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1. Introduction

Let k = k be an algebraically closed field of characteristic zero or large positive
characteristic. We fix a connected reductive group G/k and a maximal torus T C G. We
let Lie(G) =: g D t:= Lie(T), and denote by GV the Langlands dual group [68] over C
(or Q).

In this paper we explain how one can naturally associate to an affine Springer fiber
for G, or rather to a conjugacy class of the loop Lie algebra g((t)), a quasi-coherent sheaf
on a certain partial resolution of the commuting variety associated to GV x g¥. We prove
that the sheaves constructed this way are coherent in a number of cases and conjecture
they are coherent in general. The sheaf on the partial resolution remembers homological
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invariants of the affine Springer fiber, and we expect that our construction provides a
unified perspective on the affine Springer fibers and their various functorial properties.

1.1. Main results

Our first main character is a partial resolution of the trigonometric version of the

commuting variety for GV, which we denote by Cov = T*TV /W. Tt is in general a

singular Poisson variety which we conjecture to locally agree with those constructed in

[1,59,71]. The variety Egv is defined via its homogeneous coordinate ring defined below

in equation (3). For G = GL,,, we recover the Hilbert scheme of n points on C* x C [69].
X

oot Which lifts the torus action on

The variety €gv has a natural action of the torus C
T*TV /W dilating the cotangent fibers. A more detailed construction is given in Section 3.

Let Grg be the affine Grassmannian of G. On the level of k-points this is G(K)/G(O),
where O = k[t] and K = k((t)) = k[t][t"!]. Our second main character is the affine
Springer fiber Sp., C Grg, v € g(K), defined as the fixed locus of the vector field ~.
More precisely, let v € g(K) be a compact semisimple element. On the level of k-points

Sp, (k) := {9G(k[t])| Ad(g™")7 € Lie(G)(k[t])} C Gra (k).

Under these assumptions, Sp, is a nonempty ind-scheme over k. If v is also regular,
Sp, is finite-dimensional and locally of finite type over k [97, 2.5.2]. We will only be
interested in the étale or singular cohomologies of the Sp.,, so will be writing Sp,, for the
k-points Sp, (k). If k = C we will use the analytic topology and if k = I, we will use
the étale topology. Our main result is the following.

Theorem 1.1. Let vy € g(K) be a semisimple element and G-, = Cg(x)(v) its centralizer in
G(K). The group G~ admits a Néron model J.,/O. Then for every subgroup K., C J,(O),
there exists a quasi-coherent sheaf ]-'5” € QCohg  (€qv) such that:

(1) .7:5” =L® ]-'5” where L = O(1) is the Serre twisting sheaf coming from the Proj-

construction of €qv (3).
(2) There exists an integer M such that for m > M we have

H° (EGV , ]-"ffﬂy) — H (Spym.)

Moreover, the sheaf ]-'AI,(” is equivariant with respect to the action of CX, and the homo-
logical grading on the affine Springer fiber side can be recovered from this action.

We conjecture below that }'5 " is actually coherent (see Conjecture 1.7) and prove it
in some cases. For trivial subgroup K, we denote .7:5 " by F5.
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Remark 1.2. Note that the quasicoherent sheaf .7-'7K 7 only depends on the underlying
reduced structure of the ind-scheme Sp,,.

Remark 1.3. Here and in the rest of the paper, H.(—) denotes Borel-Moore homology,
defined as H,(X) := H *(X,wx). The Borel-Moore homology of an ind-variety X =
lim X; will be defined as H.(X) = lim H..(X;).

It is natural to wonder what kind of sheaves F,, Theorem 1.1 yields. For G = GL,,
and v homogeneous, we have the following.

Theorem 1.4 (Proposition 8.10). If G = GLy,, K, is trivial and ~ elliptic homogeneous
of slope % then F., agrees with the restriction of the line bundle O(k) to the punctual

Hilbert scheme at (1,0).

Theorem 1.5 (Proposition 8.11). For G = GL,, K, = T and v regular semisimple of
integral slope k, the sheaf }~$ agrees with P @ O(k), where P is the Procesi bundle
restricted to Hilb"(C* x C).

For the same v and K., trivial we get a sheaf F, =P ® O(k)/(y1,...,yn)P ® O(k)
where y; are interpreted as endomorphisms of P.

Remark 1.6. For arbitrary G and homogeneous +y of integral slope, we also get an explicit
description of the sheaf F.,, see Theorem 8.12.

We also prove a noncommutative version of the above results. The ring of functions
on Egv admits a deformation, or quantization known as the spherical trigonometric or
graded Cherednik algebra (or graded DAHA). By the work of Yun [95,96], this algebra
acts in homology of Sp,.

The sheaf £ = O(1) and its powers are quantized to bimodules between two trigono-
metric Cherednik algebras with different values of quantization parameters. These alge-
bras and modules are assembled to a large Z-algebra [9], and one of the main results of
the paper (Theorem 7.9) associates a graded module over this Z-algebra to a collection
of affine Springer fibers {SprptWSptgﬂY7 ...}. Roughly speaking, considering the bi-
modules between different algebras allows one to move between different affine Springer
fibers. For G = GL,, the Z-algebra is similar to the one considered by Gordon and
Stafford for rational Cherednik algebras of GL,, in [32,33].

The main tool we use is a novel construction of Z-algebras related to the Coulomb
branches of 3d N' = 4 theories. The study of the latter was mathematically initiated by
Braverman, Finkelberg, Nakajima [10,11] and further explored by for example Webster
[92]. The original Coulomb branch algebra from [10] associated to G and an algebraic
representation N € Rep(G) is defined as the convolution algebra in the equivariant Borel-
Moore homology of a certain “space of triples” Rg,n, which is modeled after the affine
Grassmannian of G. This construction admits a natural quantization by considering
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additional equivariant parameters, and one can study both commutative and quantized
versions.

In addition to the quantizations and the Z-algebras, there are several other general-
izations of the original construction, such as the line operators in [21] which for example
allow for different partial affine flag varieties. We use the machinery of Coulomb branches
to achieve the following goals:

e We realize the full graded DAHA as the Iwahori version of the Coulomb branch
algebra associated to the adjoint representation and construct its Dunkl-Cherednik
embedding to A-difference operators on the Lie algebra of the torus 7V (Theorem 6.1).

o We give explicit formulas for the Coulomb branch Z-algebra in difference presentation
(Theorem 6.8, Proposition 6.10).

o We prove the shift isomorphisms for the spherical /anti-spherical subalgebras of the
graded DAHA, in the difference-operator representation (Theorem 4.12). This allows
us to define the shift bimodules and Z-algebras associated to graded DAHA for
arbitrary G.

e In the commutative version, the Coulomb branch Z-algebra is equivalent to a graded
algebra which we identify explicitly (Theorem 3.8). This allows us to define Cov
using the Proj construction.

e Finally, we prove that a collection of affine Springer fibers {SprpththW“'}
yields a module over the Coulomb branch Z-algebra (Corollary 7.11). This is done
using a variant of the Springer theory developed by Hilburn, Kamnitzer and Weekes
[43], and Garner and the second author [27].

We give a more detailed outline of the results and arguments in Section 1.5. We also
comment on various conjectures and connections to physics of “3d Mirror Symmetry”
and link homology (for G = GL,,).

Of course, the technology of Coulomb branches as introduced in [10] works in far
greater generality than the “adjoint matter” case studied in this paper. In Sections 5
and 7 we give definitions for the general case but focus our study on the (G, Ad)-variant.
Following these definitions, the associated Z-algebras and their geometrically defined
modules could be studied in much larger generality but as far as the authors are aware,
this remains a fairly unexplored direction.

1.2. 8d Mirror symmetry

Our main construction can be thought of as a part of the 3d mirror symmetry for
topological twists of 3d A/ = 4 gauge theories [46]. The 3d mirror symmetry exchanges
the algebras of local operators on a resolved Higgs branch and on a resolved Coulomb
branch. In particular, it is known that the Coulomb branch of the B-twist of the (G, Ad)-
theory is a partial resolution of T*TV/W. In physics terms, our construction starts
with a “boundary condition” for the category of line operators in the A-twist of the
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(G, Ad)-theory, thought of as a degenerate line operator (skyscraper sheaf on the stack of
conjugacy classes in the loop Lie algebra) and produces another degenerate line operator
in the B-twist of the dual theory (a (quasi-)coherent sheaf on a resolution of the Higgs
branch).

More precisely, according to [21, Eq. (1.4)], the categories of line operators in the two
twists are given by

Ca = D-modgx) (Ad(K)), Ci = QCoh(Maps(Si, Ad /G))

and by the subsequent discussion in [21] Cp can be replaced by QCoh(M ), where Mg
is a resolution of the Higgs branch.

Our construction is far from giving any sort of categorical equivalence between C 4,Cp,
as even defining the categories involved is a delicate matter. However, supposing this done
and writing d, € C4 for v € g(K) for the skyscraper sheaf on the conjugacy class of
as before, our construction gives an explicit “mirror map” sending 6., — F.,, where F,
is as in Theorem 1.1. Doing this for some other line operators, such as the bimodules in
Section 6, is also possible but we don’t know how to make the construction functorial.

We hope this construction gives a starting point for rigorous constructions of 3d mirror
symmetry for line operators. The fact that these categories have putative definitions in
terms of vertex operator algebras [19] is an interesting topic for further investigations.

1.8. Conjectures

The main construction in Theorem 1.1 produces a C*-equivariant quasi-coherent
sheaf

F, € QCohcx (€av)

for v € g(K) (and trivial subgroup K.). Quasi-coherence of the sheaf follows directly
from our construction, but we suspect that a stronger statement is in fact true:

Conjecture 1.7. For any regular semisimple v € g(K) the sheaf F, is coherent:
F., € Cohgx (€gv).

Remark 1.8. Under the natural projection EGV — T*TY /W, the sheaf F., pushes for-
ward to a certain sheaf on 7*TV/W which we describe in detail in Section 2.4. In
Lemma 2.13 we show that its reduced support is contained in the Lagrangian subvariety
{0} xTV/W CT*TV /W.

Similarly, we expect F, to be supported on a certain Lagrangian subvariety of Egv
of dimension r = rank(g).



E. Gorsky et al. / Advances in Mathematics 464 (2025) 110143 7

The coherence conjecture already has interesting numerical corollaries. It is known
that H.(Sp,) is finite-dimensional if v is elliptic and G is simply connected. Thus the
conjecture above implies an estimate on the growth of the dimensions of these cohomol-
ogy spaces, as we multiply v by ¢™.

Conjecture 1.9. For any elliptic reqular semisimple v € g(K) with G being simple and
simply connected there exist ¢; € Q and M € Z such that

dim(H, (Spym.,)) = Zcimi, m > M, r=rank(g).
=0

In the case of homogeneous elliptic v it was shown in [90] that the conjecture is
true, the left-hand side being given by variants of rational Coxeter-Catalan numbers, in
particular the ¢; can be explicitly computed.! Many low-rank examples are treated in a
lot of detail in [77]. For G = GL,, and v of slope 22+ the corresponding sheaf F., is

n

described in Theorem 1.4 above. More complicated non-homogeneous elliptic cases for
G = SL,, were studied in [39,55,80].

In a different direction, we can consider the case of unramified v introduced in [31]. The
second author has computed in [54] the equivariant cohomology of the affine Springer
fibers in the unramified case and related them to the Procesi bundle on the Hilbert
scheme of points.

More precisely, when + is equivalued of valuation k € Z>q, we describe explicitly the
graded module corresponding to F, for all G in Theorem 8.12. For such v and G = GL,,
the sheaf ¥, is indeed coherent and described by Theorem 1.5 above.

After the first version of this paper appeared on arXiv, Turner proved in [88, Theorem
1.9] that for G = GL3 and an arbitrary unramified  the sheaf F., is coherent (and, in
fact, the sheaf ]-",? is coherent). See [88] for more details and an explicit conjectural
description of the corresponding graded module for G = GL,, and unramified ~.

1.4. Relation to conjectures stemming from knot theory

The case of G = GL,,, SL,, is of special interest because of the applications to knot
theory [37,35,36,45,76,75,73]. In particular, the characteristic polynomial of a compact
regular element v € gl,,(K) defines a germ of a planar curve singularity and the link of this
singularity is the closure of the braid (conjugacy class) 8(v) € Br,. When G = SL,, and
~v is elliptic, B(7) closes to a knot and the conjecture [75, Conjecture 2 and Proposition
4] predicts an isomorphism between the (reduced) triply graded Khovanov-Rozansky
homology of () and the cohomology of the affine Springer fiber H *(Spv) enhanced
with the perverse filtration [66,65,67]. Notice that these papers use cohomology whereas

1 For SA[J)t".AY i.e. the version in affine flags, the result is easier to state and simply says ¢; = 0, ¢ < r for
the homogeneous elliptic cases.
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the present work uses BM homology, but this distinction is immaterial for numerical
comparisons of multiply graded finite dimensional vector spaces with characteristic zero
coefficients.

In this paper, we enrich the algebro-geometric side of the above conjectures by con-
sidering an infinite family of affine Springer fibers {Spw, SPtys SPr2s - - .}. Tt is easy to see
that multiplication of v by ™ corresponds to the multiplication of the braid S(v) by
FT™, the m-th power of the full twist braid FT. Since FT is central in the braid group,
the conjugacy class of B() - FT™ is determined by the conjugacy class of 3(7).

Khovanov and Rozansky defined in [50-52] the triply graded link homology HHH(3)
for an arbitrary braid 8 and proved that it is a topological invariant of the link obtained
by the closure of 8. The three gradings on HHH(f) are usually referred to as a, gq,t. By
construction of triply graded homology HHH(—), there are natural grading-preserving
multiplication maps

HHH(3(v)) ® HHH(FT™) — HHH(S(v) - FT™) ~ HHH(B(t™7)),

HHH(FT™) @ HHH(FT™ ) — HHH(FT™™), (1)

and hence @, HHH(S(t™~)) has a structure of a graded module over the graded algebra
@,, HHH(FT™). The latter graded algebra, as conjectured in [35] and proved in [36], is
closely related to the homogeneous coordinate ring of Hilb™(C?2), and to the Z-algebras
appearing in this paper. In other words, in this paper we establish a precise analogue of
multiplication maps (1) on the affine Springer side by means of geometric representation
theory.

In a series of papers [73,74] the third named author and Rozansky took a different
approach to knot invariants and defined a C* x C*-equivariant complex of coherent
sheaves

Gs € DY . cx (Coh(Hilb, (C?)))

such that the hypercohomology H*(Hilb, (C?),Gg) is isomorphic as a bigraded vector
space to the “lowest row” HHH*=" (8) of the triply-graded homology. The action of C* x
C* corresponds to (after an appropriate normalization) the (g, t)-grading on HHH“ZO(B).

To connect these constructions with the present one, note that the natural inclusion
map icx : C* x C — C2, icx(z,y) = (r — 1,y) induces an inclusion icx : Hilb™(C* x
C) — Hilb™(C?) which identifies the punctual Hilbert schemes at (1,0) and (0,0).

Conjecture 1.10. For any regular semisimple v € gl [t] there is an isomorphism of C* -
equivariant sheaves

fvﬁiéx(gﬂ)a ﬁ:ﬁ(’y)
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Let us point out that the results of Maulik [64], the aforementioned [65-67], and the
results of the third author with Rozansky in [74] can be combined to show that for
elliptic ~, the conjecture is true on the level of Euler characteristics:

X(Sp,) = xcx (icx (Fp)),  B=PB(7),

for v € sl,[t] elliptic regular semisimple.
In particular, we derive an Euler characteristics version of the weak coherence Con-
jecture 1.9:

Proposition 1.11. For any elliptic regular semisimple v € sl,[t] there are ¢; € Q and
M € Z such that

X(Spym-) Z cm’, > M.

Remark 1.12. In fact, the above Proposition also follows from Definition 5.13. and Eq.
(6.7) in [55] for G = SL,,. Under the purity hypothesis, the stronger Conjecture 1.9 would
also follow in this case from the same results.

Conjecture 1.10 implies for example that the coefficients of the HOMFLYPT polyno-
mial of the closure of 8(v)-FT™ are polynomials of m. This property of the HOMFLYPT
polynomial could be derived, for example, from the results of [73,74] and equivariant
Riemann-Roch formula.

Finally, note that Maulik’s result in [64] actually keeps track of the Euler characteris-
tics of the Hilbert schemes of points on the germ defined by v and hence the perverse fil-
tration [65,66]. For elliptic v we may also conjecture that there exists a Springer-theoretic
construction of a sheaf gr” F, € Cohcx xcx (Hilb™(C?)) which C* x C*-equivariantly
agrees with F3. For partial results in this direction, see [55, Section 9].

1.5. Outline

1.5.1. Outline of the argument

The key ingredients of the construction are 1) the technology developed by Braver-
man, Finkelberg and Nakajima [10-12] on the affine Springer side (Topology) and 2)
noncommutative geometry methods akin to the work by [32] on the Hilbert scheme side
(Algebraic Geometry). The theory of the 3) Double affine Hecke algebras (Algebra) links
these two theories together. Our work provides a dictionary between objects in the three
theories. A part of this dictionary is as follows?:

2 For simplicity of introduction we discuss the type A case, for other types see section 8.
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Topology Algebra Algebraic Geometry

Ay = HEOC (R eHepinne C[T*TV /W]

i—1Ai = H*Q(O)NCX (i—1Ri)|i—1Bi = e_Heyinne [O(1)

A= HPYCU (R Hesinn HO (177 /W, P)

ity = HPC ((LRe) [ o (TWWJD ® 0(1))
HE™ (Spassr) Hesknn o Larer (C)|Or-11 0 ()

In the Algebra column of the table we have the algebraic objects related to the represen-
tation theory of the graded double affine Hecke algebra H. ; defined in Definition 4.1.
This algebra is also known under the names trigonometric or degenerate DAHA. The
algebra H, j, contains the finite Weyl group W and e,e_ € W are the projectors for the
trivial and sign representations. We define an explicit representation of these algebras
using difference operators and use it to prove the following:

Theorem 1.13. (Theorem /.12) The spherical subalgebra el re is isomorphic to the
anti-spherical subalgebra e _H._p re_ with shifted parameter.

Similar shift isomorphisms are well known in the theory of rational Cherednik algebras
and for the Dunkl differential-difference representation [5,44,79], but it appears to be new
for the difference representation of trigonometric DAHA. See also [57] for similar results.

Thus e_H.4 5 re naturally has left e (;—1)n,rne and right eHy;n ne actions and we
set:

iBi = elcyinne, Biy1 =e Hepinne, iBjy1=iB;®;8, ijBji1-

Here ;B; are algebras, ;B; are bimodules over ;B; and ;B; for all 7 < j, and we get
well-defined multiplication maps

z’Bj®jBk — B, 1< j < k.
iBij

The direct sum Be = ®i§j iB; is an example of a Z-algebra, introduced by Pol-
ishchuk and Bondal [9] and studied in a setting relevant to us by Gordon and Stafford
[32,33,81].

We now explain how the above mentioned structures exist in the affine Springer theory,
which corresponds to the Topology column. The key geometric object is an ind-scheme
iﬁj, a variant of “the space of triples R” central to the work of Braverman, Finkelberg
and Nakajima [10-12] on Coulomb branches:

iRi = {(g,v) € G(K) x t' Lie(I)|g - v € #/ Lie(I)} /1,

where I is the Iwahori subgroup (see Section 2.1). On the level of sets, the quotient
space I\gRo is in bijection with the quotient St/G(K) of the affine Steinberg space



E. Gorsky et al. / Advances in Mathematics 464 (2025) 110143 11

St = {(b1,g,b) € Flg xg(K) x Flg |g € by Nby}, as also explained in the introduction to
[11]. There is an action of C;; x CJ; on St where CJ; acts by dilating the g(K) factor
and C.; acts by loop rotation. We denote

I=IxCJ, GO)=G(0)x Tl GK)=G(K)xCL. 2)

It was explained by Varagnolo and Vasserot [89] that under a certain specialization
of parameters, equivariant homology group of the affine Steinberg variety can be defined
as

HS(K) xClos (’S\i) — H}(xcxﬁt (075'0)

and the latter is isomorphic to H.; under a specialization of parameters. Here the
parameter ¢ depends on our choice of the equivariant structure with respect to the loop
rotation group C5,. Their work however uses localization techniques which we are able to
avoid, thereby providing an isomorphism over the full parameter space, see Theorem 6.1.

Similarly, one can define the affine Grassmannian version ;R; of the above spaces.
Since the fibers of the projection ﬂ%j — ;R; are classical Springer fibers, we have a
geometric model for the spherical algebra (see Corollary 6.3)

(CX
el e = O e (0Ro)-
Thus, it is natural to define
G(O)xCJ,
A = H (Ri),  oAe=EDiA;.

1<j
As explained in [12,21,92], there is a natural associative convolution product

H*Gﬁ)lxcx G(O)xCX G(O)X T

rot (ZRJ) ® H*_ rot (ij) *> H‘))< rot (le)'
By associativity the convolution descends to give bilinear product maps

i.Aj ®j~f4k — i-Ak-
iAj

One of our main results partially identifies the Coulomb branch Z-algebra o.4, in terms
of the algebraic Z-algebra ¢B,.

Theorem 1.14. The Coulomb branch Z-algebra o As satisfies the following properties:

(a) For alli the algebras ; A; and ;B; are isomorphic.
(b) For all i the bimodules ;A;11 and ;Bi11 are isomorphic.
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(c) For G = GL,, the bimodules ; A; and ;B; are isomorphic for all i < j. Moreover,

the Z-algebras ¢ Ae and ¢Be are isomorphic.

(d) The homological grading on ; A; = HS(O)MCM (iR;) corresponds to the grading on

Bj induced by the grading on H. r (see Section /).

We prove part (a) as Theorem 6.1, part (b) as Theorem 6.5 and part (¢) as Theo-
rem 6.26. In Proposition 6.10 we also provide an explicit basis for the associated graded
of 4 As with respect to Bruhat filtration in all types, see in particular Theorem 6.8 for
G = GL,.

The main difficulty in proving part (c) is that 4B, is generated by the “degree one
bimodules” ;58,11 by definition, while this is not clear at all for 4.4,. For G = GL,,, we
resolve this difficulty by a careful combinatorial analysis of the basis in Theorem 6.8, and
using deep results of Gordon and Stafford on Z-algebras for rational Cherednik algebras
[32,33].

Next, we turn to the Algebraic Geometry column of the table. In the commutative
limit ¢ = h = 0 the Z-algebra ,.A4"=° becomes a graded commutative algebra, as Z—A?ZO
only depends on the difference d = j — i. For d = 0 the algebra oAg:O can be identified
with the algebra of symmetric polynomials on T*TV, or, equivalently, the algebra of
functions on T*TV /W. For d = 1 the module g A7=% can be identified with the space of
antisymmetric polynomials on T*T" (see Theorem 3.6 for both d = 0 and d = 1 cases).
Our next main result identifies this graded algebra explicitly.

Theorem 1.15. (Theorem 3.8) Let € be the sign representation of W and eq be the idem-
potent in C[W] corresponding to €®¢. We have

OAZZO >~ €q m <1 - avvya>d

aedt

where in the right hand side we have an intersection of ideals in C[T*T"V]. Here we regard
1—aV as functions on TV and y. as coordinates in the cotangent fiber corresponding to
the positive roots a € ®*. The isomorphism agrees with the convolution structure on the
left hand side and the multiplication on the right hand side.

The homological grading on OAZL:O corresponds to the natural grading on C[T*TV]
given by dilation of the cotangent fiber (so that 1 — oY have degree 0 and y,, have degree

~1).

We can then define an algebraic variety

Egv = PI‘Oj @ QAZZO (3)

d=0
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which is a partial resolution of Spec(.A8=0 = T*TV /W. In other words, we identify the
graded algebra @@, 0A2=0 with the homogeneous graded ring of €4v. The homological
grading on ¢.A"=0 described in Theorem 1.15 corresponds to the CX, action on €gv.

Remark 1.16. The algebra described in Theorem 1.15 is (up to a projection by e;) an
example of the so-called symbolic Rees algebra for the ideal

n <1 - av’ya> - (C[T*Tv}

aedt

It is in general a complicated question whether a symbolic Rees algebra is finitely gen-
erated (e.g. [20]). However, [11, Theorem 3.18] ensures that €gv can be realized as a
Hamiltonian reduction of a larger Coulomb branch with flavor symmetry by a certain
torus action. This implies that @Zio OAZ:O is a finitely generated algebra, and égv is
a quasi-projective variety.

By the work of Haiman [41], for G = GL,, this implies the following:

Proposition 1.17. For G = GL,,, we get
Proj @ A~ = Hilb"(C* x C),
d=0

in particular, it is a smooth resolution of T*TV /W ~ (C* x C)"/S,,.

Remark 1.18. A different proof of Theorem 1.17 essentially follows from [12, Theorem
3.10], which identifies a resolution of the Coulomb branch for (GL,, gl,,®C™), constructed
using flavor symmetry, with Hilb™(C?2). The same proof in [12] applied to (GLy, gl,,)
yields Theorem 1.17.

Another proof can be extracted from more general results of Nakajima and Takayama
[70,86] which identify the resolved Coulomb branches of quiver gauge theories of affine
type A with certain Cherkis bow varieties [18], and certain moduli spaces of parabolic
sheaves on P! x PL. See, in particular, [12, Theorem 4.9] for more context and details.

Next, we study graded modules over all of the above Z-algebras and graded algebras.
The convolution structure of spaces iﬁj allows us to define a correspondence between
the affine Springer fibers in the affine flag variety é\I;ti,Y, é\I;tj,Y C G(K)/I1. Similarly, we
prove in Theorem 7.9 that €, H.(Spys,) is a module over Z-algebra ¢A,. This is very
similar to the BFN Springer theory developed in [43,27]. In the commutative variant, we
obtain a graded module over the graded algebra, and hence a quasi-coherent sheaf over
its Proj construction defined by (3), which proves Theorem 1.1.

Finally, we outline a simple construction of the above action. Recall that the homology
of the affine Grassmanian version of the Springer fibers Sp,;, C G(K)/G(O) can be
described in terms of the action of the finite Weyl group:
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H.(SPys,) = He(SPy-)" Hi(Spy-1,) = Hu(Spyy)[-2dimG/Bl. (4

where € is the sign representation of W and [—2dim G/B] denotes shift in homological
degree. We explain the details of the isomorphisms in the Lemma 2.2. Given a class in
H.(Spyi-1,), we can identify it with a class in H.(Sp;;,)¢, then act by an antisymmetric
polynomial (using the commutative version of the double affine action of [95]) and get a
class in H.,(Sp;;,)" = H.(Sp,;.,). This construction gives a map

AG 02y H*(Sptjflfy) — H*(Sptjfy) (5)

where Ag = ¢ A"=0 is the space of antisymmetric polynomials.
It is unclear if this approach can be used to define the action of the full graded algebra
D, 0AR=0 the main obstacles are:

« It is unclear how to verify the relations between the products of elements of o A»=°
inside oAZZO

e For G # GL,, it is unclear if the algebra is generated in degree 1.

To avoid these obstacles, we have abandoned this approach altogether and instead used
the machinery of Coulomb branches throughout the paper. Nevertheless, a posteriori we
conclude that the action of the degree 1 part of the algebra agrees with (5), and hence
all necessary relations are satisfied.

1.5.2. Outline of the paper

In Section 2 we define the affine Springer fibers and some background material. The
sheaves we construct live on a partial resolution of T*T" /W, which is introduced in
Section 3. In Section 4, we study the trigonometric Cherednik algebra and a natural Z-
algebra built out of it, which is the algebraic main part of the construction. In Sections 5,
6 and 7 we study the affine Springer fibers using Coulomb branch algebra machinery,
in particular constructing a geometric Z-algebra action and comparing it to the one in
Section 4. In Section 8 we prove that the sheaves we construct are coherent whenever ~
is homogeneous. In Section 8.2, we study some homogeneous examples in detail.
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2. Affine Springer fibers
2.1. Definitions

Let G/k be a reductive group over a field k. We assume k = k and that the char-
acteristic is zero or large enough (no attempt will be made to give bounds). Fix some
pinning T' C B C G of the root system of G. Define N = dim(G/B). Let K = k((t))
and O = k[t]. Write G((t) = G(K) and G[t] = G(O). Denote also g = Lie(G) and
() = 8(K), g[t] = 9(0).

Let P be a standard parahoric subgroup of G(K), i.e. the pullback of a standard
parabolic subgroup P C G(k) under the evaluation at zero map evy : G(O) — G(k).
Let FIf, = G(K)/P be the corresponding partial affine flag variety. When P = T is
the Iwahori subgroup of G(K) corresponding to P = B, we simply write Flg := FI!
for the affine flag variety and when P = G(O) we write Grg := FI®© for the affine
Grassmannian. Since it will usually be clear from the context, we will also omit the
subscript G.

For any P and v € g(K), define the affine Springer fiber

Spt = {gP| Ad(g~")y € Lie(P)} C FI”.

When P = G(O) we omit the superscript and when P = I we write S‘f)V = Spfy.

The space Sps is a sub-ind-scheme of FIF. It is always nonreduced, but since it
makes no difference to us, we will only work with the reduced structure of SpﬂyP (see
[97, Sections 2.2.9 and 2.5.1] for more details). Sp}: is locally finite-dimensional if and
only if «y is regular semisimple [48]. We shall mostly focus on the case when ~ is regular
semisimple from now on. We also assume ~ is compact, i.e. contained in some Iwahori
subgroup, or equivalently that the affine Springer fiber is nonempty. The ind-scheme Sp,,
is locally of finite type, and by results of [48] there exists a free abelian group L, acting
on Spf freely and a projective scheme S C Sps such that L, -S = Sps. The free abelian
group L can be identified with the cocharacter lattice of the centralizer G, := Cgx)(7)
of v:

In particular, L is trivial if and only if v is elliptic. In this case, Spf is a projective
variety.

Remark 2.1. By the Jordan decomposition, we can write any v as the sum of commuting
semisimple and nilpotent elements: v = 75 + ,. Therefore, we can reduce the study of
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general 7y to nilpotent and semisimple v, as Sp., = Sp., NSp,, . While it is also interesting
to study non-regular semisimple elements, much about this case can in principle be
extracted from the regular semisimple case by the fact that the centralizer of a semisimple
element is a reductive group over K. In the present work, we are mostly concerned with
Hf{”(Spﬂ/) for K., C J,(0O), i.e. a subgroup of the O-points of a smooth integral model
of the centralizer of v* defined in Section 2.5.

However, the nilpotent elements seem more mysterious from our point of view. It is
clear e.g. by the convergence of the corresponding orbital integrals that the centralizers of
nilpotent elements are quite large. In the case where + is nilpotent, it is not even known
if there is a Levi factor of the centralizer. It does make sense to ignore the centralizer (or
at most use some compact subgroups thereof) and use finite-dimensional approximation
to study the Borel-Moore homology of Sp,, even in the nilpotent cases, as is done e.g. by
Sommers in [84].

2.2. The Springer action

Assume for now that k = C or that we are using étale cohomology over Q, for
¢ # char(k). One of the remarkable things about gf),y is that H*(gf),y) has an action of
the extended affine Weyl group W = W x X, (T') as shown by Lusztig [63] (for G adjoint)
and Yun [95] (in general), analogously to the Weyl group action in the cohomology of
classical Springer fibers.

Lemma 2.2. Let v € g(K) be an element such that v = tyo for a regular semisimple
compact element v € g(K). Then under the Springer action of W C W on H.(Sp.,), we
have a natural identification

and an isomorphism

Here [-2N] means a shift in homological degree and N = dim G/B, and e denotes the
sign representation of W.

Proof. The first part is due to [96, Section 2.6], and the second part is well-known but
not found in the literature, so we give a proof here.

First recall the construction of the Springer action for the subgroup W C W.Since I C
G[t], we have natural projections F1 — Gr and é\l/),y — Sp,,. For any P, write P = P /tP
and p for its Lie algebra. There are natural maps of fpqc sheaves Spf — [p/P], which

3 This is to ensure that the K -action on SpAY factors through a finite-dimensional quotient and the
equivariant BM homology can be defined. The assumption on K, can possibly be weakened.
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send the cosets gP to the respective images of g~1vg under the projections Lie(P) — p.
In particular there is a cartesian diagram

Sp, —* [§/G] = [b/B]

~

where the right-hand side is naturally identified with the Grothendieck-Springer res-

olution for G. Since v = tvg, it is clear that the image of ¢ will be contained in
[W/G] C [g/G] and the image of ¢’ will be contained in [N /G]. The restriction
S := 7w,C|n is perverse, and is called the Springer sheaf. It is in fact isomorphic to

a direct sum of IC complexes on nilpotent orbits, and it is known by classical Springer
theory that

EndPerVG (N) (S) =C [W] :
In particular, there is a map
C [W] — Endperv(sp’y) (CP*S)

and hence an action of W on H, (é?)v) Decomposing the regular representation of W, we
see that there is some IC complex F on [N /G| corresponding to the sign representation
€. From classical Springer theory it follows that this complex is isomorphic as a perverse
sheaf to the shifted skyscraper sheaf Cqy[—2N].

By proper base change,

H*(§f),y)6 = Hom(p*F, m,.C) = Hom(¢*F, ©*S).
Now note that
©~1(0) = {9G(0) € Sp,|g~ "9 = 0 (mod t)} = Sp,,,.
This is a closed subspace, so ¢*F is isomorphic to the (shifted) extension by zero of the

constant sheaf on Sp, . In particular, RT'(¢*F) = H.(Sp,, ). On the other hand, by the
adjunction

Hom(p* F, ¢*S) = Hom(F, p.*S)

it is clear that Hom(p*F,p*S) = RI(¢*Cyoy)[-2N]. Thus H*(é\f),y)6 =
H.(Sp,,)[-2N]. O
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We can rephrase Lemma 2.2 as follows. We have the Leray filtration on the Borel-
Moore homology of Sp,, such that

gt* H,(Sp,) = €P Hi(Sp,, Ri7.C), 0<j <2N. (9)
i+j=k

Corollary 2.3. a) The W -invariant part of the homology of S?)7 is canonically isomorphic
to the j = 0 part of (9):

Hy(Sp,)" = Hi(Sp,, R°7.C) = Hx(Sp,, C).

b) The associated graded of the W -antiinvariant part is isomorphic to the j = 2N

part of (9). In other words, the restriction of the obvious map
H/c(é?)y)6 — Hy_on(Sp,, R*"7,.C) = Hy_5n(Sp,,)
is an isomorphism.

Remark 2.4. The result is also true in cohomology, cohomology with compact supports
and BM homology (where we replace the constant sheaf by ws, ) by identical reasoning.
Yy

Remark 2.5. The centralizer G, = Cg(x)(7) acts naturally on §f)7, inducing an action
of the component group in cohomology. In particular, we have the Springer action for
equivariant versions of any of the above theories, as well as a commuting action of the
component group of the centralizer.

2.8. Extended symmetry

In addition to the action of W on H. * (%7) there is a degenerate action of the character
lattice X*(T') on H*(§f)ﬂ{) defined as follows. There is a natural map I — T realizing T'
as the reductive quotient of I. In particular, each character x : T — G,, gives a map
I — G,, and in particular a G,,-torsor £(x) on Fl. As a line bundle, we can write this
as

G xPX A — FI.
Cap product with ¢;(L(x)) defines an action of X*(T') ®z C on H, (§f)7)

Theorem 2.6. Let X.(T) C W be the translation part of the extended affine Weyl group.
Then the Springer action of X.(T) and the action of X*(T') defined above commute.

Proof. This is proved in [95, Corollary 6.1.7]. O
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Remark 2.7. Note that this is not true in equivariant Borel-Moore homology when we
take into account the loop rotation action of GI°t, as one gets essentially the relations
in the degenerate DAHA from Definition 4.1.

Note that the action of X, (T') gives rise to an action of C[TV] and the action of
X*(T) ®z C gives rise to an action of C[t] on H.(Sp,). We can thus summarize the
above results in the following

Proposition 2.8. The non-equivariant Borel-Moore homology H*(é?)v) is a (right) module
over C[T*TV] x W.

Proposition 2.9. The non-equivariant Borel-Moore homology H*(Sp,y) is a module over
C[r*TV|V.

Proof. By Lemma 2.2 we have H.(Sp,) = H*(é\};,y)w, and by Proposition 2.8 H, (é\}/),y)
has an action of C[T*TV]. By symmetrizing, we get the action of C[T*TV]" on
H.(Sp,). O

We record the following lemma here.

Lemma 2.10. The action of X*(T)®zC on H*(gf)v) from Section 2.3 decreases the Leray
filtration (9) by two.

Proof. This follows from the fact that the action comes from cap product with Chern
classes of the line bundles L(x) constructed in the beginning of this section. O

Let A be the top-dimensional class in H?>(G/B). By the isomorphism H*(G/B) =
C[tlw, we can identify A with an antisymmetric polynomial in C[t], namely A =

[loco+ Ya- Moreover, note that we may write antisymmetric polynomials as C[t]° =
A-CHW.

Lemma 2.11. We have that
i (Hy—2n(Spy-1)) = A - Hi(Sp,)".
where i : Spy-1, — Sp,, is the natural inclusion.
Proof. By Lemma 2.10 the operator A preserves the decomposition (9) and decreases
the j-grading by 2N. Since j < 2N, the action of A kills all the summands in (9) with

J < 2N, so that

A - Hy,(Sp,)¢ = A - Hy_on(Sp.,, RN 7.C).
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At p € Sp,, where 7~ 1(p) is a proper subset in the flag variety, R*N7,.C|, = 0. On the
other hand, 7~ !(p) is the full flag variety if and only if p € i(Sp;-1,) and in this case
A:R*PNp,.C = R7,C is the isomorphism. Therefore

A Hy_an(Sp., R*N7,C) = i, (Hy—2n(Spy-1,)). O
2.4. The lattice action

Let v be compact and regular semisimple, and let G, be the stabilizer of v in G(K)
as before. Obviously, G, acts on Sp.,, giving an action of the component group (G- )
in the homology of Sp,,. Since the action in this case is proper [48], we also get an action
in the Borel-Moore homology H.(Sp,).

The W-invariant translation part of the stabilizer action restricts to an action of the
“spherical part” C[X,(T)]" on H, (é\f)ﬂ/) This action commutes with the Springer action,
and the local main theorem of [96] identifies the spherical part of the Springer action
with the spherical part of the lattice action. More precisely, we recall the construction
[96, Section 2.7-2.8] of a canonical homomorphism C [ X, (T)]" — C[mo(G-)].

Define ¢ = g/G = t/W, and let a(y) be the image of v under the projection g(K) —
¢(K). Then we can consider the commutative diagram

Specag — SpecOk,q —> ¢

Ll

SpecOx —— ¢

where the right square is Cartesian by definition. The ring 5;; is a normalization of
Ok,q- Choose a component Y C Spec Ok, and let Wy C W be the stabilizer of Y. By
[72, Prop. 3.9.2], the choice of Y allows one to define a surjection

X.(T) = Xo(Dhwy — m0(Gy).
Furthermore, the corresponding group algebra homomorphism (restricted to C [ X, (T)]")
CIX (D)W — Clro(G)] (10)

does not depend on the choice of Y.

Theorem 2.12. [96] The spherical part of the Springer action of C[X.(T)]" on H., (é?),y)
factors through the canonical homomorphism (10).

By Propositions 2.8 and 2.9, the (BM) homology of Sp,, and the homology of é?)w

are modules over C[T*TV]" and hence define quasicoherent sheaves F!, and .7-:4 on
(T*TV)/W.
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Lemma 2.13. These quasicoherent sheaves are actually coherent, and their (reduced) sup-
port is contained in the Lagrangian subvariety {0} x TV /W C T*TV /W . Moreover, the
dimension of their support equals the rank of the centralizer G..

Proof. By Kazhdan-Lusztig [48] the homology of Sp., is finitely generated over 70(G~)
and mo(G) acts freely on the components of Sp., which all have the same dimension. By
Theorem 2.12 we conclude that the homology of Sp, is finitely generated over c[rvwv
and hence the corresponding sheaf F! on T*T" /W is coherent. Similarly JTZ’Y is coherent
as well.

By Lemma 2.2 we have H.(Sp,) ~ H*(gf)y)w. It is clear from Lemma 2.10 that the
action of C[t] on H*(/S\I‘/)'y) is nilpotent, and symmetric functions in C [}V act on H, (§f)7)
by 0, as they do in H,.(G/B). Therefore .7-"4,]?,’y are supported on {0} x TV /W.

Furthermore, the surjection (10) defines a subvariety

Spec C[mo(G-)] € Spec C[X.(T)|W =TV /W

and Theorem 2.12 implies that ]:;,.7?; are supported on {0} x Spec C[mo(G~)]. This
proves the last statement. O

2.5. Equivariant versions, endoscopy

We can in fact upgrade this construction with the addition of equivariance to the
picture. The centralizer G,/K has a smooth integral model J, over O, see e.g. [72].
As shown in [72], the stabilizer action on §f),¥ factors through the local Picard group
P, = G,(K)/Jy(O) whose underlying reduced scheme is finite-dimensional and locally
of finite type. Consider the connected component of the identity PS of this group scheme.
This is a linear algebraic group over C whose maximal reductive quotient contains a split
maximal torus of rank equal to rank(X*(G,)). Call this torus T’,. It also acts on Sp.,
and we may take the equivariant BM homology as in [54, Section 3]. The constructions
of the Springer action etc. from the previous section go through T’ -equivariantly. For
simplicity, assume 7%, < T'. Then we have:

Proposition 2.14. The equivariant BM homology H*T” (Spﬂ/) is a quasi-coherent sheaf on
T*TV/W. Its reduced support has dimension < 2rk(T.,). In particular, if v is elliptic,
the support is of dimension 2rk(Z(Q)), twice the split rank of the center of the group G.

Proof. The proof is similar to the proof of Lemma 2.13. The equivariant cohomology of a
point H7, (pt) acts on HD (Sp,,) via the equivariant Chern classes ¢1(L£(x)) from before,
giving that the support is contained in t, x TV /W. Results of Yun [96, Lemma 5.14]
then imply that the spherical part of the Springer action in the equivariant homology
HD (Sp,,) factors through C[mo(P,)] just as in Theorem 2.12. By [72, 3.9.], the group
mo(Py) is free abelian of rank rk(G,), giving the desired dimension bound. When ~ is
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elliptic, G has the same rank as the center and the lattice action is given by moving
between different connected components, in particular it is free. This gives equality in
the elliptic case. O

Remark 2.15. For elements in a split torus 1" = T, for which we have equivariant formal-
ity of the HZ.(pt)-action (studied e.g. in Section 8), the proof shows that the support is
all of T*TV /W.

If G # GL,,, we note that in the determination of the above support we run into issues
of endoscopy. For example for G = SL,, the center u, will be contained in T’, for any
~v. For example for elliptic 7, we might get support at n points in T*TV /W. Let us now
illustrate how this plays out in the case of general G and + elliptic, following [72].

Recall from [72, Sections 4 and 6] that we may decompose

weEmo(Py)Y

for the local Picard group. As shown in [96, Section 2.7.], the mo(G,)-action further
factors through the my(Py)-action, so through the composition

CX ()Y = Clmo(Py)]

the above decomposition may be viewed as a decomposition over homomorphisms & :
C[X.(T)]" — C. One of the corollaries of the homological version of the Fundamental
Lemma (see [72, 6.4.1.]) is that:

H.(Sp,,)x = H.(Spl,)se[val(Ac(7)) — val(Agm (va))] (11)

for some affine Springer fiber SpffH of an endoscopic group H of G and a homological
shift corresponding to the transfer factor. Here Ag, Ay denote discriminant functions
on the Lie algebras g,h and “st” denotes the stable part, or in other words the part of
the BM homology where the lattice acts unipotently (see e.g. [96]).

Since H, (Spv) is finite-dimensional, by using Lemma 2.13, the above x-decomposition
and Eq. (11), we can reformulate the fundamental lemma as follows.

Theorem 2.16. Consider the coherent sheaf ]:'/v on T*TV /W constructed in the previous
section. It is supported at finitely many points of the form (0,k) € T*TV /W, where
k€ TV/W as above. Each stalk (F.).x) is isomorphic to the stalk at (0,1) of an
“endoscopic sheaf” on T*Ty; /Wy for some endoscopic group H of G. This isomorphism
is as modules for C[T*Ty|W# (or even as graded modules after taking into account the
CX:-action on both sides).
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3. The commuting variety
3.1. The commuting scheme

In this section, we introduce the partial resolution of the commuting variety we will
be considering. The construction is algebraic in nature. We show the partial resolution
coincides with Hilb"(C* x C) in the case G = GL,. In general, we show it is a nor-
mal variety and conjecture that locally its singularities are modeled by the Q-factorial
terminalizations constructed by Losev et al. in [1,60]. Finally, we introduce a certain
open chart of the partial resolution, which turns out to be isomorphic to the universal
centralizer of GV.

As above, let gV be the Lie algebra of GV, t¥ = t* is the Lie algebra of TV and W is
the Weyl group. We define two versions of the commuting scheme: Q;v is a subscheme
of g¥ x g" cut out by the equation [z,y] = 0, while €5, = €4y ;v is a subscheme of
GY x (g")* cut out by the equation Ady(z) = .

Define &;v := &, /G = Spec C|[ QV]GV and €gv = €. J/GY = Spec C[e€L,,]¢".
It is a long-standing open question if these schemes are reduced. We collect some facts
about €gv and €gv here.

There are natural restriction maps C[€4v] — C[t* x t*] and C[€qv] — C[TV x §W,
which induce maps (t* x t*)/W — €4v and (T*TV)/W — €gv. The former is surjective
by the result of Joseph [47, Theorem 0.2] and defines an isomorphism (t* x t*)/W ~
[Cgv]red~

In [13, Proposition 5.24], the following is proved by essentially reducing to Joseph’s
results in the rational case:

Theorem 3.1. The restriction of functions induces an isomorphism (T*T)/W =~

[GGV]red .

We note that there are alternative proofs of the theorem, such as the one given by
Gan-Ginzburg in type A:

Theorem 3.2 ([26]). For G = GL,, the scheme € is reduced.
From this it is easy to deduce
Corollary 3.3. For G = GL,, the scheme &g is reduced.

Proof. For G = GL,, we have a natural embedding G C g which induced embedding
¢ C € and €g C &,. Since € is reduced, €¢ is reduced too. O

Recently, Chen-Ngb [16] (see also [62]) proved that € is reduced for g = sp,,,, and
for results on €4 for a general reductive Lie algebra g see [58].



24 E. Gorsky et al. / Advances in Mathematics 464 (2025) 110143

3.2. Partial resolutions

In this subsection we define several graded commutative algebras closely related to the
commuting variety. By applying Proj construction to these graded algebras, we recover
partial resolutions of €gv. We summarize various maps between the algebras in the
following commutative diagram:

DIt — PI

T g

@ Ah O(i@Ad @edI

All direct sums are over d > 0. Next, we define all of the entries in this diagram,
starting with the middle column.

We denote by € the one-dimensional sign representation of W. We define by Ay, respec-
tively A, as the subspace of W-antiinvariant functions (that is, e-isotypic component)
in C[t* x t], respectively C[TV x t]. Also, let .Ji, respectively J be the ideal in C[t* x t]
(resp. C[T"V x t]) generated by A (resp. A). Now A? and J¢ are the powers of A and .J
inside the respective polynomial rings, with the assumption that A° = C[T"V x {{'" and
JO=C[TY x 4.

In the right column we have a family of ideals

I@ .= m (1—a,ya)? CC[TY x {

aedt

Here « runs over the set of positive roots &, y, is the equation of the root hyperplane
in t corresponding to «, and «" is the corresponding coroot understood as a character
oV : TV — C*. For d > 1, the ideals I¥) are the symbolic powers of I(!). In particular,
we can consider a codimension 1 subtorus Ker(a") C TV and a codimension 1 hyperplane
{yo = 0} C t, then their product Ker(a") x {y, = 0} is a codimension 2 subvariety in
TV x t. For d = 1 the ideal I™!) corresponds to the union of all such subvarieties over
positive roots a:

I —I( U Ker(a") X {ya :0}>.

Example 3.4. For G = GL,, we have I(®) = iz (1— i—;’_,yi—yﬁd c Clzt,...,zty1,...,
Ynl-

It is easy to see that I(@1) . [(d2) < [(di+d2) 55 we have a graded algebra structure on
the direct sum of all 7(?). Furthermore, let
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denote the projector to the representation ¢? in C[W], that is, symmetrizer e for d even
and antisymmetrizer e_ for d odd.

Lemma 3.5. a) We have eqJ% = A? for all d > 0.
b) There are natural inclusions by : J — I(d),Ad — e (@D,

Proof. a) For d = 0 this is clear from the definition, so we focus on d > 0. Since J is
the ideal generated by A, it is spanned by elements of the form h - f for h € A and
f €C[TV x ], and J? is spanned by elements of the form hy ---hg - f for hy,...,hg € A

and f € C[TV X {]. Since hy, ..., hq are antisymmetric, we get
edhlmhd'f_|W‘Z de(U) hy---haf)
ceW

|W‘ > hy-chao(f) = hy---hae(f) € A%
oceW

The last inclusion follows from the fact that e(f) is a symmetric polynomial, so hge(f) is
an antisymmetric polynomial. This shows e4J¢ C A%. On the other hand, by substituting
f = 1 in the above equation we get eqhy---hg = hy---hg, 80 hy---hg € eyJ¢ and
Ad C ede.

b) Suppose that g € C[T"V X t] is an antisymmetric polynomial, « is a positive root
and s, € W is the corresponding reflection. Then for all (z,y) € Ker(a¥) x {y, = 0} we
have s, (x,y) = (sa(2), $a(y)) = (z,y). Now

5a9(7,y) = 9(5a(), 5a(y)) = 9(,y),

but since g is antisymmetric we get sog(x,y) = —g(z,y), hence g(x,y) = 0. We conclude
that g vanishes on Ker(a") x {y, = 0} and therefore g € (1 — aV,y,). Since this holds
for all o, we get g € (N ca+ (1 — ¥, ya) = 1D,

We get A € I™™ and hence J C I(). Therefore J¢ ¢ (IMV)? ¢ 1Y) and the result
follows. O

Finally, in the left column we have commutative Coulomb branch Z-algebra @ OAZ:O,
to be defined later in Section 6. It is a generalization of the commutative Coulomb branch
appearing in the work of Braverman, Finkelberg and Nakajima [10,11]. It is defined as the
convolution algebra in the equivariant Borel-Moore homology of a certain space related
to the affine Grassmannnian of G, and we postpone its definition to Section 6. Here we
summarize some of its basic properties.

Theorem 3.6. The algebras g AY=" have the following properties:
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a) For d =0, we have ¢ A=0 = C[TV x W

b) For d =1, we have g A"=0 = A.

¢) For all d the module ¢ A0 is a free C[]" -submodule of eaC[T" x t].
d) For G = GL,,, we have ¢ A'=0 = (0 A1=%)4 = A? for all d.

We prove Theorem 3.6 in Section 6.5. Note that part (b) of the theorem yields the
map A — AP0 and hence a family of maps A¢ — (. A"=0. These are denoted by a4 in
the commutative diagram (12).

Corollary 3.7. If G has semisimple rank 1 then A% ~ OAZZO ~ e I D for all d.

Proof. By Theorem 3.6(d) we get A? ~ (. A4%=%. On the other hand, in semisimple rank
1 we have only one codimension 2 hyperplane and it is easy to see that 19 = J% so by
Lemma 3.5 we get

edf(d) = ede = A%, O

The following is one of the main theorems of this section, identifying the geometrically
constructed graded algebra with the symmetrization of the symbolic Rees algebra.

Theorem 3.8. We have an isomorphism of graded algebras @, 0 A0 ~ D, eql D cor-
responding to the dotted arrow in the diagram (12).

Proof. First, let us prove that there is a natural inclusion OAZ:O — eql® for all d.
Indeed, by Theorem 3.6(c) we know that (.47~ is contained in the e4-isotypic component
of C[TV x t], so it is sufficient to check that ¢A%=0 C I (@) or, equivalently, 0 Al=0 ¢
(1 —aV,yq)? for all a.

On the other hand, by Lemma 6.25 the inclusion 0 A%=%(G) < C[TV x t] factors
through 0 A%=%(Zs(t)) where Zg(t) is the centralizer of some element ¢t € T. We can
choose t such that Zg(t) is a rank one subgroup of G corresponding to «. By Corollary 3.7
we get

0 AL (G) C oA (Za(t) = (1 - a” o).

Now we prove that the inclusion is an isomorphism. Since OAZZO is free over C[]" by
Theorem 3.6(c) and e4I(?) is torsion free, it is sufficient to prove that the inclusion is an
isomorphism outside of codimension 2 subset.

Both C[]"-modules (A%~ and e, I(? are supported on the union of the root hy-
perplanes in t/W. If we specialize to a generic point in one of the hyperplanes, we can
replace G by its rank 1 subgroup by Lemma 6.25 as above,and the isomorphism follows
from Corollary 3.7. Therefore the two modules are isomorphic outside of the union of
pairwise intersections of hyperplanes, which has codimension 2. 0O
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We can use the above graded algebras to construct quasi-projective varieties

Cav = Proj P oAl ~ Proj P e, Yo = ProjP1¥.
d d d

By the work of Haiman [41] for G = GL, we have €gv = Hilb"(C* x C) and Yg is
isomorphic to the isospectral Hilbert scheme of C* x C:

Yo, —— (C* xC)”

| l

Hilb"(C* x C) —— S™(C* x C).

We claim that for a general G the variety EG\/ can be considered as the partial resolutions
of the commuting variety which we identify with T*T" /W. By Remark 1.16 the algebra
D, OAZZO is finitely generated, hence the natural projection Egv — SpecgAL=0 =
T*TV /W is projective.

Remark 3.9. In [28], Ginzburg defines and studies the isospectral commuting variety for
general G as a certain reduced fiber product. On the other hand, the variety Y5 =
Proj @ -, Igl ) is another candidate for the isospectral commuting variety. It is natural
to wonder how the two constructions are related.

Remark 3.10. In [30], Ginzburg-Kaledin prove that there are no crepant resolutions of
T*t/W for W outside types A, B, C. Their definition of symplectic resolution includes the
crepant condition, so their statement is non-existence of symplectic resolutions. This non-
existence of a symplectic resolution is thus likely the case for T*T /W as well. Therefore,
we cannot expect Egv to be smooth outside types A, B,C.

We note however that from the results of [8, Proposition 2.8], it follows that T*t/W
and T*T /W admit birational maps from the universal centralizer schemes appearing
in Theorem 3.20, which are smooth for simply connected groups in any type. More
geometrically, we can think of universal centralizer schemes as smooth open subsets in
Caov.

Proposition 3.11. Yg is normal.

Proof. We will prove the homogeneous coordinate ring @3-, I (@) is integrally closed.
This is essentially a restatement of [54, Theorem 4.27]. Indeed, for a given « the sequence
1—aV,y, is regular. Therefore the graded algebra @3- (1—a", y,)? is integrally closed,
and intersection preserves integral closedness. We can write

D= N a-a’u)’= ) Bl-a’w)
d=0

d=0 acd+ acd+ d=0
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so the symbolic blow-up Proj @2020 I4) considered here is integrally closed. O
Corollary 3.12. &GV s mormal.

Proof. Recall that we have a natural action of W on @2‘;0 ID) by algebra automor-
phisms, where the action on I9 is twisted by e?. This defines an action of W on the
variety Y, and we get

EGV ZYG/W

If a normal variety Y is acted upon by a finite group I', Y/I' is normal [82, Chapter
I1.5, top of page 128] (note that Shafarevich assumes that Y is affine, but the argument
works for any variety since this is a local property). By Proposition 3.11 Y is normal,
SO égv is normal as well. O

Remark 3.13. An alternative proof of normality of Egv follows from [94, Theorem 14].

Remark 3.14. So far in this section, we have been discussing the 7z = 0 case, i.e. the
non-quantized algebra. Fix some symplectic Q-factorial terminalization of the variety
T*TV /W, as constructed in [2,49,71]. Denote it by X¢v. The formal Poisson deforma-
tions of X, av are parameterized by H 2(X P (C) This construction works for the rational
(as opposed to trigonometric) version, giving ng — t @ t* /W where ng can be iden-
tified with the Q-factorial terminalization constructed in [60]. The variety ng is a
conical symplectlc partial resolution with Q-factorial singularities of t& t*/W such that
codlm(ng - Xreg) > 4. By the results of Namikawa in [71], this implies that ng is ter-
minal. In this case, it has been proved in [71,60] that the filtered quantizations of X gv are
also parametrized by H? ()?gig, C) and correspond to rational Cherednik algebras with
different parameters. Cherednik algebras were already mentioned in the introduction and
their trigonometric version will be studied in Section 4 below.

Unlike the formal Poisson deformations, we do not know if the filtered quantizations
for the trigonometric variety )Z'GV are parametrized by H 2()~(§§,(C) or whether they
correspond to degenerate DAHA, since the results in the Lie algebra case heavily use
the fact that t @ t*/W has conical symplectic singularities.

Finally, we note that similar to [1, Proposition 2.1] the normal intermediate partial
resolutions

ng — Xgv — T*TV/W

are classified by faces of the ample cone of X such that for a given face F' and a rational
point f € F a positive rational multiple of f is the first Chern class of an ample line
bundle on the corresponding partial resolution.

It seems reasonable thus to expect that T = H 2()~(§§,(C) parametrizes both the
filtered quantizations of )ZGV as well as the partial resolutions between )N(GV — T*TV /W,
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just as it does in the Lie algebra case. Further, it seems by Corollary 3.12 reasonable to
expect that the partial resolution of the trigonometric commuting variety constructed in
this section, namely EG\/, equals a partial resolution constructed this way, and that the
singularities of )Z’Gw — T*TV /W are locally modeled on those of )A(;gv.

To support the above remarks, we note the following about the local structure of
our algebras. Recall the Borel-de Siebenthal algorithm, explained e.g. in [22,23]. If G is
simply connected and T a maximal torus as before, let ¥ C T be the set of elements a
whose centralizer Cy(a) is semisimple of the same rank as g (here TV is identified with
the quotient of t¥ by some lattice via the exponential map). It is known [22, Section
2] that ¥ is a finite set which is in bijection with the set of vertices in the extended
Dynkin diagram of g. Furthermore, the Dynkin diagram of Cy(a) for a € X is obtained
from the extended Dynkin diagram of g by deleting the corresponding vertex. We refer
to Section 4 and [22] for the notation on Cherednik algebras.

Lemma 3.15. Suppose G is simply connected. Upon completion at a € X, the Coulomb

A\Aa ~ Aa .. . rat,AO
branch algebra (;AG)"* = Hg . 5 s isomorphic to Hcg(a),c-;-m,h

Cy(a) coming from the Borel-de Siebenthal algorithm as above.

for the Lie algebra

Proof. This is contained in [22, Proof of Theorem 3.2]. O
3.3. The universal centralizer

In the above, we have defined the partial resolution EG\/ using Proj construction,
and have limited understanding of its geometry outside of type A. Nevertheless, in this
subsection we define an affine open chart in Egv and prove that it coincides with the
trigonometric version of the universal centralizer of [8,72]. It also appears as a Coulomb
branch for zero matter, and will be used later in Section 8.

We let G' be arbitrary for now. Let A := [[ ce+ ¥a € Ag be the Vandermonde
determinant.

Definition 3.16. We define

Ua C E:GV = Proj @ 0./4220
d=0

as the distinguished open subset given by the element A € Ag ~ ¢ A"=0.

By definition and Theorem 3.8, Ua is the affine variety whose coordinate ring is the
degree zero part of the localization of @57, 0 A" ~ @, eql@ in A:

cos s s recat) (- )
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Remark 3.17. Note that Ua is different from the preimage of U’ = {A # 0} C
T*TV /W =~ Spec g Af=" under the natural projection 7 : Cov — T*TV /W,

Indeed, let Z = {A =0} C T*TV/W. Then 7~ 1(U’) is the complement of the total
transform of 7 in égv while Ua is the complement of the strict transform of Z. So
Upr 2 U'.

We now describe this chart. In [8], two trigonometric versions of the universal central-
izer are studied. The one of interest to us is defined as follows, see [8] for more details.

Definition 3.18. The universal centralizer of GV is the variety
%gvv :={(g,s) € G¥ x g']ady(s) = s, s is regular } J/ G

Remark 3.19. In [8], this variety is denoted 3§VV. There is also another version of the

trigonometric universal centralizer Sg;v with the roles of g, G swapped. It has the nicer
geometric property of being symplectically isomorphic to T*(TV /W) when G is adjoint
(so GV is simply connected).

In [8] explicit description of the coordinate ring of BE’LV is given. We also have the

following Coulomb branch description of 3§vv.
Theorem 3.20 (/8/). We have an isomorphism of algebras:
CBg ) = B (Cr)
The right hand side can be identified with the Coulomb branch for (G,0) (see Section 5.)
We now state and prove the main theorem of this section.
Theorem 3.21. We have
C[BE ] = CUA.
In particular, there is a natural isomorphism %gvv = Ua.

Proof. We recall and slightly rephrase [8, Section 4].* First, consider the Lie algebra
version

%gz ={(g,8) € g¥ x g'[ady(s) = s, s is regular } |/ G"

4 We follow the arxiv version which is more complete than the published one.
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On the other hand, we consider the family of ideals It(d) = Nacar (Tav, Vo) C CIt* x {].
We claim that the algebra of functions (C[%gz] can be obtained as the degree zero

localization of the graded algebra @, eql t(d).

Indeed, let Py, ..., P, denote some generators in C[g¥] ~ C[tV]". The one-forms
dPy,...,dP, € Q'(g¥) ~ C[g"] ® (gV)* can be identified with some G-invariant polyno-
mial maps mq,...,m, : g¥ — g". By [8, Lemma 4.4] for regular s the elements m;(s)

form a basis in the centralizer of s, so we can write
n
9= Z%‘(Qv s)m;(s). (13)
i=1

The coordinate ring of %gz is a polynomial ring in ¢; and P;(s).
For example, for g = gl,, we get that g and s are two commuting n x n matrices and
s is regular, hence ¢ is a matrix polynomial in s:

g=1U1 +os+ ... +h,s" L

Here we identify the polynomial maps m;(s) = s'~1.

To compare this with the localization in A, we can restrict (13) to t* xt* and abbreviate
g = diag(T), s = diag(y). We interpret (13) as a linear system of equations on ; for
given g and s (resp. T and ), for example for g = gl,, we get

Note that the W acts on g and s (resp. on T and %) but fixes ¢); by construction. By [8,

Lemma 4.4] the determinant of this linear system equals my(s) A -+ A m,(s) which is

proportional to A up to a nonzero constant factor. Therefore by Cramer’s Rule we can

write 9; = D; /A for some polynomials D; € C[tV x t"]. Since 1); are W-invariant, we get

that D; are W-antiinvariant and hence contained in Ay C ellt(l). We get ¢; € A‘lellfl)
, (0)

and P;(s) € el;’, so

C[B2) c Pa-teg?) ~.

d=0

To prove the reverse inclusion, we claim that any element in A~ %41 t(d) can be written
as a polynomial in ¢; and P;(g) or, equivalently, a W-invariant polynomial in 7 and ;.
Indeed, given a polynomial f(Z,7) € €4(\ycop+ (Tav:Ya)?, We can substitute T using (13)
and write f as a polynomial h(t;, 7). In this presentation, z,v (as a polynomial in ;,7)
is actually divisible by 9, so any polynomial in (z4v, y4)? is divisible by y¢. Therefore h
is divisible by [[,cq+ yd = A? and A~?h is a polynomial in 7 and 1;. Finally, since both
f and A? transform by the same sign under ey, we conclude that A=%h is a W-invariant
polynomial in § and ;. To sum up, A‘dedlt(d) C (C[%gz].
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The group theoretic version follows from this computation as in [8, Section 4]. In
particular, for G = GL,, we simply require that g is invertible and define additional
variables 97 such that

g ' = Zwi‘(g, s)mi(s). (14)

Similarly, after restricting to the torus x; are invertible and we can solve both (13) and
(14) by Cramer’s Rule. The rest of the proof proceeds verbatim. O

Remark 3.22. We would like to caution the reader that Theorem 3.21 is similar to [8,
Proposition 2.8], but slightly different from it in the following way.

Recall that the ideal I()) defines a union of codimension 2 subvarieties in 7*7"V. In
[8] the authors (up to a quotient by W) consider an open subset in the blow-up of T*T"
along I(Y). By definition, the latter is given as Proj of a graded algebra built from powers
of 1M, Here, we instead consider the symbolic blow-up using symbolic powers I(?) of
1.

In general, we get a homomorphism
@ ed(I(l))d — @ edl(d)
d d

which implies a map Proj@p, eqID — Bl;yT*TV, but we do not expect it to be an
isomorphism. Theorem 3.21 shows that it is an isomorphism over Ux.

Remark 3.23. We can interpret the proof of Theorem 3.21 as follows. There are natural
embeddings

JAI0 & HEO (Grg)

coming from the construction as Coulomb branches, see for example Section 6.2 or [10,
Lemma 5.11]. On the algebra side, these embeddings realize rational functions of the
form f(z,y)/AT~% where f € ;A"=0, as functions on the open chart Ua.

When G = GL,, this construction is closely related to the construction of the open
chart “Ugyny” on Hilb"(C?) given by Haiman in [42, Corollary 2.7.].

We also note that the comparison between geometry and algebra explains the ap-
pearance of the idempotent e4. Indeed, from the geometric point of view the algebra
0AR=0 is, in the notations of Section 5, simply H*G(O)(()Rd) ~ eH*T(O) (0Ra4). However,
the localization formula in Corollary 6.16 involves a prefactor A%, exactly corresponding
to twisting by the d-th power of the sign representation of W.
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3.4. Ezplicit antisymmetric polynomials

In Theorem 6.26 we will need an explicit construction of a C-basis in the space A
of antisymmetric (S,-antiinvariant) polynomials for G = GL,,, in order to compare our
Coulomb branch construction with the one above. The exposition follows ideas of Haiman
in [42]. The reader is advised to skip this section on a first reading.

We denote by Alt the action of the antisymmetric projector e_ on polynomials. Let
S ={(a1,b1),...(an,by)} be an arbitrary n-element subset of Z>o x Z. We define

1 .y
Ag(y1, U1,y Yn, Un) = Alt (y{flul{l . -yfl"ufl") = det (y;ljui]) .
For a composition o with >~ a; = n, we can consider the set

So ={(0,0),..., (a1 —1,0),(0,1),... (a2 — 1,1),...}

and denote Ag, = A,. In particular,

A=T[w—v) =2

i<j
Given a composition «, write A(«) = (091,192, ...). More generally, for any subset S =
{(ai,bi)} C Zso x Z,|S| = n, we define A(S) = sort(b;) as the vector in Z™ with

coordinates obtained by sorting b; in the non-decreasing order. Clearly, A(S,) = A(«).
Furthermore, we define a collection of subsets

Sy = {ai : (ai,k) S S} = {aigk) < ... < aig?}
and a partition
/’Lk(S) = (ai(lk) ’ a'i;k) - 17 LR} ai&? -1+ 1)
Finally, we define y, = (y; : A\ = k).

Lemma 3.24. (a) The determinants Ag span the vector space A.
(b) We have the following formula for the determinant A,:

A, =c- Al [u? H (yr — ys)

r<s,\r=Ag

where X = A(a).
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(¢) More generally, we have the following formula for the determinant Ag:

Ag =c-Alt H S (yk)u)‘ H (yr - ys)
k

r<$,A\r=As

where s, are Schur polynomials, A\ = A(S) and c is some nonzero scalar factor depending
on the size of stabilizer of .

Proof. (a) The space C[T*T"V] is spanned by the monomials y@ubt - yonuln so A =
e_C[T*TV] is spanned by their antisymmetrizations (recall that u; are 1nve1rtlb1e7 so b;
are allowed to be negative). If some of pairs (a;, b;) coincide, then the antisymmetrization
vanishes, so it is sufficient to assume that (a;,b;) are pairwise distinct and form an n-
element subset S.

Clearly, (b) follows from (c) since for S = S, we have S, = 0,1...,a; —1 and
ke = (0).

To prove (c), observe that the function Ag is antisymmetric and all possible monomials
in w are in the S,-orbit of A, so it is sufficient to compute the coefficient at u*. This
coefficient is proportional to

Altstann) (1" HAltSk

ne

Ai=k

=T |5 ve) II @w-v)|. ©

k r<s,Ar=X.=k

Example 3.25. For a = (1,2,1) we have S = {(0,0),(0,1),(1,1),(0,2)},A = (0,1,1,2)
and

Ag = Alt [(y2 — y3)ufupuzui]

For S = {(5,0),(3,1),(7,1),(2,2)} we have A = (0,1,1,2), uo = (5), i1 = (3,6), u2 = (2)
and

Ag = Alt [s5(y1)56,3(y2, y3)52(ya) (y2 — ya)uduguius] .
Note that s5(y1) = y3, s2(y4) = y7 and
Y5 Y3

vs vs| _ Alt(ydyi)
Y2 — Y3 Y2 — Y3

86,3(1/2, y3) =
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4. Trigonometric Cherednik algebra
4.1. Definitions

We define the extended torus 7' = T'x C* and the corresponding Lie algebra t = t&Cj.
The extended affine Weyl group W =W x X.(T) is generated by the affine Weyl group
waf — W x QV and an additional abelian group Q = X, (T)/Q" where QV is the coroot
lattice. In general, 2 is the fundamental group of G, for example for GL,, we have
Q = Z. We use action of W on tv depending on A. The action of w € W on ¢ e twill be
denoted by “¢. We will denote the longest element in W by wy.

Definition 4.1. The trigonometric DAHA of G is the C[k, c]-algebra, which as a vector
space looks like

He = Hen = C[W] ® C[f ® C[d] ® C[A]
and the algebra structure is determined as follows:

1. Each of the tensor factors is a subalgebra, and ¢, i are central. We denote by o; the
simple reflections in the copy of W C Hg.
2. 0:6 —*ifo; = (€, ) for all simple reflections o; € W and € € t¥ € C[{].”

3. Forany we Q C W and € € t¥, wé = “w

For adjoint groups, the group €2 is the group of symmetries of the fundamental do-
main of the action on tV of the group generated by the reflections s;, i = 0,...,dim(t) =
r. Thus the elements of 0 are affine transformations of tV that permute the set
(a0,1), (1,0), ..., (ar,0). -

The algebra H¢ is graded as follows: all generators of W have degree zero, while
¢ € t¥ C C[t have degree 1 (so that C[t] has a standard grading). The generators ¢ and
h both have degree 1 as well. One can check that the above relations are homogeneous
with respect to this grading.

Example 4.2. For G = GL,, the group W is generated by simple reflections o1, ...,0,-1
(which generate W) and an additional element 7 (which generates ). The lattice part
of W is generated by

Xi:Ui,1-~-O’17TUn,1~-~0i, i=1,...,n.

The algebra H. 5 is generated by o;, 7 and commuting variables y,...,y,, with the
following relations:

5 In particular, for £ € tV we have *°¢ = s0(&) + h(¢, ay)-
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OiYi = Yi+10i — C, 03Yiy1 = Y;0; + C, OiY; = Yj0; (] 75 1,1+ 1), t=1,...,n—1,

Ty = yipm(1 < i <n—1), 7y, = (y1 + h)m.

Remark 4.3. We will also use specializations of this algebra, to be called trigonometric
DAHASs as well when there is no risk of confusion. Let us explain how this relates to
parameter conventions in the literature. In [77], the trigonometric DAHA is defined as
above but with parameters 6 = h, ¢ = u. These correspond to the generators of H&mt (%)
and Hgq (%), respectively. In [77], the relations ¢ + 10 = ¢+ vh = 0 and h = 1 are
imposedmfor v € C. This specialization of parameters is often called “the” trigonometric
DAHA with parameter v. We will denote it by H,. If we want to emphasize the role
of G instead of the parameters, we will write H¢ for any of the specializations of the
Cherednik algebra.

Remark 4.4. It is common in Cherednik algebra literature to specialize & to 1 as above, so
that the algebra HZLEI admits a natural filtration in powers of i, making the full H 5 the
Rees construction for this filtration. In this language, Hg):hhzo is the associated graded
of H}7', since H, j, is flat over Cle, h]. With this in mind, we will use the specialization
¢ = h =0 and the associated graded interchangeably.

Remark 4.5. Later on, we shall be interested in the family of Cherednik algebras Hcyip 5

_ m+in
n

for i <0 as well, and the specializations ¢+ (v +i)h=0,A=1, i.e. c =

We introduce the symmetrizer e = \_V%/I > wew w and the antisymmetrizer e_ =
ﬁ Zwew(—l)é(w)w in the group algebra of W. We define the spherical and antispher-
ical subalgebras in Hg as eHge and e_Hge_.

Note that in the specialization ¢ = A = 0 the structure of the algebra simplifies
dramatically: HE =0 = C[W] x C[TV x t], so

eH&"=%e = C[TV x W.
We will refer to this as the commutative limit, although this only gives the limit of the

spherical subalgebra the structure of a commutative algebra.
The algebra H¢ has a representation

He p — Diffh(freg> X C[W} (15)
defined e.g. in [17, Section 2.13]. Here Diffy,(t'°8) is the algebra of i—difference operators

on the Lie algebra t, possibly with poles along the root hyperplanes. In this representa-
tion, the generators of H corresponding to simple reflections act by

Ui=8i+i(si—1)

(623
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and the lattice part of extended affine Weyl group acts in the standard way (this deter-
mines the action of §2). Below we identify H. j with its image inside Diffy, ("°8) x C[W/].

Example 4.6. For G = GL,,, we get 0; = s; + yv_zvﬂ (si — 1) and 7 f(y1,...,yn) =
f(y27"'7y7l7y1+h)'

4.2. Shift isomorphism

We will need several involutions on the algebra H..

Lemma 4.7. The map ¥ : w — (—1) @ wow = wg, & — W& h — —h for w € W defines
an involutive anti-automorphism of Hg.

Proof. Suppose that wy sends the simple root o; to —a; for some j, then wgs; = sjwp.
The map ¥ sends 0; to —o;, so we get: U(0,8) = —"°¢o;, Y(*{0;) = —0,;"°% € and

V(0§ —"i8oy) = 0508 — 0o

while (¢, ) = (%"°¢, o), so the equation (2) is preserved. For the equation (3), observe
that wow ™ 'wy = w since we assume that h — —h. O

Example 4.8. For G = GL,, we have
V(oi) = —0pn—is Y(Y;) = Yny1-i, V(m) =7, ¥(h) =—h

Observe that U(e) = e_ and ¥(e_) = e. In particular, ¥ exchanges spherical subal-
gebra eH.e with the antispherical subalgebra e_H_.e_.

Using the difference representation (15), we can embed the spherical subalgebra eH e
into the algebra of W-twisted difference operators Diffy, (7°¢). We will denote by u* is the
translation by fig. Any difference operator in eH.e can be written (up to symmetrization
by e) as a linear combination of u* with coefficients in C[t"*8]. We filter the difference
operators by the span of u# such that u is in a W-orbit if a dominant coweight p’ with
<A

Below we will need some explicit generators for eH e written as difference operators,
up to lower order terms in this filtration.

Theorem 4.9. a) Let \ be a minuscule dominant coweight, respectively X* € W, then

Ey.:=eX’e=e H Yo~ €06
a(M)=1 Yo

and
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Fyc:= eX te=e H ya——’—cu_)‘e
a(N)=1 Ya

Here u? is the translation by h\.
b) For an arbitrary dominant coweight A we get

o+ Ch —
Ey.=e H H uu’\e + lower order terms. (16)

If X is minimal in Bruhat order, the formula (16) for Ej . is ezact.
¢) More generally, for dominant coweight X\ which is minimal in the Bruhat order,
and a polynomial f(y) we define

O - ¢)
Exclfl=ef) [ I e Balf]
a(A)>0 ¢=0 (Yo + £1)
a(A)—1 (17)
(Yo + LR+ ) A
=ef(y)
a(l)\_)[>0 EI;[O (ya + fh)

The spherical subalgebra eH e is generated by such Ey c[f] and Fy c[f].

Remark 4.10. If A is minuscule, then it is indeed minimal in the Bruhat order. The
converse is not true: indeed, there are no minuscule coweights at all for root systems
E87 F47 G2 .

We postpone the proof of Theorem 4.9 to Section 6.3. Here we use it to relate the
spherical and antispherical subalgebras.

Lemma 4.11. Suppose that \ is a dominant coweight which is minimal in the Bruhat
order. Then

U(Exc[f))A =AE\c—n[f"], W(Fxc[f)A =AF\—n[f'],

where A = Ha€<l>+ Yo and f'(y) = v f(y)u=>.

Proof. We prove the first equation, the second is similar. Recall that ® is an anti-
automorphism, so it reverses the order of the factors, and ¥(e) = e_. Therefore we can
write:

a(\)—

WE) —e ™ T TT Y9 pngpe.

a(A\)>0 (=0 ya_éh
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where we denote @ = " . By replacing A by A*° (since we symmetrize anyway) and «
by “°« (since we take product over all roots «), we can rewrite this product as

a(A)— 1

—th—c
wE ) =e [T T =2 e,
a(A)>0 £=0 (Ya
Now vy = (Yo + a(A)R)u?, therefore
a(A)—1
(Yo —Llh—c+a(N)h) ., A
V(B =e J]T I fly)wie. =
aNo0 20 (Ya — Ch + a(N)h)
a(X)
(Yo +Lh—c) ,, A
e T T1 %29 pue..
a(A\)>0 =1 (Yo + £1)

In the last step we changed index of summation from £ to «(A\) — £. On the other hand,
since A is dominant we have a(\) > 0 for any positive root «, hence

urA = v H Yo = H (Yo + a(ND)ur = H MAM‘. (18)

Q€D+ Q€D+ (o, A)>0 Yo
Now we can compute
Y (o + lh— ¢)
U(ExMAa=e ] ]I f'(y)u*Ae =

a(A)>0 (=1 (Yo +£h)
e rw| 11 ‘“ﬁ) ot h=0)) 1 (ot a0y o
- (ya +€h) Ya B

a(A)>0 £=1 a(A)>0
N th— (e — )
e IT 11 (o i we = ABEs. nlf]. O
a(N\)>0 ¢=0 «

Theorem 4.12. There is a filtered algebra isomorphism eH._re = e_H e_.

Proof. The spherical subalgebra eH._pe is generated by the elements Ej ._p[f],
F c—n[f], while the antispherical subalgebra e_H.e_ is generated by the elements
U(Exc—n[f]), ¥(Fxc—nrlf]) since ¥ exchanges the spherical and antispherical subalge-
bras. Here ) is a dominant coweight which is minimal in the Bruhat order, and f(y) € C[t]
(see [10, Proposition 6.8]). By Lemma 4.11 we get

U(Exc[f]) = ABxc—nlfJATY, W(Fyc[f))A = AEx c_n[f]A™" (19)

where f'(y) = u*f(y)u™>.
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Let M be an operator in eH,_xe, then we can consider the operator AMA™! acting
on antisymmetric polynomials. By (19) the operator AMA~! belongs to e_H.e_ and
the operators AMA™! generate e_H.e_. O

Remark 4.13. In [44,79] a similar isomorphism between the spherical and antispherical
subalgebras was obtained using Dunkl representation by differential-difference opera-
tors. It is natural to ask if the two isomorphisms are the same. They are not, for the
isomorphism in [44,79] is given by conjugation by the “Vandermonde in X7, in other
words [[,cq+ (1 —aY) € C[TV], which acts by identity on the operators Ej .[1] since
X — X in the differential Dunkl representation. The two isomorphisms are related by
the Harish-Chandra transform of [17]. This is similar to the fact that in the rational
case, there are two Dunkl embeddings, to Diff(h™8) x W and Diff ((h*)**8) x W in which
one gets similar shift isomorphisms by either conjugation by [[,cq+ Yo Or respectively
by [[zav [5], and the two isomorphisms are related by Cherednik’s Fourier transform.

4.8. Z-algebras

We now recall the definition of Z-algebras, as explained e.g. in [32, Section 5]. Note
that our conventions are exactly opposite to those of [32] because it makes the Springer
action in Section 7 a bit more natural.

Definition 4.14. An associative (non-unital) algebra B = €,.; Bi; is a Z-algebra if
BijBji, C By, for all i < j <k, By; By, = 0if j # [, and each Bj; is unital such that
]-zsz = bij = bijlj for all bij € Bl]

The above definition ensures that B;; is a unital associative algebra for all 4, and B;;
is a (Bji, Bj;)-bimodule. The Z-algebra multiplication factors though the convolution of
bimodules:

Bij Qc Bik Biy,

~

Bi; Qp,, Bik
The simplest example of Z-algebras comes from Z-graded algebras.
Example 4.15. Suppose that S = ©45y is an associative Z-graded algebra with multi-
plication SqSqy — Sgtar. Define B;; = S;_; for all ¢ and j, then B(S) = @igj B;; is a

Z-algebra. Note that in this example the algebras B;; are all isomorphic to Sp.

Our main source of Z-algebras will be a filtered deformation of Example 4.15. We
say that a Z-algebra B is of graded type if it has an algebra filtration (which we omit
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from the notations) such that gr B = B(S) for some commutative graded algebra S.
Unpacking this definition, we get the following properties of gr B:

e Sy := gr By; is a commutative algebra which does not depend on i up to isomorphism
o S;_; = gr B;; depends only on the difference j — ¢ up to isomorphism
e For all i, j, kK we have a commutative square

grB;; @ gr Bjry — gr By

| l

Sj—i @ Sp—j — Sk—i
o The left and right actions of Sy ~ gr B;; ~ gr B;; on the bimodule gr B;; agree.

The last bullet point is related to the Harish-Chandra property for the bimodules B;;,
see [83,61]. Namely, a Harish-Chandra bimodule for a filtered algebra A is a bimodule B
with an exhaustive filtration s.t. [A<;, B<;] C Bj1j_q s.t. gr B is finitely generated. The
commutator condition implies that the left and right actions of gr A on gr B agree.

Also note that we can associate a pair of schemes to a Z-algebra of graded type: the
affine scheme Spec Sy and the scheme Proj.S. We have a natural morphism ProjS —
Spec Sy.

Next, we define modules over a Z-algebra B. A graded vector space M = &M; is a
B-module if for all i and j we have multiplication maps B;; ® M; — M; such that we
have a commutative diagram

Bij ®Bjk ® My, — BU ®Mj

| |

B, @ My, ——— M,;.

In particular, M; is a module over the algebra B;; for all i. If B is of graded type and
M admits a filtration compatible with a filtration on B then gr M is graded S-module
for the graded algebra S. In particular, gr M defines a quasicoherent sheaf on Proj S.

4.4. Z-algebras from Cherednik algebras
We now turn to defining a Z-algebra B = (Bl as follows. The component ;B! is the
spherical Cherednik algebra eH.;ze with parameter ¢+ ih. The component iBF—s—l is the

shift bimodule

R
iBi' 1 = eHeqiy1ynne—

over the algebras i+1Bf+1 = el (i41)n,ne and
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h
B = eHcyinne ~ e Heyiriynne—.

The last isomorphism is given by Theorem 4.12. Finally, for more general i < j we define
the shift bimodules

ho_ zh . rh
iBj =By 1B

where - denotes the appropriate tensor product.

Lemma 4.16. At h = c =0 one has Z'B?:O = AJ%, where A is the subspace of diagonally
antisymmetric polynomials in C[T*TY], and this is compatible with the multiplication.
When i = j this is the subspace of diagonally symmetric polynomials.

Proof. Let us prove that ;87" = A. Indeed, ;B = e_He = e_C[T*T"] is the space
of antisymmetric polynomials in C[T*T"V]. Similarly, ;8= = eC[T*TV] = C[T*TV]W.
Now

Z‘B?ZO :A®C[T*TV]W ® - CirTVIW A=A O

Example 4.17. Consider the trigonometric Cherednik algebra for G = GLs. For v

[ra]

1/2 it has a 1-dimensional representation L;/(triv) with invariant part eL; o (triv)
e_Lg/5(triv). Using this isomorphism, the bimodule eH3,/5e_ sends el 5e ®e Hj,ne
e_Lg)y(triv) = eLg 5 (triv). More generally,

eH(o111)/26— @e My y1) e €—Li2kt1)/2(triv) = eLigg 1) /2(triv)

and the direct sum

@ eL(2k+1)/2 (tI‘IV)
k>0

is a module for the Z-algebra B.
4.5. Z-algebra for GL,

Consider now the Z-algebra as introduced above for G = GL,,. We have
Theorem 4.18. For all i < j the C[h] ® Cly1, ..., yn]*"-module B is free.

Proof. The idea of the proof is to replace the trigonometric Cherednik algebra Hl. ; =
Hg;ig with the rational Cherednik algebra H}** [24]. The algebra Hj*" is the quotient of
C[Xy,..., Xn]®Clzy,...,2,] xS, modulo the relations:

[Xi,Zi} :h+20ij 1=1,...,n,
J#i
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(Xi, 2j] = —0ij,1 # 7,

where 0;; € S, is the transposition (the generators z; are usually called y; in the rational

Cherednik algebra literature).

For the rational Cherednik algebra the corresponding Z-algebra JBLI=h ag con-

structed by Gordon and Stafford [32,33] who defined a filtration on iB;at’h:ho for any

‘ using Haiman’s results. Note that

this was achieved without relying on Haiman’s results in [29]. This implies that iB;at’h

is free over h. The freeness over Clyy,...,y,|°" is e.g. [32, Lemma 6.11(2)]. We remark

specialization of h and proved that gr iB;at’h:hO ~ Aﬁa_t

that this freeness uses results of [5] about Morita equivalence of Cherednik algebras.
Now the trigonometric case is obtained by Ore localization in the central element
X1 -+ X, which commutes with the action of & and y;. This follows from

Lemma 4.19. There is a natural map

rat,h="h
iBj 0 — iBj

k3

. . ) L t,h=h
which becomes an isomorphism upon localization in [ X;: (J?;a T x, =iB;.

Proof. In [85] (see also [40]) it is shown that

(w) =w, o(X;) =X, o(z)=X; " (yi — Z 0ji)s

1<5<i

extends to the algebra homomorphism ¢ : H}** — Hfif that becomes an isomorphism
after localization by X - - - X,,. By hitting with e on both sides, this implies the statement
on the level of the spherical subalgebras. (To match parameters, we observe that H z’r,;g o~
H"8  for any A € C*.)

F’or the one-step bimodules, iBﬁtl = eHgi_tihﬁe_ by definition, so the result is true
for j =i+ 1 as well. Finally,

iB;at — iB;itl . j,13§at
and by standard properties of localization and tensor product we get the result. O

Now since tensoring with C[Xy, ..., Xy][1x, is faithfully flat, we deduce that since
B is free over

C[yh cee 7yn]sn

)

so is ;B;. This finishes the proof of Theorem 4.18. O
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More geometrically, the bimodule Z—B;at’h quantizes the line bundle O(j — i) on the
Hilbert scheme of points on C? while iB;-L quantizes its restriction to the Hilbert scheme
of C* x C.

Corollary 4.20. The Z-algebra B is of graded type and for G = GL,, grB corresponds
to the graded algebra S = @EO:OAd, The corresponding algebraic varieties are Proj S =
Hilb™"(C* x C) and Spec Sy = (C* x C)*/S,,.

5. Coulomb branches and Z-algebras

In this section, we explain half of the main construction of the paper, namely the
construction of a Z-algebra associated to the Coulomb branch of the 3d N' = 4 theory
with adjoint matter, or in other words the spherical trigonometric DAHA. Most of the
results work in greater generality, and are stated as such wherever possible. In Section 6
we specialize these general constructions to the case of adjoint representation.

The other half of the main construction, consisting of a generalized affine Springer
theory for this Z-algebra, is treated in Section 7.

5.1. Coulomb branches

Let 1 = G — G — Gr — 1 be an extension of algebraic groups, where G is reductive
and G is diagonalizable. Let N be an algebraic representation of G, P C G(O) C G(K)
be a standard parahoric subgroup and Np a lattice in N(K) stable under P. We will
only be interested in the case where N = Ad, Np = Lie(P).

Let Rp := Ra,n,p,nNp be the parahoric BEN space of triples as in [27]. More precisely,
we have

Definition 5.1. Rg n p np is the fpgc sheaf on Sch/k associating to S the groupoid of
tuples (P, ¢, s, Pp) where P is a G-bundle on S x Spec K, Pp is a P-reduction of P over
S x Spec O, and ¢ is a trivialization over S x Spec O compatible with the P- structure.
Moreover, s is a section of the associated N-bundle of Pp such that ¢ o s(t) € Np.

Remark 5.2. Dropping the condition that ¢ o s(t) € Np, we get the space Ta NP, Np =
G(K) xp Np, which is an (ind-)vector bundle over the partial affine flag variety Flp. In
particular, if N = Ad, this can be thought of as the cotangent bundle of Flp.

We recall the following definitions and theorems as motivation for the following sec-
tions. We define the group

P :=ev, ! (Grevo(P))

where evy : G(O) — G is the map sending ¢ — 0. In general, we refer by underline to
flavor-deformed objects. From [10,27,43], we have
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Theorem 5.3. H*Ex'(CX (Rp) =: .Alfé is an associative algebra with unit. It is a flat defor-
mation of Ap := HE(Rp). When P = G(O), the algebra AZ(O) is a filtered quantization
of Ag(oy, which is commutative. The spectrum of Ag (o) is called the Coulomb branch
of (G,N).

The papers [43,27] developed a generalization of affine Springer theory for Coulomb
branches which is summarized in the next result below. We discuss it in more detail in
Section 7.

Theorem 5.4 ([}3,27]). Let v € N(K) and let L, C P.x C* be the stabilizer of v in
P xCX,. The algebra Al acts on HE»(MYF) via natural cohomological correspondences,

provided the group L., is compact in the t-adic topology.
5.2. A category of line defects

Heuristically, the equivariant BM homologies of the spaces of triples above are endo-
morphisms of objects in a “category of line operators” [21,93,92] which is something like
G(K)-equivariant D-modules on Ni.

We won'’t stipulate on the definition of the actual category (see however [3] in the
adjoint case), but this category should contain objects coming from n = (U, P), where
U C N(K) is a P-stable lattice and P is a parahoric subgroup of G(K). We will simply
define Hom(n,n') = HE'™*C™(,R,), where

Ry = {lg.5] € GUC) xP' U'|gs € U}

We will use the notation U = Np to emphasize Np is a P-stable lattice. By abuse of
notation, we will also write Hom(n, n’) for the flavor- or loop-rotation deformed versions
of these spaces. It is clear that when n =7’ = Np, we have

End(n) = Hom(1,n) = Ap

from Theorem 5.3

Theorem 5.5. There is an associative multiplication Hom(n,n') ®c Hom(n',n") —
Hom(n,n") via the following modification of the BFN convolution product.

Ry Xy Ry == p~' (R Xy Ropr) —= 4 (07 (nRoy X o Ryyr))
[ b [
Ty X oy Ropr s——5—— G(K) X R W Ryt

Here the maps p,q, m send

p:(91,[92,8]) = ([91, 925, (92, 8]), @ : (91,[92,5]) = [91, g2, 8],
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m (g1, (92, s|] = [9192, ]
and i,j are inclusions of closed subvarieties.

Proof. This can be proved using a straightforward modification of the proof of associa-
tivity in [10, Section 3]. Similar results for 7 = (Np, P) where P is an Iwahori subgroup
are mentioned in [92]. O

Corollary 5.6. For any n the space Hom(n,n) is an associative algebra, and Hom(n,n")
is a bimodule over Hom(n,n) and Hom(n',n'). Given n,n' and " we have a natural
morphism of bimodules over Hom(n,n) and Hom(n",n"):

Hom(n, ") ® Hom(n',n") — Hom(n,n").
Hom(n’,n’)

Proof. We need to prove the morphism from Theorem 5.5 is bilinear over Hom(n', 7).
The only axiom of a tensor product we need to show is m-r®@n=m®®r-n for m €
Hom(n,n'),n € Hom(n',n") and r € Hom(n',n’), which is clear from the associativity of
the construction. O

We will also use the notation ,.4,, := Hom(n, 7). The following is a generalization of
[10, Lemma 5.3].

Theorem 5.7. The bimodule , A, = Hom(n,n') is flat as a left C[t*][h,c] = Hf(pt)—
module.

Proof. The proof is similar to [10, Lemma 5.3]. The space , R,/ /P has a natural pro-
jection to the partial affine flag variety G(K)/P, and can be decomposed into (infinite-
dimensional) affine fibrations over the affine Schubert cells in the latter. By definition,
the equivariant homology of , R,/ /P is a filtered colimit of the equivariant homologies
of certain unions of these strata according to the Bruhat filtration. Any union of such
even-dimensional cells is equivariantly formal, and its homology is flat over HZ (pt). On
the other hand, filtered colimits of free modules are flat. O

5.8. Z-algebras and the flavor deformation

Taking a sequence 1g,1_1, ... it is clear from Theorem 5.5 that we get a Z-algebra by
taking

A=PiA;

1<j

where ;A; denotes ,, A,,. That is,
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Theorem 5.8. The algebra @igj Z‘A? is a Z-algebra.

In the setup of BFN Coulomb branches, nontrivial Z-algebras are most easily obtained
via a flavor deformation of G, i.e. by letting Gr be nontrivial. We now explain this
procedure for Gr = G, and associate to (G, N) a Z-algebra.

Specifically, we can consider a sequence n; = (t~U, G(O)) for some fixed lattice U (for
example, U = N(O)). If we set h = 0, it is easy to see that S;_; := iA?:O depends only
on j —i and the algebra A"=Y is of graded type as in Section 4.3. In particular, at & =0
all commutative algebras ;. 470 are isomorphic to the commutative Coulomb branch
algebra So = Ag(o). In particular, this construction yields a map ProjS — Spec S,
which is a variant of the construction of a partial resolution of the Coulomb branch in
[12).

5.4. Z-algebras in the abelian case

Since it might be of independent interest and is used for computations below, we now
work out the Z-algebras for the cases when G = T is a diagonalizable algebraic group
and {n;}22, is given by n; = (T(0), t** N(O)) for some (flavor) cocharacter ¢ : G, — T.
Note that when N = 0, the Z-algebra collapses to A%O[C] where c is the flavor parameter
(the generalization to more flavors is straightforward).

Under 7; — Grp xN(K) the image is naturally identified with

|| {t*} x "' N(O)
ANeGrr
and similarly

R; = || {t*} x (FN(O) NN (0)).
AeGrp

Now let ,7'])‘ be the preimage of A € Grg under the projection ;R; — Grp. Suppose
also N is the direct sum of the characters &1,...,&, as a T-representation.

Theorem 5.9. Under the convolution product in Theorem 5.5, we have for alli,j, k € Z
that

n
zr_i\_]rlkl‘ = H Ae(iuj) ka )‘7 M)ir2+u
=1

where

Al(ivju kv )\7 /J’)
max(A+i,k—pu,j) min(A+i,k—p)

= I1 (& +c+(a+&()h) 11 (& +c+ (b+&(N)h)

a=max(A+i,k—p)+1 b=min(A+i,k—p,5)+1
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Proof. We may restrict to the case where the rank of 7" is 1. In this case, the computation
is essentially [92, Proposition 3.10], generalizing [10, Theorem 4.1]. In the notation of
[92] we have

ir;'\ = y)\r()‘—’_iaj)? jrg = y#’r(/u’—’_ja k)
so we get

X
iT5 5Tk

= y,\r(/\ + i,j)’l“(j, k— N)yu

B N (O) N tF#N(O) HIN(O) + " N(O) + ' N(0)
W<tk+z‘N(0)mk—uN(@)ma‘N(@))6( PHN(0) + t--#N(0) )”

And we compute the Euler classes

. PHN(O) N RN (0) B m"”‘“ﬁ“’”
PHN(O) N - N(O) NEN(O) )

(& + ¢+ ah)
a=max(A+i,k—p)+1

min(A+i,k—p)

MTIN(O) + " N(O) + I N(O)\ ’
( PHN(0) + 1+ N(0) )‘ 1l

(&0 + ¢+ bh)
b=min(A+i,k—p,j)+1

From the relation yxx = (x + A{x, A\))yx for x € t* we get that

Ap

Zr?jrk = A(i, 75, k, A\, p)iry, O

Remark 5.10. When i = ¢ = 0, the above becomes

max(A+i,k—p,j) min(A+i,k—p)

7">‘ H H gg . 5[ /\"rM
ik max()\Jrz k—p) min(A+i,k—p,j5) i’k
=1 €£

Lemma 5.11. All algebras in question are naturally graded with
deg&r =2, deg(ir}) = |A+i— j.
Proof. Observe that
la —b] + 16— ¢| — |a — ¢| = 2 (max(a, b, ¢) — max(a, ¢) + min(a, c) — min(a,b,c)). (20)

Indeed, both sides of (20) are symmetric in a and ¢ and vanish if b is between a and c.
If b < a < ¢ then we get

(a—b)+(c=b)—(c—a)=2(a—b)=2(c—c+a—-b),
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while for a < ¢ < b we get
(b—a)+(b—c)—(c—a)=2(b—c)=2(b—c+a—a).

By substituting a = A +14,b = j,c = k — p we can verify that the defining equations are
homogeneous since

deg(ir}) = |\ +i —j|, deg(;rh) = |k —p—j| = |7 + p— kI,

deg(irp ")y = |(A+4) — (k—p)| = A+ p+i—k|. O

As in [11, Appendix] and [10], the inclusion Grp < 7 as a subbundle gives rise to an
injective map z* in equivariant Borel-Moore homology:

Zz; : iA? - H*Z(O)NG"‘(GrT).

If uy € H*Z(O)NG""(GrT) is the class of the cocharacter A\, or more algebraically the
h-difference operator on t acting on f € k[t] by f(x) — f(x + h\), we have

Theorem 5.12. Under ;z}, we have

125 (ir}) = e(tM'N(O) /M N(O) Nt N (O))ux

Note that the injectivity of ;27 is clear from the above.
6. Coulomb branches and Z-algebras in the adjoint case
6.1. From Coulomb branch to Cherednik algebra

We now discuss the adjoint case. For arbitrary G and N = Ad, the construction of
[10] yields a noncommutative resolution of T*T" /W in the sense of [91]. Instead of the
spherical case, we focus on the Iwahori case as well as the resulting Z-algebras.

First of all, we claim Theorem 5.5 for n = (I, Lie(I)) gives a realization of the trigono-
metric DAHA (as conjectured in many places, including [10]) and that the resulting
action on the affine Springer fibers coincides with Yun’s action. The goal of this section
is to prove these claims, and to show that for n = (G(O),Lie(G(0))) we similarly get
the spherical trigonometric DAHA, as expected in [10,8] and other places.

We now state the main theorem of this section.

Theorem 6.1. The Iwahori-Coulomb branch algebra
Alx = HYC (R 1)

is naturally isomorphic to H .
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Proof. We denote by ’R .1 the preimage of the Schubert variety FlG under the projec-
tion Ry, 1 — Flg. The algebra .AG’I is generated over Hy, . (pt) by the non-canonically

defined “fundamental classes” [RJS\,?I] for w € W, which however have a unique leading
term in the Bruhat order. This follows exactly in the same way as in the spherical case
of [10, Section 6(i)].

Note that when w = s; is a simple reflection, the restriction of the projection ’R]S\,?JI —
FIS¥ = P! outside the origin is a (profinite-dimensional) vector bundle and its closure
in R is still a vector bundle over PL. In this case we can and will take [R]S\,fl] to be
the corresponding fundamental class. In the type A setting, this was noted for example
in [4, Section 4.2.]. We will prove that .ZZI has a faithful representation in h-difference
operators on t which satisfies the relations of the dDAHA.

Consider the restriction of the projection Ry, 1 — F1 to the fixed points FI” = W. De-
note the pullback by R, ,1,7. This gives rise to a morphism ¢, : H%NCX (Rwny1r) — .Zgl
Just as noted in [4, Section 4.1.] for the G = GL,-case, the proof of [10, Lemma 5.11]
goes through word for word for these ind-varieties and we have an algebra embedding

“ HYC (R ) = HPCO (F1T)

Upon localization in the generalized roots, we obtain an injection z*(1,)~! A

HYCT (F17) = Diff (h7¢9) x C[W], similar to the spherical case handled in [10, Sectlon
5(v)]. It is clear that under the algebra filtration coming from the usual Bruhat order on
F17, this injection respects the filtrations.

In particular, similar to [10, Proposition 6.2] we get

[’RJ%&UI][R]SV?;] = [Rjg\,iﬂi“” /] + lower order terms in Bruhat order

Note that each w has a reduced expression, say w = s;, - - - s;;. In particular,

<siy <s; S8iqeSiy

Rupil - [Ryyi] = [Ry,1 71+ lower order terms.

This implies that the classes [RNS’I] above the one-dimensional I-orbits in Flg generate
jg’l together with the equivariant parameters. So it remains to check these satisfy the
right relations.

Via a similar localization computation as in the following section, [R NQ’I] is of the
form a + bs;, where 1, s; are the corresponding fixed-point classes and act as the identity
and the simple reflection on (C[H], respectively. The coefficient of s; is the Euler class of

<sl 1/ T\’,<Sl — P! divided by the tangent weight, more precisely b = O‘a—"’c Similarly, we
have a= fé:c, giving that [R=%] acts via /

(s = 1) f

%

(RIS = (1450 +c
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As the relations between the [R<%/] are exactly those from Definition 4.1, this defines
a homomorphism Hg — /T’él sending 140, — [R=%], c+> c,h— hand C[t] 3 f— f €
C[t] = H}.(pt). The relations follow from those in the usual polynomial representation
of the degenerate DAHA in the A-difference representation (15). This shows ./Zgl is a
quotient of He; faithfulness follows from [17, Proposition 1.5.6.]. O

Remark 6.2. In K-theory, a similar proposition is proven for the full DAHA with some
specific rational parameter values in [89, Section 2.5].

Corollary 6.3. The Coulomb branch algebra AZ G(O) of Braverman-Finkelberg-Nakajima
is isomorphic to the spherical subalgebra of H. p.

Proof. Let e = [W|™'> _yw € Hep = AZJ. Recall that N = Ad in this section.
Then, in the notation of Theorem 6.1, we have the left G(O) x C *-equivariant projection
Rn;1 — Rne,q(o) obtained as the combination of the projection F1 — Gr and the
inclusion N1 < Ng. It fits into a cartesian square

Rt —5— [§/G] = [6/B]

|

77/ (21)
RNo.c(0) —— [9/G]

in particular, taking I x C*-equivariant homology, by classical Springer theory we have
that

HPC (Ryo,c(0)) = Al re
To get G(O) x C*-invariants, using Atiyah-Bott we compute

G(O)xC* ~ i
H*_( ) (RNO,G(O)) :eAg,Ie Oa

Remark 6.4. This proves the speculation in [10, Remark 6.20]. For G = GL,, this was
proved by Kodera and Nakajima in [56].

Finally, we give a geometric realization of the “shift” bimodules of the trigonometric
Cherednik algebra using line operators.

Let n = (t'Lie(I),I) and o’ = (¢! Lie(I N tG(0)),1), where Lie(I N tG(O)) is the
pronilpotent radical of Lie(I). In the notations of section 5.2 denote

i+1Ri = an/
and

iy = HPC (0 R)
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Theorem 6.5. There are natural isomorphisms of graded bimodules
A e Ae e jAe

Proof. Let ¢+17€i — ﬂa be the natural inclusion. (g, s) € ﬂa belongs to i+1,f\5'i exactly
when gs € Lie(I) Ntg(O), or in other words when it is in the kernel of the map

sending (g, s) to gs mod t. We also have the cartesian square

Ri = [§/G] = [b/B]
wl ! (22)

iR

\‘G
a
~
Q

similar to (8). Now, note that by finite-dimensional Springer theory

HMC (R = i Aje
and
HEO'C (R)) = eidse
Finally ;41.4; = ei+1jie and
e_;Ae[2dim G/B] = e; 11 Ase
again similarly to the proof of Lemma 2.2. O
6.2. Localization of the spherical algebra in the adjoint case

We now analyze the Z-algebra introduced in the previous section via localization
to fixed points. In particular, we may deduce results about the associated graded of
the Bruhat filtration for the convolution algebras, using an “abelianization” procedure
appearing e.g. in [15]. We should note that similar fixed-point analysis does not apply
to the Springer action itself unless we are in a situation similar to [38,77,90,27], but we
are still able to deduce many results about the convolution action on general grounds in
Section 7.

We let G and N be arbitrary for now. Suppose P = G(O). The spaces ;R ; have natural
closed embeddings to ;R; — G(K) x&(©) tJ N(©). Moreover, there is the embedding of
the zero-section
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z: CGrg = G(K) x9©) ¢ N(0)
and, if we denote by ;Rr; the space of triples constructed using (7, V), an inclusion
t:iRrj = iR;.
The latter map gives rise to an equivariant pushforward

v HYO Ry ) — HEO(R))

(see [10, Lemma 5.17 and Remark 5.23]). The map z for G = T' gives the maps ;z;] from
Theorem 5.12. With a choice of a maximal torus T, call the union of the roots of G with
respect to T' with the T-weights of the representation N generalized roots.

Then, similarly to [10,11] we have

Proposition 6.6. We have an embedding
iy () Z-A? — A%O[ﬁ*l, (generalized roots +mh +nc)~t|m,n € Z).

Note that this is not a ring homomorphism unless © = j, but a bimodule homomorphism,
as in Theorem 5.12.

Let 7 : ;R; — Grg be the projection. We use the Cartan decomposition of the affine
Grassmannian into G(O) orbits:

Grg = | | Gy, GCrg =GO G(0)/G(0)

xexit

The closures of these orbits will be denoted by GréA = Grgy. Then the subvariety iRjS)‘ =

w‘l(Grg)‘) gives rise to a class in equivariant Borel-Moore homology as in [10, Section
2.
In particular, we have the following localization formula.

Lemma 6.7. For a minuscule cocharacter \, we have

wf x e(tN I N(O) /NI N(O) N HEN(O))
e(Ty Gryy)

125 (L) 7 0 [iRjSA] = Z

N =wAeWX

uy  (23)

Proof. We are using Borel-Moore homology, so results of Brion [14] apply and the formula
follows from Theorem 5.12. For the case i = j = 0, see [10, Proposition 6.6]. O

If X\ is not minuscule, the corresponding Schubert variety is not smooth and there

. . <A
is no nice formula for ;R

57]. To overcome this, we consider the Bruhat filtration on
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the Coulomb branch algebra A defined by the classes of [ZRJS)‘] [f]. The corresponding
Bruhat filtration on A7p is given by the classes of p such that p is in a Weyl group orbit
of a dominant coweight p/ with g’ < A. In the sequel of the paper we will write gr A
(resp gr Ar) for the associated graded algebras with respect to the Bruhat filtrations.

By [10, Section 6.(i)] the localization map ¢ : A7 — A agrees with the respective
Bruhat filtrations and one can define a map gre, : gr Ar — gr . A. To save space, we will
denote

(gre) TGRS = (gre) e RA(S)-

The right hand side of the equation (23) yields the formula for the associated graded
with respect to the Bruhat filtration, see e.g. [10, Eq. (6.3)]. We first consider the case
G = GL,,.

Theorem 6.8. Let G = GL,,, then the following hold:
(a) For ¢ = h = 0, arbitrary cocharacter X\ and a function f(y) which is symmetric
under the stabilizer of A we have the following:

A=A, 44,5
y/," —_— ys)maX( ™ S+Z’])

. _ ) (
i% (gI‘ L*) 1[]7?’1)\][.]0] = Z f H (yr _ yS)A;,—A’S—H(yT _ ys)max()\;,—)\’s,O) u

ANeWA s#T

A\

Here [’ is the image of f under any permutation in W which sends X to N. If X is
minuscule, the formula is eract without taking associated graded.
(b) For general ¢, h we have

5% (gre) TR

J— (A=A 4i)—1 .
_ Z f/HM—/\;-&-Kj =0 (Wr —ys + (N, = X, +i+L0)h+c)

<M. —A..0
NEWA Hs;ﬁ']' H?fo( o )(ys — yr + (h)

’
u)\

where the notations are as above.

Proof. We compute the right hand side in the equation (23). If A = (Aq,...,\,) €
X.(T) C X.(GL,,) we get

t'N(0) TRt N(O) M ATHIN(O) L. T AN ()

tAz—AH—iN(O) tiN(O) tAg—A3+iN(O) .. t>‘2_>‘"+iN((9)

t’\.tiN((’)) _ t)‘37)‘1+iN(O) t>‘37)‘2+iN((9) tiN(O) .. tA37)\n+iN(O)
t)\nf)\1+iN(O) t)‘"7>‘2+iN((9) tAn*ASHN(O) . tiN(O)

Whence we compute the Euler class at ¢ = h = 0:
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)max( —As+i,7)
s

(M N(0)/MN(O)NEN(0) =[] (o (; y_ Aot
s#r T s

For general ¢, h the factors with X — A\, + ¢ > j still contribute 1, and the formula for
the Euler class reads as

J— (=N i) -1

I1 I -yt =N +itDh+o).

N =X, +i<j =0

It is well known that the tangent space T) Gr’ is naturally identified with m

from which we get

max(A,—Ag,0)
eMGy) =11 I ws—w+th. O
SF#T {=0

Remark 6.9. The above formula makes sense even if f is not symmetric with respect to
the stabilizer of A\. In this case, we first symmetrize with respect to the stabilizer of A
and then symmetrize with respect to the whole group W = S,,.

For a general group G and N = Ad, we write can write the formula as follows.

Proposition 6.10. For arbitrary G and arbitrary coweight A we have:

—al 1 .
. L Moy ies T2 ™ 77 (o + (@) + 5 + OB + )
i%i (gr L*) Z f max(0,a(N))—1 /h wx
NEWA | J P | (Yo + Lh)

Proof. The proof of Theorem 6.8 is naturally adopted to arbitrary root systems. For the
interest of space, we leave the details for the reader. O

Lemma 6.11. For G = GL, and N = Ad and the minuscule coweight w,, =
(1,...,1,0,...,0) and i > j, we have

* — < m s—yr+(@E—=1)A+c
z L*l[ o= ZIC[n e Hr61,5¢1 %ul (24)

2 i RO

_ Z (Hrel,sgz(ys _y7'+(i_1)h+c)(ys_y1'+ih+c))(nrel,sel or rgI,s¢l Yr—Yst+ihtc) ’lLI
- Ic[n]v‘H:m H'r61.3¢1 Yr—Ys
(25)
* —1 <wm * —1 <wm
2y [ | = H z+1 (yr —ys + kh+c)- 2", [i+1Ri ] (26)

forj >i+2.
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Proof. This is a direct application of Theorem 6.8, recall that since w,, is minuscule we
do not need to take associated graded. A symmetrization of w,, leads to a weight

1 ifrel

0 otherwise

N o= (N L), A;:{

for some m-element subset I. In this case max(\, — X,,0) equals 1 if r € I,s ¢ I and 0
otherwise which gives the denominator. For the numerator, we observe

i—1 ifrg¢lsel
A= No+i=<i ifrel,selorr¢l,s¢l
i+1 ifrel,s¢l

and the result follows. 0O
More generally, we have the formula for arbitrary G and minuscule .

Lemma 6.12. For N = Ad and A minuscule,

2 RN = 2ov=wrewr W X Tlavy=1 W“X (27)
Z i RIS = D ov—wrewr Wf

y (Hao\/):l(ym+(i71)h+c)(y(;jih+c)) (Mo (ary— vatinte) .

Z*L;l[a‘R?/\] = Hijﬂ aca o +kh+c)- Z*L*_l[iJrlRiS)\] (29)

Lemma 6.13. Let ¢(z) = max(x + i,5) — (¢ + i) — max(z,0), then

J—i if x| = 15 — il
G =i+l —il =l i lo] <[5 -1l

e(x)+e(—x) = {

Proof. Let us first prove that for arbitrary x,d one has

d+ |z| if |z > |d],

max(z,d) + max(—z,d) = d + max(|z|, |d|) =
d+1|d| if |z| <|d|

Clearly, max(z,d) + max(—z,d) = max(|z|,d) + max(—|z|,d). For d > 0 we get
max(—|z|,d) = d and (30) is clear. For d < 0 we can rewrite

max(|z|, d) + max(—|z[,d) = |z| — min(|z|, |d]) = d + max(|z], |d]).

Now we can prove lemma, by letting d = j —i. Note that max(z+1,j) = i+max(x, j—1),
therefore
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e(z)+e(—2x) = max(z+i, j)—(x+i) —max(z, 0)+max(—z+1i, j) — (—x+i) —max(—=z,0) =
max(z,j — i) — max(x,0) + max(—z,j — i) — max(—z,0).

Now we can use (30) withd=j—4i. O
Corollary 6.14. Let G = GL,,. At ¢ = h =0 we get
i7 (gres) RIS = £Sym | f- AT II (yr — o)A
r<s,|Ar—As|<|5—1|
Proof. Consider a pair r < s. In the right hand side of Theorem 6.8 we get
(g = 4s)" X (s — ) TN = ey ) TR A,
By Lemma 6.13, the result follows. 0O
Example 6.15. Again for G = GL,,, assume that j =4+ 1, then at ¢ = A = 0 we get
w12 (gre) iR = £AAL | f- T (- g
r<s,A\r=>As
For arbitrary groups and i = ¢ = 0 we get a similar formula.
Corollary 6.16. For arbitrary G and A we have
jailgre) RN = Symyy | fATTE [T ()P RRA
aedt |a(N)|<]|j—1|

Proof. The proof follows from setting i = ¢ = 0 in Theorem 6.10 in exactly the same
way as Theorem 6.8 and Corollary 6.14. O

6.3. Proof of Theorem 4.9
In this section we restate and prove Theorem 4.9 using Coulomb geometric realization
of the trigonometric Cherednik algebra H 5 and its spherical subalgebra as Coulomb

branch algebras.

Theorem 6.17. a) Let \ be a minuscule dominant coweight, respectively X* € W, then

Ey .= eX*e=e H Mu)‘e
Yo
a(N)=1
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and

Yo + cu_)‘e

Fyc:= eX te=e H

a(X)=1 Ya
Here u’ is the translation by h\.
b) For an arbitrary dominant coweight A we get
a(A)— 1
o+ Ch
Ey.=e H H € yj—l—fﬁ )u e + lower order terms. (31)
a(A\)>0 £=0

If X is minimal in Bruhat order, the formula (31) for Ej . is exact.
¢) More generally, for dominant coweight A\ which is minimal in the Bruhat order,
and a polynomial f(y) we define

a(X)— 1
Yo +Lh—c)

E)\C *ef H H ya-l-fh e ue

a(A)>0 £=0
(32)
O (o + th+ ¢)
Fy.lfl=ef(y H H e T T u e,
a(A)>0 £=0 (Yo + Lh)

The spherical subalgebra eH e is generated by such Ey .[f] and Fy c[f].

Proof of Theorem 4.9. By Proposition 6.10 and Corollary 6.3 we can write AG 1~ Hep
and AG,G(O) = oAl ~ eH, je.

To prove Theorem 4.9(b), we identify the operator E) . € eH. e (up to lower order
terms in the Bruhat filtration) with the class z*(gr L*)*I[OREA] € 0 Al. The localization
formula in Proposition 6.10 for f =1 and ¢ = j = 0 then implies the desired formula for
E) ¢, again up to lower order terms. If A is minimal in the Bruhat order, there are no
lower order terms and the formula is exact.

The proof of Theorem 4.9(c) is similar and again follows from Proposition 6.10 for
i = 7 = 0. The last claim about generation follows from [10, Proposition 6.8] which states
that the classes z*(gr L*)*l[OROSA][ f] for dominant A which are minimal in the Bruhat
order and arbitrary f, and opposite classes corresponding to —\, generate the Coulomb
branch algebra oA},

In part Theorem 4.9(a) the coweight A is minuscule, and the formula from (b) sim-
plifies. First, we have either a(A) = 1 or a(A) = 0 for all a, so £ = 0 for all nontrivial
factors. Second, A is minimal in Bruhat order, so there cannot be any lower order terms
and the formula is exact. O

Remark 6.18. Alternatively, one can prove Theorem 4.9(b) using a tedious but explicit
computation in the affine Hecke algebra, see [53, Example 5.4, Theorem 5.9] and [56,
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Proposition 5.13]. The translation X* can be written as a product of elements of © and
simple reflections o; in some order, and one can control the leading term of each factor.
This leads to a formula for the leading term for X?*, and its symmetrization.

Remark 6.19. In this paper, we use both results from Section 6 in Section 4, and results
from Section 4 in Section 6. We would like to assure a cautious reader that such a
nonlinear narrative does not lead to circular reasoning in any proofs.

In the proof of Proposition 6.10 and Corollary 6.3 we only use the definitions of H. and
eH.e and the construction of their polynomial representations by difference operators.
Proposition 6.10 then directly follows (similarly to Theorem 6.8) from localization in the
Coulomb branch algebra and does not use any results from Section 4. In the proof of
Theorem 4.9 we then use Proposition 6.10.

The remainder of Section 4 heavily uses Theorem 4.9, but no further results from
Section 6. Finally, the remainder of Section 6 heavily uses the results from Section 4.

6.4. Factorization of bimodules

Lemma 6.20. Suppose that X\ is an arbitrary integral coweight for GL,, and d > 0. Then
there exist d coweights n(©, ..., u =1 such that (O + ...+ p@=Y = X and for alli and
j the following holds:

1) If |\ — Aj| < d then

d—[N=Nl= > 1

b =i
2) If \i — Aj| > d then (™ # p{ for all k.

Proof. We define p*) by “dividing A\ by d with remainder”. More precisely, let \; =
dg; + r; where 0 < r; < d. We define

(k) ¢+1 fork<r
;=
qi for k > r;

Clearly, ugo) +...+ ugdfl) = \;. Without loss of generality, we can assume that A; > A;.

We have the following cases:
1) A\j =dg; +rj,r; > r;. In this case uz(-k) = ugk) for k <r; and k > r;, so

Z 1:d—(7'j—7"7;):d—()\j—>\i).

k k
ko =)
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2) \j =d(¢; + 1) +rj,r; <r;. In this case ﬂgk) = ug-k) for r; <k < r; and

Z 1:T1‘7Tj:d7(>\jf)\i).

k k
ko =

3) If A\j > d(¢; + 1) +r; then u§»k) >q; +2 for k < r; and ug.k) >q; + 1 for k > r;, so
i £ ) for all k. O

Example 6.21. Suppose that d = 2, then we split A = u(©) + p(M) as follows. If \; = 2k
is even, we set ,uEO) = ugl) = k; if A; = 2k + 1 is odd, we set ,uEO) =k+1and ugl) =k.
Clearly, if A; = A; then both ’ugo) = /éo) and ,ul(l) = ug.l). If [A; — ;| = 1, it is not hard
to see that exactly one of equations ugo) = Mgo) and /%(1) = ugl) holds.

Corollary 6.22. Suppose that G = GL,, j —¢ = d and ¢ = h = 0. For an arbitrary

coweight X and ) as in Lemma 6.20 we have

d—1
(*)
sz (gre) TR =+ H k12 (gre) ™! [i+k+172f+k] + lower order terms. (33)
k=0

Proof. By Lemma 6.20 we get

H (yr - ys)d_lxr_ksl = H H (yr - ys).

r<s,|An—As|<d ks, u®)
By Corollary 6.14, the left hand side of Eq. (33) is a symmetric polynomial with leading
term (in the dominance order on the uy)

:EAd H (yr - ys)df\)\rf)\s\usort(/\)
r<s, | Ar—Xs|<d

while the right hand side is a product of d symmetric polynomials with leading terms

LA H (yr _ ys)usort(u(k))

r<s,uf® =

It is easy to see that in the above construction sort(\) = sort(u(?)) 4 ... + sort(u(4=1),
so the result follows. O

Remark 6.23. It seems reasonable to conjecture analogs of Lemma 6.20 and Corol-
lary 6.22 for other groups, at least for simply laced groups. This would have the
consequence that the isomorphism constructed in Theorem 6.26 would hold for other
groups, showing for instance that the global sections of the line bundle we construct
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equal AdG. Since the line bundle is not expected to be ample outside the simply laced
case (see [59]) we do not expect the result to hold in general.

We also note that the combinatorics appearing in the Lemma are closely related to
the root-system chip-firing of [25]. It would be interesting to make the connection more
precise. The second author thanks Pavel Galashin for correspondence regarding this
point.

6.5. Proof of Theorem 3.6
In this section we restate and prove Theorem 3.6.
Theorem 6.24. The algebras o A= have the following properties:
a) For d =0, we have ¢ AB=0 = C[TV x §W.
b) For d =1, we have g AF=0 = A.
¢) For all d the module ¢ A%=C is a free C[]" -submodule of eaC[T" x t].
d) For G = GL,,, we have g A"=0 = (o A=) = A? for all d.
Recall that by Proposition 6.6 and [10, Lemma 5.17.], we have an embedding

0A=0(G) — g ARY(T) = C[TY x 4. (34)

Lemma 6.25. Let t € t, and let Zg(t) denote the centralizer of t in G. Then the inclusion
(34) factors through ¢ AR=%(Zq(t)):

T,

0A;~0(G) » 0 AT (Za(t)) —— o AGT(T)

Proof. We use the following general result [11, Lemma 5.1]. Suppose that N is a repre-
sentation of G, consider the one-parameter subgroup E; = exp(Rt) in G. Then

RgtN ~ Rzq(1),Nt-
When N = g we get N' = Lie Zg(t), and therefore
iRGjEt ~ i Rzs(t)j
(we drop N from the notation). The chain of inclusions of fixed points
iRG]T ~ i Rp; — iRGjEt ~ i Rzow)j < iRaj

induces a commutative diagram in equivariant BM homology, where the horizontal maps
are injective and the vertical maps are isomorphisms:
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HS(Raj) —— HIY(Rygwy;) — HT(Rry)

| | | "

0 AGT(G) —— 0 AT (Za(T)) —— o AFT(T).

Proof of Theorem 3.6. a) We regard C[t|"V as the equivariant cohomology of a point,
and ¢.A"=0 is realized as the equivariant Borel-Moore homology of a certain space which
admits an affine paving by Bruhat cells. Therefore it is equivariantly formal and its
equivariant cohomology is a free module over HZ (pt). The embedding to C[TV x t] is
realized by the inclusion to equivariant Borel-Moore homology of the fixed point set.
That we land in the eg4-isotypic component follows from the fact that the localization
is defined using T-equivariant cohomology and to pass to G-equivariant cohomology we
take W-invariants. See for instance [10, Remark 5.23].

b) This is a specialization of Corollary 6.3 at i = 0.

¢) By part (a) we have inclusion g A= C e_C[TV x t] = A. By Theorem 6.5 (spe-
cialized at i = 0) this is an isomorphism.

d) This is a specialization of Theorem 6.26 at h = 0. O

6.6. The geometric Z-algebra for the adjoint representation

We are ready to prove the main result of this section.

Theorem 6.26. When G = GL,,, the Z-algebras A and B are isomorphic. For general G,
there is an injection A — B inducing ;_1.A; = ;_1B; and jA; = ;B;.

Proof. We need to prove the following facts:

(a) ;A; = ;B; as algebras

(b) s Air1 = ;Bit1 as bimodules over ;A; (resp. ;58;) and ;114,41 (resp. ;+1Bi+1)

(¢) sAit1---j-1A4; — ;A; and this is an isomorphism for G = GL,,. Note that ;B; =
iBiy1 -+ j—1B; by definition.

Part (a) follows from Theorem 6.1. Part (b) follows from Theorem 6.5.

In type A, it is instructive to review what part (b) says in order to prove part (c). We
can compute the bases in the associated graded spaces on both sides: gr;B;11 = A is the
space of antisymmetric polynomials in (C[xli, ey E Y1, yn] and by Lemma 3.24(a)
it has a vector space basis Ag parametrized by all n-element subsets of Z>o x Z. On
the other hand, in gr;4;,1 we have a basis gr[;R}][f] parametrized by a weight A and a
function f. By Example 6.15 and Lemma 3.24(c) these can be explicitly identified by set-
ting f to be the product of Schur polynomials. Finally, having a filtered homomorphism
inducing an isomorphism on associated graded spaces gives an isomorphism.

Let us prove part (c¢) for G arbitrary. By Corollary 5.6 the convolution product gives
a natural map
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sAit1 ® ® j—1A; = A, (35)

i+t Aitl j—1Aj-1

To check that (35) is injective, it is sufficient to check that it becomes an isomorphism
after localization in the multiplicative set generated by {y, + nhi+mcla € ®,m,n € Z}
which we get from [10, Remark 3.24]. Finally, we need to prove that it is an isomorphism
for G = GL,. To prove that it is surjective, we first consider the commutative limit
h = ¢ = 0 and take the associated graded with respect to the Bruhat filtration. Then
surjectivity follows from Corollary 6.22.

Next, we use parts (a) and (b) of the theorem to rewrite the left hand side of (35) as

iBit1 ® ® j—1Bj = iB;.

i+1Bit1 j—1Bj-1

By Theorem 4.18 this is free over C[yy, ..., y,]°". Since the space ;R ;11 is equivariantly
formal, the bimodule ;4; is free over C[A] ® C[y1,. .., yn]°" as well. Therefore (35) is
surjective for general ¢, h. O

Remark 6.27. For G = GL,,, Simental [83] classified Harish-Chandra bimodules for the
rational Cherednik algebra and proved that the shift bimodule is the unique Harish-
Chandra bimodule which sends polynomial representation to the polynomial representa-
tion. In particular, this implies an analogue of Theorem 6.26 for the rational Cherednik
algebra.

It would be interesting to know if the methods of [83] can be generalized to the
trigonometric case to give an alternate proof of Theorem 6.26.

Combining the above result with the Proj construction we get

Corollary 6.28. When G = GL,,, the graded algebra @ij,iA?:c:O is naturally isomor-
phic to the homogeneous coordinate ring of Hilb" (C x C*) for any j.

Proof. Specialize the above theorem for ¢ = A = 0 and use Theorem 4.18. O

Remark 6.29. One should also compare this to the results in [12] which essentially show
iA; = O(j — i) in the case G = GL,, N = Ad®V* for £ > 1, using factorization and
results about the Hilbert schemes on A,_1-resolutions.

6.7. A flag Z-algebra

In this section, we sketch to what extent the construction of ;A; extends to the
flag level, i.e. when we replace g(O) by the standard Iwahori subalgebra and G(O) by
the Iwahori subgroup I. This gives a Springer-theoretic construction of the “one-step”
shift bimodule ;_1.4;. On the level of affine Springer fibers, the analogous geometry is
discussed in Section 7.4.
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Let evgl(b) = i be the standard Iwahori subalgebra. Then ev, '(0) C i. Consider the
sequence of subalgebras

g0 :=0(0) D g1/ =12 g1 :=1g(0) Dt D t?g(0) D i D ---

Then, as k-vector spaces (but importantly, not as Lie algebras) we have the subquo-
tients

i€ Z+1/2

e
8i/9i =
e n., 1%

Example 6.30. For G = SL, we have
(’)(’)Dmmjmmjm
m O m m m2 m

so that g1/2/91 = b, g1/g3/2 =n_.

6.7.1. Bimodules
Consider now the spaces

_ 1
iRi = {[g,s] € G(K) x" gilgs € g;}, i € §Z
And
iRi = {lg, 5] € G(K) xF) g;|gs € g;}, i € Z.

Proposition 6.31. Let [b/B] = [g/G] be the Grothendieck-Springer resolution. Then for
1 € Z we have the cartesian diagrams

= P
i+1/2Riy172 — [b/B]

| |

iR — l9/G]

In particular,
Ai = el e
by Springer theory. On the other hand, it is easy to see that
¢~1(0) = {[9, 5] € G(K) x g;|gs € tg:;} = i1 R

and
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(ro 1/’)_1(0) = {[g,s] € G(K) x! 9it1/2(95 € giv1} = i+17€i+1/2~
In particular,
i1 A =e_ i+1/2~’2(z'+1/2A €e—=e i+1¢2‘vi+1/2 €.

From what we have before,

WA
is the trigonometric Cherednik algebra when ¢ € 1/2 + Z. The algebra for ¢ € Z is not
a Cherednik algebra, but indeed a matrix algebra over the spherical Cherednik algebra,
as in [93,92].
7. Generalized affine Springer theory

7.1. Generalized affine Springer fibers

In this section we generalize the Springer action from [27,43] to the line operators
discussed above. Let P be a parahoric subgroup, Np be a lattice in N(K) stable under
P. Given this data, denote n = (P, Np). Further, suppose that

1-G—-G—Gr—1

is an extension of algebraic groups and that P is a parahoric subgroup of G(K) which
fits into an extension

1-P—-P—Gpr(O)—1
so that P N G(K) = P. Let G be the preimage in G(K) of Gp(0).

Definition 7.1. Let v € N(K). The generalized affine Springer fiber of v is the ind-
subscheme of Flp defined by

2 M, :={g €Flp|g~'v e Np}.

Remark 7.2. Recall that if N = Ad, P is a fixed parahoric subgroup, Np = Lie(P),
oM, = Sps, the classical affine Springer fiber for P.

Definition 7.3. The orbital variety of v € N and n = (P, Np) is

77@7 = Q(IC)’)/ N Np.
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Remark 7.4. Note that the orbital variety only depends on the lattice Np. However, we
always use it in conjunction with P, explaining the slightly redundant notation with 7.

In particular, we have

Lemma 7.5 (/27,/3]). We have an isomorphism of stacks [,,0/P] = [G,\,M,], where
G, is the stabilizer of v in G(K).

Proof. Let , X, = {g € G2 x C*|g~'.y € Np}. Then there are maps

nXy

nM nOx

making , X, a P-torsor over ,M, and a G,-torsor over ,O,. O
Lemma 7.6. Suppose , M, is finite-dimensional over C. Note that the K-group G admits
a Néron model G, /O. We have that

(1) wMy admits a G -equivariant dualizing compler w, nr., .

(i) For K, C G,(O), the equivariant Borel-Moore homology H (hMy) =:
HP (K\,X,/P) is well-defined. Here ,X, = {g € GR x C*|g~ .y € Np} as before.

Proof. (i) is clear by finite-dimensionality and Lemma 7.5. For (ii), we can approximate
nM., by finite-type K -stable varieties, and then take the colimit. O

Example 7.7. Suppose N = Ad, and ~ is split regular semisimple. Then G, is a split
maximal torus in G(K), in fact the loop group of a split maximal torus ' C G. The
equivariant BM homology H (Spv) is studied in the next section.

Remark 7.8. We may extend the setup to the flavor-deformed equivariant version by con-
sidering ,0,, := Q,(g x C* . and its quotient by P x C* instead. We leave constructions

of these extended notions to the reader or refer to [27].

Suppose that G = G x C*, so Gg = C* is the flavor group above. The group G acts
on N via v — hg~'vg. We denote the resulting GASF

M, =GN Np/P
Since [h] = [t?] € X*(C*) = Z we see that M, splits into components
My-ay = {g € Grg |t'g ' vg = g~ 't"vg € 6(0)} = Sp;-a,.

We recognize this to be the affine Springer fiber of t~%y in Flp, or in other words that
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M, = I_l Mia.
deZ

7.2. Springer action from the Coulomb perspective

We now define the Coulomb branch version of the Springer action, and in particular
the geometric action of our Z-algebra. Let K be as before and X, as in Lemma 7.6.

Theorem 7.9. The following convolution diagram defines naturally associative maps

P (er K. Ky
i m'(an’) ® Hy 7 (y My) — Hy (nM“/)‘

n Ry X Oy —r P Ry % 0s) — a(p~ Ry Xy 0y)) —"= 0,

L |

G(K) xpr Npr X O, +——— G(K) x ,y O,

Herep: (g,8) — ([g,s],5), q is the quotient by the diagonal action of P’ and m is the
map sending [g, s] — g.s.

Proof. Compare this to the proof of [27, Theorem 4.5.]. We explain the maps induced
in BM homology by p, g, m. Consider the space

7,7)77/ = {(9,8) S Q,CC) X (C;E)t X Npl|g_1.8 S NP}

and note there are maps 7 : ,P,y — Nps and (g,s) — s and 75 : ,P,y — Np given by
(g,s) — g~ '.s. Then consider the G, /K,-torsor 7 : K.,\,y X, — Np and define

17/‘7'%[(7 = W*wKw\,,wa [—2 dlmE + 2 dim K’Y]’

which is an object in the P x C; -equivariant derived category of Np supported on ,y Q..
First of all, we have the “pull-back with support” map p* (see [10, Section 3(ii)])

" Hp e xprcy, R X N (@, ) B (o P, )

PxC, P'xC, * !
g ]J*_><1 ro (anl) ® H* bl (K’Y\"?/X’Y) — HEXC;thE,XC:‘(Ot (777377/77'("1(77/}'7,[(7)),
(36)

! | .
Further, we have a map m,/Fy k., — Ty, F, k., and since ma = m o g, we get

s HY
I+ PxC xP'xCX,

(npn’aﬁ!ln/fv,Kw) - H£>4(CX (a(nPwy), m!n]:%Kw)

rot

Finally, m is (ind-)proper because its fibers are closed subvarieties of a partial affine
flag variety, so that using the adjunction mym' — id we get a map
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PxC)X K

PxCJX, ! XL ot — Y
o (Q(npn’)»m'n]:%Kw) — Hy (K \nXy) = Ho 7 () M)

(mogq).: H
See [27,43] for more details, for example the proof of associativity of the maps. O

While the convolution diagram in Theorem 7.9 is rather abstract and the maps in
Borel-Moore homology involved are defined sheaf-theoretically, in easy cases it is possible
to analyze the action as follows. Similar to [27, Section 4.2], we define the Hecke stack
for v, n which has C-points

nRg/((C) = {(s2,9,51) € ;05 X G(K) X yO,|g.51 = 52} /P.

Here the quotient is by the action h.(s2,g,s1) = (s2,9h~ % hs1). There is a natural
Schubert stratification of ,R}, inherited from ,R,, where

~
an/ — an’

via [$2, 9, $1] — [g, $1]. Similarly we have maps

R,
/ \ (37)
ﬂM’Y n’ (O)'y

We will use this diagram later on in our computation of certain shift maps.
In the adjoint case, the name “Springer action” is warranted, as it coincides with the
action defined by Yun, Oblomkov-Yun [77] (and Varagnolo-Vasserot [89]):

Theorem 7.10. Let N = Ad and n = (I, N1) = 0. Then the action of the algebra .,ZG,I
on H (M) defined by Theorem 7.9 coincides with the one defined in [77] on the equiv-
ariant homology of affine Springer fibers, under the isomorphism of Theorem 6.1.

Proof. Theorem 6.1 shows that the Springer action of simple reflections in the affine Weyl
group is the same. The equivariant parameters act by Chern classes of line bundles on
the affine flag variety, and that the relations are the same follow from Theorem 6.1. O

The novel feature in allowing arbitrary 1,7’ shows the following.
Corollary 7.11. The convolution product in Theorem 7.9 gives maps
K, K,
J'Af ® H. (Mti'y) — H, (Mtj'y)

that naturally assemble into an action of the Z-algebra B" = @Kj j.Aih Moreover, the
action in Theorem 5.5 not including loop rotation, i.e. setting h = 0, defines maps

HEORE ) x HE (M) — HS (M3,
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In particular, the above corollary gives a geometric construction of “column vector”
modules for our geometric Z-algebra B = @, ;¢ i4;-

7.3. The adjoint case

In the case N = Ad, the construction of these affine Springer theoretic modules
is also closely related to the construction of a commutative (partial) resolution as in
the previous sections, in the following way. For G = GL,, by the results of [12], the
commutative limit ;;4.47=C is identified with the sections of O(d) on the Hilbert scheme
of points Hilb"(C* x C). In particular,

Proj @ i+aA=0 = Hilb"(C* x C).
d>0

In general, we have the following proposition.

Proposition 7.12. Let h = 0. Then every v € Nx and a choice of K as in Theorem 7.9
gives a quasicoherent sheaf .7-'5” on the partial resolution of the Coulomb branch given

by

Proj EB i+a AP0,

d>0

Corollary 7.13. When G = GL,, the above construction gives a quasicoherent sheaf on
Hilb"(C* x C) associated to v € N.

It is in general hard to compute which sheaf this is. In all examples we have checked,
this should be a coherent sheaf for regular semisimple elements. This is a conjecture that
we discuss in Section 8.

Recall that Lemma 2.13 tells us that the support of ]-'57 is determined by K, i.e.
the equivariance we consider, as well as the splitting type of ~.

Example 7.14. When v = zt? as above, we get twists of the “Procesi bundle” as shown
in [54] which are supported everywhere. See Proposition 8.11 for the precise statement.

When 7 is elliptic, these sheaves are supported on the punctual Hilbert scheme over
(1,0) e C* x C.

7.4. Action on representations

—~/
Let Sp., = {gIlgvg~" € tg(O)}. Consider the Springer module M., = Hf{”(Spw). Then
we have a natural map M, — M, given by inclusion. There are also maps

M, — 3, — I,
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given by inclusion, or in other words convolving with the identity or point class in ; /QAV:[
and then by the point class in 1.13/2.

There are also natural Gysin maps Z\ZW — J\,Zt’7 — Mw- The first one is codimension
zero, and the second one codimension dim G/B. Composed, on the level of equivariant
parameters, these look like the square of the Vandermonde determinant A. The issue
arises from the normalization in the embedding to difference-reflection operators, in
which the point class of 1.23 /2 is naturally identified with A (and a Cartan part), but
acts as the identity on components (effectively, it cuts down the tangent spaces of the
components by A).

Note also we have two projections

— —_~
Spt, — Sp,, Sp, — Sp,

the first one of which is a fibration, and the second one has fibers which are usual Springer
fibers (stratified fibration). Effectively, the two line operators (for (1/2,1) and (1,3/2))
in the flags get squeezed down to a single one on the spherical level (the one for (0, 1)).

Lemma 7.15. We have dim Sp,,, = dim Sp,, + dim G /B.

Proof. By a result of Bezrukavnikov [7] the dimension of Sp., is given by

@im Sp, = 3 (vaa(y) - k(a) + dim(H")) (39)

where w € W is such that Z(v) is of type w, h™ denotes the w-invariants in h and v,q(7)
is the valuation of

det (ady : g(K)/Z () — a(K)/Z(¥))

It is easy to see that changing ~y to ¢y does not change w. The matrix ad~y is multiplied
by t which changes v,4() by |®| = 2dim G/B, and the result follows. O

Lemma 7.16. Let 7 : é?’tv — Spy, be the natural projection. If v is elliptic then 7T_1(Sp,y)
is an irreducible component of Sp,.. More generally, if v is reqular semisimple, and C

is an irreducible component of Sp.,, then 7= Y(C) is an irreducible component of é\ﬁm.

Proof. By the proof of Lemma 2.2 the projection 7~*(Sp.,) — Sp,, has fibers G/B at
every point. Since v is elliptic, Sp, is irreducible and hence 7T_1(Sp,y) is irreducible as
well. If C' is as in the statement of the Lemma, the same proof goes through.

Furthermore, all components of Sp/; have dimension dim Sp,,. By Lemma 7.15 we
have

dim 7r_1(Sp7) = dim Sp,, + dim G/B = dim Sp,.,,
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and the result follows. O

Lemma 7.16 allows us to construct an important correspondence between Sp. and
Spy.,- By the work of Tsai [87], there are W many irreducible components up to the

centralizer action in é}v)t,y. Furthermore, we expect the following;:

Conjecture 7.17. (/87, Conjecture 8.6]) The Springer action on H, (é\f)W) yields a regular
representation in top-dimensional homology spanned by the classes of the irreducible
components.

In particular, for v elliptic there is a distinguished component W*I(Spv) and another
component biregular to Sp,,, and (assuming Conjecture 7.17) one can define a corre-
spondence in Borel-Moore homology sending the former to the latter (for example, the
symmetrizer e would suffice). More generally, fix a component C' as above and note that
the lattice part of the centralizer of v acts transitively on the set of these components
[48]. Now the class of 77 1(C) can either be sent to the class of any lattice translate of
7~1(C), or by the symmetrizer in the finite Weyl group to a one-dimensional W-invariant
subspace of the BM homology of Sp,.,.

This leads to the following;:

Proposition 7.18. Assume v is elliptic and G is simply-connected, and assume Conjec-
ture 7.17 holds for . Consider the correspondence e[ﬁ_l(Spv)] *— between Sp., and Spy., .
The action of this correspondence in homology corresponds to the action of some class in
i+1Ri as in Theorem 7.9, which sends the fundamental class of Sp., to the fundamental
class of Spy .

Proof. Lets construct a cycle IV in ;41 R} such that correspondence (37) with the class I
sends [Sp,] to [Sp,,]. First, we define I' C ;11 R as the lift of the graph of the embedding
of Sp,, into Spy.,. The lift I" is defined as the locus of triples (s2, g, 51) € i+1R;] such that

Let n = (G(0),t'g(0)), ' = (G(0),t*1g(0)) and 7 = (I,t'g(0)). In particular,
1R} = "RZ/ and on the homology of the fibers of the projection 7 : nR% — 1R}
there is an action of W. The push-forward along the projection 7 is the projection onto
the W-invariant part of the homology.

Let q : ,,R% — 750, be map from the corresponding diagram (37). The previous
proposition implies that the map ¢ restricted to [ = 7~YT) is dominant over one of
irreducible component of 50O,. By Conjecture 7.17 the set of irreducible components
of 50, is a regular representation of W. Thus there is w € W such w[f] projects

dominantly onto ,s Q.. The class IV = 7, (w.[I']) satisfies required properties. O

Corollary 7.19. Under the assumption of the previous proposition we have the relation
between the fundamental classes:
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[Spt“rl'y] € 71'71./471' * [Sptl'y]
8. Finite generation and examples
8.1. Finite generation conjecture

As we saw in Section 7, in particular Theorem 7.9, the space

o0

F, =P H.(Spyx,)
k=0

is a graded module over the graded algebra @7 0.A4. Equivalently, F., defines a quasi-
coherent sheaf F, on Proj @y, 0Aa-

Conjecture 8.1. The module ¥, is finitely generated and the sheaf F., is coherent.

Note that by Theorem 2.12 the homology of Sp,s., is finitely generated over ¢.Ag. For
G = GL,, the graded algebra @, 044 = B, A% is generated by ¢4 and g A; = A,
so Conjecture 8.1 is equivalent to saying that for a given ~y there exists ky such that F,
is generated by @20:0 H.(Sp;.,) under the action of g Ag and o.A;.

Below we prove the conjecture in some special cases.

Theorem 8.2. Conjecture 8.1 holds for G = GL,, and v = diag(so, ..., sn) for s; # s;.
Proof. This follows from Proposition 8.11 below. 0O

Example 8.3. Let G = GL, and

Then

Spyay 2| | Cata
Z

where each Cyy; is an infinite chain of P9+!, consecutive members of which intersect
transversally along a P?. These P? are Spaltenstein varieties of d-planes in 2d-space
stable under a nilpotent element with Jordan blocks of sizes (d, d), motivically equivalent
to projective spaces P?. The inclusion maps are again embedding the chains into one
another and they are regular embeddings (because they are effective Cartier divisors).

Note that the direct sum of homologies of these P41 surjects onto the homology of
Spya.- Let us prove that the module F., is generated by the homology of Sp., under the
action of g Ap and o.A;.
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Indeed, Sp,, is just a discrete set of points in bijection with the affine Weyl group. Its
homology is a free rank two module over the lattice of translations.

In case of elliptic v the finite generation conjecture follows from the stable of o.4¢-
cyclicity of the homology of Spx.,:

Proposition 8.4. Let us assume that v is elliptic, Conjecture 7.17 holds for t*~ and
[Spye,] € Hi(Spyk,) is the fundamental class. If there exists N such that H.(Spsk.) =
C[T*TYW - [Spy,] for k> N then Conjecture 8.1 holds for F..

Proof. The actions of g4y = C[T*TV]" and oA; on F. commute. Hence by Proposi-
tion 7.18 the submodule @x> N Hx« (Spyx.,) is generated by .4 and o.A; from [Sp,~.,]. The
module @k« H.(Spyr.,) is finite dimensional. O

The subalgebra C[t}"" is isomorphic to the cohomology ring H*(Grg), it acts on
H, (Spv) by cap product. It is natural to conjecture that a stronger version of the previous
proposition is true for G = PGL,,.

Conjecture 8.5. Let g = Lie(PGL,) and v € g(O) is an elliptic reqular semisimple
topologically nilpotent element. Then

If G = GL, or G = SL, and v € g(0O) is an elliptic element then Sp. has many
connected components and the group mo(G,) permutes the connected components. In
the light of aforementioned Theorem 2.12 it is natural to propose

Conjecture 8.6. Let g = Lie(GL,,) or g = Lie(SL,) and v € g(O) is an elliptic regular
semisimple topologically nilpotent element. Then

H.(Sp,) = C[T"T"]Y [Sp, |
Remark 8.7. The conjecture is false outside of type A since there are examples of elliptic
affine Springer fibers with homology of not of type (p,p) [48,77]. Note however that
H.(Sp,) is always finitely generated under C[T*TV]" by [96] (see also Lemma 2.13).

For the homogeneous elements Conjecture 8.6 is known [78] and one can deduce

Theorem 8.8. Conjecture 8.1 holds for G = GL,, and equivalued 7y, ,, with characteristic
polynomial ™ — y™, ged(m,n) = 1.

Proof. The affine Grassmanian Grg has m1(GL,) = Z connected components Grg =
GrOG XZ. Respectively, we have Sp,, = Spg X 7.
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Observe that if v, ,, is equivalued with characteristic polynomial 2™ —y" then tk'ym,n

kntm _ gn The compactified Jacobian

is equivalued with characteristic polynomial =
Jm/n of the one-point compactification of the planar curve {z™ — y"} is irreducible
and homeomorphic to Spgm’n [78]. Moreover, Grgy = Grpgr, and the Spgm_’n is the
corresponding Springer fiber.

It is shown in [78] that for Spgm" Conjectures 7.17 and 8.5 are true. The group
m0(G,,,,) = Z acts transitively on the connected components of Sp., hence Conjec-

ture 8.6 is true for Sp, . Thus the theorem follows from Proposition 8.4. O

Example 8.9. For G = GL2 and v = 7 2 we recover the Z-algebra module from Exam-
ple 4.17.

8.2. Examples in type A

In the case G = GL,, the sheaf 7., can be described in terms of geometry of Hilb,, (C* x
C) for some homogeneous 7.

Proposition 8.10. Let v be homogeneous of slope (kn + 1)/n. Then F, is isomorphic to
the restriction of O(k) to the punctual Hilbert scheme at (1,0) € C* x C.

Proof. The localized equivariant homology HE™ (Spv) affords the unique finite-

dimensional representation of €H _ kx+1€ constructed in [6], as was checked in [77,90]. By
Lemma 2.13, F, is supported on this punctual Hilbert scheme (i.e. the corresponding
fiber of the Hilbert-Chow map). Completing our Z-algebra at a neighborhood of the
identity in TV, we get a completion of the rational Cherednik algebra and the corre-
sponding bimodules, for GL,, with parameters given by integral shifts of (kn+1)/n. The
Gordon-Stafford construction then implies [33,34] that the corresponding sheaf on the
punctual Hilbert scheme coincides with O(k). O

Proposition 8.11. Let v be homogeneous of slope k, or more generally equivalued of valua-
tion k. Then F. is isomorphic to P@O(k) where P is the Procesi sheaf on Hilb™ (C* xC).

Proof. For equivalued v of valuation k the main result of [54] identifies the equivari-
ant Borel-Moore homology HY (Sp.,) with the space of global sections of P @ O(k) on
Hilb" (C* x C) as a module over the algebra of global functions

0Ao = C[T*TVIV =ClzE, ... 25,91, ... ya]",
By the work of Haiman [41] we get:

I’IO(Hﬂbn((C>< X (C),P X O(kﬁ)) = ﬂ(l — xi/mj,yi — yj>k,
i#] (39)
H'(Hilb"(C* x C),P® O(k)) =0, i>0.
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By Theorem 3.6 the graded algebra (.4, is generated by the degree 1 component g.4; = A,
where A is the space of antisymmetric polynomials in C [xli, I P T
It is easy to see that by (39) we have a correctly defined map

A® H(Hilb™(C* x C),P ® O(k)) — H°(Hilb"(C* x C),P @ O(k + 1)),

and it follows from [54] that this agrees with the convolution A1 @H[ (Sp.,) = H[ (Sp,,)-
This completes the proof. O

For general + elliptic of slope 7, the situation is as follows. Whilst our construction

gives a sheaf ¥, which is coherent by Proposition 8.4, we do not know how to identify
this sheaf on Hilb"(C* x C). Indeed, a variant of this problem already appears in [33,
Problem 5.5].

8.3. Beyond type A

For general GG, both the computations of the cohomology of affine Springer fibers
and the sheaves on égv)gv are very complicated. It would be for example interesting
to compute the sheaf one gets from the Bernstein-Kazhdan example of [48, Appendix].
Nevertheless, we have the following analogue of Proposition 8.11 for general G.

Theorem 8.12. Let G be arbitrary and v equivalued of valuation k. Then we have the
isomorphism of graded modules

F, = @HI(SPN"Y) = @ ﬂ (1—a,ya)*
j=0 :

=0 acd+

over the graded algebra @ 0A(0)a ~ @ eaNycp+ (1 — ¥, ya)?. As a consequence, the
corresponding sheaves over Proj @ 9. A(0)q = €gv are isomorphic as well.

Proof. The proof is similar to Proposition 8.11. By the main result of [54] the isomor-
phism holds for each j separately on the level of modules over ¢.A(0)q = C[T*TV]W.
The comparison of the action of ¢.4(0)y follows from Theorem 3.8 and the con-
structions in [54,27]. More precisely, the result in [54] identifies AJHT (Sp,;,) with
Naco+ (1 — @, ya)*™ inside C[T*TV] = H](Grr) using GKM localization. The lat-
ter has a multiplication structure which coincides with convolution on the Coulomb
branch for T with zero matter. The fact that the convolution action for ¢.4(0)o respects
the localization is [27, Proposition 4.15.]. O

Let G be quasisimple of adjoint type. Respectively, let cox € W be the Coxeter
element of the Weyl group of G and n be the order of cox. For any m co-prime with
n there is a regular semisimple element 7y, , € g(O) which is homogeneous: Y, n (A -



76 E. Gorsky et al. / Advances in Mathematics 464 (2025) 110143

t) = am/n Adgex) Ymn(t), g(A) € G. The element v, , is unique up to rescaling and
conjugation, an explicit construction of 7, , can found for example in [77]. The element
Ym,n 18 equivalued of valuation m/n.

The stabilizer in Gy x G, is given by L = G, and it acts naturally on Spwmm. It

’Ym,n
is shown in [77] that dim SpST:‘n = 0, the fixed points are isolated and that the localized
homology HEm (Sp,,, ) ® C(R) is generated by tautological classes Hg (Grg) from the
fundamental class [Sp,,  ]. We expect the generation statement in the non-equivariant
setting:

Conjecture 8.13. Let G, Lie(g), Ym.n € 9(O) are as above, then
H*(Spvm,n) = H*(Grg) N [Spvm,n]'

Note also that this “Coxeter case” gives the so called spherical simple modules of the
trigonometric DAHA, as first observed in [90]. More generally, the slopes with so called
regular elliptic denominators yield (spherical and other) finite-dimensional modules of
the trigonometric DAHA [90,77]. Since + elliptic implies ¢y elliptic, one sees that the
tensor products by the shift bimodules ;_158; send finite-dimensional modules to finite-
dimensional modules, which one could also deduce from the theory of shift functors for
trigonometric DAHA like in [5]. As far as the authors are aware, this theory is still
undeveloped (but see [57] for some progress), but would potentially give insight on the
m = 1,n = h case of Proposition 8.10 for other groups.
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