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1 Introduction

The quantum Yang-Baxter equation (QYBE) arises naturally in the setting of statistical mechanics and
quantum field theory. It was proposed by Baxter as the star-triangle relation while studying the 8-vertex
model and by Yang in the study of a quantum N-body problem.

As a simple example one can consider the state models on n x m square lattices in Z?2, then the matrix
of Boltzmann weights satisfies the QYBE.

We can interpret the QYBE in a more algebraic setting, leading to the theory of quantum groups.
Consider V' a vector space, we say that R € End(V ® V) satisfies the QYBE if

R12R13R23 — R23R13R12

in End(V ® V ® V). A solution of the QYBE is called R-matrix.
The classical analogue of the QYBE is the classical Yang-Baxter equation (CYBE)

[r12,723] + [r13, 23] + [r12,713] = 0,

whose solutions are called the classical r-matrices. In this case one considers the theory of Poisson-Lie
groups, a geometric interpretation given by Drinfeld [Dxl].

Let R be an R-matrix, we can associate to it an algebraic structure (using the RTT construction) which
is exactly a Hopf algebra such that the universal element of a quasitriangular structure is the given
R-matrix. We call a quasitriangular Hopf algebra quantum group.

In the following report we will concentrate on a generalization of the QYBE, the quantum dynamical
Yang-Baxter equation (QDYBE). The QDYBE was introduced by G. Felder [[F] and he also considered its
quasiclassical limit, the CDYBE.

Let h be a finite dimensional commutative Lie algebra over C, V' a semisimple finite dimensional §-
module and R : h* — Endy(V ® V') a meromorphic function, then the QDYBE of step y reads:

R\ = yh*) RSO RB(\ — 4ht) = BB O)RS (A~ 1h)R2(),

where v € C ( the notation is explained in section 3.1 ).

Similarly to the non-dynamical case, we would like to associate an algebraic structure to solutions of
the QDYBE, the dynamical quantum group.

Our aim is to understand the solutions of the QDYBE, i.e., the dynamical R-matrices, and the dynamical

quantum groups.

In the first chapter we introduce some basic notions necessary to understand the setting of quantum
groups. Specifically we recall the quantum Yang-Baxter equation and the definition of R-matrix, we
then introduce Hopf algebras and the concept of quantum group.

In sectionwe present a construction, first introduced by Faddeev, Reshetikhin and Takhtajan [[FRT],
that allows us to construct a quantum group starting from a given R-matrix.

In the last section we present an explicit example, the quantum group Uy (sls).

In the second chapter we introduce the main equation, the quantum dynamical Yang-Baxter equation.

Similarly to the case of the QYBE, we would like to find an algebraic structure associated to solutions



of the QDYBE, the dynamical R-matrices, that we will call dynamical quantum group.

We then introduce the dynamical quantum group Apg, a generalization of the RTT construction in the
dynamical case. In section we give a few results regarding the representation theory of Ar and
linking it to that of R.

We then discuss a way to obtain solutions of the QDYBE using fusion and exchange operators.

In the last chapter we introduce the classical dynamical Yang-Baxter equation, i.e., the dynamical ana-
logue of the classical Yang-Baxter equation. We give some basics notions in order to give a geometric
interpretation to the CDYBE, introducing the concept of Poisson groupoid, a generalization of Drinfeld’s

construction for Poisson-Lie groups [Dx]].



2 Basic Tools

In this chapter we introduce the Quantum Yang-Baxter equation (QYBE) and give the definition of R-
matrices as solutions to the QYBE. We then introduce the algebraic structure behind R-matrices, i.e.,

Hopf algebras and Quantum Groups.

2.1 The Quantum Yang-Baxter equation

Consider a K-vector space V and a linear operator R : V @k V' — V @ V, we say that R satisfies the
quantum Yang-Baxter equation (QYBE) if:

R12R13R23 — R23R13R12
where R¥ is the operator acting as R on the ith and jth components in End(V ®x V @k V).

Definition 1. We define R-matrix a solution of the QYBE.

2.2 Hopf algebras

We now give the necessary definitions needed to work within the framework of Hopf algebras to better
understand the QYBE.
Fix a field K, then a K-algebra A is a K-vector space equipped with a bilinear product 1 : A® A — A.

It is associative if the diagram

A®A

ARA®RA A
pR1 /
AR A

commutes.
If there is a map 7 : K — A such that

A K A KA
1®n ,/@1
AR A

commutes, then A is unital.
Similarly A is said to be coassociative with counit if there exist a coproduct A : A - A ® A and a
counit € : A — K such that the diagrams

AR A

ARAR®A A AR®K A K® A
e
®RA

m\
A

1®e e®1



commute.

Definition 2. If (A4, ¢, A, 1, n) is such that (A, e, A) is a coalgebra and (A, p, n7) is an algebra, then A

is called a bialgebra.
Definition 3. A Hopf algebra is a bialgebra over K with a linear map S : H — H, called the antipode,
such that the following diagram commutes:

AA—35%4 A9 A

-
A®4 id®S 484
We can now introduce the general algebraic structure behind R-matrices:

Definition 4. A bialgebra, or Hopf algebra, is quasitriangular if there exists an element R € A ® A,

called universal R-matrix, such that
RA(z)R™ = 7A(x),
where 7 is the transposition operator 7(a ® b) = b ® a, and
(A®1)R = Ri3Rs3, (1® A)R = Ry3R;3.
Remark 5. Here the notation 7A(x) is used to indicate TA(z)T = A°P(z).
Given a quasitriangular Hopf algebra, the universal R-matrix satisfies the QYBE.

Definition 6. We call a quasitriangular Hopf algebra quantum group.

2.3 The RTT construction

Suppose R is a solution of the Yang-Baxter equation, i.e., an R-matrix, then we would like to associate
to this given solution a corresponding Hopf algebra such that R determines its quasitriangular struc-

ture. To do so we follow the construction explained in detail in [FRT].

Let V be an n-dimensional C vector space and R € End(V ® V') an element satisfying the QYBE.
Define A = A(R) as an associative algebra over C generated by 1,¢;; for ¢, j = 1, ..., n satisying

RIVT, =TT R,
where T' = (t,;) and we use the notation 7} =T ® landTr =1 ® 7.

Proposition 7. A(R) is an Hopf algebra with coproduct A : A — A ® A defined by A(1) =1® 1 and
Altij) = Doy tik @ .
Proof. We give an idea of the proof of the above result, a more general discussion regarding A(R) is

present in [K| VIIL6].
The above formulas define a unique algebramap A : A — A® A and the counit is given by €(¢;;) = J;;.



It is sufficient to check coassociativity on the generators ¢;; and extend by linearity.

Define I as the ideal generated by the RTT relations, we need to check that [ is a coideal, i.e., that
A(I) C I ® A+ A® I, where A is the free algebra without the relations on the generators.

Define 577" := Zk',l Rfjtkmtln — Zk,l tikt; 1 R;™, then we have that:

ASE™) = > Riftiptiq @ tymtan — Y tiptjq @ tysta R =

k,l,p,q k,l,p,q
— Pq Pq
= g Sij ® tpmtqn + E tik’tlekl & tpmtqn"'
k,l,p,q k,l,p,q
kl
+ g tiptjq & S;T(L]n - g tiptjq & qutkmtln =
k,l,p,q k,l,p,q
— E Pq E Lt mn
- Sij ® tpmtqn + tlpt]q & Spq
k,l,p,q k.l,p,q

We observe that R controls the non-commutativity of the generators t;; of A(R).

2.4 The quantum group U,(sls)
In this section we compute an explicit example of quantum group and R-matrix.

Consider g = sls and ¢ € C, ¢ # 0, such that ¢ is not a root of unity. Define U,(sl2) as the alge-
bra generated by E, F, K* with the following relations:

KK '=K 'K =1,

KEK™! = ¢*FE,

KFK'=¢7?%F,
_ g1

q—q

Proposition 8. U = U,(slz) is a Hopf algebra.
Proof. Define on U the following structure:
AE)=E®1+K®E, AF)=FoK '+19F, AK)=K®K
e(E)=¢€(F)=0, ¢K)=1
S(E)=-K'E, S(F)=-KF, S(K)=K"!

A, € and S defined as above give U an Hopf algebra structure.
We check that A([E, F]) = [A(E), A(F)):

AE),A(F)=E®l+K@EFK'+1@F] =
[E,FIe K '+ K®[E,Fl+[K®E,Fo K '|=

K-K! K-K!
=71®K*1+K®?+KF®EK*1—FK®K*1E:

q—q -
 K®K-K'@K!'
q—q !
K—-K!
= A(ﬁ) = A([E, F]).



So we conclude.
O

We denote 7 : U ® U — U ® U to be the transposition operator 7(a ® b) = b ® a. Observe that
the opposite coproduct is given by

AP’(E)=E®K+1®E, AP?F)=Fl1+K 'oF

Remark 9. One would like to recover the universal enveloping algebra U(slz) from the quantized
Uq(sla) when ¢ — 1, to do so we need to consider the formal version of Uy (sl2) defined starting from
E, F, H and relations on their brackets [Kl XVIL 4]. With this definition the element K is K = e
and for ¢ = 1 we get U(sl2).

Let V = C? and consider the tautological representation given by:

) 6 )

We are looking for an element R € U ® U such that RA°?(u) = A(u)R for all u € U. We take
advantage of the tautological representation and look for such an R in End(V @ V).

Consider V@V with basis {z @z, 2 @y, y @,y @y}, then U acts on V ® V in the following way:
Evew)=AFE)(veow), Fovew)=AF) vew), Klvew)=A(K){ve w)

As matrices we get:

0 ¢g 1 O 0 0 0 O ¢ 00 0
B 00 0 1 P 1 0 0 O K 0 1 0 0O
0 0 0 gt g' 000 0 01 0O
00 0 O 0 ¢g 1 0 0 0 0 g2
The R-matrix preserves the eigenspaces of K so it will be of the form
a 0 0 O
0 b ¢ O
R = € End(V V).
0 d e 0 nd(Vev)
0 0 0 f
We then have the following:
a 0 0 O 01 q O 0 a qa 0
b -1 gt
RA(E) = 0 c 0 0 0 0 g¢g _ 0 0 0 c+ig
0 d e O 0 00 1 0 0 0 e+dg!
0 00 f 00 0 O 0 0 O 0
0 g 1 O a 0 0 O 0 d4+qb e+qc 0
0 00 1 0 b 0 0 0 0
A(E)R = » ¢ - ffl
0 0 0 ¢ 0 d e O 0 0 0 fq
0 0 0 O 0 0 0 f 0 0 0 0



a 0 0 0 0 0 0 O 0 0 0 O

b -1 bg~?
RA(F) — 0 c 0 q 0 0 0 _|etbg 1 0 0 O
0 d e O 1 0 0 0 e+d¢g= 0 0 O
0 00 f 1 ¢ 0 0 f oqf 0O
0O 0 0 O a 0 0 O 0 0 0 0
1 0 0 0 0 b 0 0 0 0

AFR=| _, e N

q 0 0 O 0 d e O aq 0 0 0
0 g 1 0 0 0 0 f 0 d+qgb e+qgc 0

Imposing the condition on R we obtain the following systems:

a=d+gb a=c+bg!
qa = e+ qc ag ' =e+dg?
f=c+bg? f=d+qb
faet=e+dqg! fa=e+qc
One then gets

a=f

d=a—qb

c=a—bg! ,

e=q '(a—d)

b=q (a—d)

so, up to scalars, the matrix of R is

0 0 0
b 1—¢ ' 0
1—gqb b 0
0 0 1

o O o =

Consider b = ¢, we obtain a triangular matrix satisfying the QYBE:

1 0 0 0
O R
0 1-¢> ¢ 0
0 0 0 1

Remark 10. The R-matrix we obtained is the image in End(V ® V') of an element in the extended
U®U and not in U ® U. This implies that U, (sl2) is not quasitriangular in a purely algebraic sense,
but an R-matrix can be found in the completed tensor product.

Specifically, one finds [K| Theorem XVII 4.2]

R i (q
n=0

This infinite sum lives in U®U but for V finite dimensional representation of sls, since E, F act nilpo-
tently on V, the image of Risin End(V @ V).

-1 n,,—n(n—1)/2

—q)"q
[n]!

F"® E".




Viceversa, as in [Fa], suppose given the matrix

0

o O oK
S = O O
=2 O O O

let T" be the matrix 7" = {t;;}; je{1,2}, then the RTT relations reduce to the following 6 formulae (out
of 16 only 6 are independent):
tiitiz = qtiatn
tiatar = ta1tiz
tiitor = qtailn
1

toot1o = —t12l92
q

1
tagto = §t21t22

1
ti1tas — toot11 = (g — a)tutzl

Consider the g-determinant of T' given by

detq(T) = Z (—Q)l(a)twu) - tng(n) = t1ta2 — qliaton,
oESn

imposing det,(T) = 1 we obtain the quantum group SL,(2), which is dual to U, (sl2) [Kl VIL5].



3 The quantum dynamical case

In this chapter we introduce the quantum dynamical Yang-Baxter equation (QDYBE), a generalization
of the QYBE arising from mathematical physics, in which additional parameters appear.

Similarly to the case of quantum groups, we introduce the solutions of the QDYBE, i.e., dynamical R-
matrices, and see how one can associate to such a solution an algebraic structure, which will be called

a dynamical quantum group.

3.1 The quantum dynamical Yang-Baxter equation

Unlike the QYBE, the dynamical version is not an algebraic equation but a difference one, where the

R-matrix is a matrix-valued function on an abelian Lie algebra instead of a matrix with scalar entries.

Let § be a finite dimensional commutative Lie algebra over C, v € C and V a semisimple finite
dimensional h-module. Let R : h* — Endy(V ® V') be a meromorphic function, thenon V@V @ V
the QDYBE of step +y reads:

RPZ(A\ = 9h*)RP(NRP (A — yh') = RZ(\)RP (A = vh*) R (),

where h' is the dynamical notation, i.e., R (XA — vh3)(v1 ® v2 ® v3) := (RZ(A — yp)(v1 @ v2)) @ v3
if v3 has weight g, and similarly for A, h2.
If h = 0 we obtain the usual QYBE.

A function R;; : b* — End(V; ® V;) is of zero weight if
[Rij(A),h®1+1®h]=0
forallh € hand A € h*.

Definition 11. A Quantum dynamical R-matrix R : §* — End(V ® V) is a generically invertible
solution of the QDYBE of zero weight .

3.1.1 Representation of quantum dynamical R-matrices

The following notions were introduced by Felder and Varchenko [FV], and later discussed in [EV2].

Let My« be the space of meromorphic functions on h*, fix v € C.
Denote by V; the category of h-vector spaces, with objects the diagonalizable h-modules and morphisms
defined by Homy, (X,Y) = Homy(X,Y ®@c Mpy-).
Consider the bifunctor:
® : Vh X Vh — Vh

defined on objects by taking the usual tensor product and for any two morphisms f : X — X’ and
g:Y =Y as
f®g: XY - X' oY’

f&gN) = F{(A = p*) (1 @ g(\), (1)



where
Fr =k (1@ g\)(@ @ y) = (f(A = pa) @ g(\)y
for g(\)y of weight . The category Vj, equipped with the bifunctor ® is a tensor category.

Definition 12. Let R : h* — End(V ® V') be a quantum dynamical R-matrix,i.e., a meromorphic func-
tion satisying QDYBE. A representation of R is an object W € V} together with an invertible morphism
L € Endy, (V@W), called L-operator, such that

RIQ()\ _ ’}/h3)L13()\)L23()\ _ "/hl) _ L23()\)L13()\ _ ’yh2)R12(A)
in Endy, (VRVeW).

Definition 13. Let (W, Ly ) and (U, Ly ) be representations of R, a morphism A € Homy, (W,U) is
an R-morphism if

(1@ AN)Lw(\) = Lu(N)(1 @ A(X = vh')).

The representations of R form a category which we denote by Rep(R).
The tensor product of two given representations W, U € Rep(R) is given by the pair (W @ U, Lwgu),
where Lyygu (A) := LiZ(A — vh3)LE(N).

Proposition 14. [EVZ Lemma 3.2] The pair (W ® U, Lwgu ) is itself a representation of R.
Proof. We need to check that for Lyy gy on Endy, (VRV (W @ U)) the following holds:
RZ(\ — VhS)L%{‘;@U(A)L%I%@U(A —h') = L%/I%@U(/\)L%/I%@U(A —h*)RP(N).

On the rhs we have:

R™Z(\ - VES)L%/{i@U(A)L%s@U()\ —h') =

= R\ = vh%) Lif oy W L3 (A — y(h' + W) LEH A — yh') =

= R\ = R L (A = 9h") LG A L (A = (k' + 1)) LE (A = ~ht).
Note that we write 73 to indicate that we are using the weight of elements z € W ® U, while we write

h3, h* when we consider z € W @ U as z = w ® u.

The lhs is:
L%/‘?/)@U()‘)Lil/[?}@U()‘ - ’YhQ)RlQ()\) =

= L (A =) LG N Ly (A = y(h* + b)) Lt (A — vh*) R™2(N).
Using the fact that Ly and Ly satisfy the defining relation of a representation of R we conclude.
O

Proposition gives a structure of tensor category to Rep(R).

We also introduce the notion of left and right dual representation:

Definition 15. Let (W, Ly ) € Rep(R), the right dual representation to W is given by the pair (W*, Ly« ),
where W* is the h-graded dual of W and

Ly« = Lyt (A + vh?)'2,

where t9 denotes dualization in the second component. Dually the left dual representation of W is given

by (W, L-yw ) with *IW = W* and

Low = Lz (A —~h%) L.

10



Note that Ly~ and L« are obtained by applying three different operations to Ly : inversion,
shifting and dualization in the second component. To define the dual representation one must then

have Ly or L%}, invertible.

3.2 h-Hopf algebroid

In this section we introduce the algebraic structures necessary to define the dynamical equivalent of
quantum groups, the dynamical quantum groups, as given in [EV2]. We also introduce a construction
that associates to a given meromorphic function R : §* — End(V ® V) an h-bialgebroid called the
dynamical quantum group corresponding to R.

The term algebroid comes from the fact that in the classical case one obtains, as dynamical analogues
of Poisson-Lie groups, the Poisson groupoids (51). The term creates a parallelism between the classical
and quantized version of the YBE and DYBE.

3.2.1 bh-bialgebras

Let b be a finite dimensional commutative Lie algebra on C, let My~ denote the field of meromorphic
functions on h*. Fix v € C with v # 0.

Definition 16. An h-algebra of step -y is an associative algebra A over C with unit, endowed with an

h*-bigrading called the weight decomposition

A= P Aus,

a,Beh*

and left and right moment maps, i.e., two algebra embeddings 1, pt, : My« — Agp such that Va € A,p
and f € My~ we have

p(f(M)(a) = apu(fA+ye)),  pr(f(N)(@) = apr(fF (A +75))-

Definition 17. A morphism between h-algebras is an algebra homomorphism ¢ : A — B preserving

the moment maps.
Given two h-algebras A, B we define a third h-algebra given by the following operation:

Definition 18. The matrix tensor product of A, B is the h-algebra A® B where

(A@B)as = EP Aas @1, Bgs.
E

Here ®,. is the usual tensor product modulo the following relation:

pr(Hla©b=a® pu’(f)b
forany f € My-,a € A,be€ B.

On A®B define the moment maps as:

WP =ut (@1, WP () =10 ul(f).

Definition 19. A coproduct on an h-algebra A is an homomorphism of h-algebras A : A — AR A.

11



We give now a simple nontrivial example of an h-algebra that will be used to give a monoidal

category structure to the category of h-algebras.

Example 20. Let Dy be the algebra of difference operators My- — My, i.e., operators of the form
Yory fi(N)Ts, where f; € My« and V3 € h* we denote T} the field of automorphisms of My- given

by (Ts /)(N) = F(A +5).
On Dy we define the weight decomposition as
Dy = P (Dy)as,

where (Dy)ap = 0if a # B and (Dy)aa = {f(A\)T,; ! : f € My-}. The moment maps are given by
the tautological isomorphism
= pr = My« = (Dp)oo,

in fact (Dy)oo = {f(NTy " : f € My-} ={f(N) : f € My} = M-
By definition of Dy, one has A® Dy, and Dy® A isomorphic to A.
The h-algebra Dy, is the unit object of the monoidal category of h-algebras.

Definition 21. A counit on an h-algebra A is a homomorphism of h-algebras e : A — Dy,

Definition 22. An h-bialgebroid is an h-algebra A equipped with a coassociative coproduct Aie.,
(A®Ida)o A= (Ids @A) oA, and a counit € such that (e @ Idg) o A = (Ida ®€) o A = Id4.

Remark 23. Note that an h-bialgebroid is defined using the matrix tensor product &, this allows mul-

tiplication by elements of My, i.e., meromorphic functions and not only holomorphic.

Example 24. Dy is an h-bialgebroid with coproduct A : Dy — Dy®&Dy, the canonical isomorphism

and counit € = Id.

Consider A an h-algebra, a linear map S : A — A is an antiautomorphism of h-algebras if it is an

antiautomorphism of algebras and p, 0 S = p; and p; 0 S = .

Definition 25. Let A be an h-bialgebroid, an antipode on A is an antiautomorphism of h-algebras
S : A — A such that for any a € A and any presentation of A(a) one has

S als(a?) = le@1), Y S(ah)a? = pu(ela)D)

Where € and A are the counit and coproduct on A and for a € A we have A(a) = >, a! ® a?.

Definition 26. An h-bialgebroid with an antipode is called an h-Hopf algebroid.

3.2.2 The dynamical quantum group Ap

Let b be a finite dimensional commutative Lie algebra, consider V' = € V., a finite dimensional

diagonizable h-module. -

Let R : h* — End(V®V') be ameromorphic function such that for a generic A we have R(\) invertible.
Similarly to the RTT construction [2.3] we want to define an h-bialgebroid A associated to R that we
will call the dynamical quantum group corresponding to R, i.e., a dynamical analogue of the quantum

group attached to an R-matrix [EV2].

12



Define A, as the quotient of the algebra A freely generated by M, b+ @ My~ and new generators which
are matrix elements of the operators L* € End(V) ® Ag, Lay and (L™1) 4, for a,b =1, ..., dimV.
For f € My~ we denote f(\') and f(\?) the elements of respectively the first and second copy of M-
in Ar. We denote the weight components of L* with respect to the natural h-bigrading on End(V') as
(L%)ap, so that (L*) .5 € Home(Vs, V) ® Ag.

We quotient A by the ideal defined by the following relations:

f(Al)LaB = Laﬁf(/\l + o) f(Az)LaB = Laﬁf(/\2 +78) [f()‘l)ng\Q)] =0 (2)
LL'=L"'L=1 (3)
RIQ()\l)L13L23 = L23L13R12(>\2). (4)

The third relation is called the dynamical Yang-Baxter relation and should be read in the following way:
if {v,} is a homogeneous basis of V,and L = Y E4p ® Lap, R(A)(ve @ vp) = > R (A )ve ® v4, then

Z Rﬁ(Al)LmbLyd = Z Rbd()‘Q)mchyLaI

summing over repeated indices.

To give AR the structure of an h-algebra we define the moment maps as follows:

m(f) = fA), me(fN) = FOO?).

The weight decomposition is given by f(A!), f(A?) € (Ar)oo and Lo € Homc(Vs, Va) @ (AR)ap-

We want to give Ar a h-bialgebroid structure, to do so we define a coproduct A : A — Ar®AR
as

A(L) — LlQLlB7 A(L_l) — (L—1)13(L—1)12’
where A is applied to the second component of L.
Remark 27. Compare the A here defined to that of Proposition[7} similarly to the RTT case, the idea is
to define the coproduct on the generators and to extend it. Note that here, in the Yang-Baxter relation,

we are acting on V ® V ® V whereas in the RTT relation we had 7!, T2 actingon V @ V.
Similarly to Proposition 7] one must check that the given coproduct preserves the defining relations.

Proposition 28. [EVZ, Proposition 4.2] A extends to a well defined homomorphism Ar — AR@ARg.

Proof. By definition A(Lag) = 3_., L;QWL}Y% We need to show that A preserves the defining relations
of AR.
Relations[2] and 3] are invariant by definition of A. Consider relation[4 we have
R12 ()\%)L13L14L23L24 — RIQ(A%)L13L23L14L24
— L13L23R12<)\%) . L14L24
_ L13L23R12()\%)L14L24 ;
_ L23L13 . L24L14R12()\§) .
—- L23L24L13L14R12(A§) .
where the pedices on A indicate that the functions are taken from the first or second component of

AR®AR. Since AR@AR is in the tensor product Ap ®m,. Ar we can replace A} with A? in the

13



equation.
We have then checked that

R12()\%)L13L14L23L24 = L23L24L13L14R12(>\§) .

so the proposition is proved.

We define the counit € : Ap — Dy by the formula:
G(Laﬁ) = dppldy, ® Tgl,

(L™ ap) = dapldy, @ T,.

Similarly to the coproduct ¢ annihilates the relations[2Jand[3|by definition. Relation[4reduces to proving
the following:

(D RPN (Idy, ® Idy,) @ Tl = (3 _(Idv, ® Idy, ) RP (V) © T, L,
but R has zero weight, so the equation is satisfied.

Proposition 29. [EVZ, Proposition 4.3] The counit € satisfies the counit axiom (e®@Id)oA = (Id®e)oA =
1d for Ag.

Combining Proposition [28]and[29], we therefore have that A, is an h-biequivariant bialgebroid.i.e.,
it is an h-bialgebroid and we have a pair of commuting actions of h on Ap that behave well with the

moment maps ([EV2] chapter 5]). We call it the dynamical quantum group corresponding to R.

To have an h-Hopf algebroid we need an antipode on Ap.

Definition 30. An invertible zero weight matrix function R is rigid if the element L € End(V) ® Agr

is strongly invertible.

Consider X € B ® A, with A, B algebras with unit and i(X) the inverse, let I be the group freely
generated by 4,4, with i = i2 = 1. The element X is said to be strongly invertible if Vg € I the
element g(X) is well defined.

The following proposition holds:

Proposition 31. [EV2 Proposition 4.4] R is rigid if and only if Ar admits an antipode S such that
S(L) = L. In this case, S2,,(L) = (i*i)"(L) and S**1(L) = i(i*i)"(L).
In particular, S(L™1) = i*i(L).

Consequently, under the assumption of rigidity, Ar is an h-Hopf algebroid.
Although Ap is an h-Hopf algebroid, for a generic R rigid zero weight function this algebra does not
have interesting dynamical representations, however in the case of R a dynamical quantum R-matrix

the category Rep(R) is nontrivial, and so is Rep(AR).
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3.2.3 The dynamical representation

Suppose W is a diagonizable h-module, then we define Dy, C Homc(W, W @ Dy) to be the space
of all difference operators on h* with coefficients in Endc (W) and weight o with respect to the action
of hin W.

Define Dy w = D, Dy - algebra with weight decomposition Dy w = D, 5(Dny,w )as defined by

(Dy,w)ap = {QTEI : g € Homc(W,W ® My-) of weight 8 — a},

and moment maps p,.(f(A)) = f(A) and w(f(N)) = f(A—~h), where f(A —vh)w = f(A —yp)wif
w e W(w).

Lemma 32. [EV2 Lemma 4.3] There is a natural embedding of h-algebras Dy w @Dy v — Dy weu,
given by the formula fTs ® ¢Ts — (f®qg)Ts. This embedding is an isomorphism if W, U are finite-
dimensional.

The product f®g is defined in

Definition 33. Let A be an h-algebra, a dynamical representation of A is a diagonalizable h-module W
endowed with an h-algebra homomorphism 7y : A — Dy .

A homomorphism of dynamical representation of A is a map ¢ € Homg(Wy, Wa ® My«) such that
pomw, (x) =mw,(z) opforallx € A.

We would now like to prove the following:
Proposition 34. [EVZ Proposition 4.6] The tensor categories Rep(Ag) and Rep(R) are equivalent.

To do so we introduce a few results on Rep(Ag).
Let A be an h-Hopf algebroid, if (W, my/) is a dynamical representation of A we denote by 7{, the
map 7Y 1 A — Hom(W, W ® My-) given by 7 (x)w = mw (z)w for all w € W, i.e., the difference
operator Ty restricted to constant functions.

Definition 35. Let (W, 7y ) be a dynamical representation of A, the right dual representation to W is
(W*, ww~ ), where W* is the h-graded dual to W and

T (2)(N) = 75 (S(2)) (A + vh — ya)' Vo € Agp.
The left dual representation to W is the pair (*W, m+y) with *W = W* and
o (@) () = 70 (STH2)) (A +vh — ya)t Vo € Ayp.

Proposition 36. [EVZ2 Proposition 4.1] The right and left dual representation define dynamical repre-
sentations of A. Moreover, if A(A\) : Wi — Wy is a morphism of dynamical representations, then
A*(X) := AN+ yh)t defines a morphism W5 — W and *Wy —* W1

Let R : h* — End(V ® V) be a meromorphic function, from the previous proposition and the

results on Ap one has the following:

Lemma 37. [EVZ Lemma 3.4, 3.5] Let W be a representation of R, the right and left dual representations
of R are representations of R. If W has finite dimensional weight subspaces then *(W*) = (*W)* = W.
IfA : Wy — Wy is a homomorphism of representations of R, then the linear map A*(\) := A(X +
yh1)t = AY(\ — vhl) is a homomorphism of representations Wy — Wi and *Wo —* W, when these

representations are defined.

15



Consider a meromorphic function R and the h-algebra Ag, we can prove Proposition [34}
Proof. Define I' : Rep(Agr) — Rep(R) the functor given by the identity on vector spaces and
Lrwy = my (L)
Define the functor I ~! : Rep(R) — Rep(AR) as the identity on vector spaces and
1wy (L) = L.

The two functors are inverse to each other and preserve the tensor structure.

3.3 Fusion and exchange construction

In this section we introduce a way to construct solutions of the QDYBE starting from classical repre-
sentation theory of Lie algebras, see [ES].

3.3.1 Fusion operators

Let g be a simple finite dimensional complex Lie algebra with polar decompositiong =n_ & h S ny.
Let V' be a finite dimensional g-module with weight decomposition V' = P, . V[v], we denote M
the Verma module over g with highest weight A € b*, ie., My = U(g) @) Cx with b the Borel
subalgebra, x its highest weight vector and z} the lowest weight vector of the dual module.

Given i, A € h* consider an intertwining operator
O My =M, ®V,
define the expectation value of ® as
(@) = 2, (Pxy) € VA= p].

Proposition 38. [ES, Proposition 2.2] If M,, is irreducible the map Homg(M, 4., M, @ V) — V[V]
given by ® — (®) is an isomorphism.

This allows us to define for any v € V[v] the intertwining operator ®% : My — My_, ® V such
that (®%) = v.
Consider now V, W finite dimensional g-modules, let v € V and w € W be homogeneous vectors of

weight wt(v), wt(w) respectively. Let A € h* then define the composition
(I)‘;\%U = (@g\)ﬁwt(v) ® 1)‘1)1/{ My — M)\—wt(v)—wt(w) QW V.

So @\ € Hom(M,, M —wi(v)—wt(w) ® W ® V) and, by the previous result, there exists a unique
u e W @ Vwt(v) + wt(w)] such that 4 = ®|"". This defines an h-linear operator

JwvA) WV -WeV
given by Jyv (A)(w ® v) = (®)"").

Definition 39. The operator .J," is called the fusion operator of V and W.
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Proposition 40. [ES, Proposition 2.3] Let V, W be finite dimensional g-modules, then the following hold:
o Jwv (X) is a rational function of \.

o Jwv (X) is strictly lower triangular, i.e., Jyv(\) = 1+ N with N sum of terms with strictly positive

weight in the second component. In particular Jyv (\) is invertible.

o Let U, V,W be finite dimensional g-modules, the fusion operators satisfy the dynamical 2-cocycle
condition:

Joew,y V) (Jow (A= 1) @ 1) = Juwev (A (1 @ Jwv(N).

3.3.2 Exchange operators

Definition 41. The exchange operator on V and W, finite dimensional g-modules, is defined as
Ryw(A) = JywN) () Ve W = VaWw,

where J'? = 7J7,for T(z @ y) = y @ .

The operator Ry y tells us how to exchange the intertwining operators, if 8" = 75, ®\"" then
va()\)(v X U}) = Zz V; @ w; .

Proposition 42. For U, V, W finite dimensional g-modules the exchange matrices satisfy:
R™WA=1H)RVI(NRYY(N - h') = RYYNRVY (A = ARV ().
In particular Ry v is a solution of the QDYBE.

Proof. Letu € U,v € V,w € W be homogeneous elements and
(I)Kﬂ%“’ = (I)K—wt(v)—wt(w) © (I)l)\u—wt('u) ° CI)K

Definec : U@W RV - VoW eUaso(zr®y®z) =2z®y® , then we can write \""" =
>, 0@ " in two different ways as given by the following diagram:

UVeaW — VoUW

UasWeV VeWweU

T

WUV — WeVelU

Using the two ways we obtain the relation on the exchange matrices.
O

Example 43. [ES| Example 1] Consider g = sl, with generators e, f, h and V = C? with basis {z, y}.
The action of g on V is given by taking:

(oa) =) 62
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Using the triangularity property on Jy /() one gets that
JvvNzer)=zez, JyvNyey) =yey, JuwNyez) =y

We need to compute Jy,y (A)(z @ y).
Consider ®5_ | (zx41) = ) ® = and QY (zx) = xr41 @Y + g(A) fzr1 @ x, we use the intertwining
property to determine g(\):
0=2Y(exy) =(e®@1+1®e)P{(zn) =
=2x1 @r+gNefra @ =
=1 @+ 1+ A9z @,

sog(A) = —1%\. Then ,
PV () =A@ (2QYy— —— )y ® .

A+1
So we get
1 0 0 0
0 1 0 0
JV,V()‘) = 1
0 bt 1 0
0 0 0 1
and
1 0 0 0
0 1 - 0
Ryvyv(A) = R A+11 0
A1 OF1)?
0 0 0 1

We can check that Ry v is a solution of the QDYBE
R2(\ = h)RP(AN)R®P (A — ') = RB(NR¥(N — h*) R ().
It is enough to check that the relation holds on the basis of V' ® V' ® V, we start with the easy case:
RPN =BHRBNRBPN-hY(zoroz) =

—rR®@rRQr =
=RBVRPN-rHRP*N(r@r®2)

and
RP(A = )RPANRP(A-h)(yy®y) =

=yRyQy=
= RP(NRP(A = M)R?*(N)(y©y @ y)
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Consider z ®  ® y, remember that z and y have weight 1, —1, so we have:
R2(\ — BRBO)RE O\ - i)z 9z @ y) =

1
=R2Z(\ - hg)Rl?’(/\)(x RIVY+~rTRYRx)=

A
=R12(/\—h3)[x®x®y+—1 y®x®x+lx®y®x]:
A+ 1 A
1 1 1
= R — 71_7
TRT®Y )\(/\+1)96®y®$+>\+1( Ry er®t

1 1
+Xx®y®x+yﬂ®x®z:

=rRr®y+

1 1
and !
RP(NRP(A =R\ (z @z ®y) =
=RBNRPAN-1W)z@zey) =
1

:R23()\)(x®$®y+xy®x®x):

1
=rQ@rRY+ m®y®x+xy®x®x

1
A+1
Similarly for any element of the basis of V@V @V the relation holds, i.e., Ry v is a dynamical R-matrix.
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4 The classical dynamical case

Quantization of the classical Yang-Baxter equation (CYBE) led to the theory of quantum groups, its
dynamical analogue is the classical dynamical Yang-Baxter equation (CDYBE).

In this section we follow [S] and [EV1] to introduce some basic notions linked to the CDYBE and give
a geometric meaning to its solutions, the dynamical r-matrices, using the notion of dynamical Poisson
groupoid, the dynamical analogue of Poisson-Lie groups.

Similarly to the QYBE, let V' be a finite dimensional semisimple h-module and R : h* — End(V @ V)
of the form R = 1 —~7+O(~?) a solution of the QDYBE of step -, then 7 : h* — End(V ® V) satisfies
the CDYBE.

The function r is the classical limit of R, and R is a quantization of r.
4.1 The classical dynamical Yang-Baxter equation

Let g be a Lie algebra and r € g ® g, then:

Definition 44. The classical Yang-Baxter equation (CYBE) is given by
[’I“12, 7,13] 4 [7,1277,23} + [T137T23] =0.
Solutions of the CYBE are called r-matrices.

Let h C g be a subalgebra, an element € g ® g is said to be h-invariant if
[k®l1+1®kx]=0 Vkeb.

For x € g define
Alt(z) = 2! 4 2231 4 2312,

Definition 45. The classical dynamical Yang-Baxter equation (CDYBE) is the differential equation for
an h-invariant holomorphic function r : D — g ® g, with D C bh*, given by

Alt(dr) + 2,013 + P12, 0% + P13, = 0.

6’)"23
6"1;7;

Here dr : D — g is considered as a holomorphic function dr(\) = Y, z; ®

(i) of .

(N), for any basis

Explicitly we have

or? or3t 5 Orl?
_ 1 2 3
Alt(dr) = XZ:IL oz, + Xi:xi oz, + zi::ri .
Definition 46. A function r : D — g ® g satisfying the CDYBE is called dynamical r-matrix.
In [El] we find the following conjecture:

Any classical dynamical r-matrix can be quantized.

This has been proved in the non-dynamical case by Etingof P. and Kazhdan D., and in the dynamical

case for skew-symmetric solutions with some additional assumptions by Xu P..
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4.2 Dynamical Poisson groupoids

We now introduce the classical limit of the notion of dynamical quantum groups, i.e., Poisson groupoids.

A more detailed analysis is given in [EV1] and [W].

Remark 47. We will only consider groupoids built on small categories, so objects and morphisms form

a set.
Definition 48. A groupoid is a small category in which every morphism is invertible.
We will consider groupoids given by:
«+ aset X (denoting the groupoid itself) of arrows
- aset P of objects
« two surjective maps s,? : X — P called source and target
« a composition map m : {(a,b) € X x X : s(a) =t(b)} - X
« an injective map E : P — X called identity map

satisfying various conditions. In particular there exists an involution 7 : X — X such that s(i(z)) =
t(x), s(x) = t(i(x)), m(x,i(z)) = idy,) and m(i(z),x) = idy ().
The notion of groupoid generalizes that of group, in particular a groupoid with only one object is a

group.

Definition 49. A Lie groupoid is a groupoid equipped with a smooth structure, i.e., the set of objects

and morphisms are both smooth manifolds and the structure maps are smooth.

Definition 50. [W][EV1] A Poisson groupoid is a Lie groupoid X endowed with a poisson bracket such
that the graph of the composition map is a coisotropic submanifold of X x X x X, i.e., the smooth
functions vanishing on it are closed under Poisson bracket.

Here X indicates the opposite Poisson manifold to X.

We can now introduce a special class of Poisson groupoids which we will call dynamical Poisson
groupoids.
Let G be a Lie group and g its Lie algebra, H C G a connected Lie subgroup with Lie algebra f. Define
the coadjoint action as forany h € H, x € hand p € h*:

Ad* : H — Aut(h*)

Ad* (h)(p)(2) == p(Ad(h™")(@)).
Let U C bh* be an open subset invariant under the coadjoint action.
Consider the manifold X (G, H,U) := U x G x U, it has a natural structure of Lie groupoid given
by taking X = X(G,H,U), P = U, s(uy,g,u2) = ua, t(u,g,u2) = uy, E(u) = (u,1,u) and
m((u, f,u2), (u2,g,us)) = (u1, fg,us), while the inversion is defined by using inversion on G as
i(u1,g,u2) = (ug, g~ ', uy). This groupoid is the direct product of the trivial groupoid with base U and
the group G.
On X we consider a left and right commuting actions of H defined as:

l(h)(ula 9, u2) = (Ad*(h)(u)7 hga u2)a
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r(h)(u1,g,un) = (ua, gh, Ad*(h™")(u2)).
We can also define the diagonal action of H on X x X as A(h)(z,y) = (r(h)~tz,1(h)y), which

preserves the composition map.

For any a € b consider the functions on X defined by a; (u1, g,u2) = a(u1) and az(u1, g, u2) = aluz).
Recall that given (M, w) a symplectic manifold and H a Lie group, then a symplectic action of H on
M is said to be a Hamiltonian action if there exists a moment map p : M — h*.

Definition 51. The pair (X, {}), where {, } is a Poisson bracket on X, is a dynamical Poisson groupoid
if the following holds:

« the actions [, r are Hamiltonian, with ¢, s being their moment maps, and for any a, b € b one has

{al,bg} = 0

« Let X ¢ X := X x X//A(H) be the Hamiltonian reduction of X x X by the diagonal actions

and m : X ¢ X — X the reduction of the composition map by H. Then m is a Poisson map.

Remark 52. If H = 1 a dynamical Poisson groupoid is a Poisson-Lie group.
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