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1. Introduction

Let k = k be an algebraically closed field of characteristic zero or large positive 
characteristic. We fix a connected reductive group G/k and a maximal torus T ⊂ G. We 
let Lie(G) =: g ⊃ t := Lie(T ), and denote by G∨ the Langlands dual group [68] over C
(or Q�).

In this paper we explain how one can naturally associate to an a˙ine Springer fiber 
for G, or rather to a conjugacy class of the loop Lie algebra g( (t) ), a quasi-coherent sheaf 
on a certain partial resolution of the commuting variety associated to G∨×g∨. We prove 
that the sheaves constructed this way are coherent in a number of cases and conjecture 
they are coherent in general. The sheaf on the partial resolution remembers homological 
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invariants of the a˙ine Springer fiber, and we expect that our construction provides a 
unfied perspective on the a˙ine Springer fibers and their various functorial properties.

1.1. Main results

Our first main character is a partial resolution of the trigonometric version of the 

commuting variety for G∨, which we denote by C̃G∨ = ̃T ∗T∨/W . It is in general a 
singular Poisson variety which we conjecture to locally agree with those constructed in 
[1,59,71]. The variety C̃G∨ is dfined via its homogeneous coordinate ring dfined below 
in equation (3). For G = GLn, we recover the Hilbert scheme of n points on C××C [69]. 
The variety C̃G∨ has a natural action of the torus C×

cot which lifts the torus action on 
T ∗T∨/W dilating the cotangent fibers. A more detailed construction is given in Section 3.

Let GrG be the a˙ine Grassmannian of G. On the level of k-points this is G(K)/G(O), 
where O = k�t� and K = k( (t) ) = k�t�[t−1]. Our second main character is the a˙ine 
Springer fiber Spγ ⊂ GrG, γ ∈ g(K), dfined as the fixed locus of the vector field γ. 
More precisely, let γ ∈ g(K) be a compact semisimple element. On the level of k-points

Spγ(k) :=
{
gG(k�t�)|Ad(g−1)γ ∈ Lie(G)(k�t�)

}
⊂ GrG(k).

Under these assumptions, Spγ is a nonempty ind-scheme over k. If γ is also regular, 
Spγ is finite-dimensional and locally of finite type over k [97, 2.5.2]. We will only be 
interested in the étale or singular cohomologies of the Spγ , so will be writing Spγ for the 
k-points Spγ(k). If k = C we will use the analytic topology and if k = Fq we will use 
the étale topology. Our main result is the following.

Theorem 1.1. Let γ ∈ g(K) be a semisimple element and Gγ = CG(K)(γ) its centralizer in 
G(K). The group Gγ admits a Néron model Jγ/O. Then for every subgroup Kγ ⊆ Jγ(O), 
there exists a quasi-coherent sheaf FKγ

γ ∈ QCohGm
(C̃G∨) such that:

(1) FKγ

tγ = L ⊗ FKγ
γ where L = O(1) is the Serre twisting sheaf coming from the Proj

construction of C̃G∨ (3).
(2) There exists an integer M such that for m > M we have

H0
(
C̃G∨ ,FKγ

tmγ

)
= H

Kγ
∗ (Sptmγ)

Moreover, the sheaf FKγ
γ is equivariant with respect to the action of C×

cot and the homo
logical grading on the a˙ine Springer fiber side can be recovered from this action.

We conjecture below that FKγ
γ is actually coherent (see Conjecture 1.7) and prove it 

in some cases. For trivial subgroup Kγ we denote FKγ
γ by Fγ .
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Remark 1.2. Note that the quasicoherent sheaf FKγ
γ only depends on the underlying 

reduced structure of the ind-scheme Spγ .

Remark 1.3. Here and in the rest of the paper, H∗(−) denotes Borel-Moore homology, 
dfined as H∗(X) := H−∗(X,ωX). The Borel-Moore homology of an ind-variety X =
lim−−→Xi will be dfined as H∗(X) = lim−−→H∗(Xi).

It is natural to wonder what kind of sheaves Fγ Theorem 1.1 yields. For G = GLn

and γ homogeneous, we have the following.

Theorem 1.4 (Proposition   8.10). If G = GLn, Kγ is trivial and γ elliptic homogeneous 
of slope kn+1

n then Fγ agrees with the restriction of the line bundle O(k) to the punctual 
Hilbert scheme at (1, 0).

Theorem 1.5 (Proposition   8.11). For G = GLn,Kγ = T and γ regular semisimple of 
integral slope k, the sheaf FT

γ agrees with P ⊗ O(k), where P is the Procesi bundle 
restricted to Hilbn(C× ×C).

For the same γ and Kγ trivial we get a sheaf Fγ = P ⊗ O(k)/(y1, . . . , yn)P ⊗ O(k)
where yi are interpreted as endomorphisms of P.

Remark 1.6. For arbitrary G and homogeneous γ of integral slope, we also get an explicit 
description of the sheaf Fγ , see Theorem 8.12.

We also prove a noncommutative version of the above results. The ring of functions 
on C̃G∨ admits a deformation, or quantization known as the spherical trigonometric or 
graded Cherednik algebra (or graded DAHA). By the work of Yun [95,96], this algebra 
acts in homology of Spγ .

The sheaf L = O(1) and its powers are quantized to bimodules between two trigono
metric Cherednik algebras with different values of quantization parameters. These alge
bras and modules are assembled to a large Z-algebra [9], and one of the main results of 
the paper (Theorem 7.9) associates a graded module over this Z-algebra to a collection 
of a˙ine Springer fibers {Spγ ,Sptγ ,Spt2γ , . . .}. Roughly speaking, considering the bi
modules between different algebras allows one to move between different a˙ine Springer 
fibers. For G = GLn, the Z-algebra is similar to the one considered by Gordon and 
Stafford for rational Cherednik algebras of GLn in [32,33].

The main tool we use is a novel construction of Z-algebras related to the Coulomb 
branches of 3d N = 4 theories. The study of the latter was mathematically initiated by 
Braverman, Finkelberg, Nakajima [10,11] and further explored by for example Webster 
[92]. The original Coulomb branch algebra from [10] associated to G and an algebraic 
representation N ∈ Rep(G) is dfined as the convolution algebra in the equivariant Borel
Moore homology of a certain ``space of triples'' RG,N , which is modeled after the a˙ine 
Grassmannian of G. This construction admits a natural quantization by considering 
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additional equivariant parameters, and one can study both commutative and quantized 
versions.

In addition to the quantizations and the Z-algebras, there are several other general
izations of the original construction, such as the line operators in [21] which for example 
allow for different partial a˙ine flag varieties. We use the machinery of Coulomb branches 
to achieve the following goals:

• We realize the full graded DAHA as the Iwahori version of the Coulomb branch 
algebra associated to the adjoint representation and construct its Dunkl-Cherednik 
embedding to ℏ-difference operators on the Lie algebra of the torus T∨ (Theorem 6.1).

• We give explicit formulas for the Coulomb branch Z-algebra in difference presentation 
(Theorem 6.8, Proposition 6.10).

• We prove the shift isomorphisms for the spherical/anti-spherical subalgebras of the 
graded DAHA, in the difference-operator representation (Theorem 4.12). This allows 
us to dfine the shift bimodules and Z-algebras associated to graded DAHA for 
arbitrary G.

• In the commutative version, the Coulomb branch Z-algebra is equivalent to a graded 
algebra which we identify explicitly (Theorem 3.8). This allows us to dfine C̃G∨

using the Proj construction.
• Finally, we prove that a collection of a˙ine Springer fibers {Spγ ,Sptγ ,Spt2γ , . . .}

yields a module over the Coulomb branch Z-algebra (Corollary 7.11). This is done 
using a variant of the Springer theory developed by Hilburn, Kamnitzer and Weekes 
[43], and Garner and the second author [27].

We give a more detailed outline of the results and arguments in Section 1.5. We also 
comment on various conjectures and connections to physics of ``3d Mirror Symmetry'' 
and link homology (for G = GLn).

Of course, the technology of Coulomb branches as introduced in [10] works in far 
greater generality than the ``adjoint matter'' case studied in this paper. In Sections 5
and 7 we give definitions for the general case but focus our study on the (G,Ad)-variant. 
Following these definitions, the associated Z-algebras and their geometrically dfined 
modules could be studied in much larger generality but as far as the authors are aware, 
this remains a fairly unexplored direction.

1.2. 3d Mirror symmetry

Our main construction can be thought of as a part of the 3d mirror symmetry for 
topological twists of 3d N = 4 gauge theories [46]. The 3d mirror symmetry exchanges 
the algebras of local operators on a resolved Higgs branch and on a resolved Coulomb 
branch. In particular, it is known that the Coulomb branch of the B-twist of the (G,Ad)
theory is a partial resolution of T ∗T∨/W . In physics terms, our construction starts 
with a ``boundary condition'' for the category of line operators in the A-twist of the 
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(G,Ad)-theory, thought of as a degenerate line operator (skyscraper sheaf on the stack of 
conjugacy classes in the loop Lie algebra) and produces another degenerate line operator 
in the B-twist of the dual theory (a (quasi-)coherent sheaf on a resolution of the Higgs 
branch).

More precisely, according to [21, Eq. (1.4)], the categories of line operators in the two 
twists are given by

CA ∼ = D-modG(K)(Ad(K)), CB ∼ = QCoh(Maps(S1
dR,Ad /G))

and by the subsequent discussion in [21] CB can be replaced by QCoh(MH), where MH

is a resolution of the Higgs branch.
Our construction is far from giving any sort of categorical equivalence between CA, CB , 

as even defining the categories involved is a delicate matter. However, supposing this done 
and writing δγ ∈ CA for γ ∈ g(K) for the skyscraper sheaf on the conjugacy class of γ
as before, our construction gives an explicit ``mirror map'' sending δγ �→ Fγ , where Fγ

is as in Theorem 1.1. Doing this for some other line operators, such as the bimodules in 
Section 6, is also possible but we don’t know how to make the construction functorial.

We hope this construction gives a starting point for rigorous constructions of 3d mirror 
symmetry for line operators. The fact that these categories have putative definitions in 
terms of vertex operator algebras [19] is an interesting topic for further investigations.

1.3. Conjectures

The main construction in Theorem 1.1 produces a C×-equivariant quasi-coherent 
sheaf

Fγ ∈ QCohC×

(
C̃G∨

)
for γ ∈ g(K) (and trivial subgroup Kγ). Quasi-coherence of the sheaf follows directly 
from our construction, but we suspect that a stronger statement is in fact true:

Conjecture 1.7. For any regular semisimple γ ∈ g(K) the sheaf Fγ is coherent:

Fγ ∈ CohC×(C̃G∨).

Remark 1.8. Under the natural projection C̃G∨ → T ∗T∨/W , the sheaf Fγ pushes for
ward to a certain sheaf on T ∗T∨/W which we describe in detail in Section 2.4. In 
Lemma 2.13 we show that its reduced support is contained in the Lagrangian subvariety 
{0} × T∨/W ⊂ T ∗T∨/W .

Similarly, we expect Fγ to be supported on a certain Lagrangian subvariety of C̃G∨

of dimension r = rank(g).
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The coherence conjecture already has interesting numerical corollaries. It is known 
that H∗(Spγ) is finite-dimensional if γ is elliptic and G is simply connected. Thus the 
conjecture above implies an estimate on the growth of the dimensions of these cohomol
ogy spaces, as we multiply γ by tm.

Conjecture 1.9. For any elliptic regular semisimple γ ∈ g(K) with G being simple and 
simply connected there exist ci ∈ Q and M ∈ Z such that

dim(H∗(Sptmγ) ) =
r∑

i=0 
cim

i, m > M, r = rank(g).

In the case of homogeneous elliptic γ it was shown in [90] that the conjecture is 
true, the left-hand side being given by variants of rational Coxeter-Catalan numbers, in 
particular the ci can be explicitly computed.1 Many low-rank examples are treated in a 
lot of detail in [77]. For G = GLn and γ of slope kn+1

n , the corresponding sheaf Fγ is 
described in Theorem 1.4 above. More complicated non-homogeneous elliptic cases for 
G = SLn were studied in [39,55,80].

In a different direction, we can consider the case of unramfied γ introduced in [31]. The 
second author has computed in [54] the equivariant cohomology of the a˙ine Springer 
fibers in the unramfied case and related them to the Procesi bundle on the Hilbert 
scheme of points.

More precisely, when γ is equivalued of valuation k ∈ Z≥0, we describe explicitly the 
graded module corresponding to Fγ for all G in Theorem 8.12. For such γ and G = GLn

the sheaf Fγ is indeed coherent and described by Theorem 1.5 above.
After the first version of this paper appeared on arXiv, Turner proved in [88, Theorem 

1.9] that for G = GL3 and an arbitrary unramfied γ the sheaf Fγ is coherent (and, in 
fact, the sheaf FT

γ is coherent). See [88] for more details and an explicit conjectural 
description of the corresponding graded module for G = GLn and unramfied γ.

1.4. Relation to conjectures stemming from knot theory

The case of G = GLn,SLn is of special interest because of the applications to knot 
theory [37,35,36,45,76,75,73]. In particular, the characteristic polynomial of a compact 
regular element γ ∈ gln(K) dfines a germ of a planar curve singularity and the link of this 
singularity is the closure of the braid (conjugacy class) β(γ) ∈ Brn. When G = SLn and 
γ is elliptic, β(γ) closes to a knot and the conjecture [75, Conjecture 2 and Proposition 
4] predicts an isomorphism between the (reduced) triply graded Khovanov-Rozansky 
homology of β(γ) and the cohomology of the a˙ine Springer fiber H∗(Spγ) enhanced 
with the perverse filtration [66,65,67]. Notice that these papers use cohomology whereas 

1 For S̃ptmγ i.e. the version in a˙ine flags, the result is easier to state and simply says ci = 0, i < r for 
the homogeneous elliptic cases.
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the present work uses BM homology, but this distinction is immaterial for numerical 
comparisons of multiply graded finite dimensional vector spaces with characteristic zero 
coefficients.

In this paper, we enrich the algebro-geometric side of the above conjectures by con
sidering an ifinite family of a˙ine Springer fibers {Spγ ,Sptγ ,Spt2γ , . . .}. It is easy to see 
that multiplication of γ by tm corresponds to the multiplication of the braid β(γ) by 
FTm, the m-th power of the full twist braid FT. Since FT is central in the braid group, 
the conjugacy class of β(γ) · FTm is determined by the conjugacy class of β(γ).

Khovanov and Rozansky dfined in [50--52] the triply graded link homology HHH(β)
for an arbitrary braid β and proved that it is a topological invariant of the link obtained 
by the closure of β. The three gradings on HHH(β) are usually referred to as a, q, t. By 
construction of triply graded homology HHH(−), there are natural grading-preserving 
multiplication maps

HHH(β(γ)) ⊗ HHH(FTm) → HHH(β(γ) · FTm) 
 HHH(β(tmγ)),

HHH(FTm) ⊗ HHH(FTm′
) → HHH(FTm+m′

), (1)

and hence 
⊕

m HHH(β(tmγ)) has a structure of a graded module over the graded algebra ⊕
m HHH(FTm). The latter graded algebra, as conjectured in [35] and proved in [36], is 

closely related to the homogeneous coordinate ring of Hilbn(C2), and to the Z-algebras 
appearing in this paper. In other words, in this paper we establish a precise analogue of 
multiplication maps (1) on the a˙ine Springer side by means of geometric representation 
theory.

In a series of papers [73,74] the third named author and Rozansky took a different 
approach to knot invariants and dfined a C× × C×-equivariant complex of coherent 
sheaves

Gβ ∈ Db
C××C×(Coh(Hilbn(C2)))

such that the hypercohomology H∗(Hilbn(C2),Gβ) is isomorphic as a bigraded vector 
space to the ``lowest row'' HHHa=0(β) of the triply-graded homology. The action of C××
C× corresponds to (after an appropriate normalization) the (q, t)-grading on HHHa=0(β).

To connect these constructions with the present one, note that the natural inclusion 
map iC× : C× × C → C2, iC×(x, y) = (x− 1, y) induces an inclusion iC× : Hilbn(C× ×
C) → Hilbn(C2) which identfies the punctual Hilbert schemes at (1, 0) and (0, 0).

Conjecture 1.10. For any regular semisimple γ ∈ gln�t� there is an isomorphism of C×
equivariant sheaves

Fγ 
 i∗C×(Gβ), β = β(γ).



E. Gorsky et al. / Advances in Mathematics 464 (2025) 110143 9

Let us point out that the results of Maulik [64], the aforementioned [65--67], and the 
results of the third author with Rozansky in [74] can be combined to show that for 
elliptic γ, the conjecture is true on the level of Euler characteristics:

χ(Spγ) = χC×(i∗C×(Fβ)), β = β(γ),

for γ ∈ sln�t� elliptic regular semisimple.
In particular, we derive an Euler characteristics version of the weak coherence Con

jecture 1.9:

Proposition 1.11. For any elliptic regular semisimple γ ∈ sln�t� there are ci ∈ Q and 
M ∈ Z such that

χ(Sptmγ) =
n−1∑
i=0 

cim
i, m > M.

Remark 1.12. In fact, the above Proposition also follows from Definition 5.13. and Eq. 
(6.7) in [55] for G = SLn. Under the purity hypothesis, the stronger Conjecture 1.9 would 
also follow in this case from the same results.

Conjecture 1.10 implies for example that the coefficients of the HOMFLYPT polyno
mial of the closure of β(γ)·FTm are polynomials of m. This property of the HOMFLYPT 
polynomial could be derived, for example, from the results of [73,74] and equivariant 
Riemann-Roch formula.

Finally, note that Maulik’s result in [64] actually keeps track of the Euler characteris
tics of the Hilbert schemes of points on the germ dfined by γ and hence the perverse fil
tration [65,66]. For elliptic γ we may also conjecture that there exists a Springer-theoretic 
construction of a sheaf grP Fγ ∈ CohC××C×(Hilbn(C2)) which C× × C×-equivariantly 
agrees with Fβ . For partial results in this direction, see [55, Section 9].

1.5. Outline

1.5.1. Outline of the argument
The key ingredients of the construction are 1) the technology developed by Braver

man, Finkelberg and Nakajima [10--12] on the a˙ine Springer side (Topology) and 2) 
noncommutative geometry methods akin to the work by [32] on the Hilbert scheme side 
(Algebraic Geometry). The theory of the 3) Double a˙ine Hecke algebras (Algebra) links 
these two theories together. Our work provides a dictionary between objects in the three 
theories. A part of this dictionary is as follows2:

2 For simplicity of introduction we discuss the type A case, for other types see section 8.
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Topology Algebra Algebraic Geometry

iAi := H
G(O)⋊C×

∗ (iRi) eHc+iℏ,ℏe C[T ∗T∨/W ]
i−1Ai := H

G(O)⋊C×

∗ (i−1Ri) i−1Bi = e−Hc+iℏ,ℏe O(1)

iÃi := HI⋊C×

∗ (iR̃i) Hc+iℏ,ℏ H0
(

̃T ∗T∨/W,P
)

i−1Ãi := HI⋊C×

∗ (i−1R̃i) i−1B̃i H0
(

̃T ∗T∨/W,P ⊗O(1)
)

HC×
∗ (S̃pnk+1

n ) Hc+kℏ,ℏ ↷ Lnk+1
n (C) Oπ−1(1,0)(k)

In the Algebra column of the table we have the algebraic objects related to the represen
tation theory of the graded double a˙ine Hecke algebra Hc,ℏ dfined in Definition 4.1. 
This algebra is also known under the names trigonometric or degenerate DAHA. The 
algebra Hc,ℏ contains the finite Weyl group W and e, e− ∈ W are the projectors for the 
trivial and sign representations. We dfine an explicit representation of these algebras 
using difference operators and use it to prove the following:

Theorem 1.13. (Theorem 4.12) The spherical subalgebra eHc,ℏe is isomorphic to the 
anti-spherical subalgebra e−Hc−ℏ,ℏe− with shifted parameter.

Similar shift isomorphisms are well known in the theory of rational Cherednik algebras 
and for the Dunkl differential-difference representation [5,44,79], but it appears to be new 
for the difference representation of trigonometric DAHA. See also [57] for similar results.

Thus e−Hc+iℏ,ℏe naturally has left eHc+(i−1)ℏ,ℏe and right eHc+iℏ,ℏe actions and we 
set:

iBi = eHc+iℏ,ℏe, iBi+1 = e−Hc+iℏ,ℏe, iBj+1 = iBj ⊗jBj jBj+1.

Here iBi are algebras, iBj are bimodules over iBi and jBj for all i ≤ j, and we get 
well-defined multiplication maps

iBj

⊗
jBj

jBk → iBk, i ≤ j ≤ k.

The direct sum •B• =
⊕

i≤j iBj is an example of a Z-algebra, introduced by Pol
ishchuk and Bondal [9] and studied in a setting relevant to us by Gordon and Stafford 
[32,33,81].

We now explain how the above mentioned structures exist in the a˙ine Springer theory, 
which corresponds to the Topology column. The key geometric object is an ind-scheme 

iR̃j , a variant of ``the space of triples R'' central to the work of Braverman, Finkelberg 
and Nakajima [10--12] on Coulomb branches:

jR̃i =
{
(g, v) ∈ G(K) × ti Lie(I)|g · v ∈ tj Lie(I)

}
/I,

where I is the Iwahori subgroup (see Section 2.1). On the level of sets, the quotient 
space I\0R̃0 is in bijection with the quotient S̃t/G(K) of the a˙ine Steinberg space 
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S̃t = {(b1, g, b2) ∈ FlG ×g(K)×FlG |g ∈ b1 ∩ b2}, as also explained in the introduction to 
[11]. There is an action of C×

dil ×C×
rot on S̃t where C×

dil acts by dilating the g(K) factor 
and C×

rot acts by loop rotation. We denote

I = I ×C×
dil, G(O) = G(O) ×C×

dil, G(K) = G(K) ×C×
dil. (2)

It was explained by Varagnolo and Vasserot [89] that under a certain specialization 
of parameters, equivariant homology group of the a˙ine Steinberg variety can be dfined 
as

H
G(K)×C×

rot
∗ (S̃t) := H

I⋊C×
rot∗ (0R̃0)

and the latter is isomorphic to Hc,ℏ under a specialization of parameters. Here the 
parameter c depends on our choice of the equivariant structure with respect to the loop 
rotation group C×

rot. Their work however uses localization techniques which we are able to 
avoid, thereby providing an isomorphism over the full parameter space, see Theorem 6.1.

Similarly, one can dfine the a˙ine Grassmannian version iRj of the above spaces. 
Since the fibers of the projection iR̃j → iRj are classical Springer fibers, we have a 
geometric model for the spherical algebra (see Corollary 6.3)

eHc,ℏe ∼ = H
G(O)⋉C×

rot
∗ (0R0).

Thus, it is natural to dfine

iAj = H
G(O)⋉C×

rot
∗ (iRj), •A• =

⊕
i≤j

iAj .

As explained in [12,21,92], there is a natural associative convolution product

H
G(O)⋉C×

rot
∗ (iRj) ⊗H

G(O)⋉C×
rot

∗ (jRk) → H
G(O)⋉C×

rot
∗ (iRk).

By associativity the convolution descends to give bilinear product maps

iAj

⊗
jAj

jAk → iAk.

One of our main results partially identfies the Coulomb branch Z-algebra •A• in terms 
of the algebraic Z-algebra •B•.

Theorem 1.14. The Coulomb branch Z-algebra •A• satifies the following properties:

(a) For all i the algebras iAi and iBi are isomorphic.
(b) For all i the bimodules iAi+1 and iBi+1 are isomorphic.
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(c) For G = GLn, the bimodules iAj and iBj are isomorphic for all i ≤ j. Moreover, 
the Z-algebras •A• and •B• are isomorphic.

(d) The homological grading on iAj = H
G(O)⋉C×

rot
∗ (iRj) corresponds to the grading on 

iBj induced by the grading on Hc,ℏ (see Section 4).

We prove part (a) as Theorem 6.1, part (b) as Theorem 6.5 and part (c) as Theo
rem 6.26. In Proposition 6.10 we also provide an explicit basis for the associated graded 
of •A• with respect to Bruhat filtration in all types, see in particular Theorem 6.8 for 
G = GLn.

The main difficulty in proving part (c) is that •B• is generated by the ``degree one 
bimodules'' iBi+1 by definition, while this is not clear at all for •A•. For G = GLn, we 
resolve this difficulty by a careful combinatorial analysis of the basis in Theorem 6.8, and 
using deep results of Gordon and Stafford on Z-algebras for rational Cherednik algebras 
[32,33].

Next, we turn to the Algebraic Geometry column of the table. In the commutative 
limit c = ℏ = 0 the Z-algebra •Aℏ=0

• becomes a graded commutative algebra, as iAℏ=0
j

only depends on the difference d = j − i. For d = 0 the algebra 0Aℏ=0
0 can be identfied 

with the algebra of symmetric polynomials on T ∗T∨, or, equivalently, the algebra of 
functions on T ∗T∨/W . For d = 1 the module 0Aℏ=0

1 can be identfied with the space of 
antisymmetric polynomials on T ∗T∨ (see Theorem 3.6 for both d = 0 and d = 1 cases). 
Our next main result identfies this graded algebra explicitly.

Theorem 1.15. (Theorem 3.8) Let ε be the sign representation of W and ed be the idem
potent in C[W ] corresponding to ε⊗d. We have

0Aℏ=0
d 
 ed

⋂
α∈Φ+

〈1 − α∨, yα〉d

where in the right hand side we have an intersection of ideals in C[T ∗T∨]. Here we regard 
1−α∨ as functions on T∨ and yα as coordinates in the cotangent fiber corresponding to 
the positive roots α ∈ Φ+. The isomorphism agrees with the convolution structure on the 
left hand side and the multiplication on the right hand side.

The homological grading on 0Aℏ=0
d corresponds to the natural grading on C[T ∗T∨]

given by dilation of the cotangent fiber (so that 1−α∨ have degree 0 and yα have degree 
−1).

We can then dfine an algebraic variety

C̃G∨ := Proj
∞ ⊕
d=0 

0Aℏ=0
d (3)
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which is a partial resolution of Spec 0Aℏ=0
0 = T ∗T∨/W . In other words, we identify the 

graded algebra 
⊕∞

d=0 0Aℏ=0
d with the homogeneous graded ring of C̃G∨ . The homological 

grading on 0Aℏ=0
d described in Theorem 1.15 corresponds to the C×

cot action on C̃G∨ .

Remark 1.16. The algebra described in Theorem 1.15 is (up to a projection by ed) an 
example of the so-called symbolic Rees algebra for the ideal⋂

α∈Φ+

〈1 − α∨, yα〉 ⊂ C[T ∗T∨].

It is in general a complicated question whether a symbolic Rees algebra is finitely gen
erated (e.g. [20]). However, [11, Theorem 3.18] ensures that C̃G∨ can be realized as a 
Hamiltonian reduction of a larger Coulomb branch with flavor symmetry by a certain 
torus action. This implies that 

⊕∞
d=0 0Aℏ=0

d is a finitely generated algebra, and C̃G∨ is 
a quasi-projective variety.

By the work of Haiman [41], for G = GLn this implies the following:

Proposition 1.17. For G = GLn, we get

Proj
∞ ⊕
d=0 

0Aℏ=0
d = Hilbn(C× ×C),

in particular, it is a smooth resolution of T ∗T∨/W 
 (C× ×C)n/Sn.

Remark 1.18. A different proof of Theorem 1.17 essentially follows from [12, Theorem 
3.10], which identfies a resolution of the Coulomb branch for (GLn, gln⊕Cn), constructed 
using flavor symmetry, with Hilbn(C2). The same proof in [12] applied to (GLn, gln)
yields Theorem 1.17.

Another proof can be extracted from more general results of Nakajima and Takayama 
[70,86] which identify the resolved Coulomb branches of quiver gauge theories of a˙ine 
type A with certain Cherkis bow varieties [18], and certain moduli spaces of parabolic 
sheaves on P 1 × P 1. See, in particular, [12, Theorem 4.9] for more context and details.

Next, we study graded modules over all of the above Z-algebras and graded algebras. 
The convolution structure of spaces iR̃j allows us to dfine a correspondence between 
the a˙ine Springer fibers in the a˙ine flag variety S̃ptiγ , S̃ptjγ ⊂ G(K)/I. Similarly, we 
prove in Theorem 7.9 that 

⊕
j≥0 H∗(Sptjγ) is a module over Z-algebra •A•. This is very 

similar to the BFN Springer theory developed in [43,27]. In the commutative variant, we 
obtain a graded module over the graded algebra, and hence a quasi-coherent sheaf over 
its Proj construction dfined by (3), which proves Theorem 1.1.

Finally, we outline a simple construction of the above action. Recall that the homology 
of the a˙ine Grassmanian version of the Springer fibers Sptjγ ⊂ G(K)/G(O) can be 
described in terms of the action of the finite Weyl group:
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H∗(Sptjγ) = H∗(S̃ptjγ)W , H∗(Sptj−1γ) = H∗(S̃ptjγ)ε[−2 dimG/B]. (4)

where ε is the sign representation of W and [−2 dimG/B] denotes shift in homological 
degree. We explain the details of the isomorphisms in the Lemma 2.2. Given a class in 
H∗(Sptj−1γ), we can identify it with a class in H∗(Sptjγ)ε, then act by an antisymmetric 
polynomial (using the commutative version of the double a˙ine action of [95]) and get a 
class in H∗(Sptjγ)W = H∗(Sptjγ). This construction gives a map

AG ⊗H∗(Sptj−1γ) → H∗(Sptjγ) (5)

where AG = 0Aℏ=0
1 is the space of antisymmetric polynomials.

It is unclear if this approach can be used to dfine the action of the full graded algebra ⊕∞
d=0 0Aℏ=0

d , the main obstacles are:

• It is unclear how to verify the relations between the products of elements of 0Aℏ=0
1

inside 0Aℏ=0
d

• For G �= GLn, it is unclear if the algebra is generated in degree 1.

To avoid these obstacles, we have abandoned this approach altogether and instead used 
the machinery of Coulomb branches throughout the paper. Nevertheless, a posteriori we 
conclude that the action of the degree 1 part of the algebra agrees with (5), and hence 
all necessary relations are satified.

1.5.2. Outline of the paper
In Section 2 we dfine the a˙ine Springer fibers and some background material. The 

sheaves we construct live on a partial resolution of T ∗T∨/W , which is introduced in 
Section 3. In Section 4, we study the trigonometric Cherednik algebra and a natural Z
algebra built out of it, which is the algebraic main part of the construction. In Sections 5, 
6 and 7 we study the a˙ine Springer fibers using Coulomb branch algebra machinery, 
in particular constructing a geometric Z-algebra action and comparing it to the one in 
Section 4. In Section 8 we prove that the sheaves we construct are coherent whenever γ
is homogeneous. In Section 8.2, we study some homogeneous examples in detail.
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2. A˙ine Springer fibers

2.1. Definitions

Let G/k be a reductive group over a field k. We assume k = k and that the char
acteristic is zero or large enough (no attempt will be made to give bounds). Fix some 
pinning T ⊂ B ⊂ G of the root system of G. Dfine N = dim(G/B). Let K = k( (t) )
and O = k�t�. Write G( (t) ) = G(K) and G�t� = G(O). Denote also g = Lie(G) and 
g( (t) ) = g(K), g�t� = g(O).

Let P be a standard parahoric subgroup of G(K), i.e. the pullback of a standard 
parabolic subgroup P ⊂ G(k) under the evaluation at zero map ev0 : G(O) → G(k). 
Let FlPG = G(K)/P be the corresponding partial a˙ine flag variety. When P = I is 
the Iwahori subgroup of G(K) corresponding to P = B, we simply write FlG := FlI

for the a˙ine flag variety and when P = G(O) we write GrG := FlG(O) for the a˙ine 
Grassmannian. Since it will usually be clear from the context, we will also omit the 
subscript G.

For any P and γ ∈ g(K), dfine the a˙ine Springer fiber

SpP
γ := {gP|Ad(g−1)γ ∈ Lie(P)} ⊂ FlP .

When P = G(O) we omit the superscript and when P = I we write S̃pγ = SpI
γ .

The space SpP
γ is a sub-ind-scheme of FlP. It is always nonreduced, but since it 

makes no difference to us, we will only work with the reduced structure of SpP
γ (see 

[97, Sections 2.2.9 and 2.5.1] for more details). SpP
γ is locally finite-dimensional if and 

only if γ is regular semisimple [48]. We shall mostly focus on the case when γ is regular 
semisimple from now on. We also assume γ is compact, i.e. contained in some Iwahori 
subgroup, or equivalently that the a˙ine Springer fiber is nonempty. The ind-scheme Spγ

is locally of finite type, and by results of [48] there exists a free abelian group Lγ acting 
on SpP

γ freely and a projective scheme S ⊂ SpP
γ such that Lγ ·S = SpP

γ . The free abelian 
group L can be identfied with the cocharacter lattice of the centralizer Gγ := CG(K)(γ)
of γ:

Lγ = X∗(Gγ).

In particular, L is trivial if and only if γ is elliptic. In this case, SpP
γ is a projective 

variety.

Remark 2.1. By the Jordan decomposition, we can write any γ as the sum of commuting 
semisimple and nilpotent elements: γ = γs + γn. Therefore, we can reduce the study of 
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general γ to nilpotent and semisimple γ, as Spγ = Spγs
∩Spγn

. While it is also interesting 
to study non-regular semisimple elements, much about this case can in principle be 
extracted from the regular semisimple case by the fact that the centralizer of a semisimple 
element is a reductive group over K. In the present work, we are mostly concerned with 
H

Kγ
∗ (Spγ) for Kγ ⊆ Jγ(O), i.e. a subgroup of the O-points of a smooth integral model 

of the centralizer of γ3 dfined in Section 2.5.
However, the nilpotent elements seem more mysterious from our point of view. It is 

clear e.g. by the convergence of the corresponding orbital integrals that the centralizers of 
nilpotent elements are quite large. In the case where γ is nilpotent, it is not even known 
if there is a Levi factor of the centralizer. It does make sense to ignore the centralizer (or 
at most use some compact subgroups thereof) and use finite-dimensional approximation 
to study the Borel-Moore homology of Spγ even in the nilpotent cases, as is done e.g. by 
Sommers in [84].

2.2. The Springer action

Assume for now that k = C or that we are using étale cohomology over Q� for 
	 �= char(k). One of the remarkable things about S̃pγ is that H∗(S̃pγ) has an action of 
the extended a˙ine Weyl group W̃ = W⋉X∗(T ) as shown by Lusztig [63] (for G adjoint) 
and Yun [95] (in general), analogously to the Weyl group action in the cohomology of 
classical Springer fibers.

Lemma 2.2. Let γ ∈ g(K) be an element such that γ = tγ0 for a regular semisimple 
compact element γ0 ∈ g(K). Then under the Springer action of W ⊂ W̃ on H∗(S̃pγ), we 
have a natural identfication

H∗(S̃pγ)W = H∗(Spγ) (6)

and an isomorphism

H∗(S̃pγ)ε ∼ = H∗(Spγ0
)[−2N ]. (7)

Here [−2N ] means a shift in homological degree and N = dimG/B, and ε denotes the 
sign representation of W .

Proof. The first part is due to [96, Section 2.6], and the second part is well-known but 
not found in the literature, so we give a proof here.

First recall the construction of the Springer action for the subgroup W ⊂ W̃ . Since I ⊂
G�t�, we have natural projections Fl → Gr and S̃pγ → Spγ . For any P, write P = P/tP
and p for its Lie algebra. There are natural maps of fpqc sheaves SpP

γ → [p/P ], which 

3 This is to ensure that the Kγ -action on Spγ factors through a finite-dimensional quotient and the 
equivariant BM homology can be dfined. The assumption on Kγ can possibly be weakened.
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send the cosets gP to the respective images of g−1γg under the projections Lie(P) → p. 
In particular there is a cartesian diagram

S̃pγ [g̃/G] = [b/B]

Spγ [g/G]

ϕ′

π π′

ϕ

(8)

where the right-hand side is naturally identfied with the Grothendieck-Springer res
olution for G. Since γ = tγ0, it is clear that the image of ϕ will be contained in 
[N/G] ⊂ [g/G] and the image of ϕ′ will be contained in [Ñ/G]. The restriction 
S := π′

∗C|N is perverse, and is called the Springer sheaf. It is in fact isomorphic to 
a direct sum of IC complexes on nilpotent orbits, and it is known by classical Springer 
theory that

EndPervG(N )(S) ∼ = C[W ].

In particular, there is a map

C[W ] → EndPerv(Spγ)(ϕ∗S)

and hence an action of W on H∗(S̃pγ). Decomposing the regular representation of W , we 
see that there is some IC complex F on [N/G] corresponding to the sign representation 
ε. From classical Springer theory it follows that this complex is isomorphic as a perverse 
sheaf to the shifted skyscraper sheaf C{0}[−2N ].

By proper base change,

H∗(S̃pγ)ε = Hom(ϕ∗F , π∗C) ∼ = Hom(ϕ∗F , ϕ∗S).

Now note that

ϕ−1(0) = {gG(O) ∈ Spγ |g−1γg ≡ 0 (mod t)} = Spγ0
.

This is a closed subspace, so ϕ∗F is isomorphic to the (shifted) extension by zero of the 
constant sheaf on Spγ0

. In particular, RΓ(ϕ∗F) ∼ = H∗(Spγ0
). On the other hand, by the 

adjunction

Hom(ϕ∗F , ϕ∗S) = Hom(F , ϕ∗ϕ
∗S)

it is clear that Hom(ϕ∗F , ϕ∗S) ∼ = RΓ(ϕ∗C{0})[−2N ]. Thus H∗(S̃pγ)ε ∼ = 
H∗(Spγ0

)[−2N ]. �
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We can rephrase Lemma 2.2 as follows. We have the Leray filtration on the Borel
Moore homology of S̃pγ such that

grk H∗(S̃pγ) =
⊕

i+j=k

Hi(Spγ , R
jπ∗C), 0 ≤ j ≤ 2N. (9)

Corollary 2.3. a) The W -invariant part of the homology of S̃pγ is canonically isomorphic 
to the j = 0 part of (9):

Hk(S̃pγ)W = Hk(Spγ , R
0π∗C) = Hk(Spγ ,C).

b) The associated graded of the W -antiinvariant part is isomorphic to the j = 2N
part of (9). In other words, the restriction of the obvious map

Hk(S̃pγ)ε → Hk−2N (Spγ , R
2Nπ∗C) ∼ = Hk−2N (Spγ0

)

is an isomorphism.

Remark 2.4. The result is also true in cohomology, cohomology with compact supports 
and BM homology (where we replace the constant sheaf by ωS̃pγ

) by identical reasoning.

Remark 2.5. The centralizer Gγ = CG(K)(γ) acts naturally on S̃pγ , inducing an action 
of the component group in cohomology. In particular, we have the Springer action for 
equivariant versions of any of the above theories, as well as a commuting action of the 
component group of the centralizer.

2.3. Extended symmetry

In addition to the action of W̃ on H∗(S̃pγ) there is a degenerate action of the character 
lattice X∗(T ) on H∗(S̃pγ) dfined as follows. There is a natural map I → T realizing T
as the reductive quotient of I. In particular, each character χ : T → Gm gives a map 
I → Gm and in particular a Gm-torsor L(χ) on Fl. As a line bundle, we can write this 
as

G×I,χ A1 → Fl .

Cap product with c1(L(χ)) dfines an action of X∗(T ) ⊗Z C on H∗(S̃pγ).

Theorem 2.6. Let X∗(T ) ⊂ W̃ be the translation part of the extended a˙ine Weyl group. 
Then the Springer action of X∗(T ) and the action of X∗(T ) dfined above commute.

Proof. This is proved in [95, Corollary 6.1.7]. �
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Remark 2.7. Note that this is not true in equivariant Borel-Moore homology when we 
take into account the loop rotation action of Grot

m , as one gets essentially the relations 
in the degenerate DAHA from Definition 4.1.

Note that the action of X∗(T ) gives rise to an action of C[T∨] and the action of 
X∗(T ) ⊗Z C gives rise to an action of C[t] on H∗(S̃pγ). We can thus summarize the 
above results in the following

Proposition 2.8. The non-equivariant Borel-Moore homology H∗(S̃pγ) is a (right) module 
over C[T ∗T∨] ⋊W .

Proposition 2.9. The non-equivariant Borel-Moore homology H∗(Spγ) is a module over 
C[T ∗T∨]W .

Proof. By Lemma 2.2 we have H∗(Spγ) = H∗(S̃pγ)W , and by Proposition 2.8 H∗(S̃pγ)
has an action of C[T ∗T∨]. By symmetrizing, we get the action of C[T ∗T∨]W on 
H∗(Spγ). �

We record the following lemma here.

Lemma 2.10. The action of X∗(T )⊗ZC on H∗(S̃pγ) from Section 2.3 decreases the Leray 
filtration (9) by two.

Proof. This follows from the fact that the action comes from cap product with Chern 
classes of the line bundles L(χ) constructed in the beginning of this section. �

Let Δ be the top-dimensional class in H2N (G/B). By the isomorphism H∗(G/B) ∼ = 
C[t]W , we can identify Δ with an antisymmetric polynomial in C[t], namely Δ =∏

α∈Φ+ yα. Moreover, note that we may write antisymmetric polynomials as C[t]ε =
Δ ·C[t]W .

Lemma 2.11. We have that

i∗(Hk−2N (Spt−1γ)) = Δ ·Hk(S̃pγ)ε.

where i : Spt−1γ → Spγ is the natural inclusion.

Proof. By Lemma 2.10 the operator Δ preserves the decomposition (9) and decreases 
the j-grading by 2N . Since j ≤ 2N , the action of Δ kills all the summands in (9) with 
j < 2N , so that

Δ ·Hk(S̃pγ)ε = Δ ·Hk−2N (Spγ , R
2Nπ∗C).
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At p ∈ Spγ where π−1(p) is a proper subset in the flag variety, R2Nπ∗C|p = 0. On the 
other hand, π−1(p) is the full flag variety if and only if p ∈ i(Spt−1γ) and in this case 
Δ : R2Nπ∗C → R0π∗C is the isomorphism. Therefore

Δ ·Hk−2N (Spγ , R
2Nπ∗C) = i∗(Hk−2N (Spt−1γ)). �

2.4. The lattice action

Let γ be compact and regular semisimple, and let Gγ be the stabilizer of γ in G(K)
as before. Obviously, Gγ acts on Spγ , giving an action of the component group π0(Gγ)
in the homology of Spγ . Since the action in this case is proper [48], we also get an action 
in the Borel-Moore homology H∗(Spγ).

The W -invariant translation part of the stabilizer action restricts to an action of the 
“spherical part'' C[X∗(T )]W on H∗(S̃pγ). This action commutes with the Springer action, 
and the local main theorem of [96] identfies the spherical part of the Springer action 
with the spherical part of the lattice action. More precisely, we recall the construction 
[96, Section 2.7-2.8] of a canonical homomorphism C[X∗(T )]W � C[π0(Gγ)].

Dfine c = g/ /G = t/ /W , and let a(γ) be the image of γ under the projection g(K) →
c(K). Then we can consider the commutative diagram

Spec ÕK SpecOK,a t

SpecOK c
a(γ)

where the right square is Cartesian by definition. The ring ÕK is a normalization of 
OK,a. Choose a component Y ⊂ Spec ÕK, and let WY ⊂ W be the stabilizer of Y . By 
[72, Prop. 3.9.2], the choice of Y allows one to dfine a surjection

X∗(T ) � X∗(T )WY
� π0(Gγ).

Furthermore, the corresponding group algebra homomorphism (restricted to C[X∗(T )]W )

C[X∗(T )]W � C[π0(Gγ)] (10)

does not depend on the choice of Y .

Theorem 2.12. [96] The spherical part of the Springer action of C[X∗(T )]W on H∗(S̃pγ)
factors through the canonical homomorphism (10).

By Propositions 2.8 and 2.9, the (BM) homology of Spγ and the homology of S̃pγ

are modules over C[T ∗T∨]W and hence dfine quasicoherent sheaves F ′
γ and F̃ ′

γ on 
(T ∗T∨)/W .
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Lemma 2.13. These quasicoherent sheaves are actually coherent, and their (reduced) sup
port is contained in the Lagrangian subvariety {0} × T∨/W ⊂ T ∗T∨/W . Moreover, the 
dimension of their support equals the rank of the centralizer Gγ.

Proof. By Kazhdan-Lusztig [48] the homology of Spγ is finitely generated over π0(Gγ)
and π0(Gγ) acts freely on the components of Spγ which all have the same dimension. By 
Theorem 2.12 we conclude that the homology of Spγ is finitely generated over C[T∨]W

and hence the corresponding sheaf F ′
γ on T ∗T∨/W is coherent. Similarly F̃ ′

γ is coherent 
as well.

By Lemma 2.2 we have H∗(Spγ) 
 H∗(S̃pγ)W . It is clear from Lemma 2.10 that the 

action of C[t] on H∗(S̃pγ) is nilpotent, and symmetric functions in C[t]W act on H∗(S̃pγ)
by 0, as they do in H∗(G/B). Therefore F ′

γ , F̃ ′
γ are supported on {0} × T∨/W .

Furthermore, the surjection (10) dfines a subvariety

SpecC[π0(Gγ)] ⊂ SpecC[X∗(T )]W = T∨/W

and Theorem 2.12 implies that F ′
γ , F̃ ′

γ are supported on {0} × SpecC[π0(Gγ)]. This 
proves the last statement. �
2.5. Equivariant versions, endoscopy

We can in fact upgrade this construction with the addition of equivariance to the 
picture. The centralizer Gγ/K has a smooth integral model Jγ over O, see e.g. [72]. 
As shown in [72], the stabilizer action on S̃pγ factors through the local Picard group 
Pγ = Gγ(K)/Jγ(O) whose underlying reduced scheme is finite-dimensional and locally 
of finite type. Consider the connected component of the identity P 0

γ of this group scheme. 
This is a linear algebraic group over C whose maximal reductive quotient contains a split 
maximal torus of rank equal to rank(X∗(Gγ)). Call this torus Tγ . It also acts on Spγ , 
and we may take the equivariant BM homology as in [54, Section 3]. The constructions 
of the Springer action etc. from the previous section go through Tγ-equivariantly. For 
simplicity, assume Tγ ↪→ T . Then we have:

Proposition 2.14. The equivariant BM homology HTγ
∗ (Spγ) is a quasi-coherent sheaf on 

T ∗T∨/W . Its reduced support has dimension ≤ 2rk(Tγ). In particular, if γ is elliptic, 
the support is of dimension 2rk(Z(G)), twice the split rank of the center of the group G.

Proof. The proof is similar to the proof of Lemma 2.13. The equivariant cohomology of a 
point H∗

Tγ
(pt) acts on HTγ

∗ (Spγ) via the equivariant Chern classes c1(L(χ)) from before, 
giving that the support is contained in tγ × T∨/W . Results of Yun [96, Lemma 5.14] 
then imply that the spherical part of the Springer action in the equivariant homology 
H

Tγ
∗ (Spγ) factors through C[π0(Pγ)] just as in Theorem 2.12. By [72, 3.9.], the group 

π0(Pγ) is free abelian of rank rk(Gγ), giving the desired dimension bound. When γ is 
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elliptic, Gγ has the same rank as the center and the lattice action is given by moving 
between different connected components, in particular it is free. This gives equality in 
the elliptic case. �
Remark 2.15. For elements in a split torus T = Tγ for which we have equivariant formal
ity of the H∗

T (pt)-action (studied e.g. in Section 8), the proof shows that the support is 
all of T ∗T∨/W .

If G �= GLn, we note that in the determination of the above support we run into issues 
of endoscopy. For example for G = SLn, the center μn will be contained in Tγ for any 
γ. For example for elliptic γ, we might get support at n points in T ∗T∨/W . Let us now 
illustrate how this plays out in the case of general G and γ elliptic, following [72].

Recall from [72, Sections 4 and 6] that we may decompose

H∗(Spγ) =
⊕

κ∈π0(Pγ)∨
H∗(Spγ)κ

for the local Picard group. As shown in [96, Section 2.7.], the π0(Gγ)-action further 
factors through the π0(Pγ)-action, so through the composition

C[X∗(T )]W � C[π0(Pγ)]

the above decomposition may be viewed as a decomposition over homomorphisms κ :
C[X∗(T )]W → C. One of the corollaries of the homological version of the Fundamental 
Lemma (see [72, 6.4.1.]) is that:

H∗(Spγ)κ ∼ = H∗(SpH
γH

)st[val(ΔG(γ)) − val(ΔH(γH))] (11)

for some a˙ine Springer fiber SpH
γH

of an endoscopic group H of G and a homological 
shift corresponding to the transfer factor. Here ΔG,ΔH denote discriminant functions 
on the Lie algebras g, h and ``st'' denotes the stable part, or in other words the part of 
the BM homology where the lattice acts unipotently (see e.g. [96]).

Since H∗(Spγ) is finite-dimensional, by using Lemma 2.13, the above κ-decomposition 
and Eq. (11), we can reformulate the fundamental lemma as follows.

Theorem 2.16. Consider the coherent sheaf F ′
γ on T ∗T∨/W constructed in the previous 

section. It is supported at finitely many points of the form (0, κ) ∈ T ∗T∨/W , where 
κ ∈ T∨/W as above. Each stalk (F ′

γ)(0,κ) is isomorphic to the stalk at (0, 1) of an 
“endoscopic sheaf'' on T ∗T∨

H/WH for some endoscopic group H of G. This isomorphism 
is as modules for C[T ∗T∨

H ]WH (or even as graded modules after taking into account the 
C×

cot-action on both sides).
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3. The commuting variety

3.1. The commuting scheme

In this section, we introduce the partial resolution of the commuting variety we will 
be considering. The construction is algebraic in nature. We show the partial resolution 
coincides with Hilbn(C× × C) in the case G = GLn. In general, we show it is a nor
mal variety and conjecture that locally its singularities are modeled by the Q-factorial 
terminalizations constructed by Losev et al. in [1,60]. Finally, we introduce a certain 
open chart of the partial resolution, which turns out to be isomorphic to the universal 
centralizer of G∨.

As above, let g∨ be the Lie algebra of G∨, t∨ = t∗ is the Lie algebra of T∨ and W is 
the Weyl group. We dfine two versions of the commuting scheme: C′

g∨ is a subscheme 
of g∨ × g∨ cut out by the equation [x, y] = 0, while C′

G∨ = C′
G∨,g∨ is a subscheme of 

G∨ × (g∨)∗ cut out by the equation Adg(x) = x.
Dfine Cg∨ := C′

g∨/ /G∨ = Spec C[C′
g∨ ]G∨ and CG∨ = C′

G∨/ /G∨ = Spec C[C′
G∨ ]G∨ . 

It is a long-standing open question if these schemes are reduced. We collect some facts 
about Cg∨ and CG∨ here.

There are natural restriction maps C[Cg∨ ] → C[t∗ × t∗]W and C[CG∨ ] → C[T∨ × t]W , 
which induce maps (t∗ × t∗)/W → Cg∨ and (T ∗T∨)/W → CG∨ . The former is surjective 
by the result of Joseph [47, Theorem 0.2] and dfines an isomorphism (t∗ × t∗)/W 

[Cg∨ ]red.

In [13, Proposition 5.24], the following is proved by essentially reducing to Joseph’s 
results in the rational case:

Theorem 3.1. The restriction of functions induces an isomorphism (T ∗T∨)/W 

[CG∨ ]red.

We note that there are alternative proofs of the theorem, such as the one given by 
Gan-Ginzburg in type A:

Theorem 3.2 ([26]). For G = GLn the scheme Cg is reduced.

From this it is easy to deduce

Corollary 3.3. For G = GLn the scheme CG is reduced.

Proof. For G = GLn we have a natural embedding G ⊂ g which induced embedding 
C′ ⊂ C′

g and CG ⊂ Cg. Since Cg is reduced, CG is reduced too. �
Recently, Chen-Ngô [16] (see also [62]) proved that Cg is reduced for g = sp2n, and 

for results on Cg for a general reductive Lie algebra g see [58].
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3.2. Partial resolutions

In this subsection we dfine several graded commutative algebras closely related to the 
commuting variety. By applying Proj construction to these graded algebras, we recover 
partial resolutions of CG∨ . We summarize various maps between the algebras in the 
following commutative diagram:

⊕
Jd

⊕
I(d)

⊕
0Aℏ=0

d

⊕
Ad

⊕
edI(d).ad

bd

(12)

All direct sums are over d ≥ 0. Next, we dfine all of the entries in this diagram, 
starting with the middle column.

We denote by ε the one-dimensional sign representation of W . We dfine by At, respec
tively A, as the subspace of W -antiinvariant functions (that is, ε-isotypic component) 
in C[t∗ × t], respectively C[T∨ × t]. Also, let Jt, respectively J be the ideal in C[t∗ × t]
(resp. C[T∨ × t]) generated by At (resp. A). Now Ad and Jd are the powers of A and J
inside the respective polynomial rings, with the assumption that A0 = C[T∨ × t]W and 
J0 = C[T∨ × t].

In the right column we have a family of ideals

I(d) :=
⋂

α∈Φ+

〈1 − α∨, yα〉d ⊂ C[T∨ × t]

Here α runs over the set of positive roots Φ+, yα is the equation of the root hyperplane 
in t corresponding to α, and α∨ is the corresponding coroot understood as a character 
α∨ : T∨ → C×. For d > 1, the ideals I(d) are the symbolic powers of I(1). In particular, 
we can consider a codimension 1 subtorus Ker(α∨) ⊂ T∨ and a codimension 1 hyperplane 
{yα = 0} ⊂ t, then their product Ker(α∨) × {yα = 0} is a codimension 2 subvariety in 
T∨ × t. For d = 1 the ideal I(1) corresponds to the union of all such subvarieties over 
positive roots α:

I(1) = I

( ⋃
α∈Φ+

Ker(α∨) × {yα = 0}
)
.

Example 3.4. For G = GLn we have I(d) =
⋂

i�=j〈1− xi

xj
, yi−yj〉d ⊂ C[x±

1 , . . . , x
±
n , y1, . . . , 

yn].

It is easy to see that I(d1) · I(d2) ⊂ I(d1+d2), so we have a graded algebra structure on 
the direct sum of all I(d). Furthermore, let
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ed = 1 
|W |

∑
σ∈W

(−1)d·ε(σ)σ

denote the projector to the representation εd in C[W ], that is, symmetrizer e for d even 
and antisymmetrizer e− for d odd.

Lemma 3.5. a) We have edJd = Ad for all d ≥ 0.
b) There are natural inclusions bd : Jd → I(d), Ad → edI(d).

Proof. a) For d = 0 this is clear from the definition, so we focus on d > 0. Since J is 
the ideal generated by A, it is spanned by elements of the form h · f for h ∈ A and 
f ∈ C[T∨ × t], and Jd is spanned by elements of the form h1 · · ·hd · f for h1, . . . , hd ∈ A

and f ∈ C[T∨ × t]. Since h1, . . . , hd are antisymmetric, we get

edh1 · · ·hd · f = 1 
|W |

∑
σ∈W

(−1)d·ε(σ)σ(h1 · · ·hdf)

= 1 
|W |

∑
σ∈W

h1 · · ·hdσ(f) = h1 · · ·hde(f) ∈ Ad.

The last inclusion follows from the fact that e(f) is a symmetric polynomial, so hde(f) is 
an antisymmetric polynomial. This shows edJd ⊂ Ad. On the other hand, by substituting 
f = 1 in the above equation we get edh1 · · ·hd = h1 · · ·hd, so h1 · · ·hd ∈ edJd and 
Ad ⊂ edJd.

b) Suppose that g ∈ C[T∨ × t] is an antisymmetric polynomial, α is a positive root 
and sα ∈ W is the corresponding rflection. Then for all (x, y) ∈ Ker(α∨)×{yα = 0} we 
have sα(x, y) = (sα(x), sα(y)) = (x, y). Now

sαg(x, y) = g(sα(x), sα(y)) = g(x, y),

but since g is antisymmetric we get sαg(x, y) = −g(x, y), hence g(x, y) = 0. We conclude 
that g vanishes on Ker(α∨) × {yα = 0} and therefore g ∈ 〈1 − α∨, yα〉. Since this holds 
for all α, we get g ∈

⋂
α∈Φ+〈1 − α∨, yα〉 = I(1).

We get A ⊂ I(1) and hence J ⊂ I(1). Therefore Jd ⊂ (I(1))d ⊂ I(d) and the result 
follows. �

Finally, in the left column we have commutative Coulomb branch Z-algebra
⊕

0Aℏ=0
d , 

to be dfined later in Section 6. It is a generalization of the commutative Coulomb branch 
appearing in the work of Braverman, Finkelberg and Nakajima [10,11]. It is dfined as the 
convolution algebra in the equivariant Borel-Moore homology of a certain space related 
to the a˙ine Grassmannnian of G, and we postpone its definition to Section 6. Here we 
summarize some of its basic properties.

Theorem 3.6. The algebras 0Aℏ=0
d have the following properties:
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a) For d = 0, we have 0Aℏ=0
0 = C[T∨ × t]W .

b) For d = 1, we have 0Aℏ=0
1 = A.

c) For all d the module 0Aℏ=0
d is a free C[t]W -submodule of edC[T∨ × t].

d) For G = GLn, we have 0Aℏ=0
d = (0Aℏ=0

1 )d = Ad for all d.

We prove Theorem 3.6 in Section 6.5. Note that part (b) of the theorem yields the 
map A → 0Aℏ=0

1 and hence a family of maps Ad → 0Aℏ=0
d . These are denoted by ad in 

the commutative diagram (12).

Corollary 3.7. If G has semisimple rank 1 then Ad 
 0Aℏ=0
d 
 edI(d) for all d.

Proof. By Theorem 3.6(d) we get Ad 
 0Aℏ=0
d . On the other hand, in semisimple rank 

1 we have only one codimension 2 hyperplane and it is easy to see that I(d) = Jd, so by 
Lemma 3.5 we get

edI(d) = edJd = Ad. �
The following is one of the main theorems of this section, identifying the geometrically 

constructed graded algebra with the symmetrization of the symbolic Rees algebra.

Theorem 3.8. We have an isomorphism of graded algebras 
⊕

d 0Aℏ=0
d 


⊕
d edI(d) cor

responding to the dotted arrow in the diagram (12).

Proof. First, let us prove that there is a natural inclusion 0Aℏ=0
d → edI(d) for all d. 

Indeed, by Theorem 3.6(c) we know that 0Aℏ=0
d is contained in the ed-isotypic component 

of C[T∨ × t], so it is sufficient to check that 0Aℏ=0
d ⊂ I(d) or, equivalently, 0Aℏ=0

d ⊂
〈1 − α∨, yα〉d for all α.

On the other hand, by Lemma 6.25 the inclusion 0Aℏ=0
d (G) ↪→ C[T∨ × t] factors 

through 0Aℏ=0
d (ZG(t)) where ZG(t) is the centralizer of some element t ∈ T . We can 

choose t such that ZG(t) is a rank one subgroup of G corresponding to α. By Corollary 3.7
we get

0Aℏ=0
d (G) ⊂ 0Aℏ=0

d (ZG(t)) 
 〈1 − α∨, yα〉d.

Now we prove that the inclusion is an isomorphism. Since 0Aℏ=0
d is free over C[t]W by 

Theorem 3.6(c) and edI(d) is torsion free, it is sufficient to prove that the inclusion is an 
isomorphism outside of codimension 2 subset.

Both C[t]W -modules 0Aℏ=0
d and edI(d) are supported on the union of the root hy

perplanes in t/W . If we specialize to a generic point in one of the hyperplanes, we can 
replace G by its rank 1 subgroup by Lemma 6.25 as above,and the isomorphism follows 
from Corollary 3.7. Therefore the two modules are isomorphic outside of the union of 
pairwise intersections of hyperplanes, which has codimension 2. �
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We can use the above graded algebras to construct quasi-projective varieties

C̃G∨ := Proj
⊕
d 

0Aℏ=0
d 
 Proj

⊕
d 

edI(d), YG = Proj
⊕
d 

I(d).

By the work of Haiman [41] for G = GLn we have C̃G∨ = Hilbn(C× × C) and YG is 
isomorphic to the isospectral Hilbert scheme of C× ×C:

YGLn
(C× ×C)n

Hilbn(C× ×C) Sn(C× ×C).

We claim that for a general G the variety C̃G∨ can be considered as the partial resolutions 
of the commuting variety which we identify with T ∗T∨/W . By Remark 1.16 the algebra ⊕

d 0Aℏ=0
d is finitely generated, hence the natural projection C̃G∨ → Spec 0Aℏ=0

0 =
T ∗T∨/W is projective.

Remark 3.9. In [28], Ginzburg dfines and studies the isospectral commuting variety for 
general G as a certain reduced fiber product. On the other hand, the variety YG =
Proj

⊕
d≥0 I

(d)
G is another candidate for the isospectral commuting variety. It is natural 

to wonder how the two constructions are related.

Remark 3.10. In [30], Ginzburg-Kaledin prove that there are no crepant resolutions of 
T ∗t/W for W outside types A,B,C. Their definition of symplectic resolution includes the 
crepant condition, so their statement is non-existence of symplectic resolutions. This non
existence of a symplectic resolution is thus likely the case for T ∗T/W as well. Therefore, 
we cannot expect C̃G∨ to be smooth outside types A,B,C.

We note however that from the results of [8, Proposition 2.8], it follows that T ∗t/W

and T ∗T/W admit birational maps from the universal centralizer schemes appearing 
in Theorem 3.20, which are smooth for simply connected groups in any type. More 
geometrically, we can think of universal centralizer schemes as smooth open subsets in 
C̃G∨ .

Proposition 3.11. YG is normal.

Proof. We will prove the homogeneous coordinate ring 
⊕∞

d=0 I
(d) is integrally closed. 

This is essentially a restatement of [54, Theorem 4.27]. Indeed, for a given α the sequence 
1−α∨, yα is regular. Therefore the graded algebra 

⊕∞
d=0〈1−α∨, yα〉d is integrally closed, 

and intersection preserves integral closedness. We can write

∞ ⊕
d=0 

I(d) =
∞ ⊕
d=0 

⋂
α∈Φ+

〈1 − α∨, yα〉d =
⋂

α∈Φ+

∞ ⊕
d=0 

〈1 − α∨, yα〉d,
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so the symbolic blow-up Proj
⊕∞

d=0 I
(d) considered here is integrally closed. �

Corollary 3.12. C̃G∨ is normal.

Proof. Recall that we have a natural action of W on 
⊕∞

d=0 I
(d) by algebra automor

phisms, where the action on I(d) is twisted by εd. This dfines an action of W on the 
variety YG, and we get

C̃G∨ 
 YG/W.

If a normal variety Y is acted upon by a finite group Γ, Y/Γ is normal [82, Chapter 
II.5, top of page 128] (note that Shafarevich assumes that Y is a˙ine, but the argument 
works for any variety since this is a local property). By Proposition 3.11 YG is normal, 
so C̃G∨ is normal as well. �
Remark 3.13. An alternative proof of normality of C̃G∨ follows from [94, Theorem 14].

Remark 3.14. So far in this section, we have been discussing the ℏ = 0 case, i.e. the 
non-quantized algebra. Fix some symplectic Q-factorial terminalization of the variety 
T ∗T∨/W , as constructed in [2,49,71]. Denote it by X̃G∨ . The formal Poisson deforma
tions of X̃G∨ are parameterized by H2(X̃reg

G∨ ,C). This construction works for the rational 
(as opposed to trigonometric) version, giving X̃g∨ → t⊕ t∗/W where X̃g∨ can be iden
tfied with the Q-factorial terminalization constructed in [60]. The variety X̃g∨ is a 
conical symplectic partial resolution with Q-factorial singularities of t⊕ t∗/W such that 
codim(X̃g∨ − X̃reg

g∨ ) ≥ 4. By the results of Namikawa in [71], this implies that X̃g∨ is ter
minal. In this case, it has been proved in [71,60] that the filtered quantizations of X̃g∨ are 
also parametrized by H2(X̃reg

g∨ ,C) and correspond to rational Cherednik algebras with 
different parameters. Cherednik algebras were already mentioned in the introduction and 
their trigonometric version will be studied in Section 4 below.

Unlike the formal Poisson deformations, we do not know if the filtered quantizations 
for the trigonometric variety X̃G∨ are parametrized by H2(X̃reg

G∨ ,C) or whether they 
correspond to degenerate DAHA, since the results in the Lie algebra case heavily use 
the fact that t⊕ t∗/W has conical symplectic singularities.

Finally, we note that similar to [1, Proposition 2.1] the normal intermediate partial 
resolutions

X̃G∨ → XG∨ → T ∗T∨/W

are classfied by faces of the ample cone of X̃ such that for a given face F and a rational 
point f ∈ F a positive rational multiple of f is the first Chern class of an ample line 
bundle on the corresponding partial resolution.

It seems reasonable thus to expect that P = H2(X̃reg
G∨ ,C) parametrizes both the 

filtered quantizations of X̃G∨ as well as the partial resolutions between X̃G∨ → T ∗T∨/W , 
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just as it does in the Lie algebra case. Further, it seems by Corollary 3.12 reasonable to 
expect that the partial resolution of the trigonometric commuting variety constructed in 
this section, namely C̃G∨ , equals a partial resolution constructed this way, and that the 
singularities of X̃G∨ → T ∗T∨/W are locally modeled on those of X̃g∨ .

To support the above remarks, we note the following about the local structure of 
our algebras. Recall the Borel-de Siebenthal algorithm, explained e.g. in [22,23]. If G is 
simply connected and T a maximal torus as before, let Σ ⊂ T be the set of elements a
whose centralizer Cg(a) is semisimple of the same rank as g (here T∨ is identfied with 
the quotient of t∨ by some lattice via the exponential map). It is known [22, Section 
2] that Σ is a finite set which is in bijection with the set of vertices in the extended 
Dynkin diagram of g. Furthermore, the Dynkin diagram of Cg(a) for a ∈ Σ is obtained 
from the extended Dynkin diagram of g by deleting the corresponding vertex. We refer 
to Section 4 and [22] for the notation on Cherednik algebras.

Lemma 3.15. Suppose G is simply connected. Upon completion at a ∈ Σ, the Coulomb 
branch algebra (iAℏ

d)∧a ∼ = H∧a
G,c+iℏ,ℏ is isomorphic to Hrat,∧0

Cg(a),c+iℏ,ℏ for the Lie algebra 
Cg(a) coming from the Borel-de Siebenthal algorithm as above.

Proof. This is contained in [22, Proof of Theorem 3.2]. �
3.3. The universal centralizer

In the above, we have dfined the partial resolution C̃G∨ using Proj construction, 
and have limited understanding of its geometry outside of type A. Nevertheless, in this 
subsection we dfine an a˙ine open chart in C̃G∨ and prove that it coincides with the 
trigonometric version of the universal centralizer of [8,72]. It also appears as a Coulomb 
branch for zero matter, and will be used later in Section 8.

We let G be arbitrary for now. Let Δ :=
∏

α∈Φ+ yα ∈ AG be the Vandermonde 
determinant.

Definition 3.16. We dfine

UΔ ⊂ C̃G∨ = Proj
∞ ⊕
d=0 

0Aℏ=0
d

as the distinguished open subset given by the element Δ ∈ AG 
 0Aℏ=0
1 .

By definition and Theorem 3.8, UΔ is the a˙ine variety whose coordinate ring is the 
degree zero part of the localization of 

⊕∞
d=0 0Aℏ=0

d 

⊕∞

d=0 edI(d) in Δ:

C[UΔ] = Span
{

f

Δd
: f ∈ edI(d)

}
/

(
f

Δd
∼ fΔ 

Δd+1

)
.
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Remark 3.17. Note that UΔ is different from the preimage of U ′ = {Δ �= 0} ⊂
T ∗T∨/W 
 Spec 0Aℏ=0

0 under the natural projection π : C̃G∨ → T ∗T∨/W .
Indeed, let Z = {Δ = 0} ⊂ T ∗T∨/W . Then π−1(U ′) is the complement of the total 

transform of Z in C̃G∨ while UΔ is the complement of the strict transform of Z. So 
UΔ ⊋ U ′.

We now describe this chart. In [8], two trigonometric versions of the universal central
izer are studied. The one of interest to us is dfined as follows, see [8] for more details.

Definition 3.18. The universal centralizer of G∨ is the variety

BG∨

g∨ := {(g, s) ∈ G∨ × g∨|adg(s) = s, s is regular } � G∨

Remark 3.19. In [8], this variety is denoted ZG∨

g∨ . There is also another version of the 

trigonometric universal centralizer Zg
∨

G∨ with the roles of g, G swapped. It has the nicer 
geometric property of being symplectically isomorphic to T ∗(T∨/W ) when G is adjoint 
(so G∨ is simply connected).

In [8] explicit description of the coordinate ring of ZG∨

g∨ is given. We also have the 

following Coulomb branch description of ZG∨

g∨ .

Theorem 3.20 ([8]). We have an isomorphism of algebras:

C[BG∨

g∨ ] ∼ = HG(O)
∗ (GrG)

The right hand side can be identfied with the Coulomb branch for (G, 0) (see Section 5.)

We now state and prove the main theorem of this section.

Theorem 3.21. We have

C[BG∨

g∨ ] ∼ = C[UΔ].

In particular, there is a natural isomorphism BG∨

g∨ ∼ = UΔ.

Proof. We recall and slightly rephrase [8, Section 4].4 First, consider the Lie algebra 
version

B
g
∨

g∨ := {(g, s) ∈ g∨ × g∨|adg(s) = s, s is regular } � G∨

4 We follow the arxiv version which is more complete than the published one.
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On the other hand, we consider the family of ideals I(d)
t :=

⋂
α∈Φ+〈xα∨ , yα〉d ⊂ C[t∗× t]. 

We claim that the algebra of functions C[Bg
∨

g∨ ] can be obtained as the degree zero 

localization of the graded algebra 
⊕

d edI(d)
t .

Indeed, let P1, . . . , Pr denote some generators in C[g∨]G 
 C[t∨]W . The one-forms 
dP1, . . . , dPr ∈ Ω1(g∨) 
 C[g∨] ⊗ (g∨)∗ can be identfied with some G-invariant polyno
mial maps m1, . . . ,mr : g∨ → g∨. By [8, Lemma 4.4] for regular s the elements mi(s)
form a basis in the centralizer of s, so we can write

g =
n ∑

i=1 
ψi(g, s)mi(s). (13)

The coordinate ring of Bg
∨

g∨ is a polynomial ring in ψi and Pi(s).
For example, for g = gln we get that g and s are two commuting n× n matrices and 

s is regular, hence g is a matrix polynomial in s:

g = ψ1 + ψ2s + . . . + ψns
n−1.

Here we identify the polynomial maps mi(s) = si−1.
To compare this with the localization in Δ, we can restrict (13) to t∗×t∗ and abbreviate 

g = diag(x), s = diag(y). We interpret (13) as a linear system of equations on ψi for 
given g and s (resp. x and y), for example for g = gln we get

xi = ψ1 + ψ2yi + . . . + ψny
n−1
i .

Note that the W acts on g and s (resp. on x and y) but fixes ψi by construction. By [8, 
Lemma 4.4] the determinant of this linear system equals m1(s) ∧ · · · ∧ mr(s) which is 
proportional to Δ up to a nonzero constant factor. Therefore by Cramer’s Rule we can 
write ψi = Di/Δ for some polynomials Di ∈ C[t∨× t∨]. Since ψi are W -invariant, we get 
that Di are W -antiinvariant and hence contained in At ⊂ e1I

(1)
t . We get ψi ∈ Δ−1e1I

(1)
t

and Pi(s) ∈ eI(0)
t , so

C[Bg
∨

g∨ ] ⊂
∞ ⊕
d=0 

Δ−dedI(d)
t / ∼ .

To prove the reverse inclusion, we claim that any element in Δ−dedI(d)
t can be written 

as a polynomial in ψi and Pi(y) or, equivalently, a W -invariant polynomial in y and ψi. 
Indeed, given a polynomial f(x, y) ∈ ed

⋂
α∈Φ+〈xα∨ , yα〉d, we can substitute x using (13)

and write f as a polynomial h(ψi, y). In this presentation, xα∨ (as a polynomial in ψi, y) 
is actually divisible by yα, so any polynomial in (xα∨ , yα)d is divisible by ydα. Therefore h
is divisible by 

∏
α∈Φ+ ydα = Δd and Δ−dh is a polynomial in y and ψi. Finally, since both 

f and Δd transform by the same sign under ed, we conclude that Δ−dh is a W -invariant 
polynomial in y and ψi. To sum up, Δ−dedI(d)

t ⊂ C[Bg
∨

g∨ ].
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The group theoretic version follows from this computation as in [8, Section 4]. In 
particular, for G = GLn we simply require that g is invertible and dfine additional 
variables ψ∗

i such that

g−1 =
n ∑

i=1 
ψ∗
i (g, s)mi(s). (14)

Similarly, after restricting to the torus xi are invertible and we can solve both (13) and 
(14) by Cramer’s Rule. The rest of the proof proceeds verbatim. �
Remark 3.22. We would like to caution the reader that Theorem 3.21 is similar to [8, 
Proposition 2.8], but slightly different from it in the following way.

Recall that the ideal I(1) dfines a union of codimension 2 subvarieties in T ∗T∨. In 
[8] the authors (up to a quotient by W ) consider an open subset in the blow-up of T ∗T∨

along I(1). By definition, the latter is given as Proj of a graded algebra built from powers
of I(1). Here, we instead consider the symbolic blow-up using symbolic powers I(d) of 
I(1).

In general, we get a homomorphism

⊕
d 

ed(I(1))d →
⊕
d 

edI(d)

which implies a map Proj
⊕

d edI(d) → BlI(1)T ∗T∨, but we do not expect it to be an 
isomorphism. Theorem 3.21 shows that it is an isomorphism over UΔ.

Remark 3.23. We can interpret the proof of Theorem 3.21 as follows. There are natural 
embeddings

jAℏ=0
i ↪→ H

G(O)
∗ (GrG)

coming from the construction as Coulomb branches, see for example Section 6.2 or [10, 
Lemma 5.11]. On the algebra side, these embeddings realize rational functions of the 
form f(x, y)/Δj−i, where f ∈ jAℏ=0

i , as functions on the open chart UΔ.
When G = GLn, this construction is closely related to the construction of the open 

chart ``U(1n)'' on Hilbn(C2) given by Haiman in [42, Corollary 2.7.].
We also note that the comparison between geometry and algebra explains the ap

pearance of the idempotent ed. Indeed, from the geometric point of view the algebra 

0Aℏ=0
d is, in the notations of Section 5, simply HG(O)

∗ (0Rd) ∼ = eHT (O)
∗ (0Rd). However, 

the localization formula in Corollary 6.16 involves a prefactor Δd, exactly corresponding 
to twisting by the d-th power of the sign representation of W .
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3.4. Explicit antisymmetric polynomials

In Theorem 6.26 we will need an explicit construction of a C-basis in the space A
of antisymmetric (Sn-antiinvariant) polynomials for G = GLn, in order to compare our 
Coulomb branch construction with the one above. The exposition follows ideas of Haiman 
in [42]. The reader is advised to skip this section on a first reading.

We denote by Alt the action of the antisymmetric projector e− on polynomials. Let 
S = {(a1, b1), . . . (an, bn)} be an arbitrary n-element subset of Z≥0 × Z. We dfine

ΔS(y1, u1, . . . , yn, un) = Alt
(
ya1
1 ub1

1 · · · yan
n ubn

n

)
= 1 

n! det
(
y
aj

i u
bj
i

)
.

For a composition α with 
∑

αi = n, we can consider the set

Sα = {(0, 0), . . . , (α1 − 1, 0), (0, 1), . . . (α2 − 1, 1), . . .}

and denote ΔSα
= Δα. In particular,

Δ =
∏
i<j

(yi − yj) = Δ(n).

Given a composition α, write λ(α) = (0α1 , 1α2 , . . .). More generally, for any subset S =
{(ai, bi)} ⊂ Z≥0 × Z, |S| = n, we dfine λ(S) = sort(bi) as the vector in Zn with 
coordinates obtained by sorting bi in the non-decreasing order. Clearly, λ(Sα) = λ(α). 
Furthermore, we dfine a collection of subsets

Sk = {ai : (ai, k) ∈ S} =
{
a
i
(k)
1

< . . . < a
i
(k)
rk

}
and a partition

μk(S) = (a
i
(k)
1

, a
i
(k)
2

− 1, . . . , a
i
(k)
rk

− rk + 1).

Finally, we dfine yk = (yi : λi = k).

Lemma 3.24. (a) The determinants ΔS span the vector space A.
(b) We have the following formula for the determinant Δα:

Δα = c · Alt

⎡⎣uλ
∏

r<s,λr=λs

(yr − ys)

⎤⎦ .

where λ = λ(α).
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(c) More generally, we have the following formula for the determinant ΔS:

ΔS = c · Alt

⎡⎣∏
k

sμk
(yk)uλ

∏
r<s,λr=λs

(yr − ys)

⎤⎦
where sμk

are Schur polynomials, λ = λ(S) and c is some nonzero scalar factor depending 
on the size of stabilizer of λ.

Proof. (a) The space C[T ∗T∨] is spanned by the monomials ya1
1 ub1

1 · · · yan
n ubn

n , so A =
e−C[T ∗T∨] is spanned by their antisymmetrizations (recall that ui are invertible, so bi
are allowed to be negative). If some of pairs (aj, bj) coincide, then the antisymmetrization 
vanishes, so it is sufficient to assume that (aj, bj) are pairwise distinct and form an n
element subset S.

Clearly, (b) follows from (c) since for S = Sα we have Sk = 0, 1 . . . , αk − 1 and 
μk = (0).

To prove (c), observe that the function ΔS is antisymmetric and all possible monomials 
in u are in the Sn-orbit of λ, so it is sufficient to compute the coefficient at uλ. This 
coefficient is proportional to

AltStab(λ)(ya1
1 · · · yan

n ) =
∏
k

AltSk

[ ∏
λi=k

yai
i

]

=
∏
k

⎡⎣sμk
(yk) ·

∏
r<s,λr=λs=k

(yr − ys)

⎤⎦ . �

Example 3.25. For α = (1, 2, 1) we have S = {(0, 0), (0, 1), (1, 1), (0, 2)}, λ = (0, 1, 1, 2)
and

ΔS = Alt
[
(y2 − y3)u0

1u
1
2u

1
3u

2
4
]

For S = {(5, 0), (3, 1), (7, 1), (2, 2)} we have λ = (0, 1, 1, 2), μ0 = (5), μ1 = (3, 6), μ2 = (2)
and

ΔS = Alt
[
s5(y1)s6,3(y2, y3)s2(y4)(y2 − y3)u0

1u
1
2u

1
3u

2
4
]
.

Note that s5(y1) = y5
1 , s2(y4) = y2

4 and

s6,3(y2, y3) =

y7
2 y7

3
y3
2 y3

3
y2 − y3

= −Alt(y3
2y

7
3)

y2 − y3
.
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4. Trigonometric Cherednik algebra

4.1. Definitions

We dfine the extended torus T̃ = T×C× and the corresponding Lie algebra ̃t = t⊕Cℏ. 
The extended a˙ine Weyl group W̃ := W ⋉X∗(T ) is generated by the a˙ine Weyl group 
W aff = W ⋉Q∨ and an additional abelian group Ω = X∗(T )/Q∨ where Q∨ is the coroot 
lattice. In general, Ω is the fundamental group of G, for example for GLn, we have 
Ω ∼ = Z. We use action of W̃ on ̃t∨ depending on ℏ. The action of w ∈ W̃ on ξ ∈ t will be 
denoted by wξ. We will denote the longest element in W by w0.

Definition 4.1. The trigonometric DAHA of G is the C[ℏ, c]-algebra, which as a vector 
space looks like

HG = Hc,ℏ = C[W̃ ] ⊗C[t] ⊗C[c] ⊗C[ℏ]

and the algebra structure is determined as follows:

1. Each of the tensor factors is a subalgebra, and c, ℏ are central. We denote by σi the 
simple rflections in the copy of W̃ ⊂ HG.

2. σiξ − siξσi = c〈ξ, α∨
i 〉 for all simple rflections σi ∈ W̃ and ξ ∈ t̃∨ ⊂ C [̃t].5

3. For any ω ∈ Ω ⊂ W̃ and ξ ∈ t̃∨, ωξ = ωξω

For adjoint groups, the group Ω is the group of symmetries of the fundamental do
main of the action on t̃∨ of the group generated by the rflections si, i = 0, . . . ,dim(t) =
r. Thus the elements of Ω are a˙ine transformations of t̃∨ that permute the set 
(α0, 1), (α1, 0), . . . , (αr, 0).

The algebra HG is graded as follows: all generators of W̃ have degree zero, while 
ξ ∈ t∨ ⊂ C[t] have degree 1 (so that C[t] has a standard grading). The generators c and 
ℏ both have degree 1 as well. One can check that the above relations are homogeneous 
with respect to this grading.

Example 4.2. For G = GLn the group W̃ is generated by simple rflections σ1, . . . , σn−1
(which generate W ) and an additional element π (which generates Ω). The lattice part 
of W̃ is generated by

Xi = σi−1 · · ·σ1πσn−1 · · ·σi, i = 1, . . . , n.

The algebra Hc,ℏ is generated by σi, π and commuting variables y1, . . . , yn, with the 
following relations:

5 In particular, for ξ ∈ t
∨ we have s0ξ = s0(ξ) + ℏ〈ξ, α∨

0 〉.
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σiyi = yi+1σi − c, σiyi+1 = yiσi + c, σiyj = yjσi (j �= i, i + 1), i = 1, . . . , n− 1,

πyi = yi+1π(1 ≤ i ≤ n− 1), πyn = (y1 + ℏ)π.

Remark 4.3. We will also use specializations of this algebra, to be called trigonometric 
DAHAs as well when there is no risk of confusion. Let us explain how this relates to 
parameter conventions in the literature. In [77], the trigonometric DAHA is dfined as 
above but with parameters δ = ℏ, c = u. These correspond to the generators of H∗

Grot
m

(∗)
and H∗

Gdil
m

(∗), respectively. In [77], the relations c + νδ = c + νℏ = 0 and ℏ = 1 are 
imposed for ν ∈ C. This specialization of parameters is often called ``the'' trigonometric 
DAHA with parameter ν. We will denote it by Hν . If we want to emphasize the role 
of G instead of the parameters, we will write HG for any of the specializations of the 
Cherednik algebra.

Remark 4.4. It is common in Cherednik algebra literature to specialize ℏ to 1 as above, so 
that the algebra Hℏ=1

c,ℏ admits a natural filtration in powers of ℏ, making the full Hc,ℏ the 
Rees construction for this filtration. In this language, Hc=ℏ=0

c,ℏ is the associated graded 
of Hℏ=1

c,ℏ , since Hc,ℏ is flat over C[c, ℏ]. With this in mind, we will use the specialization 
c = ℏ = 0 and the associated graded interchangeably.

Remark 4.5. Later on, we shall be interested in the family of Cherednik algebras Hc+iℏ,ℏ

for i ≤ 0 as well, and the specializations c + (ν + i)ℏ = 0, ℏ = 1, i.e. c = −m+in
n .

We introduce the symmetrizer e = 1 
|W |

∑
w∈W w and the antisymmetrizer e− =

1 
|W |

∑
w∈W (−1)�(w)w in the group algebra of W . We dfine the spherical and antispher

ical subalgebras in HG as eHGe and e−HGe−.
Note that in the specialization c = ℏ = 0 the structure of the algebra simplfies 

dramatically: Hc=ℏ=0
G = C[W ] ⋉C[T∨ × t], so

eHc=ℏ=0
G e ∼ = C[T∨ × t]W .

We will refer to this as the commutative limit, although this only gives the limit of the 
spherical subalgebra the structure of a commutative algebra.

The algebra HG has a representation

Hc,ℏ ↪→ Diffℏ(treg) ⋊C[W ] (15)

dfined e.g. in [17, Section 2.13]. Here Diffℏ(treg) is the algebra of ℏ−difference operators 
on the Lie algebra t, possibly with poles along the root hyperplanes. In this representa
tion, the generators of HG corresponding to simple rflections act by

σi = si + c 
yαi

(si − 1)
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and the lattice part of extended a˙ine Weyl group acts in the standard way (this deter
mines the action of Ω). Below we identify Hc,ℏ with its image inside Diffℏ(treg)⋊C[W ].

Example 4.6. For G = GLn, we get σi = si + c 
yi−yi+1

(si − 1) and π · f(y1, . . . , yn) =
f(y2, . . . , yn, y1 + ℏ).

4.2. Shift isomorphism

We will need several involutions on the algebra Hc.

Lemma 4.7. The map Ψ : w �→ (−1)�(w)w0w
−1w0, ξ �→ w0ξ, ℏ → −ℏ for w ∈ W̃ dfines 

an involutive anti-automorphism of HG.

Proof. Suppose that w0 sends the simple root αi to −αj for some j, then w0si = sjw0. 
The map Ψ sends σi to −σj , so we get: Ψ(σiξ) = −w0ξσj , Ψ(siξσi) = −σj

w0siξ and

Ψ(σiξ − siξσi) = σj
sjw0ξ − w0ξσj

while 〈ξ, α∨
i 〉 = 〈sjw0ξ, α∨

j 〉, so the equation (2) is preserved. For the equation (3), observe 
that w0ω

−1w0 = ω since we assume that ℏ �→ −ℏ. �
Example 4.8. For G = GLn we have

Ψ(σi) = −σn−i, Ψ(yi) = yn+1−i, Ψ(π) = π, Ψ(ℏ) = −ℏ

Observe that Ψ(e) = e− and Ψ(e−) = e. In particular, Ψ exchanges spherical subal
gebra eHce with the antispherical subalgebra e−Hce−.

Using the difference representation (15), we can embed the spherical subalgebra eHce
into the algebra of W -twisted difference operators Diffℏ(treg). We will denote by uμ is the 
translation by ℏμ. Any difference operator in eHce can be written (up to symmetrization 
by e) as a linear combination of uμ with coefficients in C[treg]. We filter the difference 
operators by the span of uμ such that μ is in a W -orbit if a dominant coweight μ′ with 
μ′ ≤ λ.

Below we will need some explicit generators for eHce written as difference operators, 
up to lower order terms in this filtration.

Theorem 4.9. a) Let λ be a minuscule dominant coweight, respectively Xλ ∈ W̃ , then

Eλ,c := eXλe = e
∏

α(λ)=1

yα − c

yα
uλe

and
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Fλ,c := eX−λe = e
∏

α(λ)=1

yα + c

yα
u−λe

Here uλ is the translation by ℏλ.
b) For an arbitrary dominant coweight λ we get

Eλ,c = e
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα + 	ℏ− c)
(yα + 	ℏ) uλe + lower order terms. (16)

If λ is minimal in Bruhat order, the formula (16) for Eλ,c is exact.
c) More generally, for dominant coweight λ which is minimal in the Bruhat order, 

and a polynomial f(y) we dfine

Eλ,c[f ] = ef(y)
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα + 	ℏ− c)
(yα + 	ℏ) uλe, Fλ,c[f ]

= ef(y)
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα + 	ℏ + c)
(yα + 	ℏ) u−λe.

(17)

The spherical subalgebra eHce is generated by such Eλ,c[f ] and Fλ,c[f ].

Remark 4.10. If λ is minuscule, then it is indeed minimal in the Bruhat order. The 
converse is not true: indeed, there are no minuscule coweights at all for root systems 
E8, F4, G2.

We postpone the proof of Theorem 4.9 to Section 6.3. Here we use it to relate the 
spherical and antispherical subalgebras.

Lemma 4.11. Suppose that λ is a dominant coweight which is minimal in the Bruhat 
order. Then

Ψ(Eλ,c[f ])Δ = ΔEλ,c−ℏ[f ′], Ψ(Fλ,c[f ])Δ = ΔFλ,c−ℏ[f ′],

where Δ =
∏

α∈Φ+
yα and f ′(y) = uλf(y)u−λ.

Proof. We prove the first equation, the second is similar. Recall that Φ is an anti
automorphism, so it reverses the order of the factors, and Ψ(e) = e−. Therefore we can 
write:

Ψ(Eλ,c[f ]) = e−u
w0λ

∏
α(λ)>0

α(λ)−1∏
�=0 

(yα − 	ℏ− c)
(yα − 	ℏ) f(w0y)e−,
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where we denote α = w0α. By replacing λ by λw0 (since we symmetrize anyway) and α
by w0α (since we take product over all roots α), we can rewrite this product as

Ψ(Eλ,c[f ]) = e−uλ
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα − 	ℏ− c)
(yα − 	ℏ) f(y)e−.

Now uλyα = (yα + α(λ)ℏ)uλ, therefore

Ψ(Eλ,c[f ]) = e−
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα − 	ℏ− c + α(λ)ℏ)
(yα − 	ℏ + α(λ)ℏ) f ′(y)uλe− =

e−
∏

α(λ)>0

α(λ)∏
�=1 

(yα + 	ℏ− c)
(yα + 	ℏ) f ′(y)uλe−.

In the last step we changed index of summation from 	 to α(λ) − 	. On the other hand, 
since λ is dominant we have α(λ) ≥ 0 for any positive root α, hence

uλΔ = uλ
∏

α∈Φ+

yα =
∏

α∈Φ+

(yα + α(λ)ℏ)uλ =
∏

〈α,λ〉>0

(yα + α(λ)ℏ)
yα

Δuλ. (18)

Now we can compute

Ψ(Eλ,c[f ])Δ = e−
∏

α(λ)>0

α(λ)∏
�=1 

(yα + 	ℏ− c)
(yα + 	ℏ) f ′(y)uλΔe =

e−f ′(y)

⎛⎝ ∏
α(λ)>0

α(λ)∏
�=1 

(yα + 	ℏ− c)
(yα + 	ℏ) 

⎞⎠ ∏
α(λ)>0

(yα + α(λ)ℏ)
yα

Δuλe =

e−Δf ′(y)
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα + 	ℏ− (c− ℏ))
(yα + 	ℏ) uλe = ΔEλ,c−ℏ[f ′]. �

Theorem 4.12. There is a filtered algebra isomorphism eHc−ℏe ∼ = e−Hce−.

Proof. The spherical subalgebra eHc−ℏe is generated by the elements Eλ,c−ℏ[f ], 
Fλ,c−ℏ[f ], while the antispherical subalgebra e−Hce− is generated by the elements 
Ψ(Eλ,c−ℏ[f ]),Ψ(Fλ,c−ℏ[f ]) since Ψ exchanges the spherical and antispherical subalge
bras. Here λ is a dominant coweight which is minimal in the Bruhat order, and f(y) ∈ C[t]
(see [10, Proposition 6.8]). By Lemma 4.11 we get

Ψ(Eλ,c[f ]) = ΔEλ,c−ℏ[f ′]Δ−1, Ψ(Fλ,c[f ])Δ = ΔEλ,c−ℏ[f ′]Δ−1 (19)

where f ′(y) = uλf(y)u−λ.
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Let M be an operator in eHc−ℏe, then we can consider the operator ΔMΔ−1 acting 
on antisymmetric polynomials. By (19) the operator ΔMΔ−1 belongs to e−Hce− and 
the operators ΔMΔ−1 generate e−Hce−. �
Remark 4.13. In [44,79] a similar isomorphism between the spherical and antispherical 
subalgebras was obtained using Dunkl representation by differential-difference opera
tors. It is natural to ask if the two isomorphisms are the same. They are not, for the 
isomorphism in [44,79] is given by conjugation by the ``Vandermonde in X'', in other 
words 

∏
α∈Φ+(1 − α∨) ∈ C[T∨], which acts by identity on the operators Eλ,c[1] since 

X �→ X in the differential Dunkl representation. The two isomorphisms are related by 
the Harish-Chandra transform of [17]. This is similar to the fact that in the rational 
case, there are two Dunkl embeddings, to Diff(hreg)⋊W and Diff((h∗)reg)⋊W in which 
one gets similar shift isomorphisms by either conjugation by 

∏
α∈Φ+ yα or respectively 

by 
∏

xα∨ [5], and the two isomorphisms are related by Cherednik’s Fourier transform.

4.3. Z-algebras

We now recall the definition of Z-algebras, as explained e.g. in [32, Section 5]. Note 
that our conventions are exactly opposite to those of [32] because it makes the Springer 
action in Section 7 a bit more natural.

Definition 4.14. An associative (non-unital) algebra B =
⊕

i≤j Bij is a Z-algebra if 
BijBjk ⊆ Bik for all i ≤ j ≤ k, BijBlk = 0 if j �= l, and each Bii is unital such that 
1ibij = bij = bij1j for all bij ∈ Bij .

The above definition ensures that Bii is a unital associative algebra for all i, and Bij

is a (Bii, Bjj)-bimodule. The Z-algebra multiplication factors though the convolution of 
bimodules:

Bij

⊗
C Bjk Bik

Bij

⊗
Bjj

Bjk

The simplest example of Z-algebras comes from Z-graded algebras.

Example 4.15. Suppose that S = ⊕dSd is an associative Z-graded algebra with multi
plication SdSd′ → Sd+d′ . Dfine Bij = Sj−i for all i and j, then B(S) =

⊕
i≤j Bij is a 

Z-algebra. Note that in this example the algebras Bii are all isomorphic to S0.

Our main source of Z-algebras will be a filtered deformation of Example 4.15. We 
say that a Z-algebra B is of graded type if it has an algebra filtration (which we omit 
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from the notations) such that grB = B(S) for some commutative graded algebra S. 
Unpacking this definition, we get the following properties of grB:

• S0 := grBii is a commutative algebra which does not depend on i up to isomorphism
• Sj−i := grBij depends only on the difference j − i up to isomorphism
• For all i, j, k we have a commutative square

grBij

⊗
grBjk grBik

Sj−i

⊗
Sk−j Sk−i

• The left and right actions of S0 
 grBii 
 grBjj on the bimodule grBij agree.

The last bullet point is related to the Harish-Chandra property for the bimodules Bij, 
see [83,61]. Namely, a Harish-Chandra bimodule for a filtered algebra A is a bimodule B
with an exhaustive filtration s.t. [A≤i, B≤j ] ⊆ Bi+j−d s.t. grB is finitely generated. The 
commutator condition implies that the left and right actions of grA on grB agree.

Also note that we can associate a pair of schemes to a Z-algebra of graded type: the 
a˙ine scheme SpecS0 and the scheme ProjS. We have a natural morphism ProjS →
SpecS0.

Next, we dfine modules over a Z-algebra B. A graded vector space M = ⊕Mi is a 
B-module if for all i and j we have multiplication maps Bij ⊗Mj → Mi such that we 
have a commutative diagram

Bij ⊗Bjk ⊗Mk Bij ⊗Mj

Bik ⊗Mk Mi.

In particular, Mi is a module over the algebra Bii for all i. If B is of graded type and 
M admits a filtration compatible with a filtration on B then grM is graded S-module 
for the graded algebra S. In particular, grM dfines a quasicoherent sheaf on ProjS.

4.4. Z-algebras from Cherednik algebras

We now turn to defining a Z-algebra B = •Bℏ
• as follows. The component iBℏ

i is the 
spherical Cherednik algebra eHc+iℏe with parameter c+ iℏ. The component iBℏ

i+1 is the 
shift bimodule

iBℏ

i+1 = eHc+(i+1)ℏ,ℏe−

over the algebras i+1Bℏ

i+1 = eHc+(i+1)ℏ,ℏe and
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iBℏ

i = eHc+iℏ,ℏe 
 e−Hc+(i+1)ℏ,ℏe−.

The last isomorphism is given by Theorem 4.12. Finally, for more general i < j we dfine 
the shift bimodules

iBℏ

j = iBℏ

i+1 · · · j−1Bℏ

j

where · denotes the appropriate tensor product.

Lemma 4.16. At ℏ = c = 0 one has iBℏ=0
j = Aj−i, where A is the subspace of diagonally 

antisymmetric polynomials in C[T ∗T∨], and this is compatible with the multiplication. 
When i = j this is the subspace of diagonally symmetric polynomials.

Proof. Let us prove that iBℏ=0
i+1 = A. Indeed, iBℏ=0

i+1 = e−He ∼ = e−C[T ∗T∨] is the space 
of antisymmetric polynomials in C[T ∗T∨]. Similarly, iBℏ=0

i
∼ = eC[T ∗T∨] = C[T ∗T∨]W . 

Now

iBℏ=0
j = A⊗C[T∗T∨]W ⊗ · · · ⊗C[T∗T∨]W A = Aj−i. �

Example 4.17. Consider the trigonometric Cherednik algebra for G = GL2. For ν =
1/2 it has a 1-dimensional representation L1/2(triv) with invariant part eL1/2(triv) ∼ = 
e−L3/2(triv). Using this isomorphism, the bimodule eH3/2e− sends eH3/2e−⊗e−H3/2e−

e−L3/2(triv) ∼ = eL3/2(triv). More generally,

eH(2k+1)/2e− ⊗e−H(2k+1)/2e− e−L(2k+1)/2(triv) ∼ = eL(2k+1)/2(triv)

and the direct sum ⊕
k≥0 

eL(2k+1)/2(triv)

is a module for the Z-algebra B.

4.5. Z-algebra for GLn

Consider now the Z-algebra as introduced above for G = GLn. We have

Theorem 4.18. For all i ≤ j the C[ℏ] ⊗C[y1, . . . , yn]Sn-module iBℏ

j is free.

Proof. The idea of the proof is to replace the trigonometric Cherednik algebra Hc,ℏ =
Htrig

c,ℏ with the rational Cherednik algebra Hrat
ℏ

[24]. The algebra Hrat
ℏ

is the quotient of 
C[X1, . . . , Xn] ⊗C[z1, . . . , zn] ⋊ Sn modulo the relations:

[Xi, zi] = ℏ +
∑
j �=i 

σij i = 1, . . . , n,
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[Xi, zj ] = −σij , i �= j,

where σij ∈ Sn is the transposition (the generators zi are usually called yi in the rational 
Cherednik algebra literature).

For the rational Cherednik algebra the corresponding Z--algebra •Brat,ℏ=ℏ0
• was con

structed by Gordon and Stafford [32,33] who dfined a filtration on iBrat,ℏ=ℏ0
j for any 

specialization of ℏ and proved that gr iBrat,ℏ=ℏ0
j 
 Aj−i

rat using Haiman’s results. Note that 
this was achieved without relying on Haiman’s results in [29]. This implies that iBrat,ℏ

j

is free over ℏ. The freeness over C[y1, . . . , yn]Sn is e.g. [32, Lemma 6.11(2)]. We remark 
that this freeness uses results of [5] about Morita equivalence of Cherednik algebras.

Now the trigonometric case is obtained by Ore localization in the central element 
X1 · · ·Xn, which commutes with the action of ℏ and yi. This follows from

Lemma 4.19. There is a natural map

iBrat,ℏ=ℏ0
j → iBj

which becomes an isomorphism upon localization in 
∏

Xi: (iBrat,ℏ=ℏ0
j )∏Xi

∼ = iBj.

Proof. In [85] (see also [40]) it is shown that

ı(w) = w, ı(Xi) = Xi, ı(zi) = X−1
i (yi −

∑
1≤j≤i

σji),

extends to the algebra homomorphism ı : Hrat
ℏ

→ Htrig
1,ℏ that becomes an isomorphism 

after localization by X1 · · ·Xn. By hitting with e on both sides, this implies the statement 
on the level of the spherical subalgebras. (To match parameters, we observe that Htrig

c,ℏ 

Htrig

λc,λℏ for any λ ∈ C∗.)
For the one-step bimodules, iBrat

i+1 = eHrat
c+iℏ,ℏe− by definition, so the result is true 

for j = i + 1 as well. Finally,

iBrat
j = iBrat

i+1 · · · j−1Brat
j

and by standard properties of localization and tensor product we get the result. �
Now since tensoring with C[X1, . . . , Xn]∏Xi

is faithfully flat, we deduce that since 

iBrat
j is free over

C[y1, . . . , yn]Sn ,

so is iBj . This finishes the proof of Theorem 4.18. �
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More geometrically, the bimodule iBrat,ℏ
j quantizes the line bundle O(j − i) on the 

Hilbert scheme of points on C2 while iBℏ

j quantizes its restriction to the Hilbert scheme 
of C× ×C.

Corollary 4.20. The Z-algebra B is of graded type and for G = GLn, grB corresponds 
to the graded algebra S = ⊕∞

d=0A
d. The corresponding algebraic varieties are ProjS =

Hilbn(C× ×C) and SpecS0 = (C× ×C)n/Sn.

5. Coulomb branches and Z-algebras

In this section, we explain half of the main construction of the paper, namely the 
construction of a Z-algebra associated to the Coulomb branch of the 3d N = 4 theory 
with adjoint matter, or in other words the spherical trigonometric DAHA. Most of the 
results work in greater generality, and are stated as such wherever possible. In Section 6
we specialize these general constructions to the case of adjoint representation.

The other half of the main construction, consisting of a generalized a˙ine Springer 
theory for this Z-algebra, is treated in Section 7.

5.1. Coulomb branches

Let 1 → G → G → GF → 1 be an extension of algebraic groups, where G is reductive 
and GF is diagonalizable. Let N be an algebraic representation of G, P ⊂ G(O) ⊂ G(K)
be a standard parahoric subgroup and NP a lattice in N(K) stable under P. We will 
only be interested in the case where N = Ad, NP = Lie(P).

Let RP := RG,N,P,NP
be the parahoric BFN space of triples as in [27]. More precisely, 

we have

Definition 5.1. RG,N,P,NP
is the fpqc sheaf on Sch/k associating to S the groupoid of 

tuples (P, ϕ, s,PP) where P is a G-bundle on S×SpecK, PP is a P-reduction of P over 
S × SpecO, and ϕ is a trivialization over S × SpecO compatible with the P- structure. 
Moreover, s is a section of the associated N -bundle of PP such that ϕ ◦ s(t) ∈ NP.

Remark 5.2. Dropping the condition that ϕ ◦ s(t) ∈ NP, we get the space TG,N,P,NP
=

G(K)×P NP, which is an (ind-)vector bundle over the partial a˙ine flag variety FlP. In 
particular, if N = Ad, this can be thought of as the cotangent bundle of FlP.

We recall the following definitions and theorems as motivation for the following sec
tions. We dfine the group

P := ev−1
0 (GF ev0(P))

where ev0 : G(O) → G is the map sending t �→ 0. In general, we refer by underline to 
flavor-deformed objects. From [10,27,43], we have
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Theorem 5.3. HP⋊C×

∗ (RP) =: Aℏ

P is an associative algebra with unit. It is a flat defor
mation of AP := HP

∗ (RP). When P = G(O), the algebra Aℏ

G(O) is a filtered quantization 
of AG(O), which is commutative. The spectrum of AG(O) is called the Coulomb branch 
of (G,N).

The papers [43,27] developed a generalization of a˙ine Springer theory for Coulomb 
branches which is summarized in the next result below. We discuss it in more detail in 
Section 7.

Theorem 5.4 ([43,27]). Let v ∈ N(K) and let Lv ⊂ P ⋊ C× be the stabilizer of v in 
P⋊C×

rot. The algebra Aℏ

P acts on HLv∗ (MP
v ) via natural cohomological correspondences, 

provided the group Lv is compact in the t-adic topology.

5.2. A category of line defects

Heuristically, the equivariant BM homologies of the spaces of triples above are endo
morphisms of objects in a ``category of line operators'' [21,93,92] which is something like 
G(K)-equivariant D-modules on NK.

We won’t stipulate on the definition of the actual category (see however [3] in the 
adjoint case), but this category should contain objects coming from η = (U,P), where 
U ⊂ N(K) is a P-stable lattice and P is a parahoric subgroup of G(K). We will simply 
dfine Hom(η, η′) = HP′

⋊C×
∗ (ηRη′), where

ηRη′ =
{

[g, s] ∈ G(K) ×P′
U ′|gs ∈ U

}
.

We will use the notation U = NP to emphasize NP is a P-stable lattice. By abuse of 
notation, we will also write Hom(η, η′) for the flavor- or loop-rotation deformed versions 
of these spaces. It is clear that when η = η′ = NP, we have

End(η) = Hom(η, η) = Aℏ

P

from Theorem 5.3.

Theorem 5.5. There is an associative multiplication Hom(η, η′) ⊗C Hom(η′, η′′) →
Hom(η, η′′) via the following modfication of the BFN convolution product.

ηRη′ × η′Rη′′ p−1 (ηRη′ × η′Rη′′) q
(
p−1(ηRη′ × η′Rη′′)

)
Tη′ × η′Rη′′ G(K) × η′Rη′′ ηRη′′

i

p q

j m

p

Here the maps p, q,m send

p : (g1, [g2, s]) �→ ([g1, g2s], [g2, s]), q : (g1, [g2, s]) �→ [g1, [g2, s]],
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m : [g1, [g2, s]] �→ [g1g2, s]

and i, j are inclusions of closed subvarieties.

Proof. This can be proved using a straightforward modfication of the proof of associa
tivity in [10, Section 3]. Similar results for η = (NP,P) where P is an Iwahori subgroup 
are mentioned in [92]. �
Corollary 5.6. For any η the space Hom(η, η) is an associative algebra, and Hom(η, η′)
is a bimodule over Hom(η, η) and Hom(η′, η′). Given η, η′ and η′′ we have a natural 
morphism of bimodules over Hom(η, η) and Hom(η′′, η′′):

Hom(η, η′)
⊗

Hom(η′,η′)

Hom(η′, η′′) → Hom(η, η′′).

Proof. We need to prove the morphism from Theorem 5.5 is bilinear over Hom(η′, η′). 
The only axiom of a tensor product we need to show is m · r ⊗ n = m ⊗ r · n for m ∈
Hom(η, η′), n ∈ Hom(η′, η′′) and r ∈ Hom(η′, η′), which is clear from the associativity of 
the construction. �

We will also use the notation ηAη′ := Hom(η, η′). The following is a generalization of 
[10, Lemma 5.3].

Theorem 5.7. The bimodule ηAη′ = Hom(η, η′) is flat as a left C[t∗][ℏ, c] = H T̃
∗ (pt)

module.

Proof. The proof is similar to [10, Lemma 5.3]. The space ηRη′/P has a natural pro
jection to the partial a˙ine flag variety G(K)/P, and can be decomposed into (infinite
dimensional) a˙ine fibrations over the a˙ine Schubert cells in the latter. By definition, 
the equivariant homology of ηRη′/P is a filtered colimit of the equivariant homologies 
of certain unions of these strata according to the Bruhat filtration. Any union of such 
even-dimensional cells is equivariantly formal, and its homology is flat over H T̃

∗ (pt). On 
the other hand, filtered colimits of free modules are flat. �
5.3. Z-algebras and the flavor deformation

Taking a sequence η0, η−1, . . . it is clear from Theorem 5.5 that we get a Z-algebra by 
taking

A =
⊕
i≤j

iAj

where iAj denotes ηi
Aηj

. That is,
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Theorem 5.8. The algebra 
⊕

i≤j iAℏ

j is a Z-algebra.

In the setup of BFN Coulomb branches, nontrivial Z-algebras are most easily obtained 
via a flavor deformation of G, i.e. by letting GF be nontrivial. We now explain this 
procedure for GF = Gm and associate to (G,N) a Z-algebra.

Specifically, we can consider a sequence ηi = (t−iU,G(O)) for some fixed lattice U (for 
example, U = N(O)). If we set ℏ = 0, it is easy to see that Sj−i := iAℏ=0

j depends only 
on j− i and the algebra Aℏ=0 is of graded type as in Section 4.3. In particular, at ℏ = 0
all commutative algebras iAℏ=0

i are isomorphic to the commutative Coulomb branch 
algebra S0 = AG(O). In particular, this construction yields a map ProjS → SpecS0, 
which is a variant of the construction of a partial resolution of the Coulomb branch in 
[12].

5.4. Z-algebras in the abelian case

Since it might be of independent interest and is used for computations below, we now 
work out the Z-algebras for the cases when G = T is a diagonalizable algebraic group 
and {ηi}∞i=0 is given by ηi = (T (O), tiφN(O)) for some (flavor) cocharacter φ : Gm → T . 
Note that when N = 0, the Z-algebra collapses to Aℏ

T,0[c] where c is the flavor parameter 
(the generalization to more flavors is straightforward).

Under Tj ↪→ GrT ×N(K) the image is naturally identfied with

�
λ∈GrT

{tλ} × tjtλN(O)

and similarly

iRj
∼ = �

λ∈GrT
{tλ} × (tjtλN(O) ∩ tiN(O)).

Now let irλj be the preimage of λ ∈ GrG under the projection iRj → GrT . Suppose 
also N is the direct sum of the characters ξ1, . . . , ξn as a T -representation.

Theorem 5.9. Under the convolution product in Theorem 5.5, we have for all i, j, k ∈ Z

that

ir
λ
j jr

μ
k =

n ∏
�=1

A�(i, j, k, λ, μ)irλ+μ
k

where

A�(i, j, k, λ, μ)

=
max(λ+i,k−μ,j) ∏

a=max(λ+i,k−μ)+1

(ξ� + c + (a + ξ�(λ))ℏ)
min(λ+i,k−μ) ∏

b=min(λ+i,k−μ,j)+1

(ξ� + c + (b + ξ�(λ))ℏ)
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Proof. We may restrict to the case where the rank of T is 1. In this case, the computation 
is essentially [92, Proposition 3.10], generalizing [10, Theorem 4.1]. In the notation of 
[92] we have

ir
λ
j = yλr(λ + i, j), jrμk = yμr(μ + j, k)

so we get

ir
λ
j jr

μ
k

= yλr(λ + i, j)r(j, k − μ)yμ

= yλe

(
tλ+iN(O) ∩ tk−μN(O) 

tλ+iN(O) ∩ tk−μN(O) ∩ tjN(O)

)
e

(
tλ+iN(O) + tk−μN(O) + tjN(O)

tλ+iN(O) + tk−μN(O) 

)
yμ

And we compute the Euler classes

e

(
tλ+iN(O) ∩ tk−μN(O) 

tλ+iN(O) ∩ tk−μN(O) ∩ tjN(O)

)
=

max(λ+i,k−μ,j) ∏
a=max(λ+i,k−μ)+1

(ξ� + c + aℏ)

e

(
tλ+iN(O) + tk−μN(O) + tjN(O)

tλ+iN(O) + tk−μN(O) 

)
=

min(λ+i,k−μ) ∏
b=min(λ+i,k−μ,j)+1

(ξ� + c + bℏ)

From the relation yλχ = (χ + ℏ〈χ, λ〉)yλ for χ ∈ t∗ we get that

ir
λ
j jr

μ
k = A�(i, j, k, λ, μ)irλ+μ

k �
Remark 5.10. When ℏ = c = 0, the above becomes

ir
λ
j jr

μ
k =

n ∏
�=1

ξ
max(λ+i,k−μ,j)
�

ξ
max(λ+i,k−μ)
�

· ξ
min(λ+i,k−μ)
�

ξ
min(λ+i,k−μ,j)
�

ir
λ+μ
k

Lemma 5.11. All algebras in question are naturally graded with

deg ξ� = 2, deg(irλj ) = |λ + i− j|.

Proof. Observe that

|a− b| + |b− c| − |a− c| = 2 (max(a, b, c) − max(a, c) + min(a, c) − min(a, b, c)) . (20)

Indeed, both sides of (20) are symmetric in a and c and vanish if b is between a and c. 
If b < a < c then we get

(a− b) + (c− b) − (c− a) = 2(a− b) = 2(c− c + a− b),
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while for a < c < b we get

(b− a) + (b− c) − (c− a) = 2(b− c) = 2(b− c + a− a).

By substituting a = λ + i, b = j, c = k − μ we can verify that the defining equations are 
homogeneous since

deg(irλj ) = |λ + i− j|, deg(jrμk ) = |k − μ− j| = |j + μ− k|,
deg(irλ+μ

k ) = |(λ + i) − (k − μ)| = |λ + μ + i− k|. �
As in [11, Appendix] and [10], the inclusion GrT ↪→ Tj as a subbundle gives rise to an 

injective map z∗ in equivariant Borel-Moore homology:

iz
∗
j : iAℏ

j ↪→ H
T (O)⋊Gm
∗ (GrT ).

If uλ ∈ H
T (O)⋊Gm
∗ (GrT ) is the class of the cocharacter λ, or more algebraically the 

ℏ-difference operator on t acting on f ∈ k[t] by f(x) �→ f(x + ℏλ), we have

Theorem 5.12. Under iz∗j , we have

iz
∗
j (irλj ) = e(tλtiN(O)/tλtiN(O) ∩ tjN(O))uλ

Note that the injectivity of iz∗j is clear from the above.

6. Coulomb branches and Z-algebras in the adjoint case

6.1. From Coulomb branch to Cherednik algebra

We now discuss the adjoint case. For arbitrary G and N = Ad, the construction of 
[10] yields a noncommutative resolution of T ∗T∨/W in the sense of [91]. Instead of the 
spherical case, we focus on the Iwahori case as well as the resulting Z-algebras.

First of all, we claim Theorem 5.5 for η = (I,Lie(I)) gives a realization of the trigono
metric DAHA (as conjectured in many places, including [10]) and that the resulting 
action on the a˙ine Springer fibers coincides with Yun’s action. The goal of this section 
is to prove these claims, and to show that for η = (G(O),Lie(G(O))) we similarly get 
the spherical trigonometric DAHA, as expected in [10,8] and other places.

We now state the main theorem of this section.

Theorem 6.1. The Iwahori-Coulomb branch algebra

Ãℏ

G,I = HI⋊C×

∗ (RNI,I)

is naturally isomorphic to Hc,ℏ.
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Proof. We denote by R≤w
NI,I the preimage of the Schubert variety Fl≤w

G under the projec
tion RNI,I → FlG. The algebra Ãℏ

G,I is generated over H∗
I⋊C×(pt) by the non-canonically 

dfined ``fundamental classes'' [R≤w
NI,I] for w ∈ W̃ , which however have a unique leading 

term in the Bruhat order. This follows exactly in the same way as in the spherical case 
of [10, Section 6(i)].

Note that when w = si is a simple rflection, the restriction of the projection R≤w
NI,I →

Fl≤w ∼ = P 1 outside the origin is a (profinite-dimensional) vector bundle and its closure 
in R is still a vector bundle over P 1. In this case we can and will take [R≤si

NI,I] to be 
the corresponding fundamental class. In the type A setting, this was noted for example 
in [4, Section 4.2.]. We will prove that Ãℏ

G,I has a faithful representation in ℏ-difference 
operators on t which satifies the relations of the dDAHA.

Consider the restriction of the projection RNI,I → Fl to the fixed points FlT ∼ = W̃ . De
note the pullback by RNI,I,T . This gives rise to a morphism ι∗ : HI⋊C×

∗ (RNI,I,T ) → Ãℏ

G,I. 
Just as noted in [4, Section 4.1.] for the G = GLn-case, the proof of [10, Lemma 5.11] 
goes through word for word for these ind-varieties and we have an algebra embedding

z∗ : HI⋊C×

∗ (RNI,I,T ) ↪→ HI⋊C×

∗ (FlT )

Upon localization in the generalized roots, we obtain an injection z∗(ι∗)−1 : Ãℏ

G,I ↪→
HI⋊C×

∗ (FlT ) ∼ = Diff(hreg) ⋊ C[W ], similar to the spherical case handled in [10, Section 
5(v)]. It is clear that under the algebra filtration coming from the usual Bruhat order on 
FlT , this injection respects the filtrations.

In particular, similar to [10, Proposition 6.2] we get

[R≤w
NI,I][R

≤w′

NI,I] = [R≤ww′

NI,I ] + lower order terms in Bruhat order

Note that each w has a reduced expression, say w = si1 · · · sij . In particular,

[R≤si1
NI,I ] · · · [R≤sij

NI,I ] = [R≤si1 ···sij
NI,I ] + lower order terms.

This implies that the classes [R≤si
NI,I] above the one-dimensional I-orbits in FlG generate 

Ãℏ

G,I together with the equivariant parameters. So it remains to check these satisfy the 
right relations.

Via a similar localization computation as in the following section, [R≤si
NI,I] is of the 

form a+ bsi, where 1, si are the corresponding fixed-point classes and act as the identity 
and the simple rflection on C[ĥ], respectively. The coefficient of si is the Euler class of 
T ≤si
NI,I/R

≤si
NI,I → P 1 divided by the tangent weight, more precisely b = αi+c

αi
. Similarly, we 

have a = −αi+c
−αi

, giving that [R≤si ] acts via

[R≤si ]f = (1 + si)f + c
(si − 1)f

αi
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As the relations between the [R≤si ] are exactly those from Definition 4.1, this dfines 
a homomorphism HG → Ãℏ

G,I sending 1+σi �→ [R≤si ], c �→ c, ℏ �→ ℏ and C[t] � f �→ f ∈
C[t] ∼ = H∗

T (pt). The relations follow from those in the usual polynomial representation 
of the degenerate DAHA in the ℏ-difference representation (15). This shows Ãℏ

G,I is a 
quotient of HG; faithfulness follows from [17, Proposition 1.5.6.]. �
Remark 6.2. In K-theory, a similar proposition is proven for the full DAHA with some 
specific rational parameter values in [89, Section 2.5].

Corollary 6.3. The Coulomb branch algebra Aℏ

G,G(O) of Braverman-Finkelberg-Nakajima 
is isomorphic to the spherical subalgebra of Hc,ℏ.

Proof. Let e = |W |−1 ∑
w∈W w ∈ Hc,ℏ

∼ = Aℏ

G,I. Recall that N = Ad in this section. 
Then, in the notation of Theorem 6.1, we have the left G(O)⋊C×-equivariant projection 
RNI,I → RNO,G(O) obtained as the combination of the projection Fl → Gr and the 
inclusion NI ↪→ NO. It fits into a cartesian square

RNI,I [g̃/G] = [b/B]

RNO,G(O) [g/G]

ϕ′

π π′

ϕ

(21)

in particular, taking I⋊C×-equivariant homology, by classical Springer theory we have 
that

HI⋊C×

∗ (RNO,G(O)) ∼ = Aℏ

G,Ie

To get G(O) ⋊C×-invariants, using Atiyah-Bott we compute

H
G(O)⋊C×

∗ (RNO,G(O)) ∼ = eAℏ

G,Ie �
Remark 6.4. This proves the speculation in [10, Remark 6.20]. For G = GLn this was 
proved by Kodera and Nakajima in [56].

Finally, we give a geometric realization of the ``shift'' bimodules of the trigonometric 
Cherednik algebra using line operators.

Let η = (ti Lie(I), I) and η′ = (ti Lie(I ∩ tG(O)), I), where Lie(I ∩ tG(O)) is the 
pronilpotent radical of Lie(I). In the notations of section 5.2 denote

i+1R̃i := ηRη′

and

i+1Ãi = HI⋊C×

∗ (i+1R̃i)
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Theorem 6.5. There are natural isomorphisms of graded bimodules

i+1Ai
∼ = ei+1Ãie ∼ = e−iÃie

Proof. Let i+1R̃i ↪→ iR̃i be the natural inclusion. (g, s) ∈ iR̃i belongs to i+1R̃i exactly 
when gs ∈ Lie(I) ∩ tg(O), or in other words when it is in the kernel of the map

iR̃i → [b/B]

sending (g, s) to gs mod t. We also have the cartesian square

iR̃i [g̃/G] = [b/B]

iRi [g/G]

ϕ′

π π′

ϕ

(22)

similar to (8). Now, note that by finite-dimensional Springer theory

HI⋊C×

∗ (iRi) = iÃie

and

H
GO⋊C×

∗ (iRi) = eiÃie

Finally i+1Ai
∼ = ei+1Ãie and

e−iÃie[2 dimG/B] ∼ = ei+1Ãie

again similarly to the proof of Lemma 2.2. �
6.2. Localization of the spherical algebra in the adjoint case

We now analyze the Z-algebra introduced in the previous section via localization 
to fixed points. In particular, we may deduce results about the associated graded of 
the Bruhat filtration for the convolution algebras, using an ``abelianization'' procedure 
appearing e.g. in [15]. We should note that similar fixed-point analysis does not apply 
to the Springer action itself unless we are in a situation similar to [38,77,90,27], but we 
are still able to deduce many results about the convolution action on general grounds in 
Section 7.

We let G and N be arbitrary for now. Suppose P = G(O). The spaces iRj have natural 
closed embeddings to iRj ↪→ G(K) ×G(O) tjN(O). Moreover, there is the embedding of 
the zero-section
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z : GrG ↪→ G(K) ×G(O) tjN(O)

and, if we denote by iRT j the space of triples constructed using (T,N), an inclusion

ι : iRT j ↪→ iRj .

The latter map gives rise to an equivariant pushforward

ι∗ : HT (O)
∗ (iRT j) → H

G(O)
∗ (iRj)

(see [10, Lemma 5.17 and Remark 5.23]). The map z for G = T gives the maps iz∗j from 
Theorem 5.12. With a choice of a maximal torus T , call the union of the roots of G with 
respect to T with the T -weights of the representation N generalized roots.

Then, similarly to [10,11] we have

Proposition 6.6. We have an embedding

iz
∗
j (ι∗)−1 : iAℏ

j ↪→ Aℏ

T,0[ℏ−1, (generalized roots + mℏ + nc)−1|m,n ∈ Z].

Note that this is not a ring homomorphism unless i = j, but a bimodule homomorphism, 
as in Theorem 5.12.

Let π : iRj → GrG be the projection. We use the Cartan decomposition of the a˙ine 
Grassmannian into G(O) orbits:

GrG = �
λ∈X+

∗

GrλG, GrλG = G(O)tλG(O)/G(O)

The closures of these orbits will be denoted by Gr≤λ
G = GrλG. Then the subvariety iR≤λ

j :=
π−1(Gr≤λ

G ) gives rise to a class in equivariant Borel-Moore homology as in [10, Section 
2].

In particular, we have the following localization formula.

Lemma 6.7. For a minuscule cocharacter λ, we have

iz
∗
j (ι∗)−1f ∩ [iR≤λ

j ] =
∑

λ′=wλ∈Wλ

wf × e(tλ′
tjN(O)/tλ′

tjN(O) ∩ tiN(O))
e(Tλ′ GrλG) 

uλ′ (23)

Proof. We are using Borel-Moore homology, so results of Brion [14] apply and the formula 
follows from Theorem 5.12. For the case i = j = 0, see [10, Proposition 6.6]. �

If λ is not minuscule, the corresponding Schubert variety is not smooth and there 
is no nice formula for [iR≤λ

j ]. To overcome this, we consider the Bruhat filtration on 
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the Coulomb branch algebra A dfined by the classes of [iR≤λ
j ][f ]. The corresponding 

Bruhat filtration on AT is given by the classes of μ such that μ is in a Weyl group orbit 
of a dominant coweight μ′ with μ′ ≤ λ. In the sequel of the paper we will write grA
(resp grAT ) for the associated graded algebras with respect to the Bruhat filtrations.

By [10, Section 6.(i)] the localization map ι∗ : AT → A agrees with the respective 
Bruhat filtrations and one can dfine a map gr ι∗ : grAT → grA. To save space, we will 
denote

(gr ι∗)−1[jRλ
i ][f ] := (gr ι∗)−1 gr[jRλ

i ][f ].

The right hand side of the equation (23) yields the formula for the associated graded 
with respect to the Bruhat filtration, see e.g. [10, Eq. (6.3)]. We first consider the case 
G = GLn.

Theorem 6.8. Let G = GLn, then the following hold:
(a) For c = ℏ = 0, arbitrary cocharacter λ and a function f(y) which is symmetric 

under the stabilizer of λ we have the following:

jz
∗
i (gr ι∗)−1[jRλ

i ][f ] =
∑

λ′∈Wλ

f ′
∏
s �=r

(yr − ys)max(λ′
r−λ′

s+i,j)

(yr − ys)λ′
r−λ′

s+i(yr − ys)max(λ′
r−λ′

s,0)
uλ′

Here f ′ is the image of f under any permutation in W which sends λ to λ′. If λ is 
minuscule, the formula is exact without taking associated graded.

(b) For general c, ℏ we have

jz
∗
i (gr ι∗)−1[jRλ

i ][f ]

=
∑

λ′∈Wλ

f ′
∏

λ′
r−λ′

s+i<j

∏j−(λ′
r−λ′

s+i)−1
�=0 (yr − ys + (λ′

r − λ′
s + i + 	)ℏ + c)∏

s �=r

∏max(λ′
r−λ′

s,0)
�=0 (ys − yr + 	ℏ) 

uλ′

where the notations are as above.

Proof. We compute the right hand side in the equation (23). If λ = (λ1, . . . , λn) ∈
X∗(T ) ⊂ X∗(GLn) we get

tλ.tiN(O) =

⎛⎜⎜⎜⎜⎜⎝
tiN(O) tλ1−λ2+iN(O) tλ1−λ3+iN(O) · · · tλ1−λn+iN(O)

tλ2−λ1+iN(O) tiN(O) tλ2−λ3+iN(O) · · · tλ2−λn+iN(O)
tλ3−λ1+iN(O) tλ3−λ2+iN(O) tiN(O) · · · tλ3−λn+iN(O)

...
...

...
. . .

...
tλn−λ1+iN(O) tλn−λ2+iN(O) tλn−λ3+iN(O) · · · tiN(O)

⎞⎟⎟⎟⎟⎟⎠
Whence we compute the Euler class at c = ℏ = 0:
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e(tλtiN(O)/tλtiN(O) ∩ tjN(O)) =
∏
s �=r

(yr − ys)max(λr−λs+i,j)

(yr − ys)λr−λs+i

For general c, ℏ the factors with λ′
r − λ′

s + i ≥ j still contribute 1, and the formula for 
the Euler class reads as

∏
λ′
r−λ′

s+i<j

j−(λ′
r−λ′

s+i)−1∏
�=0 

(yr − ys + (λ′
r − λ′

s + i + 	)ℏ + c).

It is well known that the tangent space Tλ Grλ is naturally identfied with NO
NO∩tλ.NO

, 
from which we get

e(Tλ GrλG) =
∏
s �=r

max(λr−λs,0)∏
�=0 

(ys − yr + 	ℏ). �

Remark 6.9. The above formula makes sense even if f is not symmetric with respect to 
the stabilizer of λ. In this case, we first symmetrize with respect to the stabilizer of λ
and then symmetrize with respect to the whole group W = Sn.

For a general group G and N = Ad, we write can write the formula as follows.

Proposition 6.10. For arbitrary G and arbitrary coweight λ we have:

jz
∗
i (gr ι∗)−1[jR≤λ

i ][f ] =
∑

λ′∈Wλ

f ′
∏

α(λ′)+i<j

∏i−α(λ′)−j−1
�=0 (yα + (α(λ′) + j + 	)ℏ + c)∏

α∈Φ
∏max(0,α(λ′))−1

�=0 (yα + 	ℏ) 
uλ′

Proof. The proof of Theorem 6.8 is naturally adopted to arbitrary root systems. For the 
interest of space, we leave the details for the reader. �
Lemma 6.11. For G = GLn and N = Ad and the minuscule coweight ωm =
(1, . . . , 1, 0, . . . , 0) and i ≥ j, we have

z∗ι−1
∗ [iR≤ωm

i ] =
∑

I⊂[n],|I|=m

∏
r∈I,s/ ∈I

ys−yr+(i−1)ℏ+c
yr−ys

uI (24)

z∗ι−1
∗ [i+1R≤ωm

i ]

=
∑

I⊂[n],|I|=m

(
∏

r∈I,s/ ∈I(ys−yr+(i−1)ℏ+c)(ys−yr+iℏ+c))(
∏

r∈I,s∈I or r/ ∈I,s/ ∈I yr−ys+iℏ+c)∏
r∈I,s/ ∈I yr−ys

uI

(25)

z∗ι−1
∗ [jR≤ωm

i ] =
∏j−1

k=i+1
∏

r,s(yr − ys + kℏ + c) · z∗ι−1
∗ [i+1R≤ωm

i ] (26)

for j ≥ i + 2.
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Proof. This is a direct application of Theorem 6.8, recall that since ωm is minuscule we 
do not need to take associated graded. A symmetrization of ωm leads to a weight

λ′ = (λ′
1, . . . , λ

′
n), λ′

r =
{

1 if r ∈ I

0 otherwise

for some m-element subset I. In this case max(λ′
r − λ′

s, 0) equals 1 if r ∈ I, s / ∈ I and 0 
otherwise which gives the denominator. For the numerator, we observe

λ′
r − λ′

s + i =

⎧⎪⎪⎨⎪⎪⎩
i− 1 if r / ∈ I, s ∈ I

i if r ∈ I, s ∈ I or r / ∈ I, s / ∈ I

i + 1 if r ∈ I, s / ∈ I

and the result follows. �
More generally, we have the formula for arbitrary G and minuscule λ.

Lemma 6.12. For N = Ad and λ minuscule,

z∗ι−1
∗ [iR≤λ

i ][f ] =
∑

λ′=wλ∈Wλ wf ×
∏

α(λ′)=1
−yα+(i−1)ℏ+c

yα
uλ′ (27)

z∗ι−1
∗ [i+1R≤λ

i ][f ] =
∑

λ′=wλ∈Wλ wf

×
(∏

α(λ′)=1(yα+(i−1)ℏ+c)(yα+iℏ+c)
)(∏

α(λ′)=0 yα+iℏ+c
)

yα
uλ′ (28)

z∗ι−1
∗ [jR≤λ

i ] =
∏j−1

k=i+1
∏

α∈Φ(yα + kℏ + c) · z∗ι−1
∗ [i+1R≤λ

i ] (29)

Lemma 6.13. Let ε(x) = max(x + i, j) − (x + i) − max(x, 0), then

ε(x) + ε(−x) =
{
j − i if |x| ≥ |j − i|,
(j − i) + |j − i| − |x| if |x| ≤ |j − i|.

Proof. Let us first prove that for arbitrary x, d one has

max(x, d) + max(−x, d) = d + max(|x|, |d|) =
{
d + |x| if |x| ≥ |d|,
d + |d| if |x| ≤ |d|.

(30)

Clearly, max(x, d) + max(−x, d) = max(|x|, d) + max(−|x|, d). For d ≥ 0 we get 
max(−|x|, d) = d and (30) is clear. For d < 0 we can rewrite

max(|x|, d) + max(−|x|, d) = |x| − min(|x|, |d|) = d + max(|x|, |d|).

Now we can prove lemma, by letting d = j−i. Note that max(x+i, j) = i+max(x, j−i), 
therefore



E. Gorsky et al. / Advances in Mathematics 464 (2025) 110143 57

ε(x)+ε(−x) = max(x+i, j)−(x+i)−max(x, 0)+max(−x+i, j)−(−x+i)−max(−x, 0) =

max(x, j − i) − max(x, 0) + max(−x, j − i) − max(−x, 0).

Now we can use (30) with d = j − i. �
Corollary 6.14. Let G = GLn. At c = ℏ = 0 we get

jz
∗
i (gr ι∗)−1[jRλ

i ][f ] = ±Sym

⎛⎝f · Δj−i
∏

r<s,|λr−λs|<|j−i|
(yr − ys)|j−i|−|λr−λs|uλ

⎞⎠
Proof. Consider a pair r < s. In the right hand side of Theorem 6.8 we get

(yr − ys)ε(λ
′
r−λ′

s)(ys − yr)ε(λ
′
s−λ′

r) = ±(yr − ys)ε(λ
′
r−λ′

s)+ε(λ′
s−λ′

r).

By Lemma 6.13, the result follows. �
Example 6.15. Again for G = GLn, assume that j = i + 1, then at c = ℏ = 0 we get

i+1z
∗
i (gr ι∗)−1[i+1Rλ

i ][f ] = ±ΔAlt

⎛⎝f ·
∏

r<s,λr=λs

(yr − ys)uλ

⎞⎠
For arbitrary groups and ℏ = c = 0 we get a similar formula.

Corollary 6.16. For arbitrary G and λ we have

jzi(gr ι∗)−1[jRλ
i ][f ] = SymW

⎛⎝fΔj−i
∏

α∈Φ+,|α(λ)|<|j−i|
(yα)|j−i|−|α(λ)|uλ

⎞⎠
Proof. The proof follows from setting ℏ = c = 0 in Theorem 6.10 in exactly the same 
way as Theorem 6.8 and Corollary 6.14. �
6.3. Proof of Theorem 4.9

In this section we restate and prove Theorem 4.9 using Coulomb geometric realization 
of the trigonometric Cherednik algebra Hc,ℏ and its spherical subalgebra as Coulomb 
branch algebras.

Theorem 6.17. a) Let λ be a minuscule dominant coweight, respectively Xλ ∈ W̃ , then

Eλ,c := eXλe = e
∏

α(λ)=1

yα − c

yα
uλe



58 E. Gorsky et al. / Advances in Mathematics 464 (2025) 110143 

and

Fλ,c := eX−λe = e
∏

α(λ)=1

yα + c

yα
u−λe

Here uλ is the translation by ℏλ.
b) For an arbitrary dominant coweight λ we get

Eλ,c = e
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα + 	ℏ− c)
(yα + 	ℏ) uλe + lower order terms. (31)

If λ is minimal in Bruhat order, the formula (31) for Eλ,c is exact.
c) More generally, for dominant coweight λ which is minimal in the Bruhat order, 

and a polynomial f(y) we dfine

Eλ,c[f ] = ef(y)
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα + 	ℏ− c)
(yα + 	ℏ) uλe,

Fλ,c[f ] = ef(y)
∏

α(λ)>0

α(λ)−1∏
�=0 

(yα + 	ℏ + c)
(yα + 	ℏ) u−λe.

(32)

The spherical subalgebra eHce is generated by such Eλ,c[f ] and Fλ,c[f ].

Proof of Theorem 4.9. By Proposition 6.10 and Corollary 6.3 we can write Ãℏ

G,I 
 Hc,ℏ

and Aℏ

G,G(O) = 0Aℏ
0 
 eHc,ℏe.

To prove Theorem 4.9(b), we identify the operator Eλ,c ∈ eHc,ℏe (up to lower order 
terms in the Bruhat filtration) with the class z∗(gr ι∗)−1[0R≤λ

0 ] ∈ 0Aℏ
0 . The localization 

formula in Proposition 6.10 for f = 1 and i = j = 0 then implies the desired formula for 
Eλ,c, again up to lower order terms. If λ is minimal in the Bruhat order, there are no 
lower order terms and the formula is exact.

The proof of Theorem 4.9(c) is similar and again follows from Proposition 6.10 for 
i = j = 0. The last claim about generation follows from [10, Proposition 6.8] which states 
that the classes z∗(gr ι∗)−1[0R≤λ

0 ][f ] for dominant λ which are minimal in the Bruhat 
order and arbitrary f , and opposite classes corresponding to −λ, generate the Coulomb 
branch algebra 0Aℏ

0 .
In part Theorem 4.9(a) the coweight λ is minuscule, and the formula from (b) sim

plfies. First, we have either α(λ) = 1 or α(λ) = 0 for all α, so 	 = 0 for all nontrivial 
factors. Second, λ is minimal in Bruhat order, so there cannot be any lower order terms 
and the formula is exact. �
Remark 6.18. Alternatively, one can prove Theorem 4.9(b) using a tedious but explicit 
computation in the a˙ine Hecke algebra, see [53, Example 5.4, Theorem 5.9] and [56, 
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Proposition 5.13]. The translation Xλ can be written as a product of elements of Ω and 
simple rflections σi in some order, and one can control the leading term of each factor. 
This leads to a formula for the leading term for Xλ, and its symmetrization.

Remark 6.19. In this paper, we use both results from Section 6 in Section 4, and results 
from Section 4 in Section 6. We would like to assure a cautious reader that such a 
nonlinear narrative does not lead to circular reasoning in any proofs.

In the proof of Proposition 6.10 and Corollary 6.3 we only use the definitions of Hc and 
eHce and the construction of their polynomial representations by difference operators. 
Proposition 6.10 then directly follows (similarly to Theorem 6.8) from localization in the 
Coulomb branch algebra and does not use any results from Section 4. In the proof of 
Theorem 4.9 we then use Proposition 6.10.

The remainder of Section 4 heavily uses Theorem 4.9, but no further results from 
Section 6. Finally, the remainder of Section 6 heavily uses the results from Section 4.

6.4. Factorization of bimodules

Lemma 6.20. Suppose that λ is an arbitrary integral coweight for GLn and d > 0. Then 
there exist d coweights μ(0), . . . , μ(d−1) such that μ(0) + . . .+μ(d−1) = λ and for all i and 
j the following holds:

1) If |λi − λj | < d then

d− |λi − λj | =
∑

k,μ
(k)
i =μ

(k)
j

1.

2) If |λi − λj | > d then μ(k)
i �= μ

(k)
j for all k.

Proof. We dfine μ(k) by ``dividing λ by d with remainder''. More precisely, let λi =
dqi + ri where 0 ≤ ri < d. We dfine

μ
(k)
i =

{
qi + 1 for k < ri

qi for k ≥ ri

Clearly, μ(0)
i + . . .+μ

(d−1)
i = λi. Without loss of generality, we can assume that λj ≥ λi. 

We have the following cases:
1) λj = dqi + rj , rj ≥ ri. In this case μ(k)

i = μ
(k)
j for k < ri and k ≥ rj , so

∑
k,μ

(k)
i =μ

(k)
j

1 = d− (rj − ri) = d− (λj − λi).
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2) λj = d(qi + 1) + rj , rj < ri. In this case μ(k)
i = μ

(k)
j for rj ≤ k < ri and

∑
k,μ

(k)
i =μ

(k)
j

1 = ri − rj = d− (λj − λi).

3) If λj > d(qi + 1) + rj then μ(k)
j ≥ qi + 2 for k < ri and μ(k)

j ≥ qi + 1 for k ≥ ri, so 

μ
(k)
i �= μ

(k)
j for all k. �

Example 6.21. Suppose that d = 2, then we split λ = μ(0) + μ(1) as follows. If λi = 2k
is even, we set μ(0)

i = μ
(1)
i = k; if λi = 2k + 1 is odd, we set μ(0)

i = k + 1 and μ(1)
i = k. 

Clearly, if λi = λj then both μ(0)
i = μ

(0)
j and μ(1)

i = μ
(1)
j . If |λi − λj | = 1, it is not hard 

to see that exactly one of equations μ(0)
i = μ

(0)
j and μ(1)

i = μ
(1)
j holds.

Corollary 6.22. Suppose that G = GLn, j − i = d and c = ℏ = 0. For an arbitrary 
coweight λ and μ(k) as in Lemma 6.20 we have

jz
∗
i (gr ι∗)−1[jRλ

i ] = ±
d−1 ∏
k=0

i+k+1z
∗
i+k(gr ι∗)−1

[
i+k+1Rμ(k)

i+k

]
+ lower order terms. (33)

Proof. By Lemma 6.20 we get∏
r<s,|λr−λs|<d

(yr − ys)d−|λr−λs| =
∏
k

∏
r<s,μ

(k)
r =μ

(k)
s

(yr − ys).

By Corollary 6.14, the left hand side of Eq. (33) is a symmetric polynomial with leading 
term (in the dominance order on the uλ)

±Δd
∏

r<s,|λr−λs|<d

(yr − ys)d−|λr−λs|usort(λ)

while the right hand side is a product of d symmetric polynomials with leading terms

±Δ
∏

r<s,μ
(k)
r =μ

(k)
s

(yr − ys)usort(μ(k))

It is easy to see that in the above construction sort(λ) = sort(μ(0)) + . . . + sort(μ(d−1)), 
so the result follows. �
Remark 6.23. It seems reasonable to conjecture analogs of Lemma 6.20 and Corol
lary 6.22 for other groups, at least for simply laced groups. This would have the 
consequence that the isomorphism constructed in Theorem 6.26 would hold for other 
groups, showing for instance that the global sections of the line bundle we construct 
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equal Ad
G. Since the line bundle is not expected to be ample outside the simply laced 

case (see [59]) we do not expect the result to hold in general.
We also note that the combinatorics appearing in the Lemma are closely related to 

the root-system chi-firing of [25]. It would be interesting to make the connection more 
precise. The second author thanks Pavel Galashin for correspondence regarding this 
point.

6.5. Proof of Theorem 3.6

In this section we restate and prove Theorem 3.6.

Theorem 6.24. The algebras 0Aℏ=0
d have the following properties:

a) For d = 0, we have 0Aℏ=0
0 = C[T∨ × t]W .

b) For d = 1, we have 0Aℏ=0
1 = A.

c) For all d the module 0Aℏ=0
d is a free C[t]W -submodule of edC[T∨ × t].

d) For G = GLn, we have 0Aℏ=0
d = (0Aℏ=0

1 )d = Ad for all d.

Recall that by Proposition 6.6 and [10, Lemma 5.17.], we have an embedding

0Aℏ=0
d (G) ↪→ 0Aℏ=0

d (T ) = C[T∨ × t]. (34)

Lemma 6.25. Let t ∈ t, and let ZG(t) denote the centralizer of t in G. Then the inclusion 
(34) factors through 0Aℏ=0

d (ZG(t)):

0Aℏ=0
d (G) 0Aℏ=0

d (ZG(t)) 0Aℏ=0
d (T )

Proof. We use the following general result [11, Lemma 5.1]. Suppose that N is a repre
sentation of G, consider the one-parameter subgroup Et = exp(Rt) in G. Then

REt

G,N 
 RZG(t),Nt .

When N = g we get N t = LieZG(t), and therefore

iRG
Et
j 
 iRZG(t)j

(we drop N from the notation). The chain of inclusions of fixed points

iRG
T
j 
 iRT j ↪→ iRG

Et
j 
 iRZG(t)j ↪→ iRGj

induces a commutative diagram in equivariant BM homology, where the horizontal maps 
are injective and the vertical maps are isomorphisms:
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HG
∗ (iRGj) H

ZG(t)
∗ (iRZG(t)j) HT

∗ (iRT j)

0Aℏ=0
d (G) 0Aℏ=0

d (ZG(T )) 0Aℏ=0
d (T ).

�

Proof of Theorem 3.6. a) We regard C[t]W as the equivariant cohomology of a point, 
and 0Aℏ=0

d is realized as the equivariant Borel-Moore homology of a certain space which 
admits an a˙ine paving by Bruhat cells. Therefore it is equivariantly formal and its 
equivariant cohomology is a free module over H∗

G(pt). The embedding to C[T∨ × t] is 
realized by the inclusion to equivariant Borel-Moore homology of the fixed point set. 
That we land in the ed-isotypic component follows from the fact that the localization 
is dfined using T -equivariant cohomology and to pass to G-equivariant cohomology we 
take W -invariants. See for instance [10, Remark 5.23].

b) This is a specialization of Corollary 6.3 at ℏ = 0.
c) By part (a) we have inclusion 0Aℏ=0

1 ⊂ e−C[T∨ × t] = A. By Theorem 6.5 (spe
cialized at ℏ = 0) this is an isomorphism.

d) This is a specialization of Theorem 6.26 at ℏ = 0. �
6.6. The geometric Z-algebra for the adjoint representation

We are ready to prove the main result of this section.

Theorem 6.26. When G = GLn, the Z-algebras A and B are isomorphic. For general G, 
there is an injection A ↪→ B inducing j−1Aj

∼ = j−1Bj and jAj
∼ = jBj.

Proof. We need to prove the following facts:

(a) iAi
∼ = iBi as algebras

(b) iAi+1 ∼ = iBi+1 as bimodules over iAi (resp. iBi) and i+1Ai+1 (resp. i+1Bi+1)
(c) iAi+1 · · · j−1Aj ↪→ iAj and this is an isomorphism for G = GLn. Note that iBj

∼ = 
iBi+1 · · · j−1Bj by definition.

Part (a) follows from Theorem 6.1. Part (b) follows from Theorem 6.5.
In type A, it is instructive to review what part (b) says in order to prove part (c). We 

can compute the bases in the associated graded spaces on both sides: gr iBi+1 = A is the 
space of antisymmetric polynomials in C[x±

1 , . . . , x
±
n , y1, . . . , yn] and by Lemma 3.24(a) 

it has a vector space basis ΔS parametrized by all n-element subsets of Z≥0 × Z. On 
the other hand, in gr iAi+1 we have a basis gr[jRλ

i ][f ] parametrized by a weight λ and a 
function f . By Example 6.15 and Lemma 3.24(c) these can be explicitly identfied by set
ting f to be the product of Schur polynomials. Finally, having a filtered homomorphism 
inducing an isomorphism on associated graded spaces gives an isomorphism.

Let us prove part (c) for G arbitrary. By Corollary 5.6 the convolution product gives 
a natural map
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iAi+1
⊗

i+1Ai+1

· · ·
⊗

j−1Aj−1

j−1Aj → iAj , (35)

To check that (35) is injective, it is sufficient to check that it becomes an isomorphism 
after localization in the multiplicative set generated by {yα + nℏ+mc|α ∈ Φ,m, n ∈ Z}
which we get from [10, Remark 3.24]. Finally, we need to prove that it is an isomorphism 
for G = GLn. To prove that it is surjective, we first consider the commutative limit 
ℏ = c = 0 and take the associated graded with respect to the Bruhat filtration. Then 
surjectivity follows from Corollary 6.22.

Next, we use parts (a) and (b) of the theorem to rewrite the left hand side of (35) as

iBi+1
⊗

i+1Bi+1

· · ·
⊗

j−1Bj−1

j−1Bj = iBj .

By Theorem 4.18 this is free over C[y1, . . . , yn]Sn . Since the space iRj+1 is equivariantly 
formal, the bimodule iAj+1 is free over C[ℏ]⊗C[y1, . . . , yn]Sn as well. Therefore (35) is 
surjective for general c, ℏ. �
Remark 6.27. For G = GLn, Simental [83] classfied Harish-Chandra bimodules for the 
rational Cherednik algebra and proved that the shift bimodule is the unique Harish
Chandra bimodule which sends polynomial representation to the polynomial representa
tion. In particular, this implies an analogue of Theorem 6.26 for the rational Cherednik 
algebra.

It would be interesting to know if the methods of [83] can be generalized to the 
trigonometric case to give an alternate proof of Theorem 6.26.

Combining the above result with the Proj construction we get

Corollary 6.28. When G = GLn, the graded algebra 
⊕

i j−iAℏ=c=0
j is naturally isomor

phic to the homogeneous coordinate ring of Hilbn(C ×C×) for any j.

Proof. Specialize the above theorem for c = ℏ = 0 and use Theorem 4.18. �
Remark 6.29. One should also compare this to the results in [12] which essentially show 

iAj
∼ = O(j − i) in the case G = GLn, N = Ad⊕V � for 	 ≥ 1, using factorization and 

results about the Hilbert schemes on A�−1-resolutions.

6.7. A flag Z-algebra

In this section, we sketch to what extent the construction of iAj extends to the 
flag level, i.e. when we replace g(O) by the standard Iwahori subalgebra and G(O) by 
the Iwahori subgroup I. This gives a Springer-theoretic construction of the ``one-step'' 
shift bimodule i−1Ai. On the level of a˙ine Springer fibers, the analogous geometry is 
discussed in Section 7.4.
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Let ev−1
0 (b) = i be the standard Iwahori subalgebra. Then ev−1

0 (0) ⊂ i. Consider the 
sequence of subalgebras

g0 := g(O) ⊃ g1/2 := i ⊃ g1 := tg(O) ⊃ ti ⊃ t2g(O) ⊃ t2i ⊃ · · ·

Then, as k-vector spaces (but importantly, not as Lie algebras) we have the subquo
tients

gi/gi+1/2 ∼ = 

{
b, i ∈ Z + 1/2
n−, i ∈ Z

Example 6.30. For G = SL2 we have(
O O
m O

)
⊃
(
m m

m m

)
⊃
(

m m

m2 m

)
⊃ · · ·

so that g1/2/g1 ∼ = b, g1/g3/2 ∼ = n−.

6.7.1. Bimodules
Consider now the spaces

jR̃i := {[g, s] ∈ G(K) ×I gi|gs ∈ gj}, i ∈
1
2Z

And

jRi := {[g, s] ∈ G(K) ×G(O) gi|gs ∈ gj}, i ∈ Z.

Proposition 6.31. Let [b/B] r−→ [g/G] be the Grothendieck-Springer resolution. Then for 
i ∈ Z we have the cartesian diagrams

i+1/2R̃i+1/2 [b/B]

iRi [g/G]

ψ

φ

In particular,

iAi
∼ = e i+1/2Ai+1/2 e

by Springer theory. On the other hand, it is easy to see that

φ−1(0) = {[g, s] ∈ G(K) ×G(O) gi|gs ∈ tgi} = i+1Ri

and
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(r ◦ ψ)−1(0) = {[g, s] ∈ G(K) ×I gi+1/2|gs ∈ gi+1} = i+1R̃i+1/2.

In particular,

i+1Ai = e− i+1/2Ãi+1/2Δ e = e i+1Ãi+1/2 e.

From what we have before,

iÃi

is the trigonometric Cherednik algebra when i ∈ 1/2 + Z. The algebra for i ∈ Z is not
a Cherednik algebra, but indeed a matrix algebra over the spherical Cherednik algebra, 
as in [93,92].

7. Generalized a˙ine Springer theory

7.1. Generalized a˙ine Springer fibers

In this section we generalize the Springer action from [27,43] to the line operators 
discussed above. Let P be a parahoric subgroup, NP be a lattice in N(K) stable under 
P. Given this data, denote η = (P, NP). Further, suppose that

1 → G → G → GF → 1

is an extension of algebraic groups and that P is a parahoric subgroup of G(K) which 
fits into an extension

1 → P → P → GF (O) → 1

so that P ∩G(K) = P. Let GO
K be the preimage in G(K) of GF (O).

Definition 7.1. Let v ∈ N(K). The generalized a˙ine Springer fiber of v is the ind
subscheme of FlP dfined by

ηMv := {g ∈ FlP |g−1.v ∈ NP}.

Remark 7.2. Recall that if N = Ad, P is a fixed parahoric subgroup, NP = Lie(P), 
ηMγ = SpP

γ , the classical a˙ine Springer fiber for P.

Definition 7.3. The orbital variety of γ ∈ NK and η = (P, NP) is

ηOγ := G(K).γ ∩NP.
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Remark 7.4. Note that the orbital variety only depends on the lattice NP. However, we 
always use it in conjunction with P, explaining the slightly redundant notation with η.

In particular, we have

Lemma 7.5 ([27,43]). We have an isomorphism of stacks [ηOγ/P] ∼ = [Gγ\ηMγ ], where 
Gγ is the stabilizer of γ in G(K).

Proof. Let ηXγ = {g ∈ GO
K ⋊C×|g−1.γ ∈ NP}. Then there are maps

ηXγ

ηMγ ηOγ

making ηXγ a P-torsor over ηMγ and a Gγ-torsor over ηOγ . �
Lemma 7.6. Suppose ηMγ is finite-dimensional over C. Note that the K-group Gγ admits 
a Néron model Gγ/O. We have that

(i) ηMγ admits a Gγ-equivariant dualizing complex ω
ηMγ

.
(ii) For Kγ ⊆ Gγ(O), the equivariant Borel-Moore homology H

Kγ
∗ (ηMγ) =:

HP
∗ (Kγ\ηXγ/P) is well-defined. Here ηXγ = {g ∈ GO

K ⋊C×|g−1.γ ∈ NP} as before.

Proof. (i) is clear by finite-dimensionality and Lemma 7.5. For (ii), we can approximate 

ηMγ by finite-type Kγ-stable varieties, and then take the colimit. �
Example 7.7. Suppose N = Ad, and γ is split regular semisimple. Then Gγ is a split 
maximal torus in G(K), in fact the loop group of a split maximal torus T ⊂ G. The 
equivariant BM homology HT

∗ (Spγ) is studied in the next section.

Remark 7.8. We may extend the setup to the flavor-deformed equivariant version by con
sidering ηÕγ := GO

K ⋊C×.γ and its quotient by P⋊C× instead. We leave constructions 
of these extended notions to the reader or refer to [27].

Suppose that G = G×C×, so GF = C× is the flavor group above. The group G acts 
on N via v �→ hg−1γg. We denote the resulting GASF

Mγ = GK.γ ∩NP/P

Since [h] = [td] ∈ X∗(C×) = Z we see that Mγ splits into components

Mt−dγ
∼ = {g ∈ GrG |tdg−1γg = g−1tdγg ∈ g(O)} = Spt−dγ .

We recognize this to be the a˙ine Springer fiber of t−dγ in FlP, or in other words that
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Mγ =�
d∈Z

Mtdγ .

7.2. Springer action from the Coulomb perspective

We now dfine the Coulomb branch version of the Springer action, and in particular 
the geometric action of our Z-algebra. Let Kγ be as before and Xγ as in Lemma 7.6.

Theorem 7.9. The following convolution diagram dfines naturally associative maps

H
P⋊C×

rot∗ (ηRη′) ⊗H
Kγ
∗ (η′Mγ) → H

Kγ
∗ (ηMγ).

ηRη′ × η′Oγ p−1(ηRη′ × η′Oγ) q(p−1(ηRη′ × η′Oγ)) ηOγ

G(K) ×P′ NP′ × η′Oγ G(K) × η′Oγ

i

p q m

Here p : (g, s) �→ ([g, s], s), q is the quotient by the diagonal action of P′ and m is the 
map sending [g, s] �→ g.s.

Proof. Compare this to the proof of [27, Theorem 4.5.]. We explain the maps induced 
in BM homology by p, q,m. Consider the space

ηPη′ := {(g, s) ∈ GO
K ⋊C×

rot ×NP′ |g−1.s ∈ NP}

and note there are maps π1 : ηPη′ → NP′ and (g, s) �→ s and π2 : ηPη′ → NP given by 
(g, s) �→ g−1.s. Then consider the Gγ/Kγ-torsor π : Kγ\η′Xγ → NP and dfine

η′Fγ,Kγ
:= π∗ωKγ\η′Xγ

[−2 dimP + 2 dimKγ ],

which is an object in the P⋊C×
rot-equivariant derived category of NP supported on η′Oγ .

First of all, we have the ``pull-back with support'' map p∗ (see [10, Section 3(ii)])

p∗ : H−∗
P⋊C×

rot×P′⋊C×
rot

(ηRη′ ×NP, (ωηRη′ ) � (η′Fγ,Kγ
))

= H
P⋊C×

rot∗ (ηRη′) ⊗H
P′

⋊C×
rot∗ (Kγ\η′Xγ) → H∗

P⋊C×
rot×P′⋊C×

rot
(ηPη′ , π!

1(η′Fγ,Kγ
)).
(36)

Further, we have a map π!
1η′Fγ,Kγ

→ π!
2ηFγ,Kγ

and since π2 = m ◦ q, we get

q∗ : H∗
P⋊C×

rot×P′⋊C×
rot

(ηPη′ , π!
1η′Fγ,Kγ

) → H∗
P⋊C×

rot
(q(ηPη′),m!

ηFγ,Kγ
)

Finally, m is (ind-)proper because its fibers are closed subvarieties of a partial a˙ine 
flag variety, so that using the adjunction m!m

! → id we get a map
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(m ◦ q)∗ : HP⋊C×
rot∗ (q(ηPη′),m!

ηFγ,Kγ
) → H

P⋊C×
rot∗ (Kγ\ηXγ) = H

Kγ
∗ (ηMγ)

See [27,43] for more details, for example the proof of associativity of the maps. �
While the convolution diagram in Theorem 7.9 is rather abstract and the maps in 

Borel-Moore homology involved are dfined sheaf-theoretically, in easy cases it is possible 
to analyze the action as follows. Similar to [27, Section 4.2], we dfine the Hecke stack
for γ, η which has C-points

ηRγ
η′(C) = {(s2, g, s1) ∈ ηOγ ×G(K) × η′Oγ |g.s1 = s2}/P.

Here the quotient is by the action h.(s2, g, s1) = (s2, gh
−1, hs1). There is a natural 

Schubert stratfication of ηRγ
η′ inherited from ηRη, where

ηRγ
η′ ↪→ ηRη′

via [s2, g, s1] �→ [g, s1]. Similarly we have maps

ηRγ
η′

ηMγ η′Oγ

(37)

We will use this diagram later on in our computation of certain shift maps.
In the adjoint case, the name ``Springer action'' is warranted, as it coincides with the 

action dfined by Yun, Oblomkov-Yun [77] (and Varagnolo-Vasserot [89]):

Theorem 7.10. Let N = Ad and η = (I, NI) = η′. Then the action of the algebra ÃG,I
on HKγ

∗ (Mγ) dfined by Theorem 7.9 coincides with the one dfined in [77] on the equiv
ariant homology of a˙ine Springer fibers, under the isomorphism of Theorem 6.1.

Proof. Theorem 6.1 shows that the Springer action of simple rflections in the a˙ine Weyl 
group is the same. The equivariant parameters act by Chern classes of line bundles on 
the a˙ine flag variety, and that the relations are the same follow from Theorem 6.1. �

The novel feature in allowing arbitrary η, η′ shows the following.

Corollary 7.11. The convolution product in Theorem 7.9 gives maps

jAℏ

i ⊗H
Kγ
∗ (Mtiγ) → H

Kγ
∗ (Mtjγ)

that naturally assemble into an action of the Z-algebra Bℏ =
⊕

i≤j jAℏ

i Moreover, the 
action in Theorem 5.5 not including loop rotation, i.e. setting ℏ = 0, dfines maps

H
G(O)
∗ (Rd

G,N ) ×H
Kγ
∗ (Md′

γ ) → H
Kγ
∗ (Md+d′

γ ).
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In particular, the above corollary gives a geometric construction of ``column vector'' 
modules for our geometric Z-algebra B =

⊕
i≤j≤0 iAj .

7.3. The adjoint case

In the case N = Ad, the construction of these a˙ine Springer theoretic modules 
is also closely related to the construction of a commutative (partial) resolution as in 
the previous sections, in the following way. For G = GLn, by the results of [12], the 
commutative limit i+dAℏ=0

i is identfied with the sections of O(d) on the Hilbert scheme 
of points Hilbn(C× ×C). In particular,

Proj
⊕
d≥0 

i+dAℏ=0
i

∼ = Hilbn(C× ×C).

In general, we have the following proposition.

Proposition 7.12. Let ℏ = 0. Then every γ ∈ NK and a choice of Kγ as in Theorem 7.9
gives a quasicoherent sheaf FKγ

γ on the partial resolution of the Coulomb branch given 
by

Proj
⊕
d≥0 

i+dAℏ=0
i .

Corollary 7.13. When G = GLn, the above construction gives a quasicoherent sheaf on 
Hilbn(C× ×C) associated to γ ∈ NK.

It is in general hard to compute which sheaf this is. In all examples we have checked, 
this should be a coherent sheaf for regular semisimple elements. This is a conjecture that 
we discuss in Section 8.

Recall that Lemma 2.13 tells us that the support of FKγ
γ is determined by Kγ , i.e. 

the equivariance we consider, as well as the splitting type of γ.

Example 7.14. When γ = ztd as above, we get twists of the ``Procesi bundle'' as shown 
in [54] which are supported everywhere. See Proposition 8.11 for the precise statement.

When γ is elliptic, these sheaves are supported on the punctual Hilbert scheme over 
(1, 0) ∈ C× ×C.

7.4. Action on representations

Let S̃p
′
γ = {gI|gγg−1 ∈ tg(O)}. Consider the Springer module Mγ = H

Kγ
∗ (Spγ). Then 

we have a natural map Mγ → Mtγ given by inclusion. There are also maps

M̃γ → M̃ ′
tγ → M̃tγ
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given by inclusion, or in other words convolving with the identity or point class in 1/2Ã1
and then by the point class in 1Ã3/2.

There are also natural Gysin maps M̃tγ → M̃ ′
tγ → M̃γ . The first one is codimension 

zero, and the second one codimension dimG/B. Composed, on the level of equivariant 
parameters, these look like the square of the Vandermonde determinant Δ. The issue 
arises from the normalization in the embedding to difference-reflection operators, in 
which the point class of 1Ã3/2 is naturally identfied with Δ (and a Cartan part), but 
acts as the identity on components (effectively, it cuts down the tangent spaces of the 
components by Δ).

Note also we have two projections

S̃p
′
tγ → Spγ , S̃pγ → Spγ

the first one of which is a fibration, and the second one has fibers which are usual Springer 
fibers (stratfied fibration). Effectively, the two line operators (for (1/2, 1) and (1, 3/2)) 
in the flags get squeezed down to a single one on the spherical level (the one for (0, 1)).

Lemma 7.15. We have dim Sptγ = dim Spγ + dimG/B.

Proof. By a result of Bezrukavnikov [7] the dimension of Spγ is given by

dim Spγ = 1
2 (νad(γ) − rk(g) + dim(hw)) , (38)

where w ∈ W is such that Z(γ) is of type w, hw denotes the w-invariants in h and νad(γ)
is the valuation of

det (adγ : g(K)/Z(γ) → g(K)/Z(γ))

It is easy to see that changing γ to tγ does not change w. The matrix adγ is multiplied 
by t which changes νad(γ) by |Φ| = 2 dimG/B, and the result follows. �
Lemma 7.16. Let π : S̃ptγ → Sptγ be the natural projection. If γ is elliptic then π−1(Spγ)
is an irreducible component of S̃ptγ . More generally, if γ is regular semisimple, and C

is an irreducible component of Spγ , then π−1(C) is an irreducible component of S̃ptγ.

Proof. By the proof of Lemma 2.2 the projection π−1(Spγ) → Spγ has fibers G/B at 
every point. Since γ is elliptic, Spγ is irreducible and hence π−1(Spγ) is irreducible as 
well. If C is as in the statement of the Lemma, the same proof goes through.

Furthermore, all components of S̃ptγ have dimension dim Sptγ . By Lemma 7.15 we 
have

dim π−1(Spγ) = dim Spγ + dimG/B = dim Sptγ ,
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and the result follows. �
Lemma 7.16 allows us to construct an important correspondence between Spγ and 

Sptγ . By the work of Tsai [87], there are W many irreducible components up to the 

centralizer action in S̃ptγ . Furthermore, we expect the following:

Conjecture 7.17. ([87, Conjecture 8.6]) The Springer action on H∗(S̃pγ) yields a regular 
representation in top-dimensional homology spanned by the classes of the irreducible 
components.

In particular, for γ elliptic there is a distinguished component π−1(Spγ) and another 
component biregular to Sptγ , and (assuming Conjecture 7.17) one can dfine a corre
spondence in Borel-Moore homology sending the former to the latter (for example, the 
symmetrizer e would suffice). More generally, fix a component C as above and note that 
the lattice part of the centralizer of γ acts transitively on the set of these components 
[48]. Now the class of π−1(C) can either be sent to the class of any lattice translate of 
π−1(C), or by the symmetrizer in the finite Weyl group to a one-dimensional W -invariant 
subspace of the BM homology of Sptγ .

This leads to the following:

Proposition 7.18. Assume γ is elliptic and G is simply-connected, and assume Conjec
ture 7.17 holds for γ. Consider the correspondence e[π−1(Spγ)]∗− between Spγ and Sptγ. 
The action of this correspondence in homology corresponds to the action of some class in 

i+1Ri as in Theorem 7.9, which sends the fundamental class of Spγ to the fundamental 
class of Sptγ .

Proof. Lets construct a cycle Γ′ in i+1Rγ
i such that correspondence (37) with the class Γ′

sends [Spγ ] to [Sptγ ]. First, we dfine Γ ⊂ i+1Rγ
i as the lift of the graph of the embedding 

of Spγ into Sptγ . The lift Γ is dfined as the locus of triples (s2, g, s1) ∈ i+1Rγ
i such that 

G(O).s1 = G(O).s2.
Let η = (G(O), tig(O)), η′ = (G(O), ti+1g(O)) and η̃ = (I, tig(O)). In particular, 

i+1Rγ
i = ηRγ

η′ and on the homology of the fibers of the projection π̃ : ηRγ
η̃ → i+1Rγ

i

there is an action of W . The push-forward along the projection π̃ is the projection onto 
the W -invariant part of the homology.

Let q̃ : ηRγ
η̃ → η̃Oγ be map from the corresponding diagram (37). The previous 

proposition implies that the map q̃ restricted to Γ̃ = π̃−1(Γ) is dominant over one of 
irreducible component of η̃Oγ . By Conjecture 7.17 the set of irreducible components 
of η̃Oγ is a regular representation of W . Thus there is w ∈ W such w.[Γ̃] projects 
dominantly onto η′Oγ . The class Γ′ = π̃∗(w.[Γ̃]) satifies required properties. �
Corollary 7.19. Under the assumption of the previous proposition we have the relation 
between the fundamental classes:
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[Spti+1γ ] ∈ −i−1A−i ∗ [Sptiγ ]

8. Finite generation and examples

8.1. Finite generation conjecture

As we saw in Section 7, in particular Theorem 7.9, the space

Fγ :=
∞ ⊕
k=0 

H∗(Sptkγ)

is a graded module over the graded algebra 
⊕∞

d=0 0Ad. Equivalently, Fγ dfines a quasi
coherent sheaf Fγ on Proj

⊕∞
d=0 0Ad.

Conjecture 8.1. The module Fγ is finitely generated and the sheaf Fγ is coherent.

Note that by Theorem 2.12 the homology of Sptkγ is finitely generated over 0A0. For 
G = GLn the graded algebra 

⊕∞
d=0 0Ad =

⊕∞
d=0 A

d is generated by 0A0 and 0A1 = A, 
so Conjecture 8.1 is equivalent to saying that for a given γ there exists k0 such that Fγ

is generated by 
⊕k0

k=0 H∗(Sptkγ) under the action of 0A0 and 0A1.
Below we prove the conjecture in some special cases.

Theorem 8.2. Conjecture 8.1 holds for G = GLn and γ = diag(s0, . . . , sn) for si �= sj.

Proof. This follows from Proposition 8.11 below. �
Example 8.3. Let G = GL2 and

γ =
(
t 0
0 −t

)
.

Then

Sptdγ
∼ = �

Z 
Cd+1

where each Cd+1 is an ifinite chain of Pd+1, consecutive members of which intersect 
transversally along a Pd. These Pd are Spaltenstein varieties of d-planes in 2d-space 
stable under a nilpotent element with Jordan blocks of sizes (d, d), motivically equivalent 
to projective spaces Pd. The inclusion maps are again embedding the chains into one 
another and they are regular embeddings (because they are effective Cartier divisors).

Note that the direct sum of homologies of these Pd+1 surjects onto the homology of 
Sptdγ . Let us prove that the module Fγ is generated by the homology of Spγ under the 
action of 0A0 and 0A1.
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Indeed, Spγ is just a discrete set of points in bijection with the a˙ine Weyl group. Its 
homology is a free rank two module over the lattice of translations.

In case of elliptic γ the finite generation conjecture follows from the stable of 0A0
cyclicity of the homology of Sptkγ :

Proposition 8.4. Let us assume that γ is elliptic, Conjecture 7.17 holds for tkγ and 
[Sptkγ ] ∈ H∗(Sptkγ) is the fundamental class. If there exists N such that H∗(Sptkγ) =
C[T ∗T∨]W · [Sptkγ ] for k ≥ N then Conjecture 8.1 holds for Fγ .

Proof. The actions of 0A0 = C[T ∗T∨]W and 0A1 on Fγ commute. Hence by Proposi
tion 7.18 the submodule ⊕k≥NH∗(Sptkγ) is generated by 0A0 and 0A1 from [SptNγ ]. The 
module ⊕k<NH∗(Sptkγ) is finite dimensional. �

The subalgebra C[t]W is isomorphic to the cohomology ring H∗(GrG), it acts on 
H∗(Spγ) by cap product. It is natural to conjecture that a stronger version of the previous 
proposition is true for G = PGLn.

Conjecture 8.5. Let g = Lie(PGLn) and γ ∈ g(O) is an elliptic regular semisimple 
topologically nilpotent element. Then

H∗(Spγ) = H∗(GrG) ∩ [Spγ ].

If G = GLn or G = SLn and γ ∈ g(O) is an elliptic element then Spγ has many 
connected components and the group π0(Gγ) permutes the connected components. In 
the light of aforementioned Theorem 2.12 it is natural to propose

Conjecture 8.6. Let g = Lie(GLn) or g = Lie(SLn) and γ ∈ g(O) is an elliptic regular 
semisimple topologically nilpotent element. Then

H∗(Spγ) = C[T ∗T∨]W [Spγ ].

Remark 8.7. The conjecture is false outside of type A since there are examples of elliptic 
a˙ine Springer fibers with homology of not of type (p, p) [48,77]. Note however that 
H∗(Spγ) is always finitely generated under C[T ∗T∨]W by [96] (see also Lemma 2.13).

For the homogeneous elements Conjecture 8.6 is known [78] and one can deduce

Theorem 8.8. Conjecture 8.1 holds for G = GLn and equivalued γm,n with characteristic 
polynomial xm − yn, gcd(m,n) = 1.

Proof. The a˙ine Grassmanian GrG has π1(GLn) = Z connected components GrG =
Gr0G ×Z. Respectively, we have Spγ = Sp0

γ × Z.
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Observe that if γm,n is equivalued with characteristic polynomial xm−yn then tkγm,n

is equivalued with characteristic polynomial xkn+m − yn. The compactfied Jacobian 
Jm/n of the one-point compactfication of the planar curve {xm − yn} is irreducible 
and homeomorphic to Sp0

γm,n
[78]. Moreover, Gr0G = GrPGLn

and the Sp0
γm,n

is the 
corresponding Springer fiber.

It is shown in [78] that for Sp0
γm,n

Conjectures 7.17 and 8.5 are true. The group 
π0(Gγm,n

) = Z acts transitively on the connected components of Spγ , hence Conjec
ture 8.6 is true for Spγm,n

. Thus the theorem follows from Proposition 8.4. �
Example 8.9. For G = GL2 and γ = γ1,2 we recover the Z-algebra module from Exam
ple 4.17.

8.2. Examples in type A

In the case G = GLn the sheaf Fγ can be described in terms of geometry of Hilbn(C××
C) for some homogeneous γ.

Proposition 8.10. Let γ be homogeneous of slope (kn + 1)/n. Then Fγ is isomorphic to 
the restriction of O(k) to the punctual Hilbert scheme at (1, 0) ∈ C× ×C.

Proof. The localized equivariant homology HGm∗ (Spγ) affords the unique finite- 
dimensional representation of eH−kn+1

n e constructed in [6], as was checked in [77,90]. By 
Lemma 2.13, Fγ is supported on this punctual Hilbert scheme (i.e. the corresponding 
fiber of the Hilbert-Chow map). Completing our Z-algebra at a neighborhood of the 
identity in T∨, we get a completion of the rational Cherednik algebra and the corre
sponding bimodules, for GLn with parameters given by integral shifts of (kn+1)/n. The 
Gordon-Stafford construction then implies [33,34] that the corresponding sheaf on the 
punctual Hilbert scheme coincides with O(k). �
Proposition 8.11. Let γ be homogeneous of slope k, or more generally equivalued of valua
tion k. Then FT

γ is isomorphic to P⊗O(k) where P is the Procesi sheaf on Hilbn(C××C).

Proof. For equivalued γ of valuation k the main result of [54] identfies the equivari
ant Borel-Moore homology HT

∗ (Spγ) with the space of global sections of P ⊗ O(k) on 
Hilbn(C× ×C) as a module over the algebra of global functions

0A0 = C[T ∗T∨]W = C[x±
1 , . . . , x

±
n , y1, . . . , yn]Sn ,

By the work of Haiman [41] we get:

H0(Hilbn(C× ×C),P ⊗O(k)) =
⋂
i�=j

〈1 − xi/xj , yi − yj〉k,

Hi(Hilbn(C× ×C),P ⊗O(k)) = 0, i > 0.
(39)
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By Theorem 3.6 the graded algebra 0A• is generated by the degree 1 component 0A1 = A, 
where A is the space of antisymmetric polynomials in C[x±

1 , . . . , x
±
n , y1, . . . , yn].

It is easy to see that by (39) we have a correctly dfined map

A⊗H0(Hilbn(C× ×C),P ⊗O(k)) → H0(Hilbn(C× ×C),P ⊗O(k + 1)),

and it follows from [54] that this agrees with the convolution 0A1⊗HT
∗ (Spγ) → HT

∗ (Sptγ). 
This completes the proof. �

For general γ elliptic of slope mn , the situation is as follows. Whilst our construction 
gives a sheaf Fγ , which is coherent by Proposition 8.4, we do not know how to identify 
this sheaf on Hilbn(C× × C). Indeed, a variant of this problem already appears in [33, 
Problem 5.5].

8.3. Beyond type A

For general G, both the computations of the cohomology of a˙ine Springer fibers 
and the sheaves on C̃G∨,g∨ are very complicated. It would be for example interesting 
to compute the sheaf one gets from the Bernstein-Kazhdan example of [48, Appendix]. 
Nevertheless, we have the following analogue of Proposition 8.11 for general G.

Theorem 8.12. Let G be arbitrary and γ equivalued of valuation k. Then we have the 
isomorphism of graded modules

Fγ =
∞ ⊕
j=0 

HT
∗ (Sptjγ) 


∞ ⊕
j=0 

⋂
α∈Φ+

〈1 − α∨, yα〉k+j

over the graded algebra 
⊕

0A(0)d 

⊕

ed
⋂

α∈Φ+〈1 − α∨, yα〉d. As a consequence, the 
corresponding sheaves over Proj

⊕
0A(0)d = C̃G∨ are isomorphic as well.

Proof. The proof is similar to Proposition 8.11. By the main result of [54] the isomor
phism holds for each j separately on the level of modules over 0A(0)0 ∼ = C[T ∗T∨]W . 
The comparison of the action of 0A(0)d follows from Theorem 3.8 and the con
structions in [54,27]. More precisely, the result in [54] identfies ΔjHT

∗ (Sptjγ) with ⋂
α∈Φ+〈1 − α∨, yα〉k+j inside C[T ∗T∨] ∼ = HT

∗ (GrT ) using GKM localization. The lat
ter has a multiplication structure which coincides with convolution on the Coulomb 
branch for T with zero matter. The fact that the convolution action for 0A(0)0 respects 
the localization is [27, Proposition 4.15.]. �

Let G be quasisimple of adjoint type. Respectively, let cox ∈ W be the Coxeter 
element of the Weyl group of G and n be the order of cox. For any m co-prime with 
n there is a regular semisimple element γm,n ∈ g(O) which is homogeneous: γm,n(λ ·
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t) = λm/n Adg(λ) γm,n(t), g(λ) ∈ G. The element γm.n is unique up to rescaling and 
conjugation, an explicit construction of γm,n can found for example in [77]. The element 
γm,n is equivalued of valuation m/n.

The stabilizer in GK⋊Gm is given by Lγm,n
= Gm, and it acts naturally on Spγm,n

. It 
is shown in [77] that dim SpGm

γm,n
= 0, the fixed points are isolated and that the localized 

homology HGm∗ (Spγm,n
)⊗C(ℏ) is generated by tautological classes H∗

Gm
(GrG) from the 

fundamental class [Spγm,n
]. We expect the generation statement in the non-equivariant 

setting:

Conjecture 8.13. Let G, Lie(g), γm,n ∈ g(O) are as above, then

H∗(Spγm,n
) = H∗(GrG) ∩ [Spγm,n

].

Note also that this ``Coxeter case'' gives the so called spherical simple modules of the 
trigonometric DAHA, as first observed in [90]. More generally, the slopes with so called 
regular elliptic denominators yield (spherical and other) finite-dimensional modules of 
the trigonometric DAHA [90,77]. Since γ elliptic implies tγ elliptic, one sees that the 
tensor products by the shift bimodules i−1Bi send finite-dimensional modules to finite
dimensional modules, which one could also deduce from the theory of shift functors for 
trigonometric DAHA like in [5]. As far as the authors are aware, this theory is still 
undeveloped (but see [57] for some progress), but would potentially give insight on the 
m = 1, n = h case of Proposition 8.10 for other groups.
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