.1] The right and left dual representation define dynamical repre-
sentations of A. Moreover, if A(λ) : W1 → W2 is a morphism of dynamical representations, then
A∗(λ) := A(λ+ γh)t defines a morphism W ∗

2 → W ∗
1 and ∗W2 →∗ W1.

Let R : h∗ → End(V ⊗ V ) be a meromorphic function, from the previous proposition and the
results on AR one has the following:

Lemma 37. [EV2, Lemma 3.4, 3.5] LetW be a representation of R, the right and left dual representations
of R are representations of R. IfW has finite dimensional weight subspaces then ∗(W ∗) = (∗W )∗ = W .
If A : W1 → W2 is a homomorphism of representations of R, then the linear map A∗(λ) := A(λ +

γh1)t = At(λ − γh1) is a homomorphism of representations W ∗
2 → W ∗

1 and ∗W2 →∗ W1 when these
representations are defined.
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Consider a meromorphic function R and the h-algebra AR, we can prove Proposition 34:

Proof. Define Γ : Rep(AR) → Rep(R) the functor given by the identity on vector spaces and

LΓ(W ) = π0
W (L).

Define the functor Γ−1 : Rep(R) → Rep(AR) as the identity on vector spaces and

π0
Γ−1(W )(L) = LW .

The two functors are inverse to each other and preserve the tensor structure.

3.3 Fusion and exchange construction

In this section we introduce a way to construct solutions of the QDYBE starting from classical repre-
sentation theory of Lie algebras, see [ES].

3.3.1 Fusion operators

Let g be a simple finite dimensional complex Lie algebra with polar decomposition g = n− ⊕ h ⊕ n+.
Let V be a finite dimensional g-module with weight decomposition V =

⊕
ν∈h∗ V [ν], we denote Mλ

the Verma module over g with highest weight λ ∈ h∗, i.e., Mλ = U(g) ⊗U(b) Cλ with b the Borel
subalgebra, xλ its highest weight vector and x∗

λ the lowest weight vector of the dual module.
Given µ, λ ∈ h∗ consider an intertwining operator

Φ : Mλ → Mµ ⊗ V,

define the expectation value of Φ as

⟨Φ⟩ = x∗
µ(Φxλ) ∈ V [λ− µ].

Proposition 38. [ES, Proposition 2.2] If Mµ is irreducible the map Homg(Mµ+ν ,Mµ ⊗ V ) → V [ν]

given by Φ → ⟨Φ⟩ is an isomorphism.

This allows us to define for any v ∈ V [ν] the intertwining operator Φv
λ : Mλ → Mλ−ν ⊗ V such

that ⟨Φv
λ⟩ = v.

Consider now V,W finite dimensional g-modules, let v ∈ V and w ∈ W be homogeneous vectors of
weight wt(v), wt(w) respectively. Let λ ∈ h∗ then define the composition

Φw,v
λ := (Φw

λ−wt(v) ⊗ 1)Φv
λ : Mλ → Mλ−wt(v)−wt(w) ⊗W ⊗ V.

So Φw,v
λ ∈ Hom(Mλ,Mλ−wt(v)−wt(w) ⊗ W ⊗ V ) and, by the previous result, there exists a unique

u ∈ W ⊗ V [wt(v) + wt(w)] such that Φu
λ = Φw,v

λ . This defines an h-linear operator

JWV (λ) : W ⊗ V → W ⊗ V

given by JWV (λ)(w ⊗ v) = ⟨Φw,v
λ ⟩.

Definition 39. The operator Jw,v
λ is called the fusion operator of V andW .
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Proposition 40. [ES, Proposition 2.3] Let V,W be finite dimensional g-modules, then the following hold:

• JWV (λ) is a rational function of λ.

• JWV (λ) is strictly lower triangular, i.e., JWV (λ) = 1+N withN sum of terms with strictly positive
weight in the second component. In particular JWV (λ) is invertible.

• Let U, V,W be finite dimensional g-modules, the fusion operators satisfy the dynamical 2-cocycle
condition:

JU⊗W,V (λ)(JUW (λ− h3)⊗ 1) = JU,W⊗V (λ)(1⊗ JWV (λ)).

3.3.2 Exchange operators

Definition 41. The exchange operator on V andW , finite dimensional g-modules, is defined as

RVW (λ) := JVW (λ)−1J12
WV (λ) : V ⊗W → V ⊗W,

where J12 = τJτ , for τ(x⊗ y) = y ⊗ x.

The operatorRVW tells us how to exchange the intertwining operators, ifΦw,v
λ = τ

∑
i Φ

wi,vi
λ then

RVW (λ)(v ⊗ w) =
∑

i vi ⊗ wi .

Proposition 42. For U, V,W finite dimensional g-modules the exchange matrices satisfy:

RVW (λ− h3)RV U (λ)RWU (λ− h1) = RWU (λ)RV U (λ− h2)RVW (λ).

In particular RV V is a solution of the QDYBE.

Proof. Let u ∈ U, v ∈ V,w ∈ W be homogeneous elements and

Φu,v,w
λ = Φu

λ−wt(v)−wt(w) ◦ Φ
w
λ−wt(v) ◦ Φ

v
λ.

Define σ : U ⊗ W ⊗ V → V ⊗ W ⊗ U as σ(x ⊗ y ⊗ z) = z ⊗ y ⊗ x, then we can write Φu,v,w
λ =∑

i σΦ
vi,wi,ui

λ in two different ways as given by the following diagram:

U ⊗ V ⊗W V ⊗ U ⊗W

U ⊗W ⊗ V V ⊗W ⊗ U

W ⊗ U ⊗ V W ⊗ V ⊗ U

Using the two ways we obtain the relation on the exchange matrices.

Example 43. [ES, Example 1] Consider g = sl2 with generators e, f, h and V = C2 with basis {x, y}.
The action of g on V is given by taking:

e =

(
0 1

0 0

)
f =

(
0 0

1 0

)
h =

(
1 0

0 −1

)
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Using the triangularity property on JV,V (λ) one gets that

JV,V (λ)(x⊗ x) = x⊗ x, JV,V (λ)(y ⊗ y) = y ⊗ y, JV,V (λ)(y ⊗ x) = y ⊗ x.

We need to compute JV,V (λ)(x⊗ y).
Consider Φx

λ+1(xλ+1) = xλ ⊗ x and Φy
λ(xλ) = xλ+1 ⊗ y + g(λ)fxλ+1 ⊗ x, we use the intertwining

property to determine g(λ):

0 = Φy
λ(exλ) = (e⊗ 1 + 1⊗ e)Φy

λ(xλ) =

= xλ+1 ⊗ x+ g(λ)efxλ+1 ⊗ x =

= xλ+1 ⊗ x+ (1 + λ)g(λ)xλ+1 ⊗ x ,

so g(λ) = − 1
1+λ . Then

Φx,y
λ (xλ) = xλ ⊗ (x⊗ y − 1

λ+ 1
)y ⊗ x.

So we get

JV,V (λ) =


1 0 0 0

0 1 0 0

0 − 1
λ+1 1 0

0 0 0 1


and

RV,V (λ) =


1 0 0 0

0 1 − 1
λ+1 0

0 1
λ+1 1− 1

(λ+1)2 0

0 0 0 1

 .

We can check that RV,V is a solution of the QDYBE

R12(λ− h3)R13(λ)R23(λ− h1) = R23(λ)R13(λ− h2)R12(λ).

It is enough to check that the relation holds on the basis of V ⊗ V ⊗ V , we start with the easy case:

R12(λ− h3)R13(λ)R23(λ− h1)(x⊗ x⊗ x) =

= x⊗ x⊗ x =

= R23(λ)R13(λ− h2)R12(λ)(x⊗ x⊗ x)

and
R12(λ− h3)R13(λ)R23(λ− h1)(y ⊗ y ⊗ y) =

= y ⊗ y ⊗ y =

= R23(λ)R13(λ− h2)R12(λ)(y ⊗ y ⊗ y)
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Consider x⊗ x⊗ y, remember that x and y have weight 1,−1, so we have:

R12(λ− h3)R13(λ)R23(λ− h1)(x⊗ x⊗ y) =

= R12(λ− h3)R13(λ)(x⊗ x⊗ y +
1

λ
x⊗ y ⊗ x) =

= R12(λ− h3)[x⊗ x⊗ y +
1

λ+ 1
y ⊗ x⊗ x+

1

λ
x⊗ y ⊗ x] =

= x⊗ x⊗ y − 1

λ(λ+ 1)
x⊗ y ⊗ x+

1

λ+ 1
(1− 1

λ2
)y ⊗ x⊗ x+

+
1

λ
x⊗ y ⊗ x+

1

λ2
y ⊗ x⊗ x =

= x⊗ x⊗ y +
1

λ+ 1
x⊗ y ⊗ x+

1

λ
y ⊗ x⊗ x

and
R23(λ)R13(λ− h2)R12(λ)(x⊗ x⊗ y) =

= R23(λ)R13(λ− h2)(x⊗ x⊗ y) =

= R23(λ)(x⊗ x⊗ y +
1

λ
y ⊗ x⊗ x) =

= x⊗ x⊗ y +
1

λ+ 1
x⊗ y ⊗ x+

1

λ
y ⊗ x⊗ x

.

Similarly for any element of the basis of V ⊗V ⊗V the relation holds, i.e.,RV V is a dynamicalR-matrix.
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4 The classical dynamical case

Quantization of the classical Yang-Baxter equation (CYBE) led to the theory of quantum groups, its
dynamical analogue is the classical dynamical Yang-Baxter equation (CDYBE).
In this section we follow [S] and [EV1] to introduce some basic notions linked to the CDYBE and give
a geometric meaning to its solutions, the dynamical r-matrices, using the notion of dynamical Poisson
groupoid, the dynamical analogue of Poisson-Lie groups.
Similarly to the QYBE, let V be a finite dimensional semisimple h-module and R : h∗ → End(V ⊗ V )

of the formR = 1−γr+O(γ2) a solution of the QDYBE of step γ, then r : h∗ → End(V ⊗V ) satisfies
the CDYBE.
The function r is the classical limit of R, and R is a quantization of r.

4.1 The classical dynamical Yang-Baxter equation

Let g be a Lie algebra and r ∈ g⊗ g, then:

Definition 44. The classical Yang-Baxter equation (CYBE) is given by

[r12, r13] + [r12, r23] + [r13, r23] = 0.

Solutions of the CYBE are called r-matrices.

Let h ⊂ g be a subalgebra, an element x ∈ g⊗ g is said to be h-invariant if

[k ⊗ 1 + 1⊗ k, x] = 0 ∀k ∈ h.

For x ∈ g3 define
Alt(x) = x123 + x231 + x312.

Definition 45. The classical dynamical Yang-Baxter equation (CDYBE) is the differential equation for
an h-invariant holomorphic function r : D → g⊗ g, with D ⊂ h∗, given by

Alt(dr) + [r12, r13] + [r12, r23] + [r13, r23] = 0.

Here dr : D → g3 is considered as a holomorphic function dr(λ) =
∑

i xi ⊗ ∂r23

∂xi
(λ), for any basis

(xi) of h.

Explicitly we have

Alt(dr) =
∑
i

x1
i

∂r23

∂xi
+
∑
i

x2
i

∂r31

∂xi
+
∑
i

x3
i

∂r12

∂xi
.

Definition 46. A function r : D → g⊗ g satisfying the CDYBE is called dynamical r-matrix.

In [E] we find the following conjecture:

Any classical dynamical r-matrix can be quantized.

This has been proved in the non-dynamical case by Etingof P. and Kazhdan D., and in the dynamical
case for skew-symmetric solutions with some additional assumptions by Xu P..
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4.2 Dynamical Poisson groupoids

Wenow introduce the classical limit of the notion of dynamical quantum groups, i.e., Poisson groupoids.
A more detailed analysis is given in [EV1] and [W].

Remark 47. Wewill only consider groupoids built on small categories, so objects and morphisms form
a set.

Definition 48. A groupoid is a small category in which every morphism is invertible.

We will consider groupoids given by:

• a set X (denoting the groupoid itself) of arrows

• a set P of objects

• two surjective maps s, t : X → P called source and target

• a composition map m : {(a, b) ∈ X ×X : s(a) = t(b)} → X

• an injective map E : P → X called identity map

satisfying various conditions. In particular there exists an involution i : X → X such that s(i(x)) =
t(x), s(x) = t(i(x)),m(x, i(x)) = idt(x) andm(i(x), x) = ids(x).
The notion of groupoid generalizes that of group, in particular a groupoid with only one object is a
group.

Definition 49. A Lie groupoid is a groupoid equipped with a smooth structure, i.e., the set of objects
and morphisms are both smooth manifolds and the structure maps are smooth.

Definition 50. [W][EV1] A Poisson groupoid is a Lie groupoidX endowed with a poisson bracket such
that the graph of the composition map is a coisotropic submanifold of X × X × X̄ , i.e., the smooth
functions vanishing on it are closed under Poisson bracket.
Here X̄ indicates the opposite Poisson manifold to X .

We can now introduce a special class of Poisson groupoids which we will call dynamical Poisson
groupoids.
Let G be a Lie group and g its Lie algebra,H ⊂ G a connected Lie subgroup with Lie algebra h. Define
the coadjoint action as for any h ∈ H , x ∈ h and µ ∈ h∗:

Ad∗ : H → Aut(h∗)

Ad∗(h)(µ)(x) := µ(Ad(h−1)(x)).

Let U ⊂ h∗ be an open subset invariant under the coadjoint action.
Consider the manifold X(G,H,U) := U × G × U , it has a natural structure of Lie groupoid given
by taking X = X(G,H,U), P = U , s(u1, g, u2) = u2, t(u1, g, u2) = u1, E(u) = (u, 1, u) and
m((u1, f, u2), (u2, g, u3)) = (u1, fg, u3), while the inversion is defined by using inversion on G as
i(u1, g, u2) = (u2, g

−1, u1). This groupoid is the direct product of the trivial groupoid with base U and
the group G.
On X we consider a left and right commuting actions of H defined as:

l(h)(u1, g, u2) = (Ad∗(h)(u), hg, u2),
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r(h)(u1, g, u2) = (u1, gh,Ad∗(h−1)(u2)).

We can also define the diagonal action of H on X × X as ∆(h)(x, y) = (r(h)−1x, l(h)y), which
preserves the composition map.
For any a ∈ h consider the functions onX defined by a1(u1, g, u2) = a(u1) and a2(u1, g, u2) = a(u2).
Recall that given (M,ω) a symplectic manifold and H a Lie group, then a symplectic action of H on
M is said to be a Hamiltonian action if there exists a moment map µ : M → h∗.

Definition 51. The pair (X, {}), where {, } is a Poisson bracket onX , is a dynamical Poisson groupoid
if the following holds:

• the actions l, r are Hamiltonian, with t, s being their moment maps, and for any a, b ∈ h one has
{a1, b2} = 0.

• Let X •X := X ×X//∆(H) be the Hamiltonian reduction of X ×X by the diagonal actions
and m̄ : X •X → X the reduction of the composition map by H . Then m̄ is a Poisson map.

Remark 52. If H = 1 a dynamical Poisson groupoid is a Poisson-Lie group.
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