École polytechnique fédérale de Lausanne

Semester project spring 2023
Master in Mathematics

Dynamical Quantum Groups

Author:
Susanna Terron

Supervisors:
Oscar Kivinen
Anna Lachowska

Contents

1 Introduction 1
2 Basic Tools 3
2.1 The Quantum Yang-Baxter equation 3
2.2 Hopf algebras 3
2.3 The RTT construction 4
2.4 The quantum group $U_{q}\left(s l_{2}\right)$ 5
3 The quantum dynamical case 9
3.1 The quantum dynamical Yang-Baxter equation 9
3.1.1 Representation of quantum dynamical R-matrices 9
$3.2 \quad h$-Hopf algebroid 11
3.2.1 \mathfrak{h}-bialgebras 11
3.2.2 The dynamical quantum group A_{R} 12
3.2.3 The dynamical representation 15
3.3 Fusion and exchange construction 16
3.3.1 Fusion operators 16
3.3.2 Exchange operators 17
4 The classical dynamical case 20
4.1 The classical dynamical Yang-Baxter equation 20
4.2 Dynamical Poisson groupoids 21

1 Introduction

The quantum Yang-Baxter equation (QYBE) arises naturally in the setting of statistical mechanics and quantum field theory. It was proposed by Baxter as the star-triangle relation while studying the 8 -vertex model and by Yang in the study of a quantum N-body problem.
As a simple example one can consider the state models on $n \times m$ square lattices in \mathbb{Z}^{2}, then the matrix of Boltzmann weights satisfies the QYBE.

We can interpret the QYBE in a more algebraic setting, leading to the theory of quantum groups.
Consider V a vector space, we say that $R \in \operatorname{End}(V \otimes V)$ satisfies the QYBE if

$$
R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}
$$

in $\operatorname{End}(V \otimes V \otimes V)$. A solution of the QYBE is called R-matrix.
The classical analogue of the QYBE is the classical Yang-Baxter equation (CYBE)

$$
\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]+\left[r_{12}, r_{13}\right]=0
$$

whose solutions are called the classical r-matrices. In this case one considers the theory of Poisson-Lie groups, a geometric interpretation given by Drinfeld [Dr].
Let R be an R-matrix, we can associate to it an algebraic structure (using the RTT construction) which is exactly a Hopf algebra such that the universal element of a quasitriangular structure is the given R-matrix. We call a quasitriangular Hopf algebra quantum group.
In the following report we will concentrate on a generalization of the QYBE, the quantum dynamical Yang-Baxter equation (QDYBE). The QDYBE was introduced by G. Felder [F] and he also considered its quasiclassical limit, the CDYBE.
Let \mathfrak{h} be a finite dimensional commutative Lie algebra over \mathbb{C}, V a semisimple finite dimensional \mathfrak{h} module and $R: \mathfrak{h}^{*} \rightarrow \operatorname{End}_{\mathfrak{h}}(V \otimes V)$ a meromorphic function, then the QDYBE of step γ reads:

$$
R^{12}\left(\lambda-\gamma h^{3}\right) R^{13}(\lambda) R^{23}\left(\lambda-\gamma h^{1}\right)=R^{23}(\lambda) R^{13}\left(\lambda-\gamma h^{2}\right) R^{12}(\lambda)
$$

where $\gamma \in \mathbb{C}$ (the notation is explained in section 3.1).
Similarly to the non-dynamical case, we would like to associate an algebraic structure to solutions of the QDYBE, the dynamical quantum group.
Our aim is to understand the solutions of the QDYBE, i.e., the dynamical R-matrices, and the dynamical quantum groups.

In the first chapter we introduce some basic notions necessary to understand the setting of quantum groups. Specifically we recall the quantum Yang-Baxter equation and the definition of R-matrix, we then introduce Hopf algebras and the concept of quantum group.
In section 2.3 we present a construction, first introduced by Faddeev, Reshetikhin and Takhtajan [FRT], that allows us to construct a quantum group starting from a given R-matrix. In the last section we present an explicit example, the quantum group $U_{q}\left(s l_{2}\right)$.

In the second chapter we introduce the main equation, the quantum dynamical Yang-Baxter equation. Similarly to the case of the QYBE, we would like to find an algebraic structure associated to solutions
of the QDYBE, the dynamical R-matrices, that we will call dynamical quantum group.
We then introduce the dynamical quantum group A_{R}, a generalization of the RTT construction in the dynamical case. In section 3.2 .3 we give a few results regarding the representation theory of A_{R} and linking it to that of R.
We then discuss a way to obtain solutions of the QDYBE using fusion and exchange operators.

In the last chapter we introduce the classical dynamical Yang-Baxter equation, i.e., the dynamical analogue of the classical Yang-Baxter equation. We give some basics notions in order to give a geometric interpretation to the CDYBE, introducing the concept of Poisson groupoid, a generalization of Drinfeld's construction for Poisson-Lie groups [Dr].

2 Basic Tools

In this chapter we introduce the Quantum Yang-Baxter equation (QYBE) and give the definition of Rmatrices as solutions to the QYBE. We then introduce the algebraic structure behind R-matrices, i.e., Hopf algebras and Quantum Groups.

2.1 The Quantum Yang-Baxter equation

Consider a \mathbb{K}-vector space V and a linear operator $R: V \otimes_{\mathbb{K}} V \rightarrow V \otimes_{\mathbb{K}} V$, we say that R satisfies the quantum Yang-Baxter equation (QYBE) if:

$$
R^{12} R^{13} R^{23}=R^{23} R^{13} R^{12}
$$

where $R^{i j}$ is the operator acting as R on the i th and j th components in $\operatorname{End}\left(V \otimes_{\mathbb{K}} V \otimes_{\mathbb{K}} V\right)$.
Definition 1. We define R-matrix a solution of the QYBE.

2.2 Hopf algebras

We now give the necessary definitions needed to work within the framework of Hopf algebras to better understand the QYBE.
Fix a field \mathbb{K}, then a \mathbb{K}-algebra A is a \mathbb{K}-vector space equipped with a bilinear product $\mu: A \otimes A \rightarrow A$. It is associative if the diagram

commutes.
If there is a map $\eta: \mathbb{K} \rightarrow A$ such that

commutes, then A is unital.
Similarly A is said to be coassociative with counit if there exist a coproduct $\Delta: A \rightarrow A \otimes A$ and a counit $\epsilon: A \rightarrow \mathbb{K}$ such that the diagrams

commute.
Definition 2. If $(A, \epsilon, \Delta, \mu, \eta)$ is such that (A, ϵ, Δ) is a coalgebra and (A, μ, η) is an algebra, then A is called a bialgebra.

Definition 3. A Hopf algebra is a bialgebra over \mathbb{K} with a linear map $S: H \rightarrow H$, called the antipode, such that the following diagram commutes:

We can now introduce the general algebraic structure behind R -matrices:
Definition 4. A bialgebra, or Hopf algebra, is quasitriangular if there exists an element $R \in A \otimes A$, called universal R-matrix, such that

$$
R \Delta(x) R^{-1}=\tau \Delta(x)
$$

where τ is the transposition operator $\tau(a \otimes b)=b \otimes a$, and

$$
(\Delta \otimes 1) R=R_{13} R_{23}, \quad(1 \otimes \Delta) R=R_{13} R_{12}
$$

Remark 5. Here the notation $\tau \Delta(x)$ is used to indicate $\tau \Delta(x) \tau=\Delta^{o p}(x)$.
Given a quasitriangular Hopf algebra, the universal R-matrix satisfies the QYBE.
Definition 6. We call a quasitriangular Hopf algebra quantum group.

2.3 The RTT construction

Suppose R is a solution of the Yang-Baxter equation, i.e., an R-matrix, then we would like to associate to this given solution a corresponding Hopf algebra such that R determines its quasitriangular structure. To do so we follow the construction explained in detail in [FRT].

Let V be an n-dimensional \mathbb{C} vector space and $R \in \operatorname{End}(V \otimes V)$ an element satisfying the QYBE. Define $A=A(R)$ as an associative algebra over \mathbb{C} generated by $1, t_{i j}$ for $i, j=1, \ldots, n$ satisying

$$
R T_{1} T_{2}=T_{2} T_{1} R
$$

where $T=\left(t_{i j}\right)$ and we use the notation $T_{1}=T \otimes 1$ and $T_{2}=1 \otimes T$.
Proposition 7. $A(R)$ is an Hopf algebra with coproduct $\Delta: A \rightarrow A \otimes A$ defined by $\Delta(1)=1 \otimes 1$ and $\Delta\left(t_{i j}\right)=\sum_{k=1}^{n} t_{i k} \otimes t_{k j}$.

Proof. We give an idea of the proof of the above result, a more general discussion regarding $A(R)$ is present in [K] VIII.6].
The above formulas define a unique algebra map $\Delta: A \rightarrow A \otimes A$ and the counit is given by $\epsilon\left(t_{i j}\right)=\delta_{i j}$.

It is sufficient to check coassociativity on the generators $t_{i j}$ and extend by linearity.
Define I as the ideal generated by the RTT relations, we need to check that I is a coideal, i.e., that $\Delta(I) \subset I \otimes \tilde{A}+\tilde{A} \otimes I$, where \tilde{A} is the free algebra without the relations on the generators.
Define $S_{i j}^{m n}:=\sum_{k, l} R_{i j}^{k l} t_{k m} t_{l n}-\sum_{k, l} t_{i k} t_{j l} R_{k l}^{m n}$, then we have that:

$$
\begin{aligned}
\Delta\left(S_{i j}^{m n}\right) & =\sum_{k, l, p, q} R_{i j}^{k l} t_{k p} t_{l q} \otimes t_{p m} t_{q n}-\sum_{k, l, p, q} t_{i p} t_{j q} \otimes t_{p k} t_{q l} R_{k l}^{m n}= \\
& =\sum_{k, l, p, q} S_{i j}^{p q} \otimes t_{p m} t_{q n}+\sum_{k, l, p, q} t_{i k} t_{j l} R_{k l}^{p q} \otimes t_{p m} t_{q n}+ \\
& +\sum_{k, l, p, q} t_{i p} t_{j q} \otimes S_{p q}^{m n}-\sum_{k, l, p, q} t_{i p} t_{j q} \otimes R_{p q}^{k l} t_{k m} t_{l n}= \\
& =\sum_{k, l, p, q} S_{i j}^{p q} \otimes t_{p m} t_{q n}+\sum_{k, l, p, q} t_{i p} t_{j q} \otimes S_{p q}^{m n}
\end{aligned}
$$

We observe that R controls the non-commutativity of the generators $t_{i j}$ of $A(R)$.

2.4 The quantum group $U_{q}\left(s l_{2}\right)$

In this section we compute an explicit example of quantum group and R-matrix.

Consider $\mathfrak{g}=s l_{2}$ and $q \in \mathbb{C}, q \neq 0$, such that q is not a root of unity. Define $U_{q}\left(s l_{2}\right)$ as the algebra generated by $E, F, K^{ \pm}$with the following relations:

$$
\begin{gathered}
K K^{-1}=K^{-1} K=1, \\
K E K^{-1}=q^{2} E, \\
K F K^{-1}=q^{-2} F, \\
E F-F E=\frac{K-K^{-1}}{q-q^{-1}} .
\end{gathered}
$$

Proposition 8. $U=U_{q}\left(s l_{2}\right)$ is a Hopf algebra.
Proof. Define on U the following structure:

$$
\begin{gathered}
\Delta(E)=E \otimes 1+K \otimes E, \quad \Delta(F)=F \otimes K^{-1}+1 \otimes F, \quad \Delta(K)=K \otimes K \\
\epsilon(E)=\epsilon(F)=0, \quad \epsilon(K)=1 \\
S(E)=-K^{-1} E, \quad S(F)=-K F, \quad S(K)=K^{-1}
\end{gathered}
$$

Δ, ϵ and S defined as above give U an Hopf algebra structure.
We check that $\Delta([E, F])=[\Delta(E), \Delta(F)]$:

$$
\begin{aligned}
{[\Delta(E), \Delta(F)] } & =\left[E \otimes 1+K \otimes E, F \otimes K^{-1}+1 \otimes F\right]= \\
& =[E, F] \otimes K^{-1}+K \otimes[E, F]+\left[K \otimes E, F \otimes K^{-1}\right]= \\
& =\frac{K-K^{-1}}{q-q^{-1}} \otimes K^{-1}+K \otimes \frac{K-K^{-1}}{q-q^{-1}}+K F \otimes E K^{-1}-F K \otimes K^{-1} E= \\
& =\frac{K \otimes K-K^{-1} \otimes K^{-1}}{q-q^{-1}}= \\
& =\Delta\left(\frac{K-K^{-1}}{q-q^{-1}}\right)=\Delta([E, F])
\end{aligned}
$$

So we conclude.

We denote $\tau: U \otimes U \rightarrow U \otimes U$ to be the transposition operator $\tau(a \otimes b)=b \otimes a$. Observe that the opposite coproduct is given by

$$
\Delta^{o p}(E)=E \otimes K+1 \otimes E, \quad \Delta^{o p}(F)=F \otimes 1+K^{-1} \otimes F
$$

Remark 9. One would like to recover the universal enveloping algebra $U\left(s l_{2}\right)$ from the quantized $U_{q}\left(s l_{2}\right)$ when $q \rightarrow 1$, to do so we need to consider the formal version of $U_{q}\left(s l_{2}\right)$ defined starting from E, F, H and relations on their brackets [K] XVII. 4]. With this definition the element K is $K=e^{q H}$ and for $q=1$ we get $U\left(s l_{2}\right)$.

Let $V=\mathbb{C}^{2}$ and consider the tautological representation given by:

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad K=\left(\begin{array}{cc}
q & 0 \\
0 & q^{-1}
\end{array}\right) .
$$

We are looking for an element $R \in U \otimes U$ such that $R \Delta^{o p}(u)=\Delta(u) R$ for all $u \in U$. We take advantage of the tautological representation and look for such an R in $\operatorname{End}(V \otimes V)$.

Consider $V \otimes V$ with basis $\{x \otimes x, x \otimes y, y \otimes x, y \otimes y\}$, then U acts on $V \otimes V$ in the following way:

$$
E(v \otimes w)=\Delta(E)(v \otimes w), \quad F(v \otimes w)=\Delta(F)(v \otimes w), \quad K(v \otimes w)=\Delta(K)(v \otimes w)
$$

As matrices we get:

$$
E=\left(\begin{array}{cccc}
0 & q & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & q^{-1} \\
0 & 0 & 0 & 0
\end{array}\right) \quad F=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
q^{-1} & 0 & 0 & 0 \\
0 & q & 1 & 0
\end{array}\right) \quad K=\left(\begin{array}{cccc}
q^{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q^{-2}
\end{array}\right) .
$$

The R-matrix preserves the eigenspaces of K so it will be of the form

$$
R=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & d & e & 0 \\
0 & 0 & 0 & f
\end{array}\right) \in \operatorname{End}(V \otimes V)
$$

We then have the following:

$$
\begin{gathered}
R \Delta^{o p}(E)=\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & d & e & 0 \\
0 & 0 & 0 & f
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & q & 0 \\
0 & 0 & 0 & q^{-1} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & a & q a & 0 \\
0 & 0 & 0 & c+b q^{-1} \\
0 & 0 & 0 & e+d q^{-1} \\
0 & 0 & 0 & 0
\end{array}\right) \\
\Delta(E) R=\left(\begin{array}{cccc}
0 & q & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & q^{-1} \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & d & e & 0 \\
0 & 0 & 0 & f
\end{array}\right)=\left(\begin{array}{cccc}
0 & d+q b & e+q c & 0 \\
0 & 0 & 0 & f \\
0 & 0 & 0 & f q^{-1} \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

$$
\left.\begin{array}{c}
R \Delta^{o p}(F)=\left(\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & c & 0 \\
0 & d & e & 0 \\
0 & 0 & 0 & f
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
q^{-1} & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & q & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 \\
c+b q^{-1} & 0 & 0 \\
0 \\
e+d q^{-1} & 0 & 0 \\
0 & f & q f
\end{array}\right) \\
0
\end{array}\right)
$$

Imposing the condition on R we obtain the following systems:

$$
\left\{\begin{array} { l }
{ a = d + q b } \\
{ q a = e + q c } \\
{ f = c + b q ^ { - 1 } } \\
{ f q ^ { - 1 } = e + d q ^ { - 1 } }
\end{array} \left\{\begin{array}{l}
a=c+b q^{-1} \\
a q^{-1}=e+d q^{-1} \\
f=d+q b \\
f q=e+q c
\end{array}\right.\right.
$$

One then gets

$$
\left\{\begin{array}{l}
a=f \\
d=a-q b \\
c=a-b q^{-1} \\
e=q^{-1}(a-d) \\
b=q^{-1}(a-d)
\end{array}\right.
$$

so, up to scalars, the matrix of R is

$$
R=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & b & 1-q^{-1} b & 0 \\
0 & 1-q b & b & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Consider $b=q$, we obtain a triangular matrix satisfying the QYBE:

$$
R=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & q & 0 & 0 \\
0 & 1-q^{2} & q & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Remark 10. The R-matrix we obtained is the image in $\operatorname{End}(V \otimes V)$ of an element in the extended $U \tilde{\otimes} U$ and not in $U \otimes U$. This implies that $U_{q}\left(s l_{2}\right)$ is not quasitriangular in a purely algebraic sense, but an R-matrix can be found in the completed tensor product.
Specifically, one finds [K] Theorem XVII 4.2]

$$
R=\sum_{n=0}^{\infty} \frac{\left(q^{-1}-q\right)^{n} q^{-n(n-1) / 2}}{[n]!} F^{n} \otimes E^{n}
$$

This infinite sum lives in $U \tilde{\otimes} U$ but for V finite dimensional representation of $s l_{2}$, since E, F act nilpotently on V, the image of R is in $\operatorname{End}(V \otimes V)$.

Viceversa, as in [Fa], suppose given the matrix

$$
R=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & q-\frac{1}{q} & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right),
$$

let T be the matrix $T=\left\{t_{i j}\right\}_{i, j \in\{1,2\}}$, then the RTT relations reduce to the following 6 formulae (out of 16 only 6 are independent):

$$
\begin{aligned}
t_{11} t_{12} & =q t_{12} t_{11} \\
t_{12} t_{21} & =t_{21} t_{12} \\
t_{11} t_{21} & =q t_{21} t_{11} \\
t_{22} t_{12} & =\frac{1}{q} t_{12} t_{22} \\
t_{22} t_{21} & =\frac{1}{q} t_{21} t_{22} \\
t_{11} t_{22}-t_{22} t_{11} & =\left(q-\frac{1}{q}\right) t_{12} t_{21}
\end{aligned}
$$

Consider the q-determinant of T given by

$$
\operatorname{det}_{q}(T)=\sum_{\sigma \in S_{n}}(-q)^{l(\sigma)} t_{1 \sigma(1)} \ldots t_{n \sigma(n)}=t_{11} t_{22}-q t_{12} t_{21}
$$

imposing $\operatorname{det}_{q}(T)=1$ we obtain the quantum group $S L_{q}(2)$, which is dual to $U_{q}\left(s l_{2}\right)$ [K] VII.5].

3 The quantum dynamical case

In this chapter we introduce the quantum dynamical Yang-Baxter equation (QDYBE), a generalization of the QYBE arising from mathematical physics, in which additional parameters appear.
Similarly to the case of quantum groups, we introduce the solutions of the QDYBE, i.e., dynamical Rmatrices, and see how one can associate to such a solution an algebraic structure, which will be called a dynamical quantum group.

3.1 The quantum dynamical Yang-Baxter equation

Unlike the QYBE, the dynamical version is not an algebraic equation but a difference one, where the R-matrix is a matrix-valued function on an abelian Lie algebra instead of a matrix with scalar entries.

Let \mathfrak{h} be a finite dimensional commutative Lie algebra over $\mathbb{C}, \gamma \in \mathbb{C}$ and V a semisimple finite dimensional \mathfrak{h}-module. Let $R: \mathfrak{h}^{*} \rightarrow E n d_{\mathfrak{h}}(V \otimes V)$ be a meromorphic function, then on $V \otimes V \otimes V$ the QDYBE of step γ reads:

$$
R^{12}\left(\lambda-\gamma h^{3}\right) R^{13}(\lambda) R^{23}\left(\lambda-\gamma h^{1}\right)=R^{23}(\lambda) R^{13}\left(\lambda-\gamma h^{2}\right) R^{12}(\lambda)
$$

where h^{i} is the dynamical notation, i.e., $R^{12}\left(\lambda-\gamma h^{3}\right)\left(v_{1} \otimes v_{2} \otimes v_{3}\right):=\left(R^{12}(\lambda-\gamma \mu)\left(v_{1} \otimes v_{2}\right)\right) \otimes v_{3}$ if v_{3} has weight μ, and similarly for h^{1}, h^{2}.
If $\mathfrak{h}=0$ we obtain the usual QYBE.

A function $R_{i j}: \mathfrak{h}^{*} \rightarrow \operatorname{End}\left(V_{i} \otimes V_{j}\right)$ is of zero weight if

$$
\left[R_{i j}(\lambda), h \otimes 1+1 \otimes h\right]=0
$$

for all $h \in \mathfrak{h}$ and $\lambda \in \mathfrak{h}^{*}$.
Definition 11. A Quantum dynamical R-matrix $R: \mathfrak{h}^{*} \rightarrow \operatorname{End}(V \otimes V)$ is a generically invertible solution of the QDYBE of zero weight .

3.1.1 Representation of quantum dynamical R-matrices

The following notions were introduced by Felder and Varchenko [FV], and later discussed in [EV2].

Let $M_{\mathfrak{h}^{*}}$ be the space of meromorphic functions on \mathfrak{h}^{*}, fix $\gamma \in \mathbb{C}$.
Denote by $V_{\mathfrak{h}}$ the category of \mathfrak{h}-vector spaces, with objects the diagonalizable \mathfrak{h}-modules and morphisms defined by $\operatorname{Hom}_{V_{\mathfrak{h}}}(X, Y)=\operatorname{Hom}_{\mathfrak{h}}\left(X, Y \otimes_{\mathbb{C}} M_{\mathfrak{h}^{*}}\right)$.
Consider the bifunctor:

$$
\bar{\otimes}: V_{\mathfrak{h}} \times V_{\mathfrak{h}} \rightarrow V_{\mathfrak{h}}
$$

defined on objects by taking the usual tensor product and for any two morphisms $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$ as

$$
\begin{gather*}
f \bar{\otimes} g: X \otimes Y \rightarrow X^{\prime} \otimes Y^{\prime} \\
f \bar{\otimes} g(\lambda)=f^{1}\left(\lambda-\gamma h^{2}\right)(1 \otimes g(\lambda)), \tag{1}
\end{gather*}
$$

where

$$
f^{1}\left(\lambda-\gamma h^{2}\right)(1 \otimes g(\lambda))(x \otimes y)=(f(\lambda-\mu) x) \otimes g(\lambda) y
$$

for $g(\lambda) y$ of weight μ. The category $V_{\mathfrak{h}}$ equipped with the bifunctor $\bar{\otimes}$ is a tensor category.
Definition 12. Let $R: \mathfrak{h}^{*} \rightarrow \operatorname{End}(V \otimes V)$ be a quantum dynamical R-matrix,i.e., a meromorphic function satisying QDYBE. A representation of R is an object $W \in V_{\mathfrak{h}}$ together with an invertible morphism $L \in E n d_{V_{\mathfrak{h}}}(V \bar{\otimes} W)$, called L-operator, such that

$$
R^{12}\left(\lambda-\gamma h^{3}\right) L^{13}(\lambda) L^{23}\left(\lambda-\gamma h^{1}\right)=L^{23}(\lambda) L^{13}\left(\lambda-\gamma h^{2}\right) R^{12}(\lambda)
$$

in $E n d_{V_{\mathfrak{h}}}(V \bar{\otimes} V \bar{\otimes} W)$.
Definition 13. Let $\left(W, L_{W}\right)$ and $\left(U, L_{U}\right)$ be representations of R, a morphism $A \in H_{o m}^{V_{\mathfrak{b}}}(W, U)$ is an R-morphism if

$$
(1 \otimes A(\lambda)) L_{W}(\lambda)=L_{U}(\lambda)\left(1 \otimes A\left(\lambda-\gamma h^{1}\right)\right)
$$

The representations of R form a category which we denote by $\operatorname{Rep}(R)$.
The tensor product of two given representations $W, U \in \operatorname{Rep}(R)$ is given by the pair ($W \otimes U, L_{W \otimes U}$), where $L_{W \otimes U}(\lambda):=L_{W}^{12}\left(\lambda-\gamma h^{3}\right) L_{U}^{13}(\lambda)$.

Proposition 14. [EV2 Lemma 3.2] The pair $\left(W \otimes U, L_{W \otimes U}\right)$ is itself a representation of R.
Proof. We need to check that for $L_{W \otimes U}$ on $E n d_{V_{\mathfrak{h}}}(V \bar{\otimes} V \bar{\otimes}(W \otimes U))$ the following holds:

$$
R^{12}\left(\lambda-\gamma h^{3}\right) L_{W \otimes U}^{13}(\lambda) L_{W \otimes U}^{23}\left(\lambda-\gamma h^{1}\right)=L_{W \otimes U}^{23}(\lambda) L_{W \otimes U}^{13}\left(\lambda-\gamma h^{2}\right) R^{12}(\lambda)
$$

On the rhs we have:

$$
\begin{aligned}
& R^{12}\left(\lambda-\gamma \tilde{h}^{3}\right) L_{W \otimes U}^{13}(\lambda) L_{W \otimes U}^{23}\left(\lambda-\gamma h^{1}\right)= \\
& =R^{12}\left(\lambda-\gamma \tilde{h}^{3}\right) L_{W \otimes U}^{13}(\lambda) L_{W}^{23}\left(\lambda-\gamma\left(h^{1}+h^{4}\right)\right) L_{U}^{24}\left(\lambda-\gamma h^{1}\right)= \\
& =R^{12}\left(\lambda-\gamma \tilde{h}^{3}\right) L_{W}^{13}\left(\lambda-\gamma h^{4}\right) L_{U}^{14}(\lambda) L_{W}^{23}\left(\lambda-\gamma\left(h^{1}+h^{4}\right)\right) L_{U}^{24}\left(\lambda-\gamma h^{1}\right)
\end{aligned}
$$

Note that we write \tilde{h}^{3} to indicate that we are using the weight of elements $z \in W \otimes U$, while we write h^{3}, h^{4} when we consider $z \in W \otimes U$ as $z=w \otimes u$.
The lhs is:

$$
\begin{aligned}
& L_{W \otimes U}^{23}(\lambda) L_{W \otimes U}^{13}\left(\lambda-\gamma h^{2}\right) R^{12}(\lambda)= \\
& =L_{W}^{23}\left(\lambda-\gamma h^{4}\right) L_{U}^{24}(\lambda) L_{W}^{13}\left(\lambda-\gamma\left(h^{2}+h^{4}\right)\right) L_{U}^{14}\left(\lambda-\gamma h^{2}\right) R^{12}(\lambda)
\end{aligned}
$$

Using the fact that L_{W} and L_{U} satisfy the defining relation of a representation of R we conclude.

Proposition 14 gives a structure of tensor category to $\operatorname{Rep}(R)$.
We also introduce the notion of left and right dual representation:
Definition 15. Let $\left(W, L_{W}\right) \in \operatorname{Rep}(R)$, the right dual representation to W is given by the pair ($W^{*}, L_{W^{*}}$), where W^{*} is the \mathfrak{h}-graded dual of W and

$$
L_{W^{*}}=L_{W}^{-1}\left(\lambda+\gamma h^{2}\right)^{t_{2}}
$$

where t_{2} denotes dualization in the second component. Dually the left dual representation of W is given by $\left({ }^{*} W, L_{*} W\right)$ with ${ }^{*} W=W^{*}$ and

$$
L_{*}{ }_{W}=L_{W}^{t_{2}}\left(\lambda-\gamma h^{2}\right)^{-1}
$$

Note that $L_{W^{*}}$ and L_{*} are obtained by applying three different operations to $L_{W^{\prime}}$: inversion, shifting and dualization in the second component. To define the dual representation one must then have L_{W} or $L_{W}^{t_{2}}$ invertible.

$3.2 h$-Hopf algebroid

In this section we introduce the algebraic structures necessary to define the dynamical equivalent of quantum groups, the dynamical quantum groups, as given in [EV2]. We also introduce a construction that associates to a given meromorphic function $R: \mathfrak{h}^{*} \rightarrow \operatorname{End}(V \otimes V)$ an \mathfrak{h}-bialgebroid called the dynamical quantum group corresponding to R.
The term algebroid comes from the fact that in the classical case one obtains, as dynamical analogues of Poisson-Lie groups, the Poisson groupoids (51. The term creates a parallelism between the classical and quantized version of the YBE and DYBE.

3.2.1 h-bialgebras

Let \mathfrak{h} be a finite dimensional commutative Lie algebra on \mathbb{C}, let $M_{\mathfrak{h}}{ }^{*}$ denote the field of meromorphic functions on \mathfrak{h}^{*}. Fix $\gamma \in \mathbb{C}$ with $\gamma \neq 0$.

Definition 16. An \mathfrak{h}-algebra of step γ is an associative algebra A over \mathbb{C} with unit, endowed with an \mathfrak{h}^{*}-bigrading called the weight decomposition

$$
A=\bigoplus_{\alpha, \beta \in \mathfrak{h}^{*}} A_{\alpha \beta}
$$

and left and right moment maps, i.e., two algebra embeddings $\mu_{l}, \mu_{r}: M_{\mathfrak{h}^{*}} \rightarrow A_{00}$ such that $\forall a \in A_{\alpha \beta}$ and $f \in M_{\mathfrak{h}^{*}}$ we have

$$
\mu_{l}(f(\lambda))(a)=a \mu_{l}(f(\lambda+\gamma \alpha)), \quad \mu_{r}(f(\lambda))(a)=a \mu_{r}(f(\lambda+\gamma \beta))
$$

Definition 17. A morphism between \mathfrak{h}-algebras is an algebra homomorphism $\varphi: A \rightarrow B$ preserving the moment maps.

Given two \mathfrak{h}-algebras A, B we define a third \mathfrak{h}-algebra given by the following operation:
Definition 18. The matrix tensor product of A, B is the \mathfrak{h}-algebra $A \tilde{\otimes} B$ where

$$
(A \tilde{\otimes} B)_{\alpha \delta}=\bigoplus_{\beta} A_{\alpha \beta} \otimes_{M_{\mathfrak{h}^{*}}} B_{\beta \delta} .
$$

Here $\otimes_{M_{\mathfrak{h}^{*}}}$ is the usual tensor product modulo the following relation:

$$
\mu_{r}^{A}(f) a \otimes b=a \otimes \mu_{l}^{B}(f) b
$$

for any $f \in M_{\mathfrak{h}^{*}}, a \in A, b \in B$.
On $A \tilde{\otimes} B$ define the moment maps as:

$$
\mu_{l}^{A \tilde{\otimes} B}(f)=\mu_{l}^{A}(f) \otimes 1, \quad \mu_{r}^{A \tilde{\otimes} B}(f)=1 \otimes \mu_{r}^{B}(f)
$$

Definition 19. A coproduct on an \mathfrak{h}-algebra A is an homomorphism of \mathfrak{h}-algebras $\Delta: A \rightarrow A \tilde{\otimes} A$.

We give now a simple nontrivial example of an \mathfrak{h}-algebra that will be used to give a monoidal category structure to the category of \mathfrak{h}-algebras.

Example 20. Let $D_{\mathfrak{h}}$ be the algebra of difference operators $M_{\mathfrak{h}^{*}} \rightarrow M_{\mathfrak{h}^{*}}$, i.e., operators of the form $\sum_{i=1}^{n} f_{i}(\lambda) T_{\beta_{i}}$ where $f_{i} \in M_{\mathfrak{h}^{*}}$ and $\forall \beta \in \mathfrak{h}^{*}$ we denote T_{β} the field of automorphisms of $M_{\mathfrak{h}^{*}}$ given by $\left(T_{\beta} f\right)(\lambda)=f(\lambda+\gamma \beta)$.
On $D_{\mathfrak{h}}$ we define the weight decomposition as

$$
D_{\mathfrak{h}}=\bigoplus\left(D_{\mathfrak{h}}\right)_{\alpha \beta}
$$

where $\left(D_{\mathfrak{h}}\right)_{\alpha \beta}=0$ if $\alpha \neq \beta$ and $\left(D_{\mathfrak{h}}\right)_{\alpha \alpha}=\left\{f(\lambda) T_{\alpha}^{-1}: f \in M_{\mathfrak{h}^{*}}\right\}$. The moment maps are given by the tautological isomorphism

$$
\mu_{l}=\mu_{r}: M_{\mathfrak{h}^{*}} \rightarrow\left(D_{\mathfrak{h}}\right)_{00}
$$

in fact $\left(D_{\mathfrak{h}}\right)_{00}=\left\{f(\lambda) T_{0}^{-1}: f \in M_{\mathfrak{h}^{*}}\right\}=\left\{f(\lambda): f \in M_{\mathfrak{h}^{*}}\right\} \cong M_{\mathfrak{h}^{*}}$.
By definition of $D_{\mathfrak{h}}$ one has $A \tilde{\otimes} D_{\mathfrak{h}}$ and $D_{\mathfrak{h}} \tilde{\otimes} A$ isomorphic to A.
The \mathfrak{h}-algebra $D_{\mathfrak{h}}$ is the unit object of the monoidal category of \mathfrak{h}-algebras.
Definition 21. A counit on an \mathfrak{h}-algebra A is a homomorphism of \mathfrak{h}-algebras $\epsilon: A \rightarrow D_{\mathfrak{h}}$.
Definition 22. An \mathfrak{h}-bialgebroid is an \mathfrak{h}-algebra A equipped with a coassociative coproduct Δ,i.e., $\left(\Delta \otimes I d_{A}\right) \circ \Delta=\left(I d_{A} \otimes \Delta\right) \circ \Delta$, and a counit ϵ such that $\left(\epsilon \otimes I d_{A}\right) \circ \Delta=\left(I d_{A} \otimes \epsilon\right) \circ \Delta=I d_{A}$.

Remark 23. Note that an \mathfrak{h}-bialgebroid is defined using the matrix tensor product $\tilde{\otimes}$, this allows multiplication by elements of $M_{\mathfrak{h}}$, i.e., meromorphic functions and not only holomorphic.

Example 24. $D_{\mathfrak{h}}$ is an \mathfrak{h}-bialgebroid with coproduct $\Delta: D_{\mathfrak{h}} \rightarrow D_{\mathfrak{h}} \tilde{\otimes} D_{\mathfrak{h}}$ the canonical isomorphism and counit $\epsilon=I d$.

Consider A an \mathfrak{h}-algebra, a linear map $S: A \rightarrow A$ is an antiautomorphism of \mathfrak{h}-algebras if it is an antiautomorphism of algebras and $\mu_{r} \circ S=\mu_{l}$ and $\mu_{l} \circ S=\mu_{r}$.

Definition 25. Let A be an \mathfrak{h}-bialgebroid, an antipode on A is an antiautomorphism of \mathfrak{h}-algebras $S: A \rightarrow A$ such that for any $a \in A$ and any presentation of $\Delta(a)$ one has

$$
\sum_{i} a_{i}^{1} S\left(a_{i}^{2}\right)=\mu_{l}(\epsilon(a) 1), \quad \sum_{i} S\left(a_{i}^{1}\right) a_{i}^{2}=\mu_{r}(\epsilon(a) 1)
$$

Where ϵ and Δ are the counit and coproduct on A and for $a \in A$ we have $\Delta(a)=\sum_{i} a_{i}^{1} \otimes a_{i}^{2}$.
Definition 26. An \mathfrak{h}-bialgebroid with an antipode is called an \mathfrak{h}-Hopf algebroid.

3.2.2 The dynamical quantum group A_{R}

Let \mathfrak{h} be a finite dimensional commutative Lie algebra, consider $V=\bigoplus_{\alpha \in \mathfrak{h}^{*}} V_{\alpha}$ a finite dimensional diagonizable \mathfrak{h}-module.
Let $R: \mathfrak{h}^{*} \rightarrow \operatorname{End}(V \otimes V)$ be a meromorphic function such that for a generic λ we have $R(\lambda)$ invertible. Similarly to the RTT construction 2.3 we want to define an \mathfrak{h}-bialgebroid A_{R} associated to R that we will call the dynamical quantum group corresponding to R, i.e., a dynamical analogue of the quantum group attached to an R-matrix [EV2].

Define A_{R} as the quotient of the algebra \tilde{A} freely generated by $M_{\mathfrak{h}^{*}} \otimes M_{\mathfrak{h}^{*}}$ and new generators which are matrix elements of the operators $L^{ \pm} \in \operatorname{End}(V) \otimes A_{R}, L_{a b}$ and $\left(L^{-1}\right)_{a b}$ for $a, b=1, \ldots, \operatorname{dimV}$. For $f \in M_{\mathfrak{h}^{*}}$ we denote $f\left(\lambda^{1}\right)$ and $f\left(\lambda^{2}\right)$ the elements of respectively the first and second copy of $M_{\mathfrak{h}^{*}}$ in A_{R}. We denote the weight components of $L^{ \pm}$with respect to the natural \mathfrak{h}-bigrading on $\operatorname{End}(V)$ as $\left(L^{ \pm}\right)_{\alpha \beta}$, so that $\left(L^{ \pm}\right)_{\alpha \beta} \in \operatorname{Hom}_{\mathbb{C}}\left(V_{\beta}, V_{\alpha}\right) \otimes A_{R}$.
We quotient \tilde{A} by the ideal defined by the following relations:

$$
\begin{gather*}
f\left(\lambda^{1}\right) L_{\alpha \beta}=L_{\alpha \beta} f\left(\lambda^{1}+\gamma \alpha\right) \quad f\left(\lambda^{2}\right) L_{\alpha \beta}=L_{\alpha \beta} f\left(\lambda^{2}+\gamma \beta\right) \quad\left[f\left(\lambda^{1}\right), g\left(\lambda^{2}\right)\right]=0 \tag{2}\\
L L^{-1}=L^{-1} L=1 \tag{3}\\
R^{12}\left(\lambda^{1}\right) L^{13} L^{23}=: L^{23} L^{13} R^{12}\left(\lambda^{2}\right) \tag{4}
\end{gather*}
$$

The third relation is called the dynamical Yang-Baxter relation and should be read in the following way: if $\left\{v_{\alpha}\right\}$ is a homogeneous basis of V, and $L=\sum E_{a b} \otimes L_{a b}, R(\lambda)\left(v_{a} \otimes v_{b}\right)=\sum R_{c d}^{a b}(\lambda) v_{c} \otimes v_{d}$, then

$$
\sum R_{a c}^{x y}\left(\lambda^{1}\right) L_{x b} L_{y d}=\sum R^{b d}\left(\lambda^{2}\right)_{x y} L_{c y} L_{a x}
$$

summing over repeated indices.
To give A_{R} the structure of an \mathfrak{h}-algebra we define the moment maps as follows:

$$
\mu_{l}(f(\lambda))=f\left(\lambda^{1}\right), \quad \mu_{r}(f(\lambda))=f\left(\lambda^{2}\right)
$$

The weight decomposition is given by $f\left(\lambda^{1}\right), f\left(\lambda^{2}\right) \in\left(A_{R}\right)_{00}$ and $L_{\alpha \beta} \in \operatorname{Hom}_{\mathbb{C}}\left(V_{\beta}, V_{\alpha}\right) \otimes\left(A_{R}\right)_{\alpha \beta}$.

We want to give A_{R} a \mathfrak{h}-bialgebroid structure, to do so we define a coproduct $\Delta: A_{R} \rightarrow A_{R} \tilde{\otimes} A_{R}$ as

$$
\Delta(L)=L^{12} L^{13}, \quad \Delta\left(L^{-1}\right)=\left(L^{-1}\right)^{13}\left(L^{-1}\right)^{12}
$$

where Δ is applied to the second component of $L^{ \pm}$.
Remark 27. Compare the Δ here defined to that of Proposition 7 similarly to the RTT case, the idea is to define the coproduct on the generators and to extend it. Note that here, in the Yang-Baxter relation, we are acting on $V \otimes V \otimes V$ whereas in the RTT relation we had T^{1}, T^{2} acting on $V \otimes V$.
Similarly to Proposition 7 one must check that the given coproduct preserves the defining relations.
Proposition 28. [EV2 Proposition 4.2] Δ extends to a well defined homomorphism $A_{R} \rightarrow A_{R} \tilde{\otimes} A_{R}$.
Proof. By definition $\Delta\left(L_{\alpha \beta}\right)=\sum_{\gamma} L_{\alpha \gamma}^{12} L_{\gamma \beta}^{13}$. We need to show that Δ preserves the defining relations of A_{R}.
Relations 2 and 3 are invariant by definition of Δ. Consider relation 4 we have

$$
\begin{aligned}
R^{12}\left(\lambda_{1}^{1}\right) L^{13} L^{14} L^{23} L^{24} & =R^{12}\left(\lambda_{1}^{1}\right) L^{13} L^{23} L^{14} L^{24} \\
& =: L^{13} L^{23} R^{12}\left(\lambda_{1}^{2}\right): L^{14} L^{24} \\
& =L^{13} L^{23} R^{12}\left(\lambda_{2}^{1}\right) L^{14} L^{24} \\
& =L^{23} L^{13}: L^{24} L^{14} R^{12}\left(\lambda_{2}^{2}\right): \\
& =: L^{23} L^{24} L^{13} L^{14} R^{12}\left(\lambda_{2}^{2}\right):
\end{aligned}
$$

where the pedices on λ indicate that the functions are taken from the first or second component of $A_{R} \tilde{\otimes} A_{R}$. Since $A_{R} \tilde{\otimes} A_{R}$ is in the tensor product $A_{R} \otimes_{M_{\mathfrak{h}^{*}}} A_{R}$ we can replace λ_{2}^{1} with λ_{1}^{2} in the
equation.
We have then checked that

$$
R^{12}\left(\lambda_{1}^{1}\right) L^{13} L^{14} L^{23} L^{24}=: L^{23} L^{24} L^{13} L^{14} R^{12}\left(\lambda_{2}^{2}\right):
$$

so the proposition is proved.

We define the counit $\epsilon: A_{R} \rightarrow D_{\mathfrak{h}}$ by the formula:

$$
\begin{gathered}
\epsilon\left(L_{\alpha \beta}\right)=\delta_{\alpha \beta} I d_{V_{\alpha}} \otimes T_{\alpha}^{-1}, \\
\epsilon\left(\left(L^{-1}\right)_{\alpha \beta}\right)=\delta_{\alpha \beta} I d_{V_{\alpha}} \otimes T_{\alpha} .
\end{gathered}
$$

Similarly to the coproduct ϵ annihilates the relations 2 and 3 by definition. Relation 4 reduces to proving the following:

$$
\left(\sum R^{12}(\lambda)\left(I d_{V_{\alpha}} \otimes I d_{V_{\beta}}\right)\right) \otimes T_{\alpha+\beta}^{-1}=\left(\sum\left(I d_{V_{\alpha}} \otimes I d_{V_{\beta}}\right) R^{12}(\lambda)\right) \otimes T_{\alpha+\beta}^{-1}
$$

but R has zero weight, so the equation is satisfied.
Proposition 29. [EV2, Proposition 4.3] The counit ϵ satisfies the counit axiom $(\epsilon \otimes I d) \circ \Delta=(I d \otimes \epsilon) \circ \Delta=$ Id for A_{R}.

Combining Proposition 28 and 29, we therefore have that A_{R} is an \mathfrak{h}-biequivariant bialgebroid,i.e., it is an \mathfrak{h}-bialgebroid and we have a pair of commuting actions of \mathfrak{h} on A_{R} that behave well with the moment maps ($([$ EV2 $]$ chapter 5]). We call it the dynamical quantum group corresponding to R.

To have an \mathfrak{h}-Hopf algebroid we need an antipode on A_{R}.
Definition 30. An invertible zero weight matrix function R is rigid if the element $L \in \operatorname{End}(V) \otimes A_{R}$ is strongly invertible.

Consider $X \in B \otimes A$, with A, B algebras with unit and $i(X)$ the inverse, let I be the group freely generated by i, i_{*} with $i^{2}=i_{*}^{2}=1$. The element X is said to be strongly invertible if $\forall g \in I$ the element $g(X)$ is well defined.
The following proposition holds:
Proposition 31. EV2, Proposition 4.4] R is rigid if and only if A_{R} admits an antipode S such that $S(L)=L^{-1}$. In this case, $S_{2 n}(L)=\left(i^{*} i\right)^{n}(L)$ and $S^{2 n+1}(L)=i\left(i^{*} i\right)^{n}(L)$.
In particular, $S\left(L^{-1}\right)=i^{*} i(L)$.
Consequently, under the assumption of rigidity, A_{R} is an \mathfrak{h}-Hopf algebroid.
Although A_{R} is an \mathfrak{h}-Hopf algebroid, for a generic R rigid zero weight function this algebra does not have interesting dynamical representations, however in the case of R a dynamical quantum R-matrix the category $\operatorname{Rep}(R)$ is nontrivial, and so is $\operatorname{Rep}\left(A_{R}\right)$.

3.2.3 The dynamical representation

Suppose W is a diagonizable \mathfrak{h}-module, then we define $D_{\mathfrak{h}, W}^{\alpha} \subset \operatorname{Hom}_{\mathbb{C}}\left(W, W \otimes D_{\mathfrak{h}}\right)$ to be the space of all difference operators on \mathfrak{h}^{*} with coefficients in $E n d_{\mathbb{C}}(W)$ and weight α with respect to the action of \mathfrak{h} in W.
Define $D_{\mathfrak{h}, W}:=\bigoplus_{\alpha} D_{\mathfrak{h}, W}^{\alpha}$ algebra with weight decomposition $D_{\mathfrak{h}, W}=\bigoplus_{\alpha, \beta}\left(D_{\mathfrak{h}, W}\right)_{\alpha \beta}$ defined by

$$
\left(D_{\mathfrak{h}, W}\right)_{\alpha \beta}:=\left\{g T_{\beta}^{-1}: g \in \operatorname{Hom}_{\mathbb{C}}\left(W, W \otimes M_{\mathfrak{h}^{*}}\right) \text { of weight } \beta-\alpha\right\},
$$

and moment maps $\mu_{r}(f(\lambda))=f(\lambda)$ and $\mu_{l}(f(\lambda))=f(\lambda-\gamma h)$, where $f(\lambda-\gamma h) w=f(\lambda-\gamma \mu) w$ if $w \in W(\mu)$.
Lemma 32. [EV2, Lemma 4.3] There is a natural embedding of \mathfrak{h}-algebras $D_{\mathfrak{h}, W} \tilde{\otimes} D_{\mathfrak{h}, U} \rightarrow D_{\mathfrak{h}, W \otimes U}$, given by the formula $f T_{\beta} \otimes g T_{\delta} \rightarrow(f \bar{\otimes} g) T_{\delta}$. This embedding is an isomorphism if W, U are finitedimensional.

The product $f \bar{\otimes} g$ is defined in 1
Definition 33. Let A be an \mathfrak{h}-algebra, a dynamical representation of A is a diagonalizable \mathfrak{h}-module W endowed with an \mathfrak{h}-algebra homomorphism $\pi_{W}: A \rightarrow D_{\mathfrak{h}, W}$.
A homomorphism of dynamical representation of A is a map $\varphi \in H_{\mathbb{C}}\left(W_{1}, W_{2} \otimes M_{\mathfrak{h}^{*}}\right)$ such that $\varphi \circ \pi_{W_{1}}(x)=\pi_{W_{2}}(x) \circ \varphi$ for all $x \in A$.

We would now like to prove the following:
Proposition 34. [EV2 Proposition 4.6] The tensor categories $\operatorname{Rep}\left(A_{R}\right)$ and $\operatorname{Rep}(R)$ are equivalent.
To do so we introduce a few results on $\operatorname{Rep}\left(A_{R}\right)$.
Let A be an \mathfrak{h}-Hopf algebroid, if $\left(W, \pi_{W}\right)$ is a dynamical representation of A we denote by π_{W}^{0} the map $\pi_{W}^{0}: A \rightarrow \operatorname{Hom}\left(W, W \otimes M_{\mathfrak{h}^{*}}\right)$ given by $\pi_{W}^{0}(x) w=\pi_{W}(x) w$ for all $w \in W$, i.e., the difference operator π_{W} restricted to constant functions.

Definition 35. Let $\left(W, \pi_{W}\right)$ be a dynamical representation of A, the right dual representation to W is $\left(W^{*}, \pi_{W^{*}}\right)$, where W^{*} is the \mathfrak{h}-graded dual to W and

$$
\pi_{W^{*}}^{0}(x)(\lambda)=\pi_{W}^{0}(S(x))(\lambda+\gamma h-\gamma \alpha)^{t} \quad \forall x \in A_{\alpha \beta}
$$

The left dual representation to W is the pair $\left({ }^{*} W, \pi^{*} W\right)$ with ${ }^{*} W=W^{*}$ and

$$
\pi_{*_{W}}^{0}(x)(\lambda)=\pi_{W}^{0}\left(S^{-1}(x)\right)(\lambda+\gamma h-\gamma \alpha)^{t} \quad \forall x \in A_{\alpha \beta}
$$

Proposition 36. [EV2, Proposition 4.1] The right and left dual representation define dynamical representations of A. Moreover, if $A(\lambda): W_{1} \rightarrow W_{2}$ is a morphism of dynamical representations, then $A^{*}(\lambda):=A(\lambda+\gamma h)^{t}$ defines a morphism $W_{2}^{*} \rightarrow W_{1}^{*}$ and ${ }^{*} W_{2} \rightarrow^{*} W_{1}$.

Let $R: \mathfrak{h}^{*} \rightarrow \operatorname{End}(V \otimes V)$ be a meromorphic function, from the previous proposition and the results on A_{R} one has the following:

Lemma 37. EV2 Lemma 3.4, 3.5] Let W be a representation of R, the right and left dual representations of R are representations of R. If W has finite dimensional weight subspaces then ${ }^{*}\left(W^{*}\right)=\left({ }^{*} W\right)^{*}=W$. If $A: W_{1} \rightarrow W_{2}$ is a homomorphism of representations of R, then the linear map $A^{*}(\lambda):=A(\lambda+$ $\left.\gamma h^{1}\right)^{t}=A^{t}\left(\lambda-\gamma h^{1}\right)$ is a homomorphism of representations $W_{2}^{*} \rightarrow W_{1}^{*}$ and ${ }^{*} W_{2} \rightarrow{ }^{*} W_{1}$ when these representations are defined.

Consider a meromorphic function R and the \mathfrak{h}-algebra A_{R}, we can prove Proposition 34
Proof. Define $\Gamma: \operatorname{Rep}\left(A_{R}\right) \rightarrow \operatorname{Rep}(R)$ the functor given by the identity on vector spaces and

$$
L_{\Gamma(W)}=\pi_{W}^{0}(L) .
$$

Define the functor $\Gamma^{-1}: \operatorname{Rep}(R) \rightarrow \operatorname{Rep}\left(A_{R}\right)$ as the identity on vector spaces and

$$
\pi_{\Gamma^{-1}(W)}^{0}(L)=L_{W}
$$

The two functors are inverse to each other and preserve the tensor structure.

3.3 Fusion and exchange construction

In this section we introduce a way to construct solutions of the QDYBE starting from classical representation theory of Lie algebras, see [ES].

3.3.1 Fusion operators

Let \mathfrak{g} be a simple finite dimensional complex Lie algebra with polar decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. Let V be a finite dimensional \mathfrak{g}-module with weight decomposition $V=\bigoplus_{\nu \in \mathfrak{h}^{*}} V[\nu]$, we denote M_{λ} the Verma module over \mathfrak{g} with highest weight $\lambda \in \mathfrak{h}^{*}$, i.e., $M_{\lambda}=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$ with \mathfrak{b} the Borel subalgebra, x_{λ} its highest weight vector and x_{λ}^{*} the lowest weight vector of the dual module.
Given $\mu, \lambda \in \mathfrak{h}^{*}$ consider an intertwining operator

$$
\Phi: M_{\lambda} \rightarrow M_{\mu} \otimes V
$$

define the expectation value of Φ as

$$
\langle\Phi\rangle=x_{\mu}^{*}\left(\Phi x_{\lambda}\right) \in V[\lambda-\mu] .
$$

Proposition 38. [ES Proposition 2.2] If M_{μ} is irreducible the map $\operatorname{Hom}_{\mathfrak{g}}\left(M_{\mu+\nu}, M_{\mu} \otimes V\right) \rightarrow V[\nu]$ given by $\Phi \rightarrow\langle\Phi\rangle$ is an isomorphism.

This allows us to define for any $v \in V[\nu]$ the intertwining operator $\Phi_{\lambda}^{v}: M_{\lambda} \rightarrow M_{\lambda-\nu} \otimes V$ such that $\left\langle\Phi_{\lambda}^{v}\right\rangle=v$.
Consider now V, W finite dimensional \mathfrak{g}-modules, let $v \in V$ and $w \in W$ be homogeneous vectors of weight $w t(v), w t(w)$ respectively. Let $\lambda \in \mathfrak{h}^{*}$ then define the composition

$$
\Phi_{\lambda}^{w, v}:=\left(\Phi_{\lambda-w t(v)}^{w} \otimes 1\right) \Phi_{\lambda}^{v}: M_{\lambda} \rightarrow M_{\lambda-w t(v)-w t(w)} \otimes W \otimes V
$$

So $\Phi_{\lambda}^{w, v} \in \operatorname{Hom}\left(M_{\lambda}, M_{\lambda-w t(v)-w t(w)} \otimes W \otimes V\right)$ and, by the previous result, there exists a unique $u \in W \otimes V[w t(v)+w t(w)]$ such that $\Phi_{\lambda}^{u}=\Phi_{\lambda}^{w, v}$. This defines an \mathfrak{h}-linear operator

$$
J_{W V}(\lambda): W \otimes V \rightarrow W \otimes V
$$

given by $J_{W V}(\lambda)(w \otimes v)=\left\langle\Phi_{\lambda}^{w, v}\right\rangle$.
Definition 39. The operator $J_{\lambda}^{w, v}$ is called the fusion operator of V and W.

Proposition 40. [ES Proposition 2.3] Let V, W be finite dimensional \mathfrak{g}-modules, then the following hold:

- $J_{W V}(\lambda)$ is a rational function of λ.
- $J_{W V}(\lambda)$ is strictly lower triangular, i.e., $J_{W V}(\lambda)=1+N$ with N sum of terms with strictly positive weight in the second component. In particular $J_{W V}(\lambda)$ is invertible.
- Let U, V, W be finite dimensional \mathfrak{g}-modules, the fusion operators satisfy the dynamical 2-cocycle condition:

$$
J_{U \otimes W, V}(\lambda)\left(J_{U W}\left(\lambda-h^{3}\right) \otimes 1\right)=J_{U, W \otimes V}(\lambda)\left(1 \otimes J_{W V}(\lambda)\right)
$$

3.3.2 Exchange operators

Definition 41. The exchange operator on V and W, finite dimensional \mathfrak{g}-modules, is defined as

$$
R_{V W}(\lambda):=J_{V W}(\lambda)^{-1} J_{W V}^{12}(\lambda): V \otimes W \rightarrow V \otimes W
$$

where $J^{12}=\tau J \tau$, for $\tau(x \otimes y)=y \otimes x$.
The operator $R_{V W}$ tells us how to exchange the intertwining operators, if $\Phi_{\lambda}^{w, v}=\tau \sum_{i} \Phi_{\lambda}^{w_{i}, v_{i}}$ then $R_{V W}(\lambda)(v \otimes w)=\sum_{i} v_{i} \otimes w_{i}$.

Proposition 42. For U, V, W finite dimensional \mathfrak{g}-modules the exchange matrices satisfy:

$$
R^{V W}\left(\lambda-h^{3}\right) R^{V U}(\lambda) R^{W U}\left(\lambda-h^{1}\right)=R^{W U}(\lambda) R^{V U}\left(\lambda-h^{2}\right) R^{V W}(\lambda) .
$$

In particular $R_{V V}$ is a solution of the QDYBE.
Proof. Let $u \in U, v \in V, w \in W$ be homogeneous elements and

$$
\Phi_{\lambda}^{u, v, w}=\Phi_{\lambda-w t(v)-w t(w)}^{u} \circ \Phi_{\lambda-w t(v)}^{w} \circ \Phi_{\lambda}^{v} .
$$

Define $\sigma: U \otimes W \otimes V \rightarrow V \otimes W \otimes U$ as $\sigma(x \otimes y \otimes z)=z \otimes y \otimes x$, then we can write $\Phi_{\lambda}^{u, v, w}=$ $\sum_{i} \sigma \Phi_{\lambda}^{v_{i}, w_{i}, u_{i}}$ in two different ways as given by the following diagram:

Using the two ways we obtain the relation on the exchange matrices.

Example 43. [ES, Example 1] Consider $\mathfrak{g}=s l_{2}$ with generators e, f, h and $V=\mathbb{C}^{2}$ with basis $\{x, y\}$. The action of \mathfrak{g} on V is given by taking:

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Using the triangularity property on $J_{V, V}(\lambda)$ one gets that

$$
J_{V, V}(\lambda)(x \otimes x)=x \otimes x, \quad J_{V, V}(\lambda)(y \otimes y)=y \otimes y, \quad J_{V, V}(\lambda)(y \otimes x)=y \otimes x .
$$

We need to compute $J_{V, V}(\lambda)(x \otimes y)$.
Consider $\Phi_{\lambda+1}^{x}\left(x_{\lambda+1}\right)=x_{\lambda} \otimes x$ and $\Phi_{\lambda}^{y}\left(x_{\lambda}\right)=x_{\lambda+1} \otimes y+g(\lambda) f x_{\lambda+1} \otimes x$, we use the intertwining property to determine $g(\lambda)$:

$$
\begin{aligned}
0=\Phi_{\lambda}^{y}\left(e x_{\lambda}\right) & =(e \otimes 1+1 \otimes e) \Phi_{\lambda}^{y}\left(x_{\lambda}\right)= \\
& =x_{\lambda+1} \otimes x+g(\lambda) e f x_{\lambda+1} \otimes x= \\
& =x_{\lambda+1} \otimes x+(1+\lambda) g(\lambda) x_{\lambda+1} \otimes x
\end{aligned}
$$

so $g(\lambda)=-\frac{1}{1+\lambda}$. Then

$$
\Phi_{\lambda}^{x, y}\left(x_{\lambda}\right)=x_{\lambda} \otimes\left(x \otimes y-\frac{1}{\lambda+1}\right) y \otimes x
$$

So we get

$$
J_{V, V}(\lambda)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -\frac{1}{\lambda+1} & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
R_{V, V}(\lambda)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & -\frac{1}{\lambda+1} & 0 \\
0 & \frac{1}{\lambda+1} & 1-\frac{1}{(\lambda+1)^{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We can check that $R_{V, V}$ is a solution of the QDYBE

$$
R^{12}\left(\lambda-h^{3}\right) R^{13}(\lambda) R^{23}\left(\lambda-h^{1}\right)=R^{23}(\lambda) R^{13}\left(\lambda-h^{2}\right) R^{12}(\lambda)
$$

It is enough to check that the relation holds on the basis of $V \otimes V \otimes V$, we start with the easy case:

$$
\begin{aligned}
& R^{12}\left(\lambda-h^{3}\right) R^{13}(\lambda) R^{23}\left(\lambda-h^{1}\right)(x \otimes x \otimes x)= \\
& =x \otimes x \otimes x= \\
& =R^{23}(\lambda) R^{13}\left(\lambda-h^{2}\right) R^{12}(\lambda)(x \otimes x \otimes x)
\end{aligned}
$$

and

$$
\begin{aligned}
& R^{12}\left(\lambda-h^{3}\right) R^{13}(\lambda) R^{23}\left(\lambda-h^{1}\right)(y \otimes y \otimes y)= \\
& =y \otimes y \otimes y= \\
& =R^{23}(\lambda) R^{13}\left(\lambda-h^{2}\right) R^{12}(\lambda)(y \otimes y \otimes y)
\end{aligned}
$$

Consider $x \otimes x \otimes y$, remember that x and y have weight $1,-1$, so we have:

$$
\begin{aligned}
& R^{12}\left(\lambda-h^{3}\right) R^{13}(\lambda) R^{23}\left(\lambda-h^{1}\right)(x \otimes x \otimes y)= \\
& =R^{12}\left(\lambda-h^{3}\right) R^{13}(\lambda)\left(x \otimes x \otimes y+\frac{1}{\lambda} x \otimes y \otimes x\right)= \\
& =R^{12}\left(\lambda-h^{3}\right)\left[x \otimes x \otimes y+\frac{1}{\lambda+1} y \otimes x \otimes x+\frac{1}{\lambda} x \otimes y \otimes x\right]= \\
& =x \otimes x \otimes y-\frac{1}{\lambda(\lambda+1)} x \otimes y \otimes x+\frac{1}{\lambda+1}\left(1-\frac{1}{\lambda^{2}}\right) y \otimes x \otimes x+ \\
& +\frac{1}{\lambda} x \otimes y \otimes x+\frac{1}{\lambda^{2}} y \otimes x \otimes x= \\
& =x \otimes x \otimes y+\frac{1}{\lambda+1} x \otimes y \otimes x+\frac{1}{\lambda} y \otimes x \otimes x
\end{aligned}
$$

and

$$
\begin{aligned}
& R^{23}(\lambda) R^{13}\left(\lambda-h^{2}\right) R^{12}(\lambda)(x \otimes x \otimes y)= \\
& =R^{23}(\lambda) R^{13}\left(\lambda-h^{2}\right)(x \otimes x \otimes y)= \\
& =R^{23}(\lambda)\left(x \otimes x \otimes y+\frac{1}{\lambda} y \otimes x \otimes x\right)= \\
& =x \otimes x \otimes y+\frac{1}{\lambda+1} x \otimes y \otimes x+\frac{1}{\lambda} y \otimes x \otimes x
\end{aligned}
$$

Similarly for any element of the basis of $V \otimes V \otimes V$ the relation holds, i.e., $R_{V V}$ is a dynamical R-matrix.

4 The classical dynamical case

Quantization of the classical Yang-Baxter equation (CYBE) led to the theory of quantum groups, its dynamical analogue is the classical dynamical Yang-Baxter equation (CDYBE).
In this section we follow [S] and [EV1] to introduce some basic notions linked to the CDYBE and give a geometric meaning to its solutions, the dynamical r-matrices, using the notion of dynamical Poisson groupoid, the dynamical analogue of Poisson-Lie groups.
Similarly to the QYBE, let V be a finite dimensional semisimple \mathfrak{h}-module and $R: \mathfrak{h}^{*} \rightarrow \operatorname{End}(V \otimes V)$ of the form $R=1-\gamma r+O\left(\gamma^{2}\right)$ a solution of the QDYBE of step γ, then $r: \mathfrak{h}^{*} \rightarrow \operatorname{End}(V \otimes V)$ satisfies the CDYBE.

The function r is the classical limit of R, and R is a quantization of r.

4.1 The classical dynamical Yang-Baxter equation

Let \mathfrak{g} be a Lie algebra and $r \in \mathfrak{g} \otimes \mathfrak{g}$, then:
Definition 44. The classical Yang-Baxter equation (CYBE) is given by

$$
\left[r^{12}, r^{13}\right]+\left[r^{12}, r^{23}\right]+\left[r^{13}, r^{23}\right]=0 .
$$

Solutions of the CYBE are called r-matrices.
Let $\mathfrak{h} \subset \mathfrak{g}$ be a subalgebra, an element $x \in \mathfrak{g} \otimes \mathfrak{g}$ is said to be \mathfrak{h}-invariant if

$$
[k \otimes 1+1 \otimes k, x]=0 \quad \forall k \in \mathfrak{h} .
$$

For $x \in \mathfrak{g}^{3}$ define

$$
\operatorname{Alt}(x)=x^{123}+x^{231}+x^{312}
$$

Definition 45. The classical dynamical Yang-Baxter equation (CDYBE) is the differential equation for an \mathfrak{h}-invariant holomorphic function $r: D \rightarrow \mathfrak{g} \otimes \mathfrak{g}$, with $D \subset \mathfrak{h}^{*}$, given by

$$
\operatorname{Alt}(d r)+\left[r^{12}, r^{13}\right]+\left[r^{12}, r^{23}\right]+\left[r^{13}, r^{23}\right]=0
$$

Here $d r: D \rightarrow \mathfrak{g}^{3}$ is considered as a holomorphic function $d r(\lambda)=\sum_{i} x_{i} \otimes \frac{\partial r^{23}}{\partial x_{i}}(\lambda)$, for any basis $\left(x_{i}\right)$ of \mathfrak{h}.

Explicitly we have

$$
A l t(d r)=\sum_{i} x_{i}^{1} \frac{\partial r^{23}}{\partial x_{i}}+\sum_{i} x_{i}^{2} \frac{\partial r^{31}}{\partial x_{i}}+\sum_{i} x_{i}^{3} \frac{\partial r^{12}}{\partial x_{i}} .
$$

Definition 46. A function $r: D \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ satisfying the CDYBE is called dynamical r-matrix.
In [E] we find the following conjecture:
Any classical dynamical r-matrix can be quantized.
This has been proved in the non-dynamical case by Etingof P. and Kazhdan D., and in the dynamical case for skew-symmetric solutions with some additional assumptions by Xu P..

4.2 Dynamical Poisson groupoids

We now introduce the classical limit of the notion of dynamical quantum groups, i.e., Poisson groupoids. A more detailed analysis is given in [EV1] and [W].

Remark 47. We will only consider groupoids built on small categories, so objects and morphisms form a set.

Definition 48. A groupoid is a small category in which every morphism is invertible.
We will consider groupoids given by:

- a set X (denoting the groupoid itself) of arrows
- a set P of objects
- two surjective maps $s, t: X \rightarrow P$ called source and target
- a composition map $m:\{(a, b) \in X \times X: s(a)=t(b)\} \rightarrow X$
- an injective map $E: P \rightarrow X$ called identity map
satisfying various conditions. In particular there exists an involution $i: X \rightarrow X$ such that $s(i(x))=$ $t(x), s(x)=t(i(x)), m(x, i(x))=i d_{t(x)}$ and $m(i(x), x)=i d_{s(x)}$.
The notion of groupoid generalizes that of group, in particular a groupoid with only one object is a group.

Definition 49. A Lie groupoid is a groupoid equipped with a smooth structure, i.e., the set of objects and morphisms are both smooth manifolds and the structure maps are smooth.

Definition 50. [W][EV1] A Poisson groupoid is a Lie groupoid X endowed with a poisson bracket such that the graph of the composition map is a coisotropic submanifold of $X \times X \times \bar{X}$, i.e., the smooth functions vanishing on it are closed under Poisson bracket.
Here \bar{X} indicates the opposite Poisson manifold to X.
We can now introduce a special class of Poisson groupoids which we will call dynamical Poisson groupoids.
Let G be a Lie group and \mathfrak{g} its Lie algebra, $H \subset G$ a connected Lie subgroup with Lie algebra \mathfrak{h}. Define the coadjoint action as for any $h \in H, x \in \mathfrak{h}$ and $\mu \in \mathfrak{h}^{*}$:

$$
\begin{gathered}
A d^{*}: H \rightarrow A u t\left(\mathfrak{h}^{*}\right) \\
A d^{*}(h)(\mu)(x):=\mu\left(\operatorname{Ad}\left(h^{-1}\right)(x)\right) .
\end{gathered}
$$

Let $U \subset \mathfrak{h}^{*}$ be an open subset invariant under the coadjoint action.
Consider the manifold $X(G, H, U):=U \times G \times U$, it has a natural structure of Lie groupoid given by taking $X=X(G, H, U), P=U, s\left(u_{1}, g, u_{2}\right)=u_{2}, t\left(u_{1}, g, u_{2}\right)=u_{1}, E(u)=(u, 1, u)$ and $m\left(\left(u_{1}, f, u_{2}\right),\left(u_{2}, g, u_{3}\right)\right)=\left(u_{1}, f g, u_{3}\right)$, while the inversion is defined by using inversion on G as $i\left(u_{1}, g, u_{2}\right)=\left(u_{2}, g^{-1}, u_{1}\right)$. This groupoid is the direct product of the trivial groupoid with base U and the group G .
On X we consider a left and right commuting actions of H defined as:

$$
l(h)\left(u_{1}, g, u_{2}\right)=\left(A d^{*}(h)(u), h g, u_{2}\right),
$$

$$
r(h)\left(u_{1}, g, u_{2}\right)=\left(u_{1}, g h, A d^{*}\left(h^{-1}\right)\left(u_{2}\right)\right) .
$$

We can also define the diagonal action of H on $X \times X$ as $\Delta(h)(x, y)=\left(r(h)^{-1} x, l(h) y\right)$, which preserves the composition map.
For any $a \in \mathfrak{h}$ consider the functions on X defined by $a_{1}\left(u_{1}, g, u_{2}\right)=a\left(u_{1}\right)$ and $a_{2}\left(u_{1}, g, u_{2}\right)=a\left(u_{2}\right)$. Recall that given (M, ω) a symplectic manifold and H a Lie group, then a symplectic action of H on M is said to be a Hamiltonian action if there exists a moment map $\mu: M \rightarrow \mathfrak{h}^{*}$.

Definition 51. The pair $(X,\{ \})$, where $\{$,$\} is a Poisson bracket on X$, is a dynamical Poisson groupoid if the following holds:

- the actions l, r are Hamiltonian, with t, s being their moment maps, and for any $a, b \in \mathfrak{h}$ one has $\left\{a_{1}, b_{2}\right\}=0$.
- Let $X \bullet X:=X \times X / / \Delta(H)$ be the Hamiltonian reduction of $X \times X$ by the diagonal actions and $\bar{m}: X \bullet X \rightarrow X$ the reduction of the composition map by H. Then \bar{m} is a Poisson map.

Remark 52. If $H=1$ a dynamical Poisson groupoid is a Poisson-Lie group.

References

[B] D. Bump, Course notes on Quantum Groups, Stanford, spring 2019
[Dr] V. G. Drinfeld, Quantum groups, Proc. Int. Congr. Math (Berkley,1986) 1, 798-820.
[E] P. Etingof, On the Dynamical Yang-Baxter equation, 2000.
[ES] P. Etingof, O. Schiffman, Lectures on the dynamical Yang-Baxter equation, 1999.
[EV1] P. Etingof, A. Varchenko, Geometry and classification of solutions of the Classical Dynamical YangBaxter equation, 1997.
[EV2] P. Etingof, A. Varchenko, Solution of the Quantum Dynamical Yang-Baxter equation and Dynamical Quantum Groups, 1997.
[EV3] P. Etingof, A. Varchenko, Exchange dynamical quantum groups, 1998.
[Fa] L. D. Faddeev, Quantum groups, Bol. Soc. Bras. Mat 20, 47-54 (1989)
[F] G. Felder, Conformal field theory and integrable systems associated to elliptic curves, 1994
[FV] G. Felder, A. Varchenko, On representation of the elliptic quantum group $E_{\tau, \eta\left(s l_{2}\right)}$, Commun. Math. Phys. 181(1996), 746-762
[L] I. Losev, Course notes on Representation theory, Yale, 2015
[K] C. Kassel, Quantum groups, Vol. 155 Springer, 2012
[Ki] O. Kivinen, Notes on quantum groups
[S] O. Schiffmann, On classification of dynamical r-matrices, 2018
[W] A. Weinstein, Coisotropic calculus and Poisson groupoids, J.Math.Soc.Japan 40 (1998), 705-727.
[FRT] L. D. Faddeev, N. Y. Reshetikhin, L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Leningrad Math, 1989

