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Abstract. Degenerating the action of the elliptic Hall algebra on the Fock

space, we give a combinatorial formula for the Shalika germs of tamely ramified
regular semisimple elements γ of GLn over a nonarchimedean local field. As

a byproduct, we compute the weight polynomials of affine Springer fibers in

type A and standard orbital integrals of tamely ramified regular semisimple
elements.

As further corollaries, we show that point-counts of compactified Jacobians

of planar curves are given by non-negative integral polynomials, and prove a
virtual version of the Cherednik-Danilenko conjecture on the Betti numbers

of compactified Jacobians. Our results also provide further evidence for the

Oblomkov-Rasmussen-Shende conjecture relating compactified Jacobians and
HOMFLY-PT invariants of algebraic knots.

Following known connections between our methods and the Hilbert scheme
of points on A2, we conjecture that the Shalika germs of γ correspond to

residues of torus localization weights of a certain (quasi-)coherent sheaf Fγ on

Hilbn(A2
), thereby finding a geometric interpretation for the germs.
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1. Introduction

Shalika germs are a family of functions on a neighborhood of the identity in
an algebraic group G defined over a nonarchimedean local field F . They were
introduced in [71] and further studied in for example [19,47,67,78]. We refer to [45]
for a survey. In particular, given f ∈ C∞c (G(F )) an Iwahori bi-invariant function
on G, the Shalika germ expansion of orbital integrals [19,71] states that

Proposition 1.1.

Iγ(f) = ∑
O∈G(0)

ΓO(γ)IO(f)

for any γ ∈ U , a neighborhood of the identity in G(F ). Here G(0) is the set of
unipotent orbits in G(F ), Iγ , IO are the corresponding orbital integrals and ΓO ∶
U → C are functions called the Shalika germs.

See Corollary 2.7 for a more precise version of the Shalika germ expansion we
will use.

Computing the Shalika germs for a given group G is an important, in gen-
eral open problem, which can be used for example to deduce formulas for regular
semisimple orbital integrals (see Section 2). When G = GLn and γ is tamely rami-
fied, these orbital integrals include the weight polynomials of corresponding affine
Springer fibers for type A and compactified Jacobians (see Theorem 1.10). Under-
standing the Shalika germs for general γ is also essential to the determination of
precise character values of G(F ), see for example [57] for GLn and [74] for general
G.

In the present paper, we give an explicitly computable algorithm to compute
the Shalika germs of tamely ramified elements in GLn(F ), using the representation
theory of the elliptic Hall algebra introduced in [11]. This is an algebra whose
definition was motivated by automorphic forms over function fields, although its
appearance in the present paper is far from obvious. Surprisingly, it follows from the
relation of the elliptic Hall algebra to various knot invariants (recalled in Section 5)
that the final closed-form answer for the Shalika germs in the totally ramified case
is given by certain HOMFLY-type invariants of algebraic knots. For more general
tamely ramified elements, one gets certain linear combinations of these invariants.
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This seems to be a completely new connection between harmonic analysis on p-adic
groups and knot invariants, which we hope to explore further.

Our main results are stated in Subsection 1.1 below. The impatient reader
may now skip there, but we take the liberty of providing some context for our
results before proceeding. The starting point for our method is as follows: In [79],
Waldspurger gives a rather complicated inductive formula for what we call Steinberg
germs (see Theorem 2.19 and Section 6) of γ in this case, built inductively from
elements in GLn′ , n

′∣n. These germs are related to the original Shalika germs by
an a priori complicated change of basis, so in principle the algorithm of loc. cit.
gives formulas for the Shalika germs as well.

The algorithm in [79] rests on a clever choice of test functions and a version of
”Kazhdan’s lemma”, using which one can bootstrap computation of the germs to
what is essentially just linear algebra. A similar idea is used again by Waldspurger
in [80] and also by the second author in [76] based on a lemma of Kim-Murnaghan
[43] to obtain less precise results for general groups. Waldspurger mentions similar
strategies due to Kazhdan, Henniart, and others. The issue is that the resulting
linear algebra is usually cumbersome to carry out and many steps of the algorithm
have no obvious conceptual meaning. As Waldspurger writes in [79]:

L’auteur est convaincu qu’il existe une bonne combinatoire, moins
näıve que celle utilisée ici, qui devrait permettre de calculer les ger-
mes. - J.-L. Waldspurger [79]

Our method of computation of the germs will use Waldspurger’s techniques from
[78,79]. Notably we replace, or rather extend, the PSH-algebra calculations in loc.
cit. by the elliptic Hall algebra, the combinatorics of which provide the ”bonne
combinatoire” sought after by Waldspurger. This greatly clarifies the resulting
computations, giving a formula which is essentially computable by hand 1.

More precisely, much of this paper is concerned with a symmetric function in
infinitely many variables which we denote by fγ , attached to any tamely ramified
regular semisimple element γ ∈ gln(F ). The expansion of fγ in different bases
of the ring of symmetric functions encodes both the Shalika and Steinberg germ
expansions of γ, giving a simple explanation for the change of basis from above (see
Theorem 1.6 and the discussion below). The fγ for any tamely ramified γ as before
can be constructed using the shuffle algebra action of the elliptic Hall algebra on
the Fock space of symmetric functions depending on two parameters, constructed
in [26,69]. Details are explained in Section 6.

We have called fγ ”the master symmetric function” for lack of a better name.
When γ is totally ramified, one of our main results identifies fγ , appropriately
normalized, with another symmetric function which we denote fp⃗,q⃗. The symmetric
function fp⃗,q⃗ will be introduced in Section 5. A closely related version of fp⃗,q⃗ has
appeared before in the knot theory literature; fp⃗,q⃗ is the t→ 1 limit of a symmetric
function implicitly appearing in the definition of the superpolynomial for an iterated
torus knot in the work of Cherednik–Danilenko [13,33]. A precise definition is given
in Sections 4 and 5.

In the papers [78,79], Waldspurger already implicitly introduces the master sym-
metric function fγ , but mostly as a bookkeeping tool which turns out to be helpful

1Sage code with several examples is available at http://math.aalto.fi/~kivineo3/Shalika.
zip and in the arXiv submission.

http://math.aalto.fi/~kivineo3/Shalika.zip
http://math.aalto.fi/~kivineo3/Shalika.zip
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because of the relation to calculations in the Hall algebra of GLn(Fq), under its in-
carnation as Zelevinsky’s PSH-algebra [81]. Apparently, the relationship of Shalika
germs to this Hall algebra was first suggested to Waldspurger by B. Srinivasan. We
note that the papers [78, 79] a priori employ the group GLn(F ) instead of the Lie
algebra gln(F ). However, their connection is straightforward and is explained in
Section 2. We make the case that the master symmetric function, in its ”degener-
ate” and ”deformed” incarnations (cf. Definitions 5.3, 5.10) is a completely natural
object and arises as a vector in the Fock space representation of the elliptic Hall
algebra.

As we explain in Section 8, expressing the Shalika germs using fγ has strong
implications for integrality and positivity properties of the germs as well as the or-
bital integrals of the elements in question, as has been expected by various authors.
Through known connections between the elliptic Hall algebra, Hilbert schemes of
points, and HOMFLY-type knot invariants (see e.g. [32] for a survey) we also find
a new conjectural incarnation of the Shalika germs of GLn in terms of the Hilbert
scheme of points on Hilbn(A2), which we hope will help us understand the struc-
tural properties of the germs in general.

1.1. Main results. Let us now state our main results in some detail. Let G = GLn,
g = Lie(G) = gln. Let F be a complete discrete valuation field, with O its ring of
integers, mF the maximal ideal, and k ∶= O/mF the residue field. We endow F and
any of its finite extensions with the standard valuation. Let γ ∈ g(O) be a regular
semisimple element that lives in a maximal torus that splits over a tamely ramified
extension. Let F (γ) be the commutative algebra generated by γ in the algebra of
matrices. For the sake of simplicity, in the introduction we will assume that γ is
inertially elliptic, meaning that F (γ)/F is a totally ramified degree n extension.
We refer to Remark 1.7 for the general case.

Let u be a uniformizer of F (γ) such that un ∈ F [46, Proposition II.5.12]. It
might be inspiring to think of the example when F = k((t)) and u is of the form

(1.1) u =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 t
1 0 ⋯ 0 0
0 1 ⋱ 0 0
0 0 ⋱ 0 0
0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

so that un = t. In general, that F (γ) is a complete DVF guarantees that we can
always write

(1.2) γ = ∑
r∈ 1

nZ≥0
aru

nr,

where ai ∈ O×. Consider the set of root valuations

RV (γ) ∶= {r ∈ 1
n
Z≥0 ∣ r /∈ spanZ{1, r′ ∈

1

n
Z≥0 ∣ r′ < r, ar′ /= 0}} .

The set RV (γ) is finite; in fact one can check that

RV (γ) = {valF (σ(γ) − γ) ∣ σ ∈ Gal(F sep/F ), σ(γ) /= γ}.

We also define two other sets of invariants of γ as follows:
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Definition 1.2. Write RV (γ) = {r1, r2,⋯, rk}, where r1 > ⋯ > rk. Let rk =mk/nk
be the reduced expression, and inductively write ri = mi/nini+1...nk, where mi ∈
Z>0, ni ∈ Z≥0 are coprime. We call (m1, n1), . . . , (mk, nk) the Puiseux pairs of γ.

Define another sequence of pairs of integers (p1, q1), . . . , (pk, qk) related to the
previous one by pi = ni, qi = mi −mi+1ni. We call (p1, q1), . . . , (pk, qk) the Newton
pairs of γ. We will write (p⃗, q⃗) for this sequence.

Remark 1.3. If we adapt the slight abuse of notation that tm/n ∶= um, then a
typical example of γ with given Newton pairs (or root valuations) is given by:

γ = tqk/pk(a′k + tqk−1/pkpk−1(a′k−1 +⋯(a′2 + a′1tq1/p1...pk))⋯)
where a′i ∈ O× are arbitrary.

Remark 1.4. Suppose that F = C((t)), and that (1.2) defines a convergent Taylor
series over C. Then the Puiseux (equivalently, Newton) pairs determine the topo-
logical type of the singularity {char(γ) = 0} cut out by the characteristic polynomial
of γ. Recall that this is by definition the knot in S3 determined by intersecting
{char(γ) = 0} ⊂ C2 with a small three-sphere centered at the origin. Conversely,
if we impose the condition qk ≥ pk, the topological type uniquely determines the
Puiseux pairs. We note that our conventions for relating Puiseux data and the
topological type are opposite to the conventions used in e.g. [23].

Example 1.5. Let F = k((t)), n = 4 and

γ = u6 + u7 =
⎛
⎜⎜⎜
⎝

0 t2 t2 0
0 0 t2 t2

t 0 0 t2

t t 0 0

⎞
⎟⎟⎟
⎠

as in (1.1). Then r1 = 7/4, r2 = 3/2 and

char(γ) = x4 − 2t3x2 − 4t5x − t7 + t6

The Puiseux pairs are (m1, n1) = (7,2), (m2, n2) = (3,2) and the Newton pairs are
(p1, q1) = (2,1), (p2, q2) = (2,3). The link is the ”(2,13)-cable of the trefoil”. This
example features also for example in [23, p. 58].

As explained in Section 4, for every pair of coprime natural numbers (e, d) one
may define a homomorphism from the ring of symmetric functions over Q(q) to
itself φd/e ∶ Symq → Symq by letting

(1.3) φd/e(ek) = Ed,e,k ∶= ∑
π∈Dkd,ke

qarea(π)eπ

where Dkd,ke is the set of Dyck paths in (kd×ke) rectangle below the diagonal and
ek are the elementary symmetric functions; see Proposition 4.12 and Definition 3.6
for the details.

Starting from the Newton pairs of γ, we define the symmetric function fp⃗,q⃗ for
(p⃗, q⃗) as follows:

fp⃗,q⃗ ∶= φqd/pd
(⋯φq1/p1

(e1))⋯)
Denote by fp⃗,q⃗ ∣q↦q−1 the image of fp⃗,q⃗ under the involution on Q(q) sending q to
q−1. This simply means changing qarea to q−area in Eq. (1.3). Denote by ω the
involution on Symq that switches eλ and the homogeneous symmetric functions hλ
(see §3.2). Our first main theorem is the following.
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Theorem 1.6. Let k be a finite field so that F is a non-archimedean local field.
Let γ ∈ g(O) be inertially elliptic as before. For any partition λ ⊢ n let nλ (resp.
uλ be the nilpotent (resp. unipotent) orbit of Jordan type λ, and denote by Γλ(γ) ∶=
Γnλ
(γ) the Shalika germ for γ ∈ g(F ) (resp. Γλ(1+γ) ∶= Γuλ

(1+γ) for 1+γ ∈ G(F ))
in Proposition 1.1. We have

(1.4) ∑
λ⊢n

Γλt(γ)h̃λ = ∑
λ⊢n

Γλt(1 + γ)h̃λ = qΞ(γ)ωfp⃗,q⃗ ∣q↦q−1

where h̃λ ∈ Symq are defined after Corollary 3.9 and Ξ(γ) ∈ Z is as in Definition
6.12. Note also the transposition in λ. In particular, the Shalika germs of γ only
depend on its Newton pairs.

The Theorem above is restated and generalized to general tamely ramified γ in
Section 6. That is, one can essentially take the left-hand side of Eq. (1.4) to be the
definition of fγ , see Definition 6.6. Similarly, one gets what we call Steinberg germs
from Theorem 2.19 by expanding fγ in the elementary symmetric functions. That
is,

fγ ∶= ∑
λ⊢n

Γλt(γ)h̃λ = ∑
λ⊢n

ΓSt
λ (γ)eλ

and the content of Theorem 1.6 is then that this master symmetric function fγ
equals fp⃗,q⃗ as defined above up to a simple change of variables, see Corollary 6.22
for details.

Remark 1.7. So far, we have been restricting to the case where F (γ)/F is totally
tamely ramified and γ is elliptic. In the case where our extension is tamely ramified
but not necessarily totally ramified, the above theorem also works with appropriate
modifications, as explained in Theorem 6.27. Of course, in this case one needs
to modify the statement of Theorem 1.6 to account for intermediate unramified
extensions.

Finally, if γ is not elliptic but still regular semisimple and belongs to a Levi L(λ)
in which it is elliptic, fγ is proportional to the product of the master symmetric
functions of the factors, see Corollary 6.47. When F = k((t)) and F (γ) is a product
of totally tamely ramified extensions, fγ is uniquely determined by the Puiseux
series of the branches of the spectral curve, which correspond to the different blocks
of γ.

On the harmonic analysis side, the recursive definition of fγ essentially boils
down to writing

γ≤ ∶= ∑
r≤rk

aru
nr, γ> ∶= ∑

r>rk
aru

n(r−rk)

in terms of (1.2), so that we have γ = γ≤+unrkγ>. The centralizer of γ≤ in GLn(F )
is isomorphic to some GLn′(F ′) for a tamely and totally ramified extension F ′/F
of degree e = pk with n′ ∶= n/e; in fact pk is the (minimal) denominator of rk and
F ′ = F (unrk). The Shalika germs for γ are then computed from those of γ>, viewing
γ> as an element in gln′(F ′). In detail, this is slightly more involved as we need
to pass between the group GLn and the Lie algebra gln to use the results of [79].
Details are explained in Section 6.1.

As we show in Theorem 6.35, the Dyck path recursion for fγ can be translated
to the following fairly complicated recursive formula for the Shalika germs using
compositions, see Section 6.3 for details.
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Theorem 1.8. The transition matrix between the Shalika germs for γ and γ>,
indexed by λ ⊢ n and λ′ ⊢ n/e respectively, is given by

M
d/e
λ,λ′ =

⎛
⎝
cλ′q

s ∑
µ⊢n/e

∣Sλ′ ∩Cµ∣
bµλ′!

ℓ(µ)
∏
i=1
( ∑
α⊧eµi

wtd/e(α)q↦q−1q
−n(αt)h̃α)

⎞
⎠

RRRRRRRRRRRh̃λ

where e ∶= pk, d ∶= qk = e ⋅ rk, and ∣h̃λ
means we pick the coefficient of h̃λ. Here

wt(α)d/e is as in Eq. (5.11), and ∣Sλ′ ∩ Cµ∣ is the number of elements in the
symmetric group Sn′ which belong to both the Young subgroup Sλ′ and have cycle
type µ. We also use the normalizing constants

cλ′ = (1 − q)n
′
[λ′]q!, bµ =

ℓ(µ)
∏
i=1
(1 − qµi)

defined in Section 3 and s ∶= n(λ′t) + (dn
′−1)(en′−1)+n′−1

2
.

Remark 1.9. We do not have a good conceptual explanation for the entries of
the transition matrix Md/e, but give some combinatorial stipulations about their
structure in Section 6.3.

Finally, we explain how our results recover combinatorial formulas for many basic
orbital integrals. For any partition λ ⊢ n, let Pλ ⊂ G(O) be the standard para-
horic subgroup consisting of elements whose reduction in G(k) is block-wise lower
triangular with block sizes λ. In particular I ∶= P(1n) is the standard Iwahori sub-
group. Let 1λ ∈ C∞(g(O)) be the characteristic function of LiePλ, the associated
parahoric subalgebra, divided by the measure of LiePλ. With this normalization
and the normalization of measures introduced in Section 2, the integrals of 1λ over
the orbit of γ give exactly the point counts of affine Springer fibers in the case
F = Fq((t)), or their weight polynomials when we are coming from characteristic
zero via reduction.

The values of these integrals are obtained easily from the master symmetric
function by pairing it with the complete homogeneous symmetric functions:

Theorem 1.10. Let λ ⊢ n be a partition. Then

Iγ(1λ) = ⟨fγ , hλ⟩ = ∣Spλγ(k)/Λγ(k)∣

where we pair using the usual Hall inner product and Spλγ is the affine Springer
fiber of γ in the partial affine flag variety G(F )/Pλ, see Section 8. See also Section
2 for the normalizations of measures we are using.

The following is more or less obvious from Theorem 1.10 and has been a folklore
conjecture for quite long. We give details in Section 8.2.

Corollary 1.11. The point-counts of (local) compactified Jacobians of plane curves
over a finite field are polynomials in q and only depend on the Newton-Puiseux pairs
of γ. In addition, they are polynomials with nonnegative integer coefficients. Simi-
larly, the weight polynomials of local compactified Jacobians over C are nonnegative
polynomials in q.

Proof. Theorem 1.10 combined with Proposition 8.10 implies that

⟨fγ , hλ⟩
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is the number of points of the projective variety Xγ = Spλγ/Λ. In the case over C,
we reduce to this case after spreading out and modding out by q outside a finite
set of primes.

It is well known that ⟨hµ, hλ⟩ counts the number of certain nonnegative integer
matrices with row sums µ and column sums λ and in particular this count is a
nonnegative integer. Since fγ = ∑σλ(γ)hλ with σλ(γ) ∈ N[q] by Corollary 6.22, we
get

∣Xγ(Fq)∣ ∈ N[q]
as desired. □

We note that the element γ does not have to be elliptic for this to hold. Indeed, as
explained in Section 2 the point-counts on regular semisimple affine Springer fibers
can be reduced to those of elliptic elements. The above is also in line with the
expectation that all local compactified Jacobians (for elliptic γ, say) are paved by
affines. We also note that combining Theorem 1.6 with Theorem 1.10 gives strong
evidence for the expectations of [64, Section 5] relating compactified Jacobians with
the HOMFLY homology of algebraic links. More details are explained in Section 5.

Our final main result follows from our method using the elliptic Hall algebra.
The detailed statement is formulated and proved in Section 6.2. In Section 9 we
connect this Theorem to the geometry of Hilbert schemes of points on A2.

Theorem 1.12. Let γ be elliptic and tamely ramified. The master symmetric
function fγ admits a canonical t-deformation f̂γ which admits a t-deformed version
of the Shalika germ expansion:

f̂γ = ∑
λ⊢n

Γ̃λt(γ)H̃λ

where H̃λ are the modified Macdonald polynomials.

1.2. Further directions. We now remark on further generalizations of our results.
To reiterate, throughout the paper, G = GLn and γ is tamely ramified, meaning
the algebra F (γ) ∶= F [x]/fγ where fγ is the minimal polynomial of γ, is a product
of tamely ramified extensions of the field F . It is unlikely the methods in this
paper will yield results for other groups, in that the elliptic Hall algebra seems to
be confined to work with G = GLn only. There are also a number of geometric
simplifications in the G = GLn case for the affine Springer fibers.

It is however interesting to ponder what part of the theory carries through to
other G. For example, the knot invariants of Section 5 could potentially be replaced
by Hochschild homology of Rouquier complexes of Soergel bimodules for other
groups, though the representation-theoretic superpolynomials have not been defined
in this generality. In a different direction, our main results have direct implications
for inner forms of GLn, namely GLm(D) for a division algebra of dimension d2 over
F, with md = n, as follows from the generalized Jacquet-Langlands correspondence
of [20].

Another direction of generalization is to understand similar formulas for the
wildly ramified elements in GLn(F ). In particular, it would be interesting to know
whether there is a finite algorithm that determines the Shalika germs when F (γ)
is arbitrarily ramified.

It also seems likely our methods can be used to glean information about the ge-
ometry of the mixed characteristic affine Springer fibers. More precisely, while the
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comparison to plane curves fails in mixed characteristic, the geometric interpreta-
tion of orbital integrals from [29,42,49] still goes through but the geometry is now
replaced by the Witt vector affine flag varieties of [83] and the affine Springer fibers
therein. For example, Proposition 8.2 still goes through in mixed characteristic.
This is presumably the case for the rest of Section 8 as well, but some technical
groundwork seems to be needed.

Finally, we note that by the results of [6, 70] the elliptic Hall algebra is the de-
categorification of a form of induction-restriction functors for a coherent realization
of affine character sheaves, and one expects this to be reflected on the constructible
side of Langlands duality. Indeed, in an appropriate sense, which we will not make
precise, each γ gives rise to G(F )-equivariant constructible sheaf on g(F ) by tak-
ing the extension by zero of the constant sheaf on the conjugacy class. One may
view the induction provided by the plethysms φ̂m/n from Theorem 4.5 below as
some shadow of yet-to-be-defined induction-restriction functors for affine character
sheaves of this sort (meaning that we impose no singular support condition). While
we only work with the elements γ themselves, it would be compelling to understand
the a categorified version of this induction on the level of affine character sheaves.

1.3. Outline of the paper. In Section 2, we review some general theory of orbital
integrals and various versions of the Shalika germ expansion. In Section 3 we
introduce background on symmetric functions, and in Section 4 we define and study
a degenerate version of the Elliptic Hall Algebra. Section 5 is devoted to making
the connection of our results to HOMFLY type knot invariants precise. It appears
before the technical heart of the paper, Section 6, because results of the latter
are strongly guided by the computation of the knot superpolynomials. Section 7
is devoted solely to example computations to illustrate our method. Finally, we
discuss some applications in Section 8 and the relationship of our results to the
Hilbert scheme of points on A2 in Section 9.

Acknowledgments. The authors thank Francois Bergeron, Pierre-Henri Chau-
douard, Stephen DeBacker, Eugene Gorsky, Thomas Hales, Bertrand Lemaire, Yen-
Chi Roger Lin, Anton Mellit, Fiona Murnaghan, Andrei Negut, , Alexei Oblomkov,
Koji Shimizu, Yan Soibelman, Loren Spice, Minh-Tam Trinh, Jean-Loup Wald-
spurger, Zhiwei Yun, and Wei Zhang for interesting conversations.

2. Orbital integrals

In this section, we fix k a finite field and let F be a non-archimedean local field
with residue field k and O its ring of integers. The group G will be GLn or a product

∏GLni for which one can reduce the discussion to the former case. Recall that
I ⊂ G(O) is the Iwahori subgroup consisting of elements whose reduction is upper
triangular. For any γ ∈ G(F ) and f ∈ C∞c (G(F )) (henceforth complex-valued), the
orbital integral is

Iγ(f) ∶= ∫
g∈CG(F )(γ)/G(F )

f(g−1γg)dg

Definition 2.1. For γ semisimple, the measure dg is defined as follows: On G(F )
we have the up to a scalar unique Haar measure, which we will normalize so that
G(O) has measure 1. CG(F )(γ) is a product of general linear groups over extensions
F ′ of F , and we use the same normalization. The same is done for γ ∈ g(F )
semisimple.
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For general γ ∈ G(F ) or γ ∈ g(F ), the orbit of γ is locally closed and the
centralizer unimodular, therefore the orbit of γ under the adjoint action admits an
invariant measure. A way to see this is to identify the orbit with the orbit inside
gln(F )∗ via the natural equivariant embedding of varieties GLn ↪ gln and the
Killing form. The coadjoint orbit admits a natural symplectic structure (even in
this non-archimedean setting), whose top wedge is an invariant volume form.

We will not attempt to fix a normalization for arbitrary γ. However when γ ∈
G(F ) is unipotent, we will normalize the measure as follows, following [40, 78].
Let λ ⊢ n and consider the standard (Richardson) parabolic P = P (λt) for the
unipotent orbit associated to λ. Let N be its unipotent radical and M its Levi
factor. Let IGλ be the orbital integral on the unipotent orbit with Jordan type λ.
For f ∈ C∞c (G(F )) let fP ∈ C∞c (M(F )) be defined by

(2.1) fP (m) = δP (m)1/2 ∫
G(O) ∫N(F )

f(k−1mnk)dndk

where δP is the modular function for P . By [40, Proposition 5], the linear forms
given by the unipotent orbital integrals IGλ (−) for λ ⊢ n are proportional to f ↦
fP (1). We normalize the measure on the unipotent orbit so that IGλ (f) = fP (1),
where on N(F ) we take the Haar measure such that N(O) has measure 1. This
discussion applies verbatim with G replaced by g, etc., with the resulting formula
being

(2.2) fp(X) = ∫
G(O) ∫n(F )

f(ad(k−1)(X + Y ))dY dk

and we normalize the nilpotent orbital integral Igλ(f) = f
p(0), again with the Haar

measure on n(F ) such that n(O) has measure 1. We will drop the superscripts G,g
when understood from the context. This is even more merited in view of

Lemma 2.2. Let f ∈ C∞(g(O)/Lie(I)) be the characteristic function of a standard
parahoric. Then the restriction of f to G(O) ⊂ g(O) equals the characteristic
function of the corresponding standard parabolic subgroup, and

fP (1) = fp(0).

See Lemma 2.37 where the content here is discussed in the more general setting
in §2.4 in terms of parabolic induction/restriction.

2.1. Shalika germs. For any subset Ω ⊂ G(F ) we denote by J(Ω) the space of
invariant distributions on G(F ) supported on elements of the form g−1γg with
g ∈ G(F ), γ ∈ Ω. The famous Howe conjecture states that

Theorem 2.3 ( [40], [36], [17], [5]). For any compact subset Ω ⊂ G(F ) and an open
subgroup K ⊂ G(F ), the restriction of J(Ω) to Cc(G(F )/K) is finite-dimensional.

The same is true when we replace Ω by a compact subset in g(F ), K by an
open sub-O-module in g(F ) and Cc(G(F )/Ω) by Cc(g(F )/K). In this article we
will make use of precise versions of the above finiteness. A particularly important
one is the following theorem, proved by Hales [34, Thm. 1] for the span of regular
semisimple orbital integrals, and which follows in general from Proposition 2.29
(see also Courtés [18, Thm 1.10]):

Theorem 2.4. Recall that G = GLn. Let U ⊂ G(F ) be the (F -points of the)
unipotent variety and I ⊂ G(F ) be an Iwahori subgroup. Then the restriction of
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J(G(O)) to Cc(G(F )/I) is equal to that of J(U) to Cc(G(F )/I). Both restrictions
have a basis given by unipotent orbital integrals.

Remark 2.5. Hales [34] works over characteristic zero F , as does Waldspurger
[78, 79]. However, the most essential ingredient for Hales is the original Shalika
expansion [71], which also works in positive characteristic assuming finiteness of
unipotent orbits and convergence of the unipotent orbital integrals. This was proved
in [54] when the characteristic is good for G. In particular, for GLn it holds in
arbitrary characteristic. Moreover, the more general Proposition 2.29 works in
arbitrary characteristic, so we do not have to worry about this issue.

Remark 2.6. As far as invariant distributions are concerned, any test function in
Cc(G(F )/K) can be averaged by K-conjugation into Cc(K/G(F )/K). Likewise in
Theorem 2.4 we can replace Cc(G(F )/I) by Cc(I/G(F )/I).

The above theorem is a variant of the so-called Shalika germ expansion, reinter-
preted as:

Corollary 2.7. For any γ ∈ G(O), there exist constants Γλ(γ) where λ runs over
unipotent orbits of G(F ) (i.e. partitions of n) such that for any f ∈ Cc(G(F )/I),
we have

(2.3) Iγ(f) =∑
λ

Γλ(γ)Iλ(f).

For the Lie algebra case one has the following which works also for arbitrary
connected reductive group G provided that chark ≫ rankG.

Theorem 2.8. [Thm. 2.1.5., [19]] Let N ⊂ g(F ) be the (F -points of the) nilpotent
cone and Lie I ⊂ g(F ) be an Iwahori subalgebra. Then the restriction of J(g(O)) to
Cc(g(F )/Lie I) is equal to that of J(N ) to Cc(g(F )/Lie I). Both restrictions have
a basis given by nilpotent orbital integrals.

In particular, the given bound when G = GLn is chark > 2n. Whenever the
theorem works, it asserts the existence of unique functions Γλ(γ) such that (2.3)
holds for f ∈ Cc(g(F )/Lie I) where Iλ(f) is the integral on nilpotent orbits this
time; by abuse of language we will denote the germs again by Γλ(γ), thanks to the
following proposition:

Proposition 2.9. Let γ ∈ g(O). Fix a nilpotent orbit λ in g(F ) – it corresponds
to a unipotent orbit in G(F ) under x ↦ 1 + x. Under this matching, the following
are equal:

(1) The Lie algebra Shalika germ Γλ(γ) from Theorem 2.8.
(2) The Lie algebra Shalika germ Γλ(c + γ) from Theorem 2.8, for any c ∈ O.
(3) The Lie group Shalika germ Γλ(c+γ) from Theorem 2.4 and Corollary 2.7,

for any c ∈ O such that c + γ ∈ G(O).

Proof. (1) equals (2) since the central translation doesn’t affect orbital integrals.
Just like the unipotent orbital integrals on G(F ) may be computed using Eq.

(2.1), so may the nilpotent ones on g(F ) using Eq. (2.2). By Lemma 2.2 the restric-
tion to G(O) of the characteristic function of any standard parahoric subalgebra
of g(F ) is the the characteristic function of the corresponding standard parahoric
subgroup and the nilpotent orbital integral equals the unipotent orbital integral of
the restriction. By [78, Corollaire 4.4.], the nilpotent and unipotent orbital integrals
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are determined as distributions on Iwahori-(bi-)invariant functions by their values
on 1Lie(Pλ) ∈ Cc(g(O)/Lie I) where λ ⊢ n. Therefore (2) and (3) have the same
Shalika germs, either for the group or the algebra. Therefore (2) equals (3). □

Remark 2.10. Theorem 2.8 is expected to hold even if chark ≤ 2n. For example,
in [51, §5] it is shown that (2.3) holds for any fixed function and for fixed γ which
is quasi-regular (see the abstract to [51], and note in particular that when chark >
n quasi-regularity is equivalent to regular semisimplicity) and in a small enough
neighborhood Vf ∋ γ. Consequently, (2.3) holds for quasi-regular elements in a
small enough neighborhood and for all functions in Cc(g(O)/Lie I), since the latter
is finite-dimensional.

This is what we used in the proof of Proposition 2.9, and thus our Shalika germ
results for tamely ramified regular semisimple γ will also work for Lemaire’s germs.
Even more generally, in [51, §5.2, pp. 505] Lemaire defines normalized Shalika germs

b̃i defined on the set of all quasi-regular elements using homogeneity. Remark 6.31
together with propositions 2.11 and 2.9 show that such b̃i also agree with the Lie
algebra/group Shalika germs and in particular the above results, as well as the
computations in Section 6 extend to this case as well given f ∈ Cc(g(O)/Lie I).

In the Lie algebra setup, for a nilpotent orbit O ⊂ g(F ) the Shalika germs enjoy
the following homogeneity property.

Proposition 2.11. For G = GLn, we have

ΓO(tγ) = ∣t∣−
1
2 dimOΓO(γ).

Remark 2.12. For general reductive group when chark is very good we have
ΓO(t2γ) = ∣t∣−dimOΓt−2O(γ) = ∣t∣−dimOΓO(γ) since O and t−2O are the same orbit
in g(F ). However O and t−1O are typically different orbits and the identity in
Proposition 2.11 does not hold in general.

Remark 2.13. In terms of partitions, if O↔ λ ⊢ n,

1

2
dimO =

ℓ(λt)
∑
i=1
(i − 1)λti =∶ n(λt)

2.2. Steinberg germs. Another way to make use of Theorem 2.4, analogous to
that of Corollary 2.7, is proposed by Waldspurger [79, Prop. 2.4.]. In fact, Wald-
spurger goes further to study the space of distributions J(G(F )c), where G(F )c is
defined as follows.

Definition 2.14. Let us say an element g ∈ G(F ) = GLn(F ) is compact mod center
if all its eigenvalues have the same valuation; we will suppress the “mod center”
and just call them compact when no confusion should arise. Let G(F )c ⊂ G(F ) be
the subset of all compact elements.

Let us also call γ ∈ g(F ) compact if it belongs to some parahoric subalgebra, or
equivalently that it is conjugate to an element in g(O).

Remark 2.15. Note that in the group case, not all compact-modulo-center ele-
ments are literally central translations of compact elements. Instead, they become
compact in the usual sense under the map to PGLn.

We will also need the following alternative characterization of the compact mod-
ulo center elements in GLn:
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Lemma 2.16. The set G(F )c coincides with the union of conjugates of normalizers
of standard parahorics. In particular, for GLn we have

G(F )c = Ad(G(F ))
⎛
⎜⎜
⎝
⋃

e∣n,α⊢n/e,
d∈Z

und/ePαe

⎞
⎟⎟
⎠

where u is the matrix from the introduction and Pαe is a standard parahoric sub-
group.

Remark 2.17. Note that und/e, d ∈ Z, normalizes Pαe . Compare also to the
beginning of [79, Section 4].

Definition 2.18. Let Stn be the Steinberg representation of G(F ) = GLn(F ).
More generally, for λ ⊢ n (Definition 3.1) let P (λ) ⊂ GLn(F ) be the corresponding
parabolic and L(λ) its Levi subgroup. Let Stλ be the parabolic induction2 of the
Steinberg representation of L(λ) to G(F )

We will henceforth identify Stλ with its character, an invariant distribution on
G(F ). We denote by Stλ,c the restriction of Stλ to G(F )c, i.e. the distribution
which is truncated to be 0 outside G(F )c. Denote by JSt,c ⊂ J(G(F )c) the subspace
spanned by Stλ,c. Write Cc(I/G(F )/I) =⊕k∈ZCc(I/G(F )val=k/I) where G(F )val=k
is the subset of elements whose determinant has valuation k. In [78, Proposition
2.4.] and [79, Proposition III 4.], when charF = 0, Waldspurger proved:

Theorem 2.19. For k ∈ Z the restriction of Stλ,c to Cc(I/G(F )val=k/I) is non-zero
iff λ is divisible by n/gcd(k,n). The restriction of JSt,c to Cc(I/G(F )val=k/I) has
a basis given by the restrictions of these Stλ,c.

Theorem 2.20. For any regular semisimple γ ∈ G(F )val=k that is compact mod
center, there exist unique constants ΓSt

λ (γ) indexed by λ ⊢ gcd(k,n), so that for

any f ∈ Cc(I/G(F )val=k/I) we have

(2.4) Iγ(f) =∑
λ

ΓSt
λ (γ)Stn′λ,c(f)

where n′ ∶= n/gcd(k,n). We shall call the constants ΓSt
λ (γ) the Steinberg germs of

γ.

Remark 2.21. A few remarks are in order. The most important one is that
in [78,79] there is an assumption on charF = 0. However, it is easy to see that the
proof of [78, Proposition 2.4.] only uses characteristic-independent facts about the
representation theory of G(F ). In the next section, Section 2.3, we will in particular
construct unique distributions Stλ,c satisfying Theorems 2.19, 2.20 and [79, V 11,
V12]. If one were able to carry out Clozel’s work in [17] in positive characteristic,
then these Stλ,c could safely be identified with the truncated characters of parabolic
inductions of Steinberg representations. While it is somewhat awkward we cannot
do this right now, it will not affect the computation of the Shalika germs themselves.

Further, we note that the ”St”-superscript stands for Steinberg, and should not
be confused with the notion of ”stability” in the automorphic forms literature.

2Usually parabolic inductions are normalized by the modulus character. In our case, the

modulus character is trivial on compact (mod center) elements because it is a homomorphism
to (R+,×) that is trivial on center. Since we will immediately restrict to compact elements, the
normalization will have no effect on what follows.
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2.3. Study of germs via rigid cocenters of affine Hecke algebras. In this
subsection we digress to mention an approach to the Howe conjecture using the
cocenter of the (extended) affine Hecke algebra

H ∶= Cc(I/G(F )/I)
following [16,37].

Note that as an abstract algebra, H only depends on the residue field of F (more
precisely its size), through for example the well-known description by generators and
relations. In particular, the results in this subsection apply in all characteristics and
can be viewed as alternative proofs for some results in the previous two subsections,
as well as strengthening those in [37, Section 5]. If the reader is more geometrically
inclined, it does no harm to skip this subsection and black-box the transfer of
characteristic zero results from the previous chapter to (possibly very large) positive
characteristic using e.g. the theory of ”nearby fields” (corps proches) or the model-
theoretic apparatus.

Consider the space J(G(F )c) of invariant distributions supported on the com-
pact mod center elements of G(F ). There is a natural map

J(G(F )c)→H∗

to the linear dual of the AHA given by evaluating the distributions on the functions.
The G(F )-invariance of the distributions amounts to this map factoring through
the cocenter

(2.5) J(G(F )c)→ (H/[H,H])∗ →H∗

We will soon see that the map in Eq. (2.5) can be further shown to factor through
the dual of the rigid cocenter introduced in [16]. First, note that H and tr(H) ∶=
H/[H,H] are graded by the valuation of the determinant, i.e. as before, we have
the decomposition

H =⊕
k∈Z

Cc(I/G(F )val=k/I)

and similarly for the cocenter. Let us denote Hval=k, tr(H)val=k ∶= tr(Hval=k) the
corresponding subspaces.

This is further refined by the Newton decomposition of the group G(F ) as well

as H from [37]. From the Cartan decomposition, we have I/G(F )/I ≅ W̃ , where

W̃ ≅ Zn ⋊ Sn is the extended affine Weyl group associated to G = GLn. We also
write W fin ∶= Sn in the above. We will identify X∗(T ) ≅ Zn in a standard way. We

have a decomposition W̃ ≅ Ω⋉W aff where W aff is the affine Weyl group and Ω ≅ Z.

Definition 2.22. The Kottwitz map is the projection κ ∶ W̃ ↠ Ω. The Newton
map ν′ ∶ W̃ → 1

n
Zn is defined as follows. If wk.x = λ + x we let ν′(w) = λ/k. By

sorting, we may take this to be the unique dominant element in the W fin−orbit of
ν′(w), which gives another map ν+ ∶ W̃ → ( 1

n
Zn)≥0.

Together, we get a map

π ∶= (κ, ν+) ∶ W̃ → Ω × ( 1
n
Zn)≥0 =∶ ℵ

Note that π(w) = π(w′) whenever w and w′ are conjugate.

Definition 2.23. For ν ∈ ℵ, the Newton stratum of G(F ) is
G(ν) ∶= ⋃

w∈W̃ minimal length, π(w)=ν
Ad(G(F ))IwI
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Theorem 2.24 (Theorem A, [37]). We have the Newton decomposition of G(F )
is

G(F ) = ⊔
ν∈ℵ

G(ν)

i.e. the group decomposes as a disjoint union of Newton strata.

For the algebraic/combinatorial point of view, we have the following theorem of
He and Nie [38, Thm. 6.7] and He [37, Thm. 11]:

Theorem 2.25. We have a Newton decomposition for the cocenter tr(H) of the
Iwahori-Hecke algebra H
(2.6) tr(H) =⊕

ν∈ℵ
tr(H)ν

where tr(H)ν is spanned by the images of the Iwahori-Matsumoto generators Tw
with π(w) = ν ∈ ℵ and w is of minimal length. Moreover, the image of Tw for
minimal length w depends only on its conjugacy class. These Tw, one for each
conjugacy class with π(w) = ν, form a basis of tr(H)ν .

We are ready to define the rigid cocenter following [37] and its relation to
J(G(F )c). Let us call ν+ ∈ ( 1nZ

n)≥0 central if it lives in the diagonal 1
n
Z≥0.

Definition 2.26. The rigid cocenter of H is

tr(H)rig ∶= ⊕
ν=(κ,ν+)∈ℵ,
ν+ central

tr(H)ν

By [37, Prop. 21], tr(H)rig is exactly the image of the subspace of I-bi-invariant
C∞-functions on G(F ) represented by functions supported on the compact-mod-
center elements. More precisely, we have

Proposition 2.27. The set G(F )c ⊂ G(F ) of compact-mod-center elements in
G(F ) is exactly

G(F )c = ⊔
ν=(κ,ν+)∈ℵ,
ν+ central

G(F )ν

Corollary 2.28. Identify tr(H)rig as a direct summand of tr(H) (as vector spaces)
using (2.6). Then the map (2.5) factors as

J(G(F )c)→ (tr(H)rig)∗ ↪ (tr(H))∗

In particular, the image of a distribution in J(G(F )c) under the map (2.5) is
determined by its image in (tr(H)rig)∗.

Combining Theorem 2.25 and Corollary 2.28, we get

Proposition 2.29. The image of any D ∈ J(G(F )c) under (2.5) is determined by
D([IwI]) where w runs over a set of minimal length representatives for conjugacy

classes in W̃ s.t. ν+(w) is central.

We remark that by definition ν+(w) is central iff ν+(wm) = mν+(w) is cen-

tral. Note further that tr(H)rig is still graded by k ∈ Ω given by κ ∶ W̃ → Ω. In
fact, composing with the Cartan decomposition G(F ) = ⊔w∈W̃ IwI we have a map
G(F )↠ Ω, which is a homomorphism and, abusing notation slightly, the so-called
Kottwitz map κ on G(F ). This map is just

κ ∶= val ○ det ∶ G(F )→ Z
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by identifying Ω ≅ Z. We will be interested in understanding the restrictions of the
unipotent orbital integrals Iλ(−) and the truncated Steinberg characters Stλ,c to
tr(Hrig). Further, we want to understand the truncations of the latter for a fixed
k ∈ Ω.

Imitating [79, IV 1.] we define

Definition 2.30. Suppose λ ∈ P (n/e). Let fd,eα ∈ Hval=nd
e be the characteristic

function of und/ePαe where Pαe is the standard parahoric associated to αe.

Here

u =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 t
1 0 ⋯ 0 0
0 1 ⋱ 0 0
0 0 ⋱ 0 0
0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

is the matrix in Eq. (1.1) except that we can take t to be any uniformizer for F .

We have that u normalizes I, and un/e normalizes Pαe .
Note that by Lemma 2.16, fd,eα is supported on the compact-mod-center elements

and therefore its image in the cocenter lies in the rigid part. Let us now fix k ∈ Z ≅ Ω
and only look at the span [IwI] for w ∈ W aff × {k} that are compact, i.e. restrict
to tr(H)rig,val=k. Let e = n/gcd(n, k) and d = ke/n, so that k = nd/e. Note that as

Ω ⊂ W̃ we can also view k as a length zero element in W̃ . From Proposition 2.27 it
is then not hard to see the following:

Proposition 2.31. There is a basis of tr(H)rig,val=k given by (images in the cocen-
ter of) characteristic functions [IwiI] where wi = (σi, k) ∈W aff ⋊Ω with σi ∈ Sn/e a
set of minimal length representatives for conjugacy classes in Sn/e. Here we embed
(as sets)

Sn/e ↪ Sn ↪W aff × {k} ⊂ W̃
where the first inclusion is given by permutation of the first n/e elements. In par-
ticular, this space has dimension the number of partitions of n/e.

Proof. By construction, each wi is compact, of minimal length, and the elements
are in distinct conjugacy classes. For each k ∈ Ω we would like to know the number
of compact conjugacy classes in W aff × {k}. If it is the number of partitions of n/e
we are done.

Note that the map G(F )↠ Ω is given by g ↦ val(det(g)) ∈ Z ≅ Ω, and there is a

section W̃ ↪ GLn(F ) with image generated by permutation matrices and diagonal
matrices with diagonal entries in tZ, where t ∈ F is a fixed uniformizer. It’s easy to
see that an element w ∈ W̃ has ν+(w) central iff its image in GLn(F ) under this
section is compact (e.g., one can verify both properties by replacing w with some
power of w that lives in the lattice part Zn), which is the case iff all eigenvalues for
a g ∈ GLn(F ) have the same valuation.

When val(det(g)) = k, that g is compact is equivalent to that all eigenvalues
have valuations k/n = d/e (the latter is the reduced expression). For compact g

in the image of the section W̃ ⊂ GLn(F ), we need each cycle of the permutation
to have length divisible by e = n/gcd(k,n). Conversely, for every partition of n
for which all parts are divisible by e, we have a unique compact conjugacy class in
W aff × {k} mapping to k. Hence the space has dimension equal to the number of
partitions of n/e. □
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Example 2.32. If n = 4, e = 2, d = 1, k = 2, then Sn/e = S2 which is abelian. The

elements (1,2), (s,2) ∈W aff⋊Ω send (a, b, c, d) ∈ R4 to (c+1, d+1, a, b) and (d+1, c+
1, a, b) respectively. As elements of W̃ = Sn⋉Zn we have w1 = ((13)(24), (0,0,1,1))
and w2 = ((1324), (0,0,1,1)).

Corollary 2.33. The images of the functions fd,eα from Proposition 3.14 for α ⊢
n/e also give a basis of tr(H)rig,val=k indexed by partitions of n/e.

Proof. The linear independence is clear by imitating e.g. [78, Corollaire 4.4.] again.
By Proposition 2.31 the dimension is the number of partitions of n/e. □

By the previous Corollary, for any w ∈W aff × {k} ⊂ W̃ we can write

[IwI] = ∑
α⊢n

e

c(w,α)fd,eα

for some constants c(w,α), and for chosen wi as above, the matrix with entries
c(wi, α) is a change-of-basis matrix. By the well-known generators-and-relations
description of the Iwahori-Hecke algebra H, where [IwI] corresponds to the ”stan-
dard basis” Tw, together with the Cartan decomposition of G(F ), we see that
c(w,α) are rational functions in q that depend only on n, k and α, but not on
the local field F . We forego the explicit computation of these rational functions,
although it should be an interesting exercise.

By Lemma 2.16 combined with Definition 2.30 and Proposition 2.27 we also
have that the image of a distribution D ∈ J(G(F )c) in (tr(H)rig,val=k)∗ is also
determined by D(fd,eα ) where d, e, k ∈ Z are as before, and α ⊢ n/e is a partition.

Consider now the unipotent orbital integrals Iλ and let k = 0. Let fα = f0,1α

be the characteristic function of the standard parahoric Pα. Pairing with fα for
varying α,λ, Proposition 3.13 (which is basically computed in [78, Proposition 4.2]
whose proof is characteristic-independent) shows that we get an invertible matrix,
in particular the Iλ give a basis of J(G(O)) = J(G(F )c)val=0. Combined with Eq.
(2.5) and Proposition 2.31, we get a new proof of Theorem 2.4. We also have

Theorem 2.34. Fix n as before and let d, e ∈ Z, with e∣n be arbitrary. There

exist unique elements S̃tλ,c,k ∈ (tr(H)rig,val=k)∗ whose pairing with the family of

test functions fd,eα is given by the right-hand-side of Proposition 3.14, that is

S̃tλ,c,k(fd,eα ) = (−1)nd−k⟨eα, hλ⟩

When charF = 0 the elements S̃tλ,c = ∑k S̃tλ,c,k coincide with the image of the

truncated Steinberg characters Stλ,c under (2.5). Moreover, these S̃tλ,c,k for λ ⊢ n/e
form a basis of (tr(H)rig,val=k)∗.

Proof. Theorem 2.19 combined with Proposition 3.14 shows the first assertion. The
second follows from the invertibility of the square matrix given by the pairings
S̃tλ,c,k(fd,eα ) = (−1)nd−k⟨eα, hλ⟩ for varying α,λ. □

Combining the results for all k ∈ Z, we get an element S̃tλ,c ∈ (tr(H)rig)∗ that
serves as the image of this version of Stλ,c under (2.5) satisfying Theorems 2.19 and
2.20.

Finally, let us note that given these S̃tλ,c, the essentially combinatorial, characteristic-
independent proof of [79, Lemme V 12] goes through with the truncated Steinberg

characters replaced by these S̃tλ,c. In particular, Proposition 6.17 goes through in
arbitrary characteristic for tamely ramified γ.
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2.4. Parabolic induction.

Definition 2.35. Suppose M ⊂ P = MN ⊂ G are compatible Levi subgroup and
parabolic subgroup defined over O. For f ∈ C∞c (G(F )), we define its parabolic

restriction (also called parabolic descent, or constant term) ResGM(f) ∈ C∞c (M(F ))
as in (2.1):

ResGM(f)(m) ∶= ∫
G(O) ∫N(F )

f(gmng−1)dndg

where the measure is normalized so that G(O) and N(O) have measure 1.

Definition 2.36. Let M,N,P be as above and m ∶= LieM . For f ∈ C∞c (g(F )), we
define its parabolic restriction Resgm(f) ∈ C∞c (m(F )) as in (2.2):

Resgm(f)(X) ∶= ∫
G(O) ∫LieN(F )

f(Ad(g)(X + Y ))dY dg

where the measure is normalized so that G(O) and LieN(O) have measure 1.

Recall that G(F )val=0c ⊂ G(F ) is the subset of elements whose eigenvalues all
have valuation 0. As G = GLn, we realize G(F )val=0c also as a subset of g(F ).

Lemma 2.37. If f ∈ C∞c (G(F )val=0c ), then Definition 2.35 and 2.36 agree; we have

ResGM(f) = Res
g
m(f).

Proof. In both definitions, the resulting ResGM(f) and Resgm(f) is evidently sup-
ported on M(F )val=0c . Here one may view M as a product of general linear groups
and M(F )val=0c is again the subset of elements whose all eigenvalues have valuation
0. For m ∈ M(F )val=0c , Ad(m) ∶ N(F ) → N(F ) preserves the Haar measure on
N(F ). This shows

∫
N(F )

f(gmng−1)dn = ∫
n(F )

f(g(m + n)g−1)dn

and thus the two definitions agree. □

Example 2.38. One has obviously that ResGM(1G(O)) = 1M(O) from Definition
2.35, and hence also Resgm(1G(O)) = 1M(O).

Proposition 2.39. Suppose γ ∈ M(F ) is G-regular, meaning γ is regular when
viewed as an element of G. Then

IGγ (f) = ∣det(Ad(γ)g/m − idg/m)∣
−1/2 ⋅ IMγ (Res

G
M(f))

Proposition 2.40. Suppose γ ∈ m(F ) is G-regular, meaning γ is regular when
viewed as an element of g. Then

IGγ (f) = ∣det(ad(γ)g/m)∣
−1/2 ⋅ IMγ (Res

g
m(f))

Definition 2.41. We define Indgm ∶ C∞c (m(F ))∗ → C∞c (g(F ))∗ to be the adjoint of

Resgm. It is called parabolic induction. Same for IndGM ∶ C∞c (M(F ))∗ → C∞c (G(F ))∗

In particular, Proposition 2.40 effectively says that we have the equality of in-
variant distributions

∣det(ad(γ)g/m)∣
−1/2 ⋅ IndGM IMγ (−) = IGγ (−)

More generally, an important property is that Resgm and ResGM sendG(F )-coinvariant
to M(F )-coinvariant and equivalently Indgm and IndGM send M(F )-invariant to
G(F )-invariant [45, Lemma 13.1].
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Proposition 2.42. Suppose O is a nilpotent orbit of m(F ) and Õ the induced

orbit in the sense of Lusztig-Spaltenstein, i.e. Õ contains an open dense subset of
O + LieN(F ). Then Indgm I

M
O = IGÕ .

Remark 2.43. In terms of partitions (in the sense of Definition 3.1), ifM = GLn1×
⋯ ×GLnr , and O is a unipotent orbit corresponding to a sequence of partitions

λ(1) ⊢ n1, . . . , λ(r) ⊢ nr
the induced orbit is

Õ↔ (λ(1)1 +⋯ + λ
(r)
1 , . . . , λ

(1)
k +⋯ + λ

(r)
k )

where k is the length of the longest λ(i). For example, when M = T , the zero orbit
in T induces to the principal one in GLn.

Corollary 2.44. For γ ∈ m(F ) which is G-regular, we have

ΓG
Õ(γ) =

⎧⎪⎪⎨⎪⎪⎩

0 if Õ is not induced from M,

∣det(ad(γ)∣g/m)∣
−1/2 ⋅ ΓM

O (γ) if Õ is induced from O ⊂ m(F ).

where ΓG
Õ(γ) and ΓM

O (γ) are defined as in Theorem 2.8 for G and M , respectively.

3. Symmetric functions and combinatorics

In this section, we review some theory of symmetric functions relevant to the
computation of Shalika germs. The theory is very well covered in many sources,
see for example [35, Section 3].

3.1. Combinatorics. We begin with two combinatorial definitions.

Definition 3.1. A partition of an integer n > 0, written λ ⊢ n or λ ∈ P (n) is a
nonincreasing sequence of positive integers

λ1 ≥ . . . ≥ λk > 0, ∑
i

λi = n

and a composition of n, written α ⊧ n is an ordered collection (α1, . . . , αk) of positive
integers such that ∑i αi = n. In both cases, we write ℓ(λ) = ℓ(α) = k for the length
of the composition or partition and denote by λt, αt the conjugate partition (resp.
composition).

Recall that partitions λ ⊢ n index conjugacy classes in the symmetric group
Sn. Similarly, to any composition α ⊧ n we can associate the Young subgroup
Sα1 × ⋯ × Sαk

⊆ Sn, whose conjugacy class only depends on sort(α), the partition
obtained by sorting α. We will draw the Young/Ferrers diagrams of partitions in
French notation. We think of them as lying in Z2

≥0 with the first box always at
(0,0). For a box ◻ ∈ λ with coordinates (i, j) we denote

(3.1) a(◻) = λi − i − 1, l(◻) = λtj − j − 1, a′(◻) = i, l′(◻) = j
the arm, leg, coarm, and coleg lengths of the box. The q, t-content of a box is

defined to be qa
′(◻)tl

′(◻). Finally, we have

Definition 3.2. For two partitions (or compositions) λ,µ define

M(λ,µ)
to be the set of nonnegative integer matrices (of size ℓ(λ) × ℓ(µ)) whose rows sum
to λ and columns sum to µ.
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Definition 3.3. A standard Young tableau is a filling of the Ferrers diagram of
λ ⊢ n with the letters 1, . . . , n such that the letters increase in columns and rows.

Given a Young tableau and a box ◻i labeled i, we define the arm length as a(◻i)
and so on. We let zi be the q, t−content of the box ◻i.

We will also need the following Lemma in Sections 5, 6.

Lemma 3.4. To each composition α ⊧ n is associated a unique Young tableau
T (α) defined as follows. To each αi we assign the sequence of numbers ∑i−1

j=1 αj +
1,∑i−1

j=1 αj + 2, . . .∑i
j=1 αj and form a tableau by taking one-row diagrams with these

fillings, and then dropping them on top of each other, with the rule that gravity
brings boxes as low as possible. In particular, the tableau decomposes as a sequence
of horizontal αi-strips.

Example 3.5. To the compositions 4 = 2 + 2, 4 = 1 + 2 + 1 and 4 = 1 + 3 we assign
the tableaux

3 4

1 2

4

2

1 3

2

1 3 4

The final combinatorial gadget we will need are Dyck paths.

Definition 3.6. Let m,n, k ≥ 1, (m,n) = 1. Then the set

Dkm,kn

will be the collection of lattice paths in a kn × km-rectangle in Z2
≥0, fitting under

the diagonal (which has slope m/n).
The area of a Dyck path D ∈ Dkm,kn is defined to be the number of full squares

between the path and the diagonal. Similarly, the coarea of D is defined as (m −
1)(n − 1)/2 − area(D), which is the number of squares below the path.

3.2. The ring of symmetric functions. Let Symq,t be the ring of symmetric
functions over Q(q, t) in the alphabet {X1, . . . ,Xn, . . .} and denote the five usual
bases of monomial, homogeneous, elementary, Schur, and power sum symmetric
functions by

{mλ},{hλ},{eλ},{sλ},{pλ}
Here λ is a partition in the sense of Definition 3.1. Note that the first four are also
bases of Sym = SymZ while the last one needs a ring containing Q.

Recall that the modified Macdonald polynomials H̃λ[X; q, t], λ ⊢ n are the unique
symmetric functions with the properties

H̃µ[X(1 − q); q, t] ∈ Q(q, t){sλ∣ λ ≥ µ}(3.2)

H̃µ[X(1 − t); q, t] ∈ Q(q, t){sλ∣ λ ≥ µt}(3.3)

⟨H̃µ[X; q, t], s(n)⟩ = 1(3.4)

Here the last pairing is the Hall inner product, defined in Definition 3.10.
We do not require much of the advanced theory of Macdonald polynomials, but

let us note down the following definition as well as some specializations.

Definition 3.7. The operator ∇ of Bergeron and Garsia scales by definition each

H̃λ by qn(λ)tn(λ
t) where n(λ) = ∑ℓ(λ)

i=1 (i − 1)λi.

From [35, Proposition 3.5.8.] we have
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Lemma 3.8 (The limit of H̃λ as q → 1). The modified Macdonald symmetric

function H̃λ at q = 1 is given by

(3.5) H̃λ[X; 1, t] = (1 − t)∣λ∣[λt]t!hλt[X/(1 − t)] =∶ h̃λt[X; t]
in other words a plethystically transformed homogeneous symmetric function, up to
normalization.

From the q, t-symmetry H̃λ[X; t, q] = H̃λt[X; q, t] we immediately have

Corollary 3.9 (The limit as t→ 1).

H̃λ[X; q,1] = h̃λ[X; q]

In addition to the q, t-symmetry, we have the symmetry under inverting q and
t [35, Proposition 3.5.12.]

(3.6) t−n(µ)q−n(µ
t)ωH̃µ[X; q, t] = H̃µ[X; q−1, t−1]

so that in particular limt→1 H̃µ[X; q−1, t−1] = qn(µ
t)ωh̃µ[X; q−1]. Note that this

implies

(3.7) ωh̃µ[X; q] = qn(µ
t)h̃µ[X; q−1]

We will denote h̃λ ∶= H̃λ[X; q,1] and call these the specialized Macdonald sym-
metric functions or the plethystically transformed homogeneous symmetric func-
tions. Later on, we will also need the prefactor

(3.8) cλ(q) ∶= (1 − q)∣λ∣[λ]q! =
ℓ(λ)
∏
i=1

λi

∏
j=1
(1 − qj)

in Eq. (3.5). Note that

h̃λ = cWal
λ (q)eλ [

X

q − 1
] = (−1)ncWal

λ ωeλ [
X

1 − q
]

where cWal
λ ∶= (−1)ncλ = ∏ℓ(λ)

i=1 ∏
λi

j=1(qj − 1) is exactly the prefactor defined on [78,

pp. 201].

Note that compared to the Macdonald polynomials, h̃λ are much simpler in
behaviour. For instance, they are multiplicative:

h̃λh̃µ = h̃λ+µ
and one can deduce combinatorial expansions for them in terms of the other stan-
dard bases via known relations between hλ and these bases. This will turn out to be
important in the proof of Theorem 6.35. Further, the ∇-operator from Definition
3.7 becomes a ring homomorphism on symmetric functions in this limit.

We will also need a few different inner products on the ring of symmetric func-
tions, the interplay of whom turns out to play a key role. We remark that by ”inner
product” we simply mean a symmetric bilinear form valued in Q(q, t).

Definition 3.10. (1) The Hall inner product is the inner product on Symq,t

defined by
⟨sλ, sµ⟩ = δλµ

(2) The q-inner product is

⟨f, g⟩q ∶= ⟨f, g [
X

(1 − q)
]⟩
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(3) The q, t-inner product is

⟨f, g⟩q,t ∶= ⟨f, g [
(1 − q)
(1 − t)

X]⟩

(4) The geometric inner product is

(f, g) = −qdeg f ⟨(∇−1(f))[X(1 − t−1)], g[X(1 − t−1)]⟩
q,t−1

Remark 3.11. There is a natural Frobenius characteristic map from the direct
sum of the representation rings of symmetric groups

⊕
n≥0

Rep(Sn)→ SymZ

Endowing the source with the natural inner product on characters, and the target
with the Hall inner product ((1) in the above Definition), this map is an isomor-
phism of Hopf algebras and an isometry.

Similarly, if we let

Hall(GL(Fq))

be the Hall algebra of the general linear groups as n ranges from 0 to ∞ there is
a natural inner product on this space, again coming from the convolution product
on characters, and a map

Hall(GL(Fq))→ Symq

which is an isomorphism of Hopf algebras and an isometry with respect to the inner

product ⟨f, g⟩Zel ∶= ⟨f, g [ X
q−1]⟩. Note that this inner product differs from (2) by a

plethysm X → −X. For this perspective, we refer to [81, 10.2.]

Remark 3.12. The last inner product will be used in Section 9 and is the one
naturally arising from the geometry of Hilbert schemes of points. It can be more
easily characterized as the unique inner product satisfying

(H̃λ, H̃µ) = δλµgλ

where

(3.9) gλ =∏
◻∈λ
(1 − qa(◻)t−l(◻)−1)(1 − q−a(◻)−1tl(◻))

3.3. Orbital integrals and symmetric functions. Let us review how symmetric
functions arise in the theory of orbital integrals on GLn. This essentially goes back
to [78,79]. First, we describe how to interpret unipotent/nilpotent orbital integrals
of characteristic functions of standard parahorics using the theory of symmetric
functions.

Proposition 3.13. Let 1λ be the characteristic function of the standard parahoric
subgroup Pλ ⊂ GLn(F ) corresponding to the partition λ, divided by the measure of
Pλ. Let Iµt(−) be the orbital integral over the unipotent class of type µt. Then we
have

(3.10) Iµt(1λ) = ⟨hλ, h̃µ⟩

where ⟨−,−⟩ is usual Hall inner product from Definition 3.10.
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Proof. Let ψλ be the characteristic function of Pλ, i.e. ψλ = cλ(q)cn(q)−11λ
3.

By [78, Prop. 4.2.] we get that in the normalizations we have chosen,

Iµt(ψλ) = cWal
λ (q)cWal

µ (q)cWal
n (q)−1⟨xλ, yµ⟩Zel

where xλ, yµ in the notations of [78,81] correspond to our hλ and eµ by [81, 10.2.].

Since eµ [ X
q−1] = (−1)

nhµ [ X
1−q ] we get

Iµt(ψλ) = (−1)4ncλcµc−1n ⟨hλ, hµ [
X

1 − q
]⟩

Absorbing cµ to h̃µ and taking into account the difference between ψλ and 1λ we
get

Iµt(1λ) = c−1λ cnIµt(ψλ) = ⟨hλ, h̃µ⟩
□

A similar result holds for the truncated Steinberg distributions Stλ,c,k from The-
orems 2.19, 2.20.

Proposition 3.14 (Lemme V 11. [79]). Suppose e ≥ 1, (d, e) = 1 and µ ∈ P (n/e).
Denote also k = nd/e, and let fd,eµ be the characteristic function of und/ePµe where
Pµe is the parahoric associated to µe, again divided by the measure of the subset as
in the previous Proposition. Note Here u is the matrix in Eq. (1.1), or any suitable

lift of the generator of Ω ⊂ W̃ to the group G(F ). Note that f0,eµ = 1µ.
Then

Steλ,c,k(fd,eµ ) = (−1)nd−nd/e⟨hµ, eλ⟩
where the pairing is the Hall inner product and Steλ,c,k(−) is the distribution from
Theorem 2.34.

In particular, when d = 0, we have Steλ,c,k(f0,eµ ) = ⟨hµ, eλ⟩.

Proof. This is a direct translation of [79, V. II], with the identifications xµ = hµ, yλ =
eλ as above. Note that we could use the isometry property of ω to switch the roles
of eµ, hλ. □

4. The elliptic Hall algebra

In this section, we define the elliptic Hall algebra (EHA) and recall some neces-
sary facts about it. Apart from Theorem 4.9 results in this section are contained
in [25,33,59–62,68–70,75]. For the basic theory, our main references are [25,59,75]
and for the results on symmetric functions, one may refer to [59–62,69].

For most of the paper, in particular for the application in the proofs of our main
results in Section 2, we want to understand the t → 1 degeneration of the Fock
space representation of the EHA.

Definition 4.1. The elliptic Hall algebra (quantum toroidal gl1) is the C-algebra
E = Eq1,q2,q3 depending on q1, q2, q3 ∈ C×, q1q2q3 = 1, generated by elements

Pm,n, (m,n) ∈ Z2/(0,0)
and satisfying the relations

[Pm1,n1 , Pm2,n2] = 0

3Warning: Waldspurger uses the notation φλ for our ψλ. For him, ψλ denotes a different
function. We reserve the notation φ for the plethysms introduced in the next sections.



24 OSCAR KIVINEN AND CHENG-CHIANG TSAI

if (m1, n1), (m2, n2) lie on the same line through the origin, and

[Pm1,n1 , Pm2,n2] =
θm1+m2,n1+n2

α1

if (m1, n1), (m2, n2), (m1 +m2, n1 + n2) form a quasi-empty triangle. Here

exp(
∞
∑
k=1

Pkm,knαkx
k) =

∞
∑
ℓ=1

θℓm,ℓnx
ℓ

for (m,n) = 1 and

αk =
(qk1 − 1)(qk2 − 1)(qk3 − 1)

k

Proposition 4.2 (Triangular decomposition). Let E> be the subalgebra generated
by the P1,n, n ∈ Z, E< be the subalgebra generated by the P−1,n, n ∈ Z, and E0 be
the subalgebra generated by P0,±k, k ∈ Z>0. The multiplication map gives a C-linear
isomorphism

E< ⊗ E0 ⊗ E> → E

For the rest of this paper, we may as well restrict our attention to the positive
part E> of the EHA, or rather the nonnegative part E≥ which is by definition
generated by P1,n, n ∈ Z, P0,k, k > 0. Further, we wish to study the q3 → 1 limit of
this algebra and the Fock space representation. The relationship of the parameters
q1, q2, q3 to the Macdonald theory parameters is q1 = q, q3 = t−1 so that this limit
amounts to setting t = 1. We will use these identifications freely.

Note that since the definition of E is symmetric in the qi, this choice is immaterial
for many things. Importantly, it does matter for the Fock space representation (to
be introduced soon), whose definition is not symmetric in the qi.

Let us now remark on the structure of E in the limit t → 1 as an abstract
algebra, although this will not be important for us. Consider the quantum torus
in one variable, or in other words the algebra of q-difference operators on C×. It is
the C[q±]-algebra

D ∶= C[q±]⟨X±,D±⟩/DX − qXD.
Considering this associative algebra as a Lie algebra we get a 2-dimensional central
extension Dc1,c2 [25] with central charges c1, c2 ∈ C defined as

[Xi1Dj1 ,Xi1Dj2] = (qj1i2 − qj2i1)Xi1+i2Dj1+j2 − δ(i1,j1),(−i2,−j2)q
i1j1(i1c1 + j1c2).

By [25] we may view E as a quantization of the universal enveloping algebra of
Dc1,c2 , and taking the q3 → 1 limit recovers just this universal enveloping algebra,
at least up to a completion.

For example for the limit q3 → 1, we have (see [75, Proposition 5.6.]) that

(1 − q)P1,m =DmX, (q−1 − 1)P−1,m =X−1Dm

and

(1 − q−m)P0,m =Dm.

Remark 4.3. It is not possible to directly set q3 → 1 in the defining relations of
the EHA as given above. A way to circumvent this is to redefine:

exp((1 − q3)−1
∞
∑
k=1

Pkm,knαkx
k) =

∞
∑
ℓ=1

θℓm,ℓnx
ℓ
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or alternatively to rescale the generators of E< by 1 − q2 and those of E> by 1 − q1.
Effectively, this gives an integral form of E in the sense of Lusztig. See e.g. [75,
Section 5.4.] and [63] for details.

As the name suggests, E specializes to the Hall algebra of coherent sheaves on an
elliptic curve over a finite field (when q1 is the Frobenius eigenvalue on H1 and q2
its conjugate). In that setting, the slope of vector bundles gives rise to natural Hall
subalgebras. These lift to E , and are by definition the commutative subalgebras
”living on lines through the origin”.

Definition 4.4. Let m,n ∈ Z2
≥0, (m,n) = 1. The slope m

n
-subalgebra of E≥0 is the

subalgebra Em/n generated by Pkm,kn, k ≥ 0

Theorem 4.5 ( [59]). Let Symq,t be the algebra of symmetric functions over C(q, t)
as introduced in Section 3. There is an algebra isomorphism

φ̂m/n ∶ Symq,t → Em/n

sending pk ↦ Pkm,kn.

We will call this homomorphism the slope m/n plethysm.

4.1. The Fock space.

Definition 4.6. The Fock space is the C(q, t)-vector space F spanned by the basis

{∣λ⟩}λ⊢n,n≥0

Recall that F appears naturally from the Hilbert scheme of points on A2 or sym-
metric functions over C(q, t). We will freely identify F with the space of symmetric
functions Symq,t (see Section 3) so that the basis ∣λ⟩ corresponds to the Macdonald

basis H̃λ. The reason for our usage of the Fock space as opposed to just Symq,t

will become clear in Section 9.

Theorem 4.7 ( [26, 69]). There is an action of Eq1,q2,q3 on F by so called shuffle
algebra operations.

We will be interested in the action of the operators Pkm,kn ∈ E≥0 and more

generally the slope m/n subalgebras Em/n in the Fock space, especially in the t→ 1
limit. For example, the operators P0,m act as multiplication by the symmetric
functions pm, and the operator P1,0 is a so called Macdonald eigenoperator.

In [60] the matrix coefficients of the operators Pkm,kn in the basis ∣λ⟩ are com-
puted (see also [26]). Below the orthogonalizing inner product ⟨λ∣µ⟩ = δλµgλ corre-
sponds to the geometric inner product (−,−) on symmetric functions, see Definition
3.10.

Theorem 4.8 ( [60], see Eq. (37) in [33]). We have

⟨λ∣Pkm,kn∣µ⟩ =
γkn

[k]q
⋅ gλ
gµ

SYT

∑
µ=λ+◻1+...+◻kn

⎡⎢⎢⎢⎣

k−1
∑
j=0
(qt)j

zn(k−1)+1zn(k−2)+1⋯zn(k−j)+1
zn(k−1)zn(k−2)⋯zn(k−j)

⎤⎥⎥⎥⎦
⋅

⋅ ∏
kn
i=1 z

S′m/n(i)
i (qtχi − 1)

(1 − qt z2
z1
)⋯ (1 − qt zkn

zkn−1
)
∏

1≤i<j≤kn
ω′ −1 (

zj

zi
)
◻∈λ
∏

1≤i≤kn
ω′ −1 (z(◻)

zi
)
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where

ω′ (x) = (x − 1)(x − qt)
(x − q)(x − t)

, γ = (q − 1)(t − 1)
qt(qt − 1)

and

Sm/n(i)′ ∶= ⌊
im

n
⌋ − ⌊(i − 1)m

n
⌋

Although we do not need the full strength of the formula in Theorem 4.8, it is
recorded here for our computations in Section 5 and possible generalizations. The
t→ 1 limit of this formula for µ = ∅ is studied in Proposition 5.20.

We will now begin to study the degeneration of the representation on F as t→ 1.
The most important fact about the t = 1 limit is the following.

Proposition 4.9. In the Fock representation at t = 1, the positive half E≥
q,1/q,1 acts

by multiplication operators.

Proof. As shown in [63], the operators Pm,n for (m,n) ∈ Z × N generate E≥ over
Z[q±1 , q±2 ], as do the operators Hm,n which are defined by the identity

1 +
∞
∑
s=1

Hsm,sn

xs
= exp(

∞
∑
s=1

Psm,sn

sxs
)

By [62, Theorem 2.15.] one can write the action of either Hm,n or Pm,n as a
contour integral, for example:

Hm,n ⋅ f[X] = ∫
0<X<∣zn∣<⋯<∣z1∣<∞

z
S′m/n(i)
i

∏n−1
i=1 (1 − qt

zi+1
zi
)∏i<j ω

′(zj/zi)

∧● (−X
z1
)⋯∧● (−X

zn
) ⋅ f [X − (1 − q)(1 − t)

n

∑
i=1
zi]

n

∏
a=1

dza
2πiza

Where ⋀●(−X
z
) = ∑∞k=0 hk

zk . Here the contours are concentric circles in the prescribed
order and are contained between the poles 0, x1, . . . ,∞, see e.g. [60, 62] for details.

Now the plethystic operator

f[X]↦ f[X ± (1 − q)(1 − t)z] = exp
⎡⎢⎢⎢⎣
±
∞
∑
k=1

p†
kz

k

k

⎤⎥⎥⎥⎦
⋅ f[X]

at t = 1 becomes just the identity, so that this is a multiplication operator. □

Remark 4.10. We note that this Proposition is conjectured in [8, 9].

Remark 4.11. The operators P1,n, n ∈ N can be described as follows, see e.g. [9].
In plethystic notation, their action on the Fock space is given by

P1,n ⋅ f[X] = f[X +
(1 − t)(1 − q)

z
]∑
i≥0
(−z)iei[X]

RRRRRRRRRRRzn

where by ∣zi we mean extracting the coefficient of zi in this series. At t = 1 this
becomes just multiplication by en. In general when n ∈ Z, the limits of P1,n are still
multiplication operators by above. It is however not true that the algebra generated
by these operators over Z[q±1 , q±2 ] is all of E≥ anymore.

In addition to the Pm,n we want to understand the elements Ekm,kn ∶= φm/n(ek)
from [61,68,69] in the limit t→ 1.
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Proposition 4.12. Suppose that m,n > 0 and gcd(m,n) = 1. At t = 1 the operator
φm/n(ek)∣t=1 becomes a multiplication operator by the symmetric function:

Em,n,k ∶= ∑
D∈Dkm,kn

qarea(D)eD.

Here D is a Dyck path in (km × kn) rectangle below the diagonal, area(D) is the
area between D and the diagonal, and eD ∶=∏horizontal steps hi(D) of D ehi(D).

Proof. Given Proposition 4.9, this is [9, Eq. (4.5.4)] (see also [7]). □

Remark 4.13. In fact, according to [25] while the construction of the limit t =
q3 → 1 of the algebra E is independent of our choice in q1, q2, q3, the construction
of the Fock representation F naturally breaks the symmetry (in physics, this is
related to the threefold symmetry of the refined topological vertex). The action
of the skein algebra of the torus on that of the solid torus made explicit in [56]
corresponds to the q2 = (qt)−1 → 1 limit, and can be thought of as a ”rotation” of
our representation by 120 degrees.

4.2. Double affine Hecke algebras. In order to define the superpolynomials in
the next section, it will be relevant for us to treat E as the limit of the spherical
double affine Hecke algebras as n → ∞, and the Fock space representation as a
limit of the polynomial representations of the spherical DAHA. This point of view
is adopted in e.g. [68].

Definition 4.14. The double affine Hecke algebra (DAHA) Hn is the Q(q, t)-
algebra generated by

X±1 , . . . ,X
±
n , Y

±
1 , . . . , Y

±
n , T1, . . . , Tn

with the relations

[Xi,Xj] = 0 [Yi, Yj] = 0(4.1)

(Ti − t)(Ti + t−1) = 0 [Ti, Tj] = 0, TiTi+1Ti = Ti+1TiTi+1(4.2)

TiXj =XjTi TiYj = YjTi(4.3)

TiXiTi =Xi+1 T −1i YiT
−1
i = Yi+1(4.4)

Y1X1⋯Xn = qX1⋯XnY1 Y −12 X1Y2X
−1
1 = T 2

1(4.5)

where ∣i − j∣ > 1.
The spherical DAHA is the subalgebra

SHn ∶= eHn e

where e ∶= 1
[n]t! ∑w∈Sn

tℓ(w)Tw is the symmetrizing idempotent for the finite Hecke

algebra. Note also that Hn contains two affine Hecke algebras of Sn as subalgebras,
namely one generated by the Ti,Xi and another one generated by the Ti, Yi. We
will denote these by Haff,X

n ,Haff,Y
n .

The following is proved in [13,33,68] and will be essential for our computations:

Lemma 4.15. There is an action of the braid group B3 = ŜL2(Z) on Hq,t by
algebra automorphisms.

Proof. See [13, Section 1.3.]. □
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The generators of this action are

τ+ ∶= (
1 1
0 1

) , τ− = (
1 0
1 1

)

and they act by

τ+ ∶ Ti ↦ Ti, Xi ↦Xi, Yi ↦ YiXi(T1⋯Ti−1)−1(Ti−1⋯T1)−1

τ− ∶ Ti ↦ Ti, Xi ↦XiYi(Ti−1⋯Ti)(T1⋯Ti−1), Yi ↦ Yi

Next, let

(4.6) P
(n)
0,k = e(

n

∑
i=1
Y k
i )e ∈ SHn

For arbitrary integers (a, b) ∈ Z2/0 we have the following.

Proposition 4.16 (Section 2.2., [68]). Let k = gcd(a, b) and γa/k,b/k be any matrix
of the form

γa/k,b/k = (
∗ a/k
∗ b/k) ∈ SL2(Z)

Then the elements

(4.7) P
(n)
(a,b) ∶= γa/k,b/k(P

(n)
0,k )

are well-defined, i.e. do not depend on the chosen matrix.

Proposition 4.17. The elements P
(n)
a,b generate SHn as an algebra.

Further, one can show the P
(n)
a,b ∈ SHn satisfy relations similar to those of Pa,b ∈ E .

In fact, by [68, Theorem 4.6.], we have

Proposition 4.18. There is a surjective algebra homomorphism

(4.8) E ↠ SHn

for all n, sending

Pa,b ↦ P
(n)
a,b

This map restricts to a surjection

E>↠ SH+n
where SH+n is generated by P

(n)
a,b with a > 0 or a = 0, b > 0.

It remains to connect these facts to the Fock space. Recall the following

Definition 4.19. The polynomial representation of Hn is

IndHn

Haff,Y ,n
1 ≅ C(q, t)[X±1 , . . . ,X±n]

The polynomial representation of SHn is eC(q, t)[X±1 , . . . ,X±n].

It is clear from the above that by restricting the action of SHn on the polynomial
representation to the positive part SH+n we get an action on symmetric polynomials
in n variables C(q, t)[X1, . . . ,Xn]Sn .

Theorem 4.20 (Section 5.1, [68]). This action together with the Fock representa-
tion of E intertwine the surjections Symq,t↠ C(q, t)[X1, . . . ,Xn]Sn and E>↠ SH+n.
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Figure 1. The Coxeter braid cox7.

5. Knot invariants

5.1. Algebraic knots. Recall from Definition 1.2 and Remark 1.4 that to any
(reduced) germ of a plane curve {f = 0} ⊂ C2 we may associate both a Puiseux
expansion and the link Link0(f) ⊂ S3. To simplify the discussion, we let f be
irreducible, although appropriately interpreted all our results hold for any f . These
correspond to each other as follows. For a single Newton pair, we have the torus
knot T (p, q). It is the braid closure of the q ∶th power of the Coxeter braid coxp

(see Fig. 1).
Next, for knots L1, L2 in the solid torus, or more precisely elements in the skein

algebra of the annulus, we define the satellite of L1 by L2, denoted L1 ∗ L2 by
thickening L1 to an annulus and placing the diagram of L2 inside this annulus.
Note that this operation is ”acting on the right”. Denote T q

p the annular closure
of the diagram of coxq

p shown in Fig. 1 (in the blackboard framing). Finally, for a
given sequence (p⃗, q⃗) define the iterated torus knot

(5.1) T (p⃗, q⃗) ∶= T qd
pd
∗ (T qd−1

pd−1 ∗ (⋯∗ (T
q1
p1
)⋯)

where we think of these as links in S3 by filling the core of the thickened annulus.

Remark 5.1. The sequence, or pair of sequences (p⃗, q⃗) is denoted (r⃗, s⃗) in [13].
Note that it can be any sequence of (coprime) integers, in which generality we
obtain iterated torus knots. However, the Newton pairs are always positive and
eventually have pk = 1.

An alternative way to produce the iterated torus link is by cabling (see [23,
Appendix A]), for which we need yet another sequence (p⃗, a⃗) where ad = qd, ai ∶=
ai+1pi+1pi+qi,1 ≤ i < d. For a pair of coprime integers (p, a) we let the (p, a)-cable of
a link L ⊂ S3 be the link Cab(p, a)(L) formed by thickening L to a small solid torus
and placing the torus knot T (p, a) inside it. Note that this operation is ”acting on
the left”. Then it is an instructive exercise to check that

T (p⃗, q⃗) = Cab(p1, a1)⋯(Cab(pd, ad)(◯)⋯)

Remark 5.2. We are again opposite to the conventions in [13, 23, 52]. Note that
in [13] the notation (a⃗, p⃗) is used instead. For the satellite construction, we refer
to [52, Section 4].
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5.2. Superpolynomials. The superpolynomial for links in S3 has been proposed
as a three-variable polynomial specializing to the HOMFLY-PT polynomial [21].
There are two main definitions for it:

1) as the Poincaré polynomial

PL(a, q, t) ∶= ∑
i,j,k

qitjak dimHHHi,j,k(L)

of the triply graded Khovanov-Rozansky homology (or HOMFLY homology) HHH(L).
This is a homology theory for knots and links in S3 defined using a braid presenta-
tion of L and Soergel bimodules. This is the invariant that has been compared with
Hilbert schemes of points on plane curve singularities, as well as their compactified
Jacobians, in [64]. For more details, we refer to the survey [32].

2) For iterated torus links, a definition of PL(a, q, t) was given by Cherednik-
Danilenko [13] using double affine Hecke algebras; see also [4, 33] and will be re-
peated in Definition 5.5.

The first and second definitions are known to agree for torus knots and con-
jectured to agree in general, but this has not been proved at the time of writing.
We will use the second definition in this paper, but this also comes with a caveat.
Namely, the polynomial is defined using a cabling presentation as in Eq. 5.1 and
the topological invariance is not clear.

More precisely, it is not known whether there exist two distinct presentations of
some iterated torus knot (/link) L as iterated cables, so that the resulting poly-
nomials are different (see e.g. [56, p. 6]). In other words, this second version of
the superpolynomial is not immediately a topological invariant of L. On the other
hand, in this paper we only care about algebraic knots, where any ambiguity in the
resulting isotopy type of the link is fixed by setting q1 > p1 (this is reflected in the
choice of a coordinate in the Puiseux expansion). In other words, we may speak of
PL(a, q, t) as an invariant of the algebraic knot. See also [14, Theorem 4.3.(ii)].

Next, we will recall the approaches of Cherednik-Danilenko and Gorsky-Negut
[13, 33] to superpolynomials of iterated torus knots and how they degenerate at
t = 1. In fact [33] only work out the torus knot case, while [13] do not use the
elliptic Hall algebra, so one should regard what is below as a mixture of the two.

In [33], the approach is as follows. For a sequence of pairs of coprime integers
(p1, q1), . . . , (pd, qd) we have an iterated torus knot T (p⃗, q⃗) = T pd

qd
∗⋯∗T p1

q1 as above.

By Theorem 4.5, we have also have algebra homomorphisms Symq,t → Eqi/pi , i =
1, . . . , d sending pk ↦ Pkqi,kpi . By Theorem 4.7 the algebra E acts on the Fock
space F ≅ Symq,t by shuffle algebra operations. we denote the action of E ∈ E on
f ∈ Symq,t by E ⋅ f .

Definition 5.3. The full, or deformed master symmetric function associated to
(p⃗, q⃗) is

(5.2) f̂p⃗,q⃗ = φ̂qd/pd
(⋯(φ̂q2/p2

(Pq1,p1 ⋅ 1) ⋅ 1)⋯) ⋅ 1

A recursive description is thus as follows. Set f(p1,q1) = Pq1,p1 ⋅1, and for j = 2, . . . d
define f(p1,q1),...,(pj ,qj) as follows. First, expand f(p1,q1),...,(pj−1,qj−1) in terms of the
power sum symmetric functions pk and replace all pk in the resulting expression
by the operators Pqik,pik, then act on 1 ∈ the Fock representation. The result is a
symmetric function.
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Define the evaluation vector from [33, Eq. (39)]:

(5.3) v(a) = ∑
µ⊢n

H̃µ

gµ
∏
◻∈µ
(1 − aqa

′(◻)tl
′(◻))

where

gµ ∶=∏
◻∈µ
(1 − qa(◻)t−l(◻)−1)∏

◻∈µ
(1 − q−a(◻)−1tl(◻))

and a′(◻), l′(◻) denote the coarm and coleg of a box in the Ferrers diagram.

Remark 5.4. The factor gµ is the product of the weights of the G2
m-representation

Λ●T ∨µ Hilbn(A2), where the variable a encodes the exterior degree.

Definition 5.5. Let L = T (p⃗, q⃗) be an iterated torus link. The superpolynomial of
L is defined to be

PL(a, q, t) ∶= (̂fp⃗,q⃗,v(a))
where v(a) is defined in Eq. (5.3). Note that we are using the geometric inner
product.

Remark 5.6. We make three remarks on the above definitions.

(1) Note that the full master symmetric function and the superpolynomial de-
pend on three variables q, t, a. At a = 0 the evaluation vector simplifies
to

v(0) = ∑
µ⊢n

H̃µ

gµ

and it is indeed the quantity

(fp⃗,q⃗,v(0)) = ⟨fp⃗,q⃗, en⟩

at t = 1 that gives the spherical orbital integrals in Section 2.
(2) The homogeneity property of Shalika germs from Proposition 2.11 is re-

flected in the H̃λ-expansion of f̂p⃗,q⃗. Namely, the operator ∇ of Bergeron

and Garsia scales each H̃λ by qn(λ)tn(λ
t) where n(λ) = ∑ℓ(λ)

i=1 (i − 1)λi, and
in the t = 1 limit this will turn into scaling the h̃λ in the expansion of fγ
by qn(λ), as we will prove in the next section (see Remark 6.31). Note that
on the level of the link of the singularity, this scaling γ ↦ tγ corresponds
to adding a full twist.

(3) Note also that the full master symmetric function could be decorated by
a partition or even a sequence of partitions, by replacing the first vacuum
state ”1” in the Fock space by a modified Macdonald polynomial H̃λ (resp.

replacing all of the vacuum states by H̃λd
, . . . , H̃λ1). In principle, our meth-

ods give formulas for these cases as well at t = 1, a = 0.

Let us now discuss how the above connects to the approach in [13]. In loc. cit.
the following ”evaluation homomorphism” or ”coinvariant” {−}ev ∶ Hn → C(q, t) on
the DAHA is defined:

{−}ev ∶Xa ↦ q−(ρ,a), Yb ↦ q−(ρ,b), Ti ↦ t

Recall also from the discussion around Definition 4.19 that the DAHA acts on its
polynomial representation

C(q, t)[X±1 , . . . ,X±n]
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and this restricts to an action of SH+n on symmetric polynomials in n variables.

Recall also the ŜL2(Z)-action and the elements P
(n)
a,b ∈ SHn. The DAHA-Jones

polynomial of Cherednik-Danilenko is defined in [13, Eq. (4.26)] (with slightly
different notation) as

(5.4) JD
(n)
p⃗,q⃗ (q, t) = {γq1/p1

(⋯(γqd−1/pd−1(P
(n)
qd,pd

⋅ 1) ⋅ 1)⋯) ⋅ 1)}ev
This is related to the superpolynomial PL from above by

Theorem 5.7 (Cherednik’s stabilization conjecture, Section 3.4., [33]). We have

JD
(n)
p⃗,q⃗ (q, t) = PL(tn, q, t)

Remark 5.8. When m = 0, the superpolynomials coincide with the Poincaré poly-
nomials of triply graded Khovanov-Rozansky homologies of L by the explicit com-
putations in [24,39,53]. It is an important open problem to verify this for algebraic
links and more general iterated torus links.

We now come to explicit combinatorial formulas for the superpolynomials and
the master symmetric functions. We will first recall the full torus knot case as
in [33], and then work out the general formula at a = 0, t = 1.

The following formula for the full master symmetric function of a torus knot is
given by [33, Theorem 1.1]. Let T be a standard Young tableau on n letters. For
the box labeled i in its diagram, denote by zi the q, t-content of the box. Recall
also that

ω′ (x) = (x − 1)(x − qt)
(x − q)(x − t)

and

S′i ∶= Sq/p(i)′ ∶= ⌊
iq

p
⌋ − ⌊(i − 1)q

p
⌋

and define ν ∶= (1−q)(1−t)(1−qt) . Then we have the following.

Theorem 5.9 (Theorem 1.1. and Eq. (37), [33]).

(5.5) f̂m,n = ∑
λ⊢n

νn
H̃λ

gλ
∑

SYT(λ)

∏n
i=1 z

S′m/n(i)
i (qtzi − 1)

(1 − qt z2
z1
)⋯ (1 − qt zn

zn−1
)
∏
i<j
ω′ (

zj

zi
)
−1

Note that to pass from this description to the case of iterated cables is rather
cumbersome. Namely, one should expand each H̃λ in the power sum symmetric
functions (or perhaps the elementary ones [61]), replace each pk by operators of the
form Pkq,kp, use the formula [33, Eq. (37)], and proceed, but it is not obvious if
this gives rise to any simple combinatorial formula.

However, at t = 1 the above formula massively simplifies and we may write down
the general result. To do this, let us introduce some notation.

Definition 5.10. The degenerate master symmetric function (or just master sym-
metric function in the rest of the text) of an iterated torus knot T (p⃗, q⃗), is the t = 1
specialization of f̂p⃗,q⃗:

fp⃗,q⃗ ∶= f̂p⃗,q⃗ ∣t=1
Remark 5.11. This definition stems from a somewhat unfortunate notation clash
between knot homology, symmetric functions and point-counting on affine Springer
fibers. Since the t-variable is naturally inverted from the point of view of Macdonald



SHALIKA GERMS FOR TAMELY RAMIFIED ELEMENTS IN GLn 33

theory, it could be more appropriate to define fp⃗,q⃗ = f̂p⃗,q⃗ ∣q=1 and then replace t by
q everywhere. Since the q, t-formulas are transposition-symmetric under switching
q, t, this will affect our formulas by a q → q−1 in the Shalika germ expansion as well
as the orbital integrals, see Theorem 6.27.

Given Definition 5.10, we can now write down the resulting symmetric function
fp⃗,q⃗ given a sequence of pairs of coprime integers (p⃗, q⃗).

Definition 5.12. Let λ ⊢ n and d, e ≥ 1 with (d, e) = 1. Define

Ed,e,λ =
ℓ(λ)
∏
j=1

Ed,e,λj

where Ed,e,λj = ∑D∈Ddλj,eλj
qarea(D)eD is as in Proposition 4.12.

With this notation, the slope p/q plethysm from Theorem 4.5 in the limit t = 1
can be expressed using the following definition.

Definition 5.13. The slope q/p-plethysm in the t = 1 limit is the homomorphism

φq/p ∶ Symq,t → Symq,t

defined by letting

φq/p(ek) = Eq,p,k

Combining the definition of fp⃗,q⃗ as the limit at t = 1 of f̂p⃗,q⃗ with the result of
Proposition 4.9, the degenerate master symmetric function fp⃗,q⃗ can be inductively
computed by expanding f(pi−1,qi−1), i = 1, . . . , d in the elementary symmetric func-

tions eλ = ∏ℓ(λ)
j=1 eλj and by replacing each eλj by the operator Eqi,pi,λj defined in

Proposition 4.12. In other words,

Theorem 5.14. The degenerate master symmetric function fp⃗,q⃗ can be computed
as

fp⃗,q⃗ = φqd/pd
(⋯φq1/p1

(e1)⋯)

As we will also be interested in the expansion of fp⃗,q⃗ in terms of the h̃λ, let us
now study the limit of the formula in Eq. (5.5) as t→ 1.

Definition 5.15. We call the coefficient of H̃λ in Eq. (5.5) for a fixed T ∈ SYT(λ)
the (q, t)-weight of the SYT T . We will denote it by ŵtm/n(T ). Note that the
weight depends on m/n.

Lemma 5.16. By comparison to Eq. (5.5), a convenient formula for the weight is
given by

(5.6) ŵtm/n(T ) =
∏n

i=1 z
Sm/n(i)−1
i

∏n
i=2(1 − 1

zi
)(1 − qt zi−1

zi
)∏i<j

ω ( zi
zj
)

where

ω(x) = (1 − x)(1 − qtx)
(1 − qx)(1 − tx)

and

Sm/n(i) = ⌈
im

n
⌉ − ⌈(i − 1)m

n
⌉
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Proof. First, note that Sm/n(n − i) = S′m/n(i) and ω′(x−1) = ω(x). In particular,

reversing the labeling on the zi we see

wtm/n(T ) =
νn

gλ

z
Sm/n(i)
i ∏i(qtzi − 1)
∏n

i=2(1 − qt
zi−1
zi
) ∏

i>j
ω ( zi

zj
)
−1

On the other hand, one can check that

gλ = z1⋯zn
νn∏n

i=1(1 − z−1i )(1 − qtzi)

∏i<j ω ( zizj )ω (
zj
zi
)

Plugging the latter equation into the former one, we are done. □

Let us now study the limit as t→ 1.

Proposition 5.17.

(1) Let T ∈ SYT(λ). then the order of vanishing of the weight wt(T )m/n at t = 1
equals

(5.7) v(T ) = ∣λ∣ − ℓ(λ) − π(T )

where π(T ) is the number of pairs of consecutive boxes ◻i,◻i+1 in T s.t.
they lie in consecutive columns. Note that this number is always ≥ 0 and
independent of m/n.

(2) Suppose that v(T ) = 0, so that the weight does not vanish at t = 1. Then it
is equal to

∏n
i=1 z

Sm/n(i)−1
i

∏n
i=2(1 − z−1i )(1 − q

zi−1
zi
)

Here zi are (q, t)-contents of boxes in T now specialized at t = 1 and as
in [33], we simply ignore ℓ(λ) − 1 + n(T ) zero factors in the denominator.

Proof. From the formula for the weight in Eq. (5.6) independence of the subscript
m/n is clear. Looking at the denominator, we have the claimed factor and the
factors

ω ( zi
zj
) =
(1 − zi

zj
)(1 − qt zi

zj
)

(1 − q zi
zj
)(1 − t zi

zj
)
, i < j

At a first glance it looks like this factor is always just 1 at t = 1. However, this only
holds if zi

zj
∉ { 1

q
, 1
t
, 1
qt
} (wheel conditions). For example, if zi

zj
= 1/q, then we get

ω ( zi
zj
) = (1 − 1/q)(1 − t)

(1 − t/q)
which gives a zero at t = 1 or order 1. Similarly, for zi

zj
= 1/t we get a zero of order 1

from (1−1/t)(1−q)
(1−q/t) , and at zi

zj
= 1/qt we get a pole of order 1 from (1−1/qt)

(1−1/t)(1−1/q) . Since

each box which has a box to the right of it contributes a zero, each box with a box
above it contributes a zero, and a box with a box diagonally above it contributes a
pole, we see that this gives a total number of ∣λ∣ − 1 zeroes.

The factors (1− z−1i ) in the denominator vanish at t = 1 iff zi = tk for some k ≥ 1,
i.e. ◻i is at the beginning of a row and we ignore the first factor. Therefore, they
contribute a pole of order ℓ(λ) − 1.
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Finally, the factors (1 − qtzi−1/zi) contribute a pole of order π(T ) at t = 1, since
this factor vanishes at t = 1 iff zi = qzi−1. The result follows. □

Remark 5.18. The first author thanks Eugene Gorsky for explanations related to
the combinatorics of this Proposition.

Recall from Lemma 3.4 that to each composition α ⊧ n there is associated an
unique Young tableau.

Lemma 5.19. The weight wt(T )m/n does not vanish iff T comes from a composi-
tion.

Proof. We need to show that only the tableaux coming from compositions have
v(T ) ∶= ∣λ∣ − ℓ(λ) − π(T ) = 0, cf. Eq. (5.7). Note that v(T ) = 0 iff π(T ) =
∣λ∣ − ℓ(λ). Additionally, the latter is an upper bound (i.e. the condition is satisfied
for every box except the ends of the rows, which is obviously the maximum number
of boxes), so we are looking to maximize the number of consecutive pairs of boxes
in consecutive columns.

For a tableau of shape λ, coming from a composition α = α1 + ⋯ + αr we have
exactly

π(T ) = (α1 − 1) +⋯ + (αr − 1) = ∣α∣ − ℓ(α)
by construction. Conversely, if π(T ) = ∣λ∣ − ℓ(λ), the horizontal strip coming from
the top boxes in the diagram must have consecutive labels. Stripping it away gives
αr, and we continue inductively to build α1 +⋯ + αr. □

At t = 1 we then finally have

Proposition 5.20.

(5.8) Pm,n ⋅ 1 = ∑
α⊧n

wt(α)m/nh̃α = ∑
α⊧n

(−1)n−ℓ(α)zS1

1 ⋯zSn
n

cα−1(q)
h̃α

where Si = ⌈ imn ⌉ − ⌈
(i−1)m

n
⌉. Here (m,n) = 1.

Proof. From the second part of Proposition 5.17 we have that the denominator of
wt(α)m/n is

n

∏
i=2

1

(1 − z−1i )(1 − qzi−1/zi)
with the convention that zero factors are ignored.

Arranging the q, t-contents at t = 1 into a vector by reading the tableau box by
box, we write

z(α) = (1, q, . . . , qα1−1,1, q, . . . , qα2−1, . . . ,1, . . . , qαr−1)

and by definition z(α)i = zi.
It is easy to see that the 1 − qzi/zi+1 factors are only nonvanishing at the ends

of the parts of α so this becomes

r

∏
j=1

1

(1 − q−1)⋯(1 − q−αj−1)

r−1
∏
j=1

1

1 − qαj
= (−1)n−ℓ(α)z1⋯zn
(1 − q)n−1[α1]!⋯[αr−1]![αr − 1]!

= (−1)
n−ℓ(α)z1⋯zn
cα−1(q)

where [m]! =∏m
i=1(1 − qm)/(1 − q) and α − 1 is the composition where we remove 1

from the last part.
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Since the numerator was z
Sm/n(1)−1
1 ⋯zSm/n(n)−1

n we get the result. For further
reference, we will denote the coefficient for a fixed α the weight of α:

(5.9) wt(α)m/n =
(−1)n−ℓ(α)zSm/n(1)

1 ⋯zSm/n(n)
n

cα−1(q)
□

In order to write down the transition matrix of Shalika germs, we will also need
the case when m,n are not coprime. This is the t → 1 limit of the formula in
Theorem 4.8 at µ = ∅.

Proposition 5.21.

(5.10) Pkm,kn ⋅ 1 = ∑
α⊧kn

wt(α)m/nh̃α

where for α ⊧ kn

(5.11) wt(α)m/n =
⎛
⎝
1 +

k−1
∑
j=1

qj
z(k−j)n⋯z(k−1)n

z(k−j)n+1⋯z(k−1)n+1
⎞
⎠
(−1)n−ℓ(α)zSm/n(1)

1 ⋯zSm/n(n)
n

cα−1(q)

Proof. Comparing to Theorem 4.8 and Proposition 5.20 this is proved exactly in
the same way, but we also have the coefficient

k−1
∑
j=0

qj
zn(k−1)+1⋯zn(k−j)+1
zn(k−1)⋯zn(k−j)

where the first summand is to be just read as 1. □

6. The combinatorial formulas

In this section, we state and prove the inductive combinatorial formula for the
Shalika germs and the Steinberg germs, as well as the orbital integrals themselves.
Our method on the harmonic analysis side heavily based on results of [79], in
particular the combinatorial result Lemme V 12. therein. Currently, it can be
regarded as the most technical part of our computations, but we also hope the
results in this section give insight to the rather brute-force approach in [79].

Definition 6.1. Let m ≥ n ≥ 0, let λ ⊢m have n parts and µ ⊢ n and consider the
set Υµ

λ ⊂ Z
n
≥0 defined by

Υµ
λ ∶=
⎧⎪⎪⎨⎪⎪⎩
(d1, . . . , dn) ∈ Zn

≥0 ∣ (
k

∑
i=1
di)(

n

∑
i=k+1

λi) − (
k

∑
i=1
λi)(

n

∑
i=k+1

di)

⎧⎪⎪⎨⎪⎪⎩

= 0, if there is a j so that k = ∑j
i=1 µi

> 0, otherwise
, ∀k = 1, . . . , n − 1

⎫⎪⎪⎬⎪⎪⎭
Example 6.2. Let m = n, µ = (n) and λ = (1n). Then

Υ
(n)
(1n) = {d⃗ ∣ (n − k) ⋅

k

∑
i=1
di − k ⋅

n

∑
i=k+1

di > 0,∀k = 1, . . . , n − 1}

Proposition 6.3. The subset Dd,n ⊆ Υ(n)(1n) given by d⃗ with ∑i di = d is in bijection

with the slope d/n rational Dyck paths D<d,n strictly under the diagonal.
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Proof. Giving a Dyck path is the same as giving the sequence of its horizontal steps.
If we are looking at d/n-Dyck paths, these steps have to sum to d and there are at
most n steps, which gives us a sequence (d1, . . . , dn). Since such a Dyck path lies
above the line with slope d/n, we must have

(n − k)(
k

∑
i=1
di) − k(d −

k

∑
i=1
di) = n

k

∑
i=1
di − kd > 0

for all k (if we allowed all Dyck paths, for noncoprime d,n equality could also hold).
The converse is clear. □

Example 6.4. Let n = 4, d = 3. The allowed sequences are

(3,0,0,0), (2,1,0,0), (2,0,1,0), (1,2,0,0), (1,1,1,0)

and these correspond to the Dyck paths

For any P = ∑d⃗ ad⃗X
d⃗ ∈ Z[[X1, . . . ,Xn]] we define the truncation

(6.1) Υµ
λ(P ) ∶= ∑

d⃗∈Υµ
λ

ad⃗X
d⃗

Remark 6.5. Our Υµ
λ is equal to the ”polynomial” component of the set Γµ

λ,Z
defined in [79, I 10]. It appears that this polynomial component constitutes the
primary (if not the exclusive) usage of Γµ

λ,Z in [79]. We have avoided this notation

in order not to get it confused with the Shalika germs Γλ(−). Note also that on
pages 856 and 878 of loc. cit. the confusing notation ΓµP

λ is used, but this seems
to be a misprinted Γµ

λP .
In general, one should think of the elements of Γµ

λ,Z and Υµ
λ Lie-theoretically as

follows. Zn is the weight lattice of GLn, and each collection of n integers λ1, . . . , λn
gives a linear form on Zn as defined above. On the other hand, µ gives a parabolic
subgroup of GLn, and the (in)equalities above decide that this linear form should
(not) vanish on the relative root subspaces of the corresponding Levi subgroup. This
cuts out a cone in the apartment of T . Fixing the coordinatewise sum is intersecting
this cone with an affine hyperplane. Further restricting to the nonnegative part is
intersecting with yet another cone, i.e. the positive orthant. We remark that the
definition of Υµ

λ is related to the definition of ”Hecke-regular functions” in [3, Section
4].

6.1. Comparison to Waldspurger’s recursion. The goal of this subsection is
to recall the recursive computation of the Steinberg germs from [79] and in the
inertially elliptic case to compare it to the recursive definition of fp⃗,q⃗ from Section
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5. We also extend the construction to apply to general tamely ramified elements,
even when there is no knot in the picture.

To start with, if we suppose γ ∈ GLn(F ) is elliptic, tamely ramified and compact,
the recursion of [79] for determining the Steinberg germs ΓSt

λ (γ) proceeds in two
steps, as explained in VII 7. of loc. cit. We now recall this process in our notation.
As our eventual goal is to compute the Steinberg and Shalika germs of regular
semisimple tamely ramified γ ∈ gln or γ ∈ GLn by a combination of homogeneity
and the computation for compact elements in the group done below, we set up some
definitions. Their utility will immediately become clear.

Definition 6.6. We now define the master symmetric function of γ, fγ ∈ Sym for

γ ∈ GLn(O),GLn(F )c,gln(F )
respectively.

(1) Let γ ∈ GLn(O) be regular semisimple. By Corollary 2.7 we have the group
Shalika germs Γλ(γ) for γ and the Steinberg germs ΓSt

λ (γ). Let the master
symmetric function of γ be

fγ ∶=∑
λ

Γλt(γ)h̃λ

or equivalently by Propositions 3.13, 3.14, fγ = ∑λ Γ
St
λ (γ)eλ. Note the

transposition in the Shalika expansion, forced upon us by Proposition 3.13.
(2) For general compact γ ∈ GLn(F )c, not necessarily with val(det(γ)) /= 0, we

define
fγ ∶=∑

λ

ΓSt
λ (γ)eλ

(3) Finally, if γ ∈ gln(F ), define

fγ ∶=∑
λ

Γλt(γ)h̃λ

where Γλ(γ) are the Lie algebra Shalika germs from Theorem 2.8.

Remark 6.7. These symmetric functions are elements of Sym, the ring of symmet-
ric functions over C. As follows from Theorem 6.27, they only depend on certain
discrete invariants attached to γ in the tamely ramified case. Moreover, the coef-
ficients in any of the above expansions are rational functions of q, the size of the
residue field of F , which only have poles at roots of unity. It therefore does no
harm to consider fγ as an element of Symq, the ring of symmetric functions over
C(q).

Remark 6.8. If γ is topologically unipotent, i.e. γ = 1+γ′ where γ′ is topologically
nilpotent, then it follows from Proposition 2.9 that the Lie algebra version of fγ
coincides with the group version fγ , relating definitions (1) and (3). In this case we
also have fγ = fγ′ on the Lie algebra. Below, we tacitly avoid keeping track of which
fγ we work with, as it should be clear from the context. Note that in case (2) there
is no obvious analog of the Shalika germs. Of course, one may define these via a
change of basis a posteriori, but the harmonic analysis meaning is unclear.

Definition 6.9. Let γ be as in any of the cases (1)–(3) above. The coefficients of
the expansion of fγ in the complete homogeneous symmetric functions are called
the Dyck germs of γ. In the group case, one can think of these as the expansions of
the corresponding orbital integrals as linear combinations of Fourier transforms of



SHALIKA GERMS FOR TAMELY RAMIFIED ELEMENTS IN GLn 39

nilpotent orbital integrals truncated to compact elements, although we do not use
this fact.

Let us recall the setup of [79, Séction VI–VII], in slightly simplified form (the
simplification being that for us E = F and r = 1 in the notation of loc. cit.). Now
F is a nonarchimedean local field (of arbitrary characteristic, see Remark 2.5),
γ ∈ GLn(F ) is elliptic and tamely ramified so that F (γ)/F is a tamely ramified
extension of F . Here for any semisimple γ ∈ GLn(F ), we can realize F (γ) as the
commutative subalgebra of gln(F ) given as the center of the centralizer of γ in
gln(F ), and F (γ)× is the corresponding torus in GLn(F ).

Definition 6.10. Let F ′/F be a tamely ramified extension with ramification index
e = eF ′/F . We call δ ∈ (F ′)× cuspidal for F ′/F if (valF ′(δ), e) = 1 and if the reduction

of t−valF ′(δ)δe in the residue field of OF ′ generates the residue field over that of OF

for any uniformizer t ∈ F .

We will also need the following [79, VII 4.]

Lemma 6.11. Let E/F be a non-trivial tamely ramified extension and γ ∈ 1 +mE

be such that F (γ) = E. Then we can always write γ = η(1 + δγ′) with η ∈ 1 +mF ,
γ′ ∈ 1 + mE and δ ∈ E, such that δ is cuspidal for F ′ ∶= F (δ)/F with F ′/F a
non-trivial extension.

Note that in both lemmas, while γ′, δ are not uniquely determined by γ, the
integers e = eF ′/F , f = [OF ′/mF ′ ∶ OF /mF ], d = valF ′(δ) and the extension F ′ are
all uniquely determined by γ. In fact, more numerical invariants are preserved. Let
us define

Definition 6.12. Let E/F be a tamely ramified extension of degree n and γ ∈ E
be such that E = F (γ). Take F s any separable closure of F and let γ1, ..., γn
be all conjugates of γ in F s. We define RVF (γ) to be the multiset RVF (γ) ∶=
{valF (γi − γj) ∣ 1 ≤ i < j ≤ n}. We also define

ΞF (γ) =
⎛
⎝ ∑
r∈RVF (γ)

r
⎞
⎠
− (n − [Eur ∶ F ])/2

where Eur is the maximal unramified subextension of E/F .

Remark 6.13. The underlying set of our multiset RVF (γ) already appeared as the
set RV (γ) in Definition 1.2. In particular, RVF (γ) determines the Puiseux pairs
and Newton pairs of γ as in Definition 1.2.

When F = k((t)) is a function field of large enough characteristic and γ ∈
gln(OF ), we note that Ξ(γ) equals the dimension of the affine Springer fiber Spγ .
Presumably this holds for all characteristics and even for the mixed-characteristic
version, but the authors are not aware of a proof in the literature.

Given a multiset S of rational numbers and α ∈ Q, we denote by αS and S + α
the multisets of the same cardinality as S, given by multiplying each element by α,
resp. adding α to each element.

Lemma 6.14. Let γ, δ and γ′ be as in Lemma 6.11. Let e and f be the ramification
index and residual degree of F ′/F in the corresponding notations. Write n′ ∶= n/ef .

(1) We have RVF (γ) = ( 1eRVF ′(γ
′)ef ⊔ {0}n(n−n

′)/2) + valF (δ).
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(2) We have ΞF (γ) = f ⋅ΞF ′(γ′) + n(n−1)
2

valF (δ) − n−n/e
2

.
(3) When E = F (γ) ⊋ F and E/F is totally ramified, the sequence of Newton

pairs of γ′ is given by deleting the last Newton pair (pk, qk) of γ, where
qk/pk = valF (δ), or more precisely pk = e and qk = e ⋅ valF (δ).

To carry out the recursive computation of fγ , we first assume our elliptic, tamely
ramified group element γ is also of the form γ ≡ 1 mod mF (γ), following Lemma
6.11. We also define γ′′ = δγ′, similar to [79, VII 4.].

Example 6.15. In the totally ramified case, assuming γ = 1 + adunrk +⋯+ a1unr1
with rk < ⋯ < r1 (compare to Eq. (1.2)), we can write γ = η(1 + δγ′) with η, δ, γ′
satisfying the above conditions, in the following way: If rd /∈ Z, then we simply take
η = 1, δ = adunrk , and γ′ = 1+ ak−1

ak
un(rk−1−rk)+⋯ In general, η takes care of possible

central translations of γ, which don’t affect the computation by Theorem 2.8. For
example, if γ = 1 + u4 + u6 + u7 in GL4, we can take η = 1 + u4, in which case

γη−1 = 1 + u6 + u7 − u10 − u11 +⋯ = 1 + u6(1 + u − u4 − u5 +⋯)
so that we can take δ = u6 and γ′ = 1 + u − u4 − u5 +⋯

The first step of the recursion is essentially [79, Prop. VII 5.], recalled in Propo-
sition 6.17 below. To state it, we need some notation.

Definition 6.16. Let X(T ) = ∑i≥0 hiT
i ∈ Sym[[T ]]. Fix λ′ ⊢ n′ and number the

boxes in its diagram 1, . . . , n′, going from left to right and bottom to top. Let

P =
n′

∏
k=1

X(Xk)

and let xn(dλ′, q) ∈ Sym[q±1] be the coefficient of Tn in the series

Υλ′

(1n′)(P )

evaluated at X◻ = qa
′(◻)−(λ′

l′(◻)+1−1)/2T , where Υλ′

(1n′) is as defined in Eq. (6.1),

a′(◻), l′(◻) are the coarm and coleg lengths as in Eq. (3.1) and ◻ runs over the
boxes in λ′. See also [79, Section I 10., V 12.].

Proposition 6.17. Write γ = 1+δγ′ and γ′′ ∶= δγ′ as in Lemma 6.11. Let n′ = n/e,
where e is as after Lemma 6.11. Evaluating at q = ∣k∣ we have the following equality
of symmetric functions in Sym:

(6.2) ∑
λ⊢n

ΓSt
λ (γ)eλ = (−1)n−n

′
q(n

′nd−n)/2 ∑
λ′⊢n′
(−1)n

′−ℓ(λ′)ΓSt
λ′ (γ′′)xn(dλ′, q)

where xn(dλ′, q) is as defined in Definition 6.16 and the Steinberg germs are as in
Theorem 2.19.

We refer the reader to [79, Lemme VII 5., Lemme V 12.] for details. We warn
the interested reader that there are some printing errors in the latter lemma, e.g.
the second displayed equation on p. 880 should have a subscripted X2, a sentence
after it there seems to be an extra ”A” in front of λ, and on line 7 of p. 881 another
subscript seems to have gone astray. Also in the statement the ”q” should not be
a subscript of t(λ) but on the same line as (−1). Also in the former Lemma, the
exponent of q should have a −n/2 instead of −n/e.

Proposition 6.17 does not quite yet cover the induction for general tamely rami-
fied compact γ ∈ GLn(F ) as outlined in [79, Section VII 7.], as the right hand side
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of (6.2) has γ′′ which is not congruent to 1 for an essential reason; valF (γ′′) is in
general not an integer.

Write γ′′ ∶= δγ′. and let d, f be as in Lemma 6.14 so that valF (detG(δ)) = nd/e.
By Theorem 2.19 we have the Steinberg germs ΓSt

λ (γ′′) for each λ ⊢ n/e. Note that
even though γ′′ ∈ GLn(F ), these are partitions of n/e. In contrast, we have germs
ΓSt
λ′ (γ′) for λ′ ⊢ n/ef where γ′ is now thought of as an element of G′ ∶= ZGLn(δ) ≅
GLn/ef(F (δ)). The associated master symmetric functions are

fγ′′ = ∑
λ⊢n/e

ΓSt
λ (γ′′)eλ for γ′′ ∈ GLn(F )

and similarly

fγ′ = ∑
λ′⊢n/ef

ΓSt
λ′ (γ′)eλ′ for γ′ ∈ GLn/ef(F ′)

We have

Proposition 6.18. Let γ′′ and γ′ be as above. The master symmetric functions of
γ′′ and γ′ are related by

fγ′′ = (−1)n−n/eτf(fγ′)
where τf is the plethysm/Adams operation defined on symmetric functions by τf ∶
pr ↦ prf for all r ∈ Z≥0. Note that when f = 1 this allows us to compare the
Steinberg germs of γ′′ and γ′ directly up to a sign.

Proof. This is a direct translation of the r = 1 case of [79, Proposition VII 2.], where

the sign is (−1)nd−nd/e. But nd−nd/e ≡ n−n/e mod 2 whenever gcd(d, e) = 1. Note
that our γ′′ was denoted by γ loc. cit.. □

Let us now compare the construction of fp⃗,q⃗ from Section 5 to fγ introduced
above, and extend the construction to apply to general tamely ramified extensions
of local fields, even when there is no knot in the picture. We start with a Lemma.

Lemma 6.19. For any d ∈ Z≥0, n, e ∈ Z≥1, with e∣n and λ′ ⊢ n/e, we have

xn(dλ′, q) = q−(ed∑
ℓ(λ′)
i=1 (λ′i)

2−en′)/2
ℓ(λ′)
∏
i=1

⎛
⎜⎜
⎝
∑

π∈D<
eλ′

i
,dλ′

i

qcoarea(π)hπ

⎞
⎟⎟
⎠

where we only sum over Dyck paths strictly under the diagonal. Here n′ = n/e as
before. (Note that the n′ in [79] is n/ef .)

Proof. Since

xn(dλ′, q) =
ℓ(λ′)
∏
i=1

xeλ′i(dλ
′
i, q)

(see e.g. the second displayed equation of p. 883 in [79]), we may restrict to a single
factor in the product.

Proposition 6.3 tells us that the terms in Υ
dλ′i
1n′
(P ) which contribute to the coef-

ficient xeλ′i(dλ
′
i, q) of T eλ′i of the evaluation of this series at T◻ = qa

′(◻)−(dλ′i−1)/2T
are in bijection with (dλ′i, eλ′i)-Dyck paths strictly under the diagonal.

Collecting these terms, we evaluate Υλ′

1n′ (P ) from Definition 6.16 at

T◻ = qa
′(◻)−(λl′(◻)+1−1)/2 = qa

′(◻)−(dλ′i−1)/2T
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since l′(◻) + 1 = 1 for all boxes and λ = dλ′i. (Note that in the definition of P there
is a +1/2 instead of a −1/2 as in [79, V 12], because our a′(◻) equals i− 1 from loc.

cit..) We can thus factor out q−(dλ
′
i−1)/2. Since we are interested in the coefficient

at eλ′i, we get an overall factor of q−eλ
′
i(dλ

′
i−1)/2. Taking the product over i gives

q−(ed∑
ℓ(λ′)
i=1 (λ′i)

2−en′)/2 as desired.
It is not hard to see that the coarea of the Dyck path corresponding to a

term hπTπ contributing to xeλ′i(dλ
′
i, q) where Tπ = T

h(π)1
1 ⋯T

h(π)dλ′
i

dλ′i
is exactly

coarea(π) = ∑k(k − 1)h(π)k. Here h(π)k denote the horizontal steps of π and
hπ is the homogeneous symmetric function associated to the partition of eλ′i given
by the horizontal steps of π.

□

Recall the operators Ed,e,λ′ from Definition 5.12. Similarly, we define

(6.3) Hd,e,λ′ =∏
i

Hd,e,λ′i =∏
i

⎛
⎜
⎝
∑

π∈Deλ′
i
,dλ′

i

qcoarea(π)hπ
⎞
⎟
⎠

Motivated by Lemma 6.19, we also define

H<d,e,λ′ ∶=
ℓ(λ′)
∏
i=1

⎛
⎜⎜
⎝
∑

π∈D<
eλ′

i
,dλ′

i

qcoarea(π)hπ

⎞
⎟⎟
⎠

We want to relate these functions to the slope d/e-plethysms φd/e on symmetric
functions, as defined in Section 5. Note that these operators involve the area
statistic on Dyck paths, rather than the coarea.

Lemma 6.20. We have

qn
′nd/2−n/2xn(dλ′, q) = q

(dn′−1)(en′−1)+n′−1
2

ℓ(λ′i)
∏
i=1

⎛
⎜⎜
⎝
∑

π∈D<
eλ′

i
,dλ′

i

q−area(π)hπ

⎞
⎟⎟
⎠

Proof. We have

H<d,e,λ′ = q
∑ δλ′

i∏
i

⎛
⎜⎜
⎝
∑

π∈D<
eλ′

i
,dλ′

i

q−area(π)hπ

⎞
⎟⎟
⎠

where δλ′i =
(dλ′i−1)(eλ

′
i−1)+λ

′
i−1

2
. Then

∑
i

δλ′i = (ed∑
i

(λ′i)2 +∑
i

(−d − e + 1)λ′i)/2

and therefore by Lemma 6.19

xn(dλ′, q) = q−(ed∑
ℓ(λ′)
i=1 (λ′i)

2−en′)/2H<d,e,λ′ = q(1−d)n
′/2∏

i

⎛
⎜⎜
⎝
∑

π∈D<
eλ′

i
,dλ′

i

q−area(π)hπ

⎞
⎟⎟
⎠

Further multiplying this by qn(n
′d−1)/2 we get q

nn′d−n−dn′+n′
2 = q

(n−1)(dn′−1)+n′−1
2 in

front.
□
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For convenience, let us denote

H−d,e,λ′ =∏
i

⎛
⎜
⎝
∑

π∈Deλ′
i
,dλ′

i

q−area(π)hπ
⎞
⎟
⎠

and

H−,<d,e,λ′ =∏
i

⎛
⎜⎜
⎝
∑

π∈D<
eλ′

i
,dλ′

i

q−area(π)hπ

⎞
⎟⎟
⎠

Consider now the operator on symmetric functions which takes each hλ′ and
replaces it by H−d,e,λ′ . We can think of this as the conjugation of φd/e by the
involution ω, together with negating all the powers of q that appear in the definition.

More precisely, take an elliptic tamely ramified γ ∈ G(O) as above and let γ′, γ′′

be as in Proposition 6.17. By the process just described, we compute

(6.4) q
(dn′−1)(en′−1)+n′−1

2 ωφd/e∣q↦q−1ω
−1(fγ′′) = q

(dn′−1)(en′−1)+n′−1
2 ∑

λ′⊢n/e
σλ′(γ′′)H−d,e,λ′

Where σλ′ are the ”Dyck germs” of Definition 6.9 that appear in the hλ′ -expansion
of fγ′′ and the relevance of the q-power will become clear soon. Our main technical
result is

Theorem 6.21. The right-hand sides of Eqs. (6.2) and (6.4) are equal up to a
sign. More precisely,

qn
′nd/2−n/2(−1)n−n

′
∑

λ′⊢n′
(−1)n

′−ℓ(λ′)ΓSt
λ′ (γ′′)xn(dλ′, q) = (−1)n−n

′
qδn′ ∑

λ′⊢n′
σλ′(γ′′)H−e,d,λ′

where δn′ ∶= (dn
′−1)(en′−1)+n′−1

2
In particular, the left-hand sides are also equal up to

the same sign.

Proof. Dividing out the sign and using Lemma 6.20, the LHS reads

qδn′ ∑
λ′⊢n′
(−1)

n
e −ℓ(λ

′)ΓSt
λ′ (γ′′)

ℓ(λ′)
∏
i=1

⎛
⎜⎜
⎝
∑

π∈D<
eλ′

i
,dλ′

i

q−area(π)hπ

⎞
⎟⎟
⎠

and we can divide out qδn′ on both sides.
On the other hand, by definition we have

H−e,d,λ′i = ∑
α⊧λ′i

∑
π∈Deλ′

i
,dλ′

i
touchπ=α

q−area(π)hπ

where touch(π) = α specifies that π touches the diagonal at α.
Given two arbitrary compositions, denote by α + β their concatenation. By

sorting, this gives a partition of ∣α∣+ ∣β∣ of length ℓ(α)+ ℓ(β). Given a collection α⃗
of compositions

α(1) ⊧ λ′1, . . . , αℓ(λ′) ⊧ λ′ℓ(λ′)
refining the parts of λ′, we write α⃗↔ λ′.

We now further expand the LHS and collect terms as follows. Note that from
the equation ∑n

k=1(−1)khn−kek = 0 it follows that

en = ∑
α⊧n
(−1)ℓ(α)hα
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where we sum over all compositions of n. Writing λ′ = (λ′1, . . . , λ′ℓ(λ′)) we then have

(6.5) eλ′ =
ℓ(λ′)
∏
i=1
( ∑
α⊧λ′i
(−1)ℓ(α)hα)

By definition of the Dyck germs of fγ′′ ,

∑
λ′⊢n/e

ΓSt
λ′ (γ′′)eλ′ = ∑

λ′⊢n/e
σλ′(γ′′)hλ′

Fix µ′ ⊢ n/e. Plugging Eq. (6.5) in the expression

∑
λ′⊢n/e

ΓSt
λ′ (γ′′)eλ′

and collecting all collections of compositions whose sum has associated partition µ′

we see that

σµ′(γ′′) = ∑
α⃗↔λ′⊢n/e

sort(α(1)+⋯+α(k))=µ′

(−1)
n
e −ℓ(λ

′)ΓSt
λ′ (γ′′)

where the sum runs over all λ′ ⊢ n/e and all collections of compositions α⃗ refining
the parts of λ′, such that the partition given by adding the compositions and sorting
is exactly µ′. It now remains to replace H−d,e,λ′ by a similar expansion. By definition
we have

H−d,e,λ′ =
ℓ(λ′)
∏
i=1
( ∑
α⊧λ′i

∑
π∈Deλ′

i
,dλ′

i
touchπ=α

q−area(π)hπ)

Picking one of the summands over α, we notice that

∑
π∈Deλ′

i
,dλ′

i
touchπ=α

q−area(π)hπ =
ℓ(α)
∏
i=1

H−,<d,e,αi

where we use the fact that the area statistic is additive on concatenation of Dyck
paths (but note the coarea is not). HereH−,<d,e,αi

is defined as above. Again collecting

all α⃗↔ µ′ we see that the terms contributing to H−d,e,µ′ on the right are of the form

(−1)
n
e −ℓ(λ

′)ΓSt
λ′ (γ′′)

ℓ(λ′)
∏
k=1

ℓ(α(k))
∏
i=1

H−,<
d,e,α

(k)
i

where α⃗ refines parts of λ′ and sums and sorts to µ′. Summing over all such
collections we get the desired result. □

We have the following corollary, which is a form of Theorem 1.6 from the intro-
duction.

Corollary 6.22. Let γ ∈ GLn(O) be inertially elliptic and tamely ramified, with
Newton pairs (p⃗, q⃗). Consider the master symmetric function fγ for γ as defined
in Definition 6.6 and the (degenerate) master symmetric function fp⃗,q⃗ introduced in

Definition 5.10. Then fγ = qΞ(γ)ωfp⃗,q⃗ ∣q↦q−1 . Here Ξ(γ) is as defined in Definition
6.12.
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Proof. By assumption γ lies in the ring of integers of the totally and tamely ramified
extension F (γ)/F . Dividing γ by an element in O×F , we may assume γ is topologi-
cally unipotent, i.e. γ ≡ 1(modmF (γ)). The resulting γ is of the type Lemma 6.11
and Proposition 6.17 apply to.

Write γ = η(1+δγ′) as in Lemma 6.11. By Theorem 6.21 combined with the f = 1
case of Proposition 6.18 we see that the master symmetric functions of γ ∈ G(F )
and γ′ ∈ ZG(F )(δ) are related by the equation

fγ = q
(dn′−1)(en′−1)+n′−1

2 (−1)n−n
′
ωφd/e∣q↦q−1ω

−1((−1)n−n
′
τ1(fγ′))

where d, e are as defined after Lemma 6.11.
First, we note the overall sign cancels. Second, to see that the power of q adds

up to Ξ(γ), note that the exponent for each step is 1
2
((dn′ − 1)(n − 1) + n′ − 1) =

1
2
(dn′(n−1)+n′−n). On the other hand, as both γ and γ′ are inertially elliptic, by

Lemma 6.14(2), Ξ(γ)−Ξ(γ′) is equal to 1
2
(d
e
n(n−1)−(n−n′)) = 1

2
(dn′(n−1)+n′−n).

By Lemma 6.14(3), this proves the corollary inductively. □

We note that in Theorem 1.6 we worked with topologically nilpotent elements,
which can be taken to be just γ − 1 where γ is in Corollary 6.22. The Newton
pairs associated to γ (see Definition 1.2) is obviously equal to the Newton pairs
associated to γ − 1.

Remark 6.23. Lemma 6.11 could have worked without η but with the price that
F ′/F might be a trivial extension. In fact, one can run the recursion without
choosing an η at each step and this still gives us a sequence of pairs of integers
(p⃗, q⃗) and hence an associated master symmetric function fp⃗,q⃗. See e.g. Example
6.24 below for an example. That the result is independent of which way we proceed
is clear from that Γλ(γ) = Γλ(γ/η) for η ∈ O×F . One may ask whether this is
clear from the ”combinatorial” setting of Section 5 where one starts simply with a
sequence (p⃗, q⃗). Indeed, the relevant symmetry can be deduced for the full master

symmetric functions f̂p⃗,q⃗ and hence for the fp⃗,q⃗ as well, using Cherednik-Danilenko’s
”reduction cases” in [14, (4.4)–(4.5)].

Example 6.24. As a continuation of Example 6.15 and the above Remark, we
write the recursion of Corollary 6.22 in two different ways. Let γ = 1+ u4 + u6 + u7.
Proceeding as in the Corollary, we get

γ = 1 + u4 + u6 + u7 = (1 + u4)(1 + u6(1 + u − u4 − u5 +⋯))
and further γ′ = 1 + u − u4 − u5 + ⋯ = 1 + u(1 − u3 − u4 + ⋯). This shows that the
master symmetric function is

fγ = q8ωφ3/2(φ1/2(e1))∣q↦q−1

which is also written out in Example 7.1. If we were to use Lemma 6.11 but without
η, we would get γ = 1+u4(1+u2 +u3) and γ′ = 1+u2 +u3 = 1+u2(1+u). This gives

fγ = q8ωφ1/1(φ1/2(φ1/2(e1)))∣q↦q−1

We leave it to the reader to verify these two are the same symmetric function.

When γ is not inertially elliptic, we still have a finite algorithm to compute the
master symmetric function fγ . From Lemma 6.11 we have the following.

Proposition 6.25. Take a topologically unipotent elliptic tamely ramified γ ∈
GLn(F ). There exist
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(1) A sequence of triples of integers (fi, qi, pi), i = 1, . . . , k with (qi, pi) = 1,
(2) A sequence of fields F = Fk ⊊ Fk−1 ⊊ ⋯ ⊊ F1 ⊊ F0 = F (γ), and
(3) A sequence of elements γ1, . . . , γk = γ ∈ F ×0

such that for i = 1, ..., k we have

(a) Each γi is topologically unipotent, i.e. γi ∈ 1 +mF (γi).
(b) There exists ηi ∈ 1 +mFi and δi ∈ Fi−1 such that γi = ηi(1 + δiγi−1) and that

δi is Fi−1/Fi-cuspidal. In particular Fi−1 = Fi(δi).
(c) fi (resp. pi) is the residue degree (resp. ramification degree) of Fi−1/Fi,

and qi = valFi−1(δi).
Moreover, the sequence of triples (fi, qi, pi) is uniquely determined by γ.

We also get the following generalization of Lemma 6.14(3).

Lemma 6.26. Let γ, δ and γ′ be as in Lemma 6.11. Let e and f be the ramification
index and residual degree of F ′/F in the corresponding notations. Write n′ ∶= n/ef .
Then the sequence of triples in Proposition 6.25 associated to γ′ is given by deleting
the last triple (fk, qk, pk) is the sequence of triples associated to γ. We have qk/pk =
valF (δ), e = pk and f = fk.

Denote the residue field of Fi in Proposition 6.25 by ki. Combining the Proposi-
tion 6.17, Proposition 6.18, Proposition 6.25 and Lemma 6.26 we get the following
Theorem, which is the most general expression for the master symmetric function
of a compact, elliptic and tamely ramified γ ∈ GLn(F )c.
Theorem 6.27. Let γ ∈ GLn(F ) be topologically unipotent, elliptic and tamely

ramified with discrete invariants (f⃗, q⃗, p⃗). Then

fγi = ∣ki∣
(dn/e−1)(n−1)+n/e−1

2 ωφqi/pi
∣q↦∣ki∣−1ω

−1(τfi(fγi−1))
For b ≥ 1 let τ ′b ∶ Symq → Symq be the operator sending pk ↦ pbk for all k ≥ 1 and

q ↦ qb. In particular, we may write

fγ = qΞ(γ)ωφqk/pk
(τ ′fk(φqk−1/pk−1(τ

′
fk−1(⋯φq1/p1

(τ ′f1(e1))⋯)))∣q↦q−1

Proof. The proof is essentially the same as for Corollary 6.22, with the difference
that now one also applies the plethysm τb with b > 1. As the cardinality of the
residue field in Proposition 6.17 is that of the base field, and we are applying the
proposition recursively, we need to raise the variable q to the residue degree at each
step. For any symmetric function g of degree a/b with a, b ∈ Z≥1 and b∣a, we have

⟨τb(g), eλ⟩ =
⎧⎪⎪⎨⎪⎪⎩

0, λ ≠ bλ′ for any λ′ ⊢ a/b
(−1)a−a/b⟨g, eλ′⟩, λ = bλ′ for some λ′ ⊢ a/b

and

⟨τb(g), hλ⟩ =
⎧⎪⎪⎨⎪⎪⎩

0, λ ≠ bλ′ for any λ′ ⊢ a/b
⟨g, hλ′⟩, λ = bλ′ for some λ′ ⊢ a/b

In particular, any sequence of operators of the form ωτ ′bω in the given expres-

sion may be replaced by (−1)a−a/bτ ′b where a/b is the degree of the symmetric
function these operators are being applied to. This introduces the overall sign

(−1)∑
k
i=1(∏

i
j=1 pjfj)−f−1i (∏

i
j=1 pjfj). However, applying Proposition 6.18 repeatedly

gives the same overall sign, and together they cancel. Lastly, the power qΞ(γ) is
computed in the same way as in Corollary 6.22, with Lemma 6.26 replacing Lemma
6.14(c). □
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Just as in the discussion following Corollary 6.22, note that the first case con-
sidered in Theorem 6.27 applies verbatim to γ + 1 where γ ∈ gln(F ) is topologically
nilpotent, elliptic, and tamely ramified. In particular, the theorem gives a formula
for the Lie algebra fγ in Definition 6.6 (3). Note also that more generally than
in the Theorem, if γ ∈ GLn(F ) is compact of valuation ≠ 0, it is still possible to
compute fγ using Proposition 6.18 combined with the Theorem. These cases cover
all of the three possibilities in Definition 6.6.

Motivated by the above and Definition 5.10, we also define the ”combinatorial”
counterpart of fγ as above. Namely, given any sequence of triples of positive integers

(f⃗, q⃗, p⃗) we define

(6.6) f(f⃗,q⃗,p⃗) ∶= φqk/pk
(τ ′fk(φqk−1/pk−1(τ

′
fk−1(⋯φq1/p1

(τ ′f1(e1))⋯)))

Let us finally note that Theorem 6.28 specializes to [78, Théoréme 1.3.] which
addresses the following situation: Suppose F ′/F is unramified of degree f , X ∈ OF ′

generates the residue field k′ of F ′ and Y ∈ gln/f(OF ′) is such that F ′(Y ) is an

unramified extension of degree n/f . Let 0 ≤ a < b be integers and γ ∶= 1+ taX + tbY ,
γ′ ∶= 1 + tb−aY . We have

Theorem 6.28.
fγ = ∣k∣a(n

2−n)/2ω(∇∣at=1,q=1/∣k∣ωτf(fγ′))
where ∇ is the Macdonald eigenoperator from Definition 3.7.

Proof. This follows from the fact that ∇∣at=1 = φa/1 as an operator on symmetric
functions and Theorem 6.27 with f1 = f, q1 = a, p1 = 1. □

Remark 6.29. In order to compare the Shalika germs sλ(γ) in [78] to ours, we
notice there is a factor of cWal

λ (q) and another of cWal
λ′ (qf) inside the plethysm used

in loc. cit.. This is explained by the fact that there is a mismatch between [78,79],
namely our master symmetric function fγ is defined to cohere with the latter paper
[79], whereas in [78] paper the Shalika germs are collected into a generating function

∑
λ

sλt(γ, q)cWal
λ (q)hλ

instead of fγ = ∑λ Γλt(γ)h̃λ which has an additional plethysm X ↦ X/(q − 1).
Composing this with τf explains the power q ↦ qf .

Finally, on the LHS of [78, Théorème 1.3.] we have factors of the form q−an(λ
t)

which are exactly the ones coming from homogeneity of Shalika germs as observed
in Remark 5.6. This matches the appearance of ∇∣at=1 above.

Remark 6.30. In [79] an unramified character and some ”twisted” Steinberg germs
appear. While these are not studied in the present paper, they also have nice
expressions and combinatorics in terms of symmetric functions. For example, the
fundamental lemma proved in [79] can be given meaning in this language. We will
do this elsewhere.

Remark 6.31. As can be seen in Theorem 6.28 or by changing the first Newton
pair from (p, q) to (p, q+p), the ∇−operator at t = 1 (note the overloaded notation:
this t is the parameter in Symq,t, not our chosen uniformizer in F ) corresponds
to multiplying the element γ in the Lie algebra or taking 1 + γ → 1 + tγ in the
group. Comparing to our formulas, this actually yields homogeneity of Shalika
germs for the tamely ramified elements (compare to the proof of [78, Lemme 1.2.]).
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More concisely, for any tamely ramified compact γ ∈ gln(F ), the following equation
holds:

(6.7) ∇∣t=1fγ = ftγ
6.2. A canonical t-deformation. Let us shortly discuss a canonical t-deformation
of fγ as defined above for γ ∈ G(F ) or γ ∈ g(F ) that are tamely ramified and elliptic.

Note that by induction, as explained in Theorem 6.27, fγ is constructed using
the steps in Theorem 6.21 as well as Proposition 6.18 (or Theorem 6.28), which are
operations on symmetric functions, namely compositions of slope m/n plethysms
φm/n ∶ Symq → Symq, the specialized nabla operator ∇∣t=1, scalar multiplication,
and the Adams operations τf . Promoting ∇∣t=1 to ∇ ∶ Symq,t → Symq,t, the slope
m/n plethysms to a family of operators coming from the elliptic Hall algebra via

φ̂m/n ∶ Symq,t → Em/n, and keeping the τf as they are, we may run the similar
recursion which only depends on the datum of γ. In particular, we define

Definition 6.32. Let γ ∈ gln be tamely ramified, topologically nilpotent and ellip-
tic. Let (f⃗, p⃗, q⃗) be the discrete invariants attached to γ by Proposition 6.25.

Eq. (6.6) deforms to involve a t as explained above, and with this motivation we

define the full master symmetric function of (f⃗, p⃗, q⃗) as

f̂(f⃗,p⃗,q⃗) ∶= φ̂qd/pd
(τ ′fd(⋯τ

′
f3(φ̂q2/p2

(τ ′f2(φ̂q1/p1
(τ ′f1(e1)) ⋅ 1)) ⋅ 1))⋯) ⋅ 1

Note that in the totally ramified case we recover the deformed master symmetric
function f̂p⃗,q⃗ from Section 5. This symmetric function, while carrying all the infor-
mation and behaving nicely with respect to combinatorics, is again not the direct
generalization of the functions fγ , as we need to twist by ω. Motivated by this, we
define

(6.8) f̂γ ∶= (qt)Ξ(γ)ω̂f(f⃗,p⃗,q⃗)∣q↦q−1,t↦t−1

Example 6.33. With these conventions, we for example have

f̂γ = qtω∇e2
in the case γ = u3 ∈ gl2(F ).

In general we have proved Theorem 1.12 from the introduction, namely

Theorem 6.34. Let γ ∈ g(F ) be compact, tamely ramified and elliptic. Then the
master symmetric function admits a canonical t-deformation, namely

f̂γ =∑
λ

Γ̃λt(γ)H̃λ

where H̃λ are the modified Macdonald polynomials. In particular, the Shalika germs
Γλ(γ) admit a canonical t-deformation.

6.3. The formula for Shalika germs. In this section, we will state and prove
the main combinatorial formula for Shalika germs. Let

fγ = ∑
λ⊢n

Γλt(γ)h̃λ

be the Shalika expansion of the master symmetric function for γ ∈ gln(F ) that is
elliptic, topologically nilpotent and tamely ramified.

In the notation of Theorem 6.27, the ”cabling process” passing from fγi−1 to fγi

with new Newton exponents (pi, qi) essentially expands fγi−1 in the {hλ}, replacing
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each hλ by H−qi,pi,λ
. If fi > 1, we also need to precompose with τfi , which is

essentially the ”slope 0/fi” case of this process.
On the level of the Shalika expansions themselves, we treat these two cases

separately, similar as they are, so that each step of the algorithm in Theorem 6.27
is broken into two steps. It is clear from Definition 6.6 that the transition matrix for
Shalika germs is exactly the matrix for the operator ωφqi/pi

∣q↦q−1ω or τfi written

in the bases {h̃λ}λ⊢n and {h̃λ′}λ′⊢n/e. In either case, we denote this matrix by

(6.9) Md/e = {Md/e
λ,λ′}

with the convention that M0/e corresponds to the operator τe.

Theorem 6.35. Let e ≥ 1 and d = 0 or d ≥ 1 with (e, d) = 1. Considering the
symmetric group of permutations on n/e letters, denote by ∣Sλ′ ∩Cµ∣ is the number
of permutations simultaneously lying in the Young/parabolic subgroup Sλ′ ∶= Sλ′1 ×
⋯ × Sλ′

ℓ
and the conjugacy class Cµ of permutations with cycle type µ.

When d ≥ 1, the transition matrix Md/e of Shalika germs has a combinatorial
description as follows:

(6.10) M
d/e
λ,λ′ =

⎛
⎝
cλ′q

s ∑
µ⊢n/e

∣Sλ′ ∩Cµ∣
bµλ′!

ℓ(µ)
∏
i=1
( ∑
α⊧eµi

wtd/e(α)q↦q−1q
−n(αt)h̃α)

⎞
⎠

RRRRRRRRRRRh̃λ

where cλ′ is as in Eq. (3.8), bµ ∶= ∏i(1 − qµi), s ∶= n(λ′t) + (dn
′−1)(en′−1)+n′−1

2
and

wt(α)d/e is defined in Eq. (5.11). When d = 0 the transition matrix is given by

(6.11) M
0/e
λ,λ′ =

⎛
⎝
cλ′ ∑

µ⊢n/e

∣Sλ′ ∩Cµ∣
bµλ′!

ℓ(µ)
∏
i=1
( ∑
α⊧eµi

wt0/e(α)h̃α)
⎞
⎠

RRRRRRRRRRRh̃λ

where wt0/e(α) is still defined by Eq. (5.11) but with S0/e(i) ∶= 0 for all i when
d = 0.

Proof. Essentially, we need to compute the slope ”d/e plethysm” of the functions

h̃λ′ , i.e. expand them in the pµ and replace each pk by φd/e(pk) = Pdk,ek and bring

the result back to the basis h̃λ. In order to conform to the recipe in Theorem 6.27
we also need to conjugate the plethysm by ω and invert q, as well as multiply the

result by q
(dn′−1)(en′−1)+n′−1

2 . In the case d = 0 there is no conjugation by ω and we
simply have φ0/e(pk) ∶= τe(pk) = pek.

We first notice that by [22] the untransformed complete homogeneous symmetric
functions satisfy

hλ′ =∑
µ

∣Sλ′ ∩Cµ∣
λ′!

pµ

where ∣Sλ′ ∩Cµ∣ is as defined above. Since

h̃λ′ = cλ′hλ′ [
X

1 − q
] ,

we get

h̃λ′ = cλ′ ∑
µ⊢n′

∣Sλ′ ∩Cµ∣
λ′!bµ

pµ

where bµ =∏i(1− qµi) is the reciprocal of the principal specialization of pµ and cλ′

is as before. Let now d > 0.
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We first note that the matrix elements of ωφd/e∣q↦q−1ω in the h̃λ-basis are the

same as those of φd/e in the ωh̃λ-basis. On the other hand, ωh̃λ = qn(λ
t)h̃λ[X; q−1]

by Eq. (3.7). Applying φd/e∣q↦q−1 to h̃λ[X; q−1] is clearly the same as applying

φd/e to h̃λ and then inverting q. By Proposition 5.21 we get

φd/e(h̃λ′) =
⎛
⎝
cλ′ ∑

µ⊢n/e

∣Sλ′ ∩Cµ∣
bµλ′!

ℓ(µ)
∏
i=1
( ∑
α⊧eµi

wtd/e(α)h̃α)
⎞
⎠

and by the above argument applying ω and φd/e∣q↦q−1 gives

φd/e∣q↦q−1(ωh̃λ′) =
⎛
⎝
cλ′q

n(λ′t) ∑
µ⊢n/e

∣Sλ′ ∩Cµ∣
bµλ′!

ℓ(µ)
∏
i=1
( ∑
α⊧eµi

wtd/e(α)∣q↦q−1 h̃α[X; q−1])
⎞
⎠

Applying ω once more gives

ωφd/e∣q↦q−1(ωh̃λ′) =
⎛
⎝
cλ′q

n(λ′t) ∑
µ⊢n/e

∣Sλ′ ∩Cµ∣
bµλ′!

ℓ(µ)
∏
i=1
( ∑
α⊧eµi

wtd/e(α)∣q↦q−1q
−n(αt)h̃α)

⎞
⎠

and multiplying by the prefactor q
(dn′−1)(en′−1)+n′−1

2 gives the result.
The proof for the d = 0 case is similar, except we do not need to apply ω nor

invert q. Note that Eq. (5.11) still holds in this case by [61] and is closely related
to the classical Pieri rule for Macdonald polynomials.

□

Remark 6.36. One may view Theorem 6.35 as giving a combinatorial expression
for the ”λ′-colored” master symmetric functions of torus knots at a = 0, t = 1.

Remark 6.37. In the ”slope zero” case of this Theorem, where F ′/F is an unram-
ified extension of residue degree f , this matrix was essentially computed in [78].

6.3.1. Integrality properties. In this section, we conjecture a different combinatorial
approach to the (renormalized) Shalika germs. While it may not seem obvious from
the previous formulas, we have the following.

Proposition 6.38. The symmetric functions hλ expand with Z[q]-coefficients in

the basis hλ [ X
1−q ] and the symmetric functions h̃λ expand with Z[q]-coefficients in

the basis hλ.

Proof. The bases {mλ},{hλ} are dual with respect to the Hall inner product, so

that mλ[X(1−q)] is the basis dual to hλ [ X
1−q ] by standard properties of plethysm.

Therefore, we need to check that

⟨hλ,mµ[X(1 − q)]⟩ = ⟨hλ[X(1 − q)],mµ⟩

is in Z[q]. The inner product is nonzero only when there exists an integer matrix
with row sums λ and column sums µ, with only a single nonzero entry in each row
(see e.g. [81, 3.17.]). It is also integral by e.g. [35, p. 52]. The second statement
follows from a similar argument. □

From the above and the fact that the transition matrix Md/e(h) in the hλ-basis
is integral (we use the notation M(h) to denote the conjugation to the appropriate
basis, similar to [22]) by Theorem 6.21, we get that the coefficients of fγ in the basis
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hλ [ X
1−q ] are integral. On the other hand, since h̃λ = cλhλ [ X

1−q ] these coefficients

are exactly cλΓλt(γ). Motivated by this, we have the following.

Definition-Proposition 6.39. The renormalized Shalika germs

Γren
λ (γ) ∶= cλtΓλ(γ)

are integral, i.e. Γren
λ (γ) ∈ Z[q].

Proof. We have h̃1 = h1. By Theorem 6.27 we can get fγ up to a sign by multiplying

h1 by various Md/e together. This results in an obviously integral expression for fγ

in the basis hλ. By Proposition 6.38 we get that the expansion in the hλ [ X
1−q ]-basis

is also integral. □

Remark 6.40. The renormalized Shalika germs are not in N[q] in general, even
up to an overall sign. In particular it is easy to find examples for which cλΓλ(γ)
has both positive and negative integer coefficients.

One might also renormalize the Shalika germs in a representation-theoretic way
so that one further divides out by 1− qf as well as qΞ(γ)+n−1, where f is the degree
of the maximal unramified subextension of F (γ)/F . More precisely, by [77, Eq.
(3.6)] one has

(1 − qf)−1q−Ξ(γ)−n+1c(1n)Γ(n)(γ) = 1.
For the regular unipotent orbit, this normalization coincides with the normalization
used by Shelstad in [72]. In general, we set

ΓdW
λ (γ) ∶= (1 − qf)−1q−Ξ(γ)−n+1cλtΓλ(γ)

We call this the degenerate Whittaker normalization, following [55,72].

Example 6.41. Let γ = u3 in gl2. Then

(11) (2)

Ordinary −1
q−1

q2

q−1
Renormalized 1 − q2 q3 − q2

Degenerate Whittaker −q−1 − q−2 1

Similarly, if γ = u4 ∈ gl3 we have

(111) (21) (3)

Ordinary −1
−q3+q2+q−1

2q4+q3
−q3+q2+q−1

−q5
−q2+2q−1

Renormalized q3 − 1 −2q5 + q4 + q3 q6 − q5
Degenerate Whittaker q−3 + q−4 + q−5 2q−1 − q−2 1

Note that in the latter example, one can directly compare the subregular germ
to the formula in [67, (10.3)]. The extra discriminant factors there stem from a
normalization difference, just like in the comparison between the regular germs
in [72] and [66].

We now discuss some conjectures regarding the behavior of the functions ΓdW
λ ,Γren

λ .
Computations suggest the following conjecture.

Conjecture 6.42. The ΓdW
λ (γ) are integral polynomials in q−1, i.e. lie in Z[q−1].
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Next, we try to give a combinatorial interpretation for the polynomials Γren
λ . Let

λ,µ ⊢ n ≥ 1. Let G(λ) be the set of directed graphs (loops allowed) with vertex set
the boxes of the Ferrers diagram of λ, labeled with {1, . . . , n} and edges only between
boxes in the same row. Further, require each vertex to have in- and outdegree 1.
Let G(λ,µ) ⊂ G(λ) be the subset of graphs whose connected components sort to
give the partition µ. Note that µ is necessarily a refinement of λ.

Lemma 6.43. There is a natural bijection Sλ ∩Cµ ↔ G(λ,µ).

Proof. Writing a cycle decomposition for elements on the left gives rise to a graph
by drawing the boxes labeled 1, . . . , n and adding edges ai → ai+1 for each cycle
(a1⋯ak). The converse is clear. □

Next, we note that by deleting at least one edge from each cycle of a graph
G ∈ G(λ), we get a composition of n, by remembering the ordering on the original
boxes of λ. This composition naturally refines λ. Accordingly for G ∈ G(λ), we
say α ⊧ n refines G if we can obtain the composition α by deleting edges from G.
Finally, for e ≥ 1, let eG be the graph obtained by e-dilating each cycle in G.

In order to only have one kind of combinatorial object, we may further associate

to each G′ ∈ G(λ′, µ) and a composition α ≤ eG′ exactly ∏ℓ(µ)
i=1 µi different graphs by

cyclic permutation of vertices in G′. It is easy to see these graphs G ≤ mG′ are the
ones coming exactly from mG′ by removal of one or more edges so that the resulting
composition is α.

Next, define the weight of a graph to be

wt(G)d/e = q−∑v∈G coarm(v)Sd/e(v)

where coarm is the i-coordinate of the vertex minus 1, counting from the start of
the chain v belongs to.

Conjecture 6.44. In the ”renormalized” basis hλ[ X
1−q ] = h̃λ/cλ, the transition

matrix of Shalika germs is given by

(6.12) M
d/e
λ,λ′ =

cλ
cλ′

Mλ,λ′ = (−1)n−ℓ(λ)
1

λ′!
∑

G′∈G(λ)
(−1)n/e−ℓ(α(G

′)) ∑
G≤eG′

sort(G)=λ

wt(Gd/e)

This is a purely combinatorial conjecture, which we expect to be verifiable by
direct comparison of Eqs. (6.10) (6.12).

In effect, Eq. (6.12) gives a conjectural combinatorial interpretation for the
renormalized Shalika germs, which are integral polynomials in q−1.

Remark 6.45. Eq. (6.12) was conjectured in a slightly different form by the
second author in 2018, based on extensive computer experiments, a slightly different
algorithm based on [76], and an expectation for (6.12) when q → 1.

6.4. The formulas for orbital integrals. In this section, we give a combina-
torial reformulation of the orbital integrals of characteristic functions of standard
parahorics, in particular we prove Theorem 1.10 from the introduction.

Theorem 6.46. Let γ ∈ g(F ) be compact, tamely ramified and regular semisimple,
and let 1λ be the characteristic function of the standard parahoric Pλ associated to
λ ⊢ n, divided out by its measure (with the normalization of measures as before).
Then

Iγ(1λ) = ⟨fγ , hλ⟩
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where we pair using the Hall inner product and fγ is as above.

Proof. From Theorem 2.19, we have

Iγ(1λ) =∑
µ

ΓSt
µ (γ)Stµ,c(1λ)

and by Theorem 6.21 plus Definition 6.6 we have

∑
µ

ΓSt
µ (γ)eµ =∑

µ

Γµ(γ)h̃µ =∑
µ

σµ(γ)hµ = fγ

The result then follows from Propositions 3.13, 3.14 and Proposition 2.9. □

As a corollary of the proof, we get

Corollary 6.47. For γ ∈ m(F ) ⊂ g(F ) as in Theorem 6.46, where m is the Lie
algebra of a Levi subgroup conjugate to L(µ), let γ1, . . . , γℓ(µ) be the ”diagonal
blocks” of γ. Then we have the following identity of master symmetric functions:

fγ = ∣det(ad(γ)g/m)∣
−1/2 ℓ(µ)
∏
i=1

fγi

where fγi is the master symmetric function of γi as defined in Definition 6.6.

Proof. As in the statement, suppose γ belongs to a Levi of type µ, WLOG to the
standard one and has blocks γ1, . . . , γℓ(µ). Then by Proposition 2.40

IGγ (1λ) = ∣det(ad(γ)g/m)∣
−1/2

IMγ (Res
g
m(1λ))

Let us write Resµ = Resgm. By [79, Lemme IV 3.] and Lemma 2.37, we get

Resµ(1λ) = ∑
m∈M(λ,µ)

⊗ℓ(µ)
j=1 1m⋅,j

where 1m⋅,j is the characteristic function of the corresponding standard parahoric
normalized by its measure and M(λ,µ) is as in Definition 3.2. It is clear that this
implies

IMγ (Resµ(1λ)) = ∑
m∈M(λ,µ)

ℓ(µ)
∏
j=1
⟨hm⋅,j , fγj ⟩

On the other hand, the first displayed equation on [79, p. 883] implies that we may
write the RHS of the above equation as

⟨hλ,∏ fγi⟩

Multiplying by ∣det(ad(γ)g/m)∣
−1/2

, we are done. □

7. Examples

Example 7.1. Let γ = u7 + u6 ∈ gl4(F ) and char(k) ≠ 2, following Examples 1.5,
6.15 and 6.24. Let us write down the master symmetric function. On the knot
theory/combinatorial side it is

f(1,2),(3,2) = φ3/2(φ1/2(e1)) = φ3/2(e2) =

= (q2 + q + 1) e1,1,1,1 + (q5 + 2q4 + 4q3 + 2q2 + 2q) e2,1,1+

(q6 + q4 + q2) e2,2 + (q7 + q6 + 2q5 + q4) e3,1 + q8e4
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Indeed, there are 23 Dyck paths in a 6×4 rectangle with these horizontal steps and
area statistics. We recover fγ from Corollary 6.22, namely

fγ = q8ωf(1,2),(3,2)∣q↦q−1 = (q8 + q7 + q6)h1,1,1,1 + (2q7 + 2q6 + 4q5 + 2q4 + q3)h2,1,1
+ (q6 + q4 + q2)h2,2 + (q4 + 2q3 + q2 + q)h3,1 + h4

The weight polynomial of the spherical affine Springer fiber is

qdimSpγ ⟨f(1,2),(3,2), e4⟩∣q↦q−1 = 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 4q6 + 3q7 + q8

and that of the Iwahori affine Springer fiber is

qdimSpγ ⟨f(1,2),(3,2), e1111⟩∣q↦q−1 = 1+4q+10q2+20q3+34q4+48q5+54q6+48q7+24q8

Note that the first one is just the sum of the coefficients of the various hλ in fγ . It
agrees up to q ↦ q−1 with the computation in [13, Eq. (3.1)] – it seems that there
is a typo in that paper, repeating one from Piontkowski’s work [65].

Finally, we illustrate Theorem 1.8, i.e. the combinatorial formula for Shalika
germs. On the second step of our induction n = 4, n′ = 2. Suppose we want to

compute the entry M
3/2
211,2 of our transition matrix in the h̃λ-basis. We have

c2 = (1 − q)(1 − q2), b2 = (1 − q2), b11 = (1 − q)2, λ′! = 2

and therefore h̃2 = q+1
2
p11 + 1−q

2
p2. Now since (p2, q2) = (3,2) we must apply the

slope 3/2 plethysm and replace p11 ↦ P 2
3,2, p(2) ↦ P6,4, up to conjugation by ω.

Now by formula (5.8) we have P3,2 = 1
1−q h̃11 −

q
1−q h̃2 so

P 2
3,2 =

1

(1 − q)2
h̃1111 −

2q

(1 − q)2
h̃211 +

q2

(1 − q)2
h̃22

There are 8 compositions of 4, and we compute

S3/2(1) = 2, S3/2(2) = 1, S3/2(3) = 2, S3/2(4) = 1
Plugging this in to Eq. (5.11) gives

wt(2 + 1 + 1)3/2 =
−q(1 + q2)

(1 − q)2(1 − q2)
, wt(1 + 2 + 1)3/2 =

−2q2

(1 − q)2(1 − q2)
,

wt(1 + 1 + 2)3/2 =
−q(1 + q)
(1 − q)3

,

so that the coefficient of h̃211 in P6,4 is

−q(1 + q2)
(1 − q)2(1 − q2)

+ −2q2

(1 − q)2(1 − q2)
+ −q(1 + q)
(1 − q)3

= −2q
2 − 2q

(q − 1)3

Taken together, we get

−2q(q + 1)
2(1 − q)2

+ (1 − q)(−2q
2 − 2q)

2(q − 1)3
= 0

One verifies in Sage that the slope 3/2 plethysm of h̃2 has vanishing coefficient for

h̃211. More generally, one can compute that

M3/2 =
⎛
⎝

1
q5−q3−q2+1

−q6−q5
q4−q3−q+1

q7

q3−q2−q+1 0 0

0 0 q6

q2−2q+1
−2q8

q2−2q+1
q10

q2−2q+1

⎞
⎠

where the rows are indexed by the partitions (2), (11) and the columns are indexed
by (4), (31), (22), (211), (1111).
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Example 7.2. The simplest elliptic case with three Puiseux pairs appears in [13,
Eq. (3.8.)] as well as in [65] as an example where previous methods fail. This
example corresponds to the plane curve singularity C[[t8, t12 + t14 + t15]], so we
have (p1, q1) = (p2, q2) = (2,1), (p3, q3) = (2,3). The dimension of the ASF is 42 in
this case. Using Sage, we compute

⟨fγ , h8⟩ =
q42 + 7q41 + 24q40 + 56q39 + 104q38 + 166q37 + 236q36 + 306q35 + 370q34 +
424q33 + 465q32 + 492q31 + 507q30 + 510q29 + 504q28 + 488q27 + 466q26 +
437q25 + 406q24 + 370q23 + 335q22 + 298q21 + 264q20 + 230q19 + 199q18 +

168q17 + 143q16 + 118q15 + 97q14 + 78q13 + 63q12 + 48q11 + 38q10 +
28q9 + 21q8 + 15q7 + 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + q + 1

which by Theorem 1.10 is the weight polynomial of the compactified Jacobian in
this case. We refer the reader to the attached computer program for computing the
Shalika germs and other data in this case.

Example 7.3. Let G = GL4 and γ = u6. This is an element whose characteristic
polynomial is x4 − t6, so that the link is a (6,4)-torus link. The element γ is
conjugate to one in a Levi isomorphic to GL2 ×GL2, and on each of the blocks we
have an equivalued element of valuation 3/2. We compute the master symmetric

function to be the product of ∣det(ad(γ)g/m)∣
−1/2 = q6 and the two factors in this

case, namely fγ = (qh11 + h2)2. The Shalika expansion of fγ reads

fγ = (
q10

q2 − 2q + 1
) h̃1111 + (

−2q8

q2 − 2q + 1
) h̃211 + (

q6

q2 − 2q + 1
) h̃22

Theorem 6.46 gives that Iγ(1(4)) = q8 + 2q7 + q6 and Iγ(1(14)) = 24q8 + 24q7 + 6q6.
Note that up to q ↔ t, the first result agrees with the numerator of [39, Example
1.3.] at a = 0, q = 1.

Example 7.4. Let us work out an unramified example. Suppose k = Fq, p ≠ 2, and
a ∈ F×q − (F×q )2. Let

γ = (0 at
t 0

)

Then γ splits over a degree two unramified extension of F . By Hilbert’s Theorem
90, stable conjugacy in GLn is rational conjugacy, so by [82, (3.5.4)] we should have

IGLn
γ (1g(O)) = SOγ(1sln(O)) = q + 2

where SOγ is the stable orbital integral in SLn, defined as in [82, Section 3.5.3.].
Indeed, we are in a situation where 1 + γ ∼ 1 + tX with X generating Fq2 over

Fq, and by Theorem 6.28 and Proposition 2.9

fγ = qω∇t=1ωτ2(h1)∣q↦q−1 = qh11 + 2h2

By Theorem 6.46 we get

Iγ(1(2)) = ⟨fγ , h2⟩ = q + 2

as desired.
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Example 7.5. Next, we discuss the simplest ”mixed” example. Let a be as above,
and

γ =
⎛
⎜⎜⎜
⎝

0 0 0 at2

1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎟
⎠

This element is elliptic and splits over a degree 4 extension, with a maximal un-
ramified subextension of degree 2. The discrete invariants from Proposition 6.25
are (f, q, p) = (2,1,2), so

fγ = q2ωφ1/2∣q↦q−1ω(τ2(e1)) = q2h22 + 2qh31 + 2h4
and for example Iγ(1(4)) = ⟨fγ , h4⟩ = q2 + 2q + 2. We note that Iγ(1(11111)) = 6q2 +
8q + 2. Note that the Iwahori affine Springer fiber in this case has six components
(cf. Theorem 8.4).

Example 7.6. Finally, we consider an example of the form considered in [78,
1.5.]. Let f1 = f2 = 2 and F = F2 ⊂ F1 ⊂ F0 be a tower of unramified extensions,
both of degree 2. Suppose Xi ∈ OFi are so that their reduction in the residue
field generates the residue field over that of Fi+1. Consider γ = 1 + tX1 + t2X0.
The discrete invariants from Theorem 6.27 are (2,1,1), (2,1,1) and the master
symmetric function is

fγ = (q8+2q6)h1111+(4q7+8q5+4q4+4q3)h211+(4q6+6q4+4q2)h22+(4q3+4q2+4q)h31+4h4
Note that on the second step of the recursion we apply τ2 to a degree two symmetric
function. To compare with the transition matrix in Example 7.1 we compute

M0/2 =
⎛
⎝

2
q5−q3−q2+1

−2q2−2
q4−q3−q+1

q2+4q+1
q3−q2−q+1

−4q
q2−2q+1

q2+q
q2−2q+1

0 0 4
q2−2q+1

−4q−4
q2−2q+1

q2+2q+1
q2−2q+1

⎞
⎠

Note that the (2), (211)-entry is not zero in this example. This is because the

coefficient of h̃211 in P0,4 is −4q2−4
q3−3q2+3q−1 and in P 2

0,2 it is −4q−4
q2−2q+1 , which gives

1

2
( −4q2 − 4
q3 − 3q2 + 3q − 1

(1 − q) + −4q − 4
q2 − 2q + 1

(1 + q)) = −4q
q2 − 2q + 1

8. Applications

8.1. Affine Springer fibers. Let G = GLn/F where F = k((t)) with k = Fq.
Appropriately modifying the definition of Spγ below to account for mixed charac-
teristic F , we get similar results but leave these for the interested reader. Suppose
P ⊂ G(F ) is a parahoric subgroup. Let FlP = G(F )/P be the corresponding partial
affine flag variety.

Definition 8.1. Let γ ∈ g(F )rs. The affine Springer fiber is the reduced ind-
subscheme of FlP defined by

SpPγ (k) = {gP∣Ad(g−1)γ ∈ Lie(P)}

Let Tγ be the centralizer of γ. Then it acts naturally on SpPγ . Let Sγ be the
maximal unramified subtorus of Tγ , and X∗(Sγ) =∶ Λγ its cocharacter lattice. As

in [29, Section 15], the centralizer action gives rise to an action of Λγ on SpPγ .
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Recall that 1P is the characteristic function of P divided by the measure of P.
Unraveling the definitions, it is not hard to prove (see for example [29, Theorem
15.8.])

Proposition 8.2. We have

∣SpPγ (k)/Λγ(k)∣ = Iγ(1P).

See Definition 2.1 for the normalization in Iγ .

Recall that Theorem 6.46 says that if P is of type λ and γ is tamely ramified
and regular semisimple, then

Iγ(1P) = ⟨fγ , hλ⟩

which is a polynomial with nonnegative coefficients. This result, combined with
Proposition 8.2 implies

Corollary 8.3. When γ is tamely ramified, the number of points ∣SpPγ (k)/Λγ(k)∣
is a polynomial in q with nonnegative coefficients.

Let us also note the following application to components of affine Springer fibers.

Theorem 8.4. Let γ ∈ g(F ) be compact and regular semisimple. Then the number

of geometric components of SpIγ/Λγ stable under Gal(k/k) is always a divisor of
∣W ∣ = n!.

Proof. By [77, Eq. (4.5)], the number of Frobenius-stable geometric components is
the coefficient of the leading term in q of the integral of 111⋯1 along the orbit of
γ. By Theorem 6.46, this orbital integral can be computed using fγ by pairing it
with h11⋯1. On the other hand, fγ is formed by multiplying the master symmetric
functions for the blocks of γ. Suppose for a moment γ is totally ramified. By
Lemma 8.5 the smallest power in the Dyck germs is 1, it appears with coefficient
one, and it appears for the least dominant partition. Since pairing with hλ does
not introduce powers of q, the highest power of q appearing in

⟨fγ , h11⋯1⟩

is qdimSpγ and it appears with coefficient ⟨hλ, h11⋯1⟩ = ∣Sn∣
∣Sλ∣ where λ is the smallest

partition in the dominance order appearing in the Dyck expansion of fγ . This
proves the claim in the totally ramified case.

For the general case where the construction fγ involves the operator τf , cf.
Proposition 6.18, note that the plethysm τf is designed so that for any homogeneous
symmetric function f of degree n′ = n/f , λ ⊢ n, we have

⟨hλ, τf(f)⟩ =
⎧⎪⎪⎨⎪⎪⎩

⟨hλ/f , f⟩, if λ is divisible by f

0, if λ is not divisible by f

In particular, we may reduce these cases to the computation above. □

Lemma 8.5. Let γ be inertially elliptic. Then the smallest power of q appearing
in the coefficients of fp⃗,q⃗ = ∑λ σλ(γ)eλ is 1 = q0 and it only appears in front of the
smallest partition in dominance order for which σλ(γ) ≠ 0. In addition, it appears
with coefficient 1.
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Proof. We will prove this by induction. For one Puiseux pair it is clear, as there
is always a Dyck path with area 0 (for example in Example 6.4 it is the rightmost
Dyck path). Suppose the statement holds for Newton pairs (p1, q1), . . . , (pi−1, qi−1).
Since

φqi/pi
(eλ) =

ℓ(λ)
∏
j=1

⎛
⎜
⎝

∑
π∈Dλjqi,λjpi

qarea(π)eπ
⎞
⎟
⎠

the Dyck paths appearing when applying φqi/pi
to eλ can be thought of as con-

catenations of (piλj , qiλj)-Dyck paths where j = 1, . . . , ℓ(λ). The ”least dominant”
horizontal steps, i.e. the paths with the smallest area, appearing in all the possible
concatenations of Dyck paths under the application of φqi/pi

can appear from any
eλ. However, by induction only the term of f(p1,q1),...,(pi−1,qi−1) having the smallest
power of q in the eλ−expansion contributes a term of the form eν where ν is the
unique (pi∣λ∣, qi∣λ∣)-Dyck path with area 0 and the coefficient is 1. □

Remark 8.6. Let m/n be the minimal root valuation of γ. When γ is inertially
elliptic, the above shows that the minimal partition appearing in the eλ-expansion
is formed from the horizontal steps of the maximal staircase partition fitting under

a line of slope m/n, i.e. the one with parts ⌊ (m−k)n
m
⌋, k = 1, . . .m. For example,

when m/n = 3/7 this gives the partition 4 + 2(+0), and the corresponding Dyck
path in the 3 × 7 rectangle has horizontal steps 3,2,2. In particular when m/n ≥ 1
the horizontal steps give the one-column partition. It is easy to extend this to
γ non-elliptic by multiplying the corresponding eλ together. This gives another
(slightly more general) proof of a Theorem of Z. Yun in type A, which states that
theminimal reduction type of γ determines the number of components in the Iwahori
affine Springer fiber.

Remark 8.7. Theorem 8.4 proves [77, Conjecture 8.7.] in type A. From the main
result of [77], there are always exactly n! components when the depth is > 1. In
fact the last statement is true for depth ≥ 1 because any depth-1 element either
differs from a depth > 1 element by a central element, or is contained in a Levi
subalgebra in which case we can reduce the assertion to the Levi case as in the
proof of Theorem 6.46.

Theorem 8.4 has the following interesting corollary about the W -representation
given by H∗(SpIγ/Λγ). Let us assume that γ is tamely ramified, and note that the
top degree part of the cohomology is always pure. A well-known argument using
finite Springer theory tells us there is a graded isomorphism of vector spaces:

H∗(SpPλ
γ /Λγ) ≅H∗(SpIγ/Λγ)Wλ

In particular, knowing the dimensions of the top degree cohomologies of each
SpPλ

γ /Λ tells us exactly all the dimensions of theWλ-invariants of the representation

on top degree cohomology of SpIγ/Λγ . Recall that using the Hall inner product and
Frobenius reciprocity, this is the same as knowing the inner products of the Frobe-
nius character with hλ. Since the hλ are a basis of the ring of symmetric functions,
this uniquely determines the representation. A similar argument shows that assum-
ing purity, fγ actually determines the Frobenius character of H∗(SpIγ/Λγ) in the
elliptic case. In fact, the Frobenius character will simply be fγ if these assumptions
are satisfied.

More precisely, we get
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Theorem 8.8. Let γ be tamely ramified. TheW = Sn-representation on Htop(SpIγ/Λγ)
has Frobenius character hν , where ν is the smallest partition in dominance order
appearing in the hλ−expansion of fγ . In particular, when γ has depth ≥ 1, this is
the regular representation by above.

If we assume the purity conjecture and that γ is elliptic, fγ is the Frobenius

character of H∗(SpIγ/Λγ).

Proof. For the first statement, let Cγ be the number of components in the Iwahori
affine Springer fiber of γ, defined as in Theorem 8.4. As in the proof of Theorem
8.4, the master symmetric function has the form

fγ = Cγq
Ξ(γ)hν +O(qΞ(γ)−1)

Pairing this with hλ for varying λ ⊢ n and taking the leading term in q gives the
trace of Frobenius on Htop(SpPλ

γ /Λγ) for varying λ. But since the top cohomology

is always pure, the coefficient of qΞ(γ) in ⟨fγ , hλ⟩ in fact equals the top Betti number

of SpPλ
γ /Λγ . Since an Sn-representation is uniquely determined by the dimensions

of its invariants under Young subgroups and these are given exactly by ⟨hν , hλ⟩ in
this case, we are done.

For the second statement, if purity holds we see ⟨fγ , hλ⟩ is the ordinary Poincaré

polynomial of SpPλ
γ /Λγ , in particular the graded dimension of the space of Sλ-

invariants of H∗(SpIγ/Λγ). Since these pairings determine fγ uniquely, the graded

Frobenius character of H∗(SpIγ/Λγ) equals ∑λ⟨fγ , hλ⟩mλ = fγ . □

Remark 8.9. Note that this proves [31, Conjecture 7.17.] in type A.

Suppose for a moment γ is a split element, i.e. lies in some split maximal torus.
In [12], Zongbin Chen proves that the generating function (summing over elements
of varying root valuation data) for the number of points on a so called fundamental
domain of Spγ is rational, and that the number of points only depends on the
root valuation datum. This is further related to the ”weighted” Shalika expansion
of Arthur, indeed the rationality is proved using homogeneity properties of these
functions. See [12] for more details. We have not compared our techniques with the
weighted Arthur-Shalika expansion, but it would be interesting to see how Chen’s
results could be combined with ours.

8.2. Compactified Jacobians. In this section, we apply Theorem 1.10 to show
that the point-counts of compactified Jacobians of rational, unibranch plane curves
are polynomials in q.

Let us recall some relevant material from [49]. Let C be a reduced, projective
and geometrically connected curve over the residue field k, with only planar singu-
larities. Suppose for simplicity that the normalization of C is rational. Let Pic(C)
be the compactified Picard scheme of C. It is the moduli space whose closed points
parametrize torsion-free rank one sheaves on C. For each c ∈ Sing(C) fix an iso-

morphism ÔC,c ≅ k[[x, y]]/f and let Spc be the affine Springer fiber associated to
γc ∶= γf ∈ gldegx f where γf is the companion matrix of f . Let Λc be the lattice part
of the centralizer of γf and Λ = Pic(C)/Jac(C). Fix a section Λ → Pic(C) of the
quotient map.

From [49, Proposition 2.3.1.] we have
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Proposition 8.10. There is a universal homeomorphism

∏
c∈Sing(C)

Spc/Λc → Pic(C)/Λ

If k is a finite field, we have

Corollary 8.11. Let k′/k be a finite extension. Then

RRRRRRRRRRRR
∏

c∈Sing(C)
Spc(k′)/Λc

RRRRRRRRRRRR
= ∣Pic(C)(k′)/Λ∣

Combined with Corollary 8.3, we have

Theorem 8.12. The number of points on Pic(C) is a polynomial in q = ∣k∣. In
addition, it is a polynomial with nonnegative integer coefficients.

A standard spreading-out argument, combined with [41, Theorem 1] and the
previous Theorem gives

Corollary 8.13. Let k = C. Then X = Pic(C) is strongly polynomial-count in the
sense of Katz [41], and the E-polynomial

EX(x, y) ∶=∑
p,q

ep,qx
pyq

is given by the weight polynomial of Pic(C) as EX(x, y) = PX(xy), defined by

PX(q) =∑
i,j

(−1)iqj dimgrjW Hi(Pic(C))

Yet another corollary of Corollary 8.3 together with Corollary 8.11 and Definition
5.5 is a virtual version of [13, Conjecture 2.4.(iii)], which compares Betti numbers of
Jacobian factors with superpolynomials at q = 1 (i.e. t = 1 in our notation). Using
Definition 5.5, the more precise statement is that

Proposition 8.14. For unibranch C = {f(x, y) = 0} ⊂ C2, the weight polynomial

of Jac(C) is given by the superpolynomial at a = 0, t = 1, with q replaced by 1/q, up
to multiplying by qdimJac(C). That is,

PJac(C)(q) = q
dimJac(C)PLink(C)(a = 0, q = 1/q, t = 1)

8.3. Orbital integrals. Let us finally comment on possible other applications of
our results, as the explicit computation of orbital integrals bears on many problems
in number theory and automorphic forms.

For example, in [73] Shin and Templier prove an equidistribution theorem for
”families” of automorphic L-functions (for any G). Their main result [73, Theorem
1.3.] rests on an explicit, residue-characteristic independent bound for the size of
orbital integrals derived by Kottwitz from the Shalika germ expansion. For G =
GLn, our methods should be applicable to give sharper bounds and as they remark,
possible improvements on their analytic results. It would be interesting to see more
analytic applications of our results.

In his Beyond Endoscopy -proposal [48], Langlands computes global orbital in-
tegrals for GL(2) using ”elementary” methods. In the thesis of Espinosa Lara [50],
which builds on work of Altug [1], the corresponding local orbital integrals are
computed and compared via a product formula to Langlands’ results. In Altug’s
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work analysis of orbital integrals is used to ”isolate” the contribution of the trivial
representation to a certain trace formula Langlands introduces.

A priori, as suspected by Arthur in [2], it should be possible to use an explicit
computation of the local orbital integrals (which is where our results come in)
to have similar results for GLn. It would be interesting to see how the possible
application to Beyond Endoscopy plays out.

9. Hilbert schemes of points

In this section we give a, frankly tentative, conjectural geometric expression for
the Shalika germs of γ ∈ g(F ) in terms of the Hilbert scheme of points on A2

K .
We consider these Hilbert schemes over a field K, which is algebraically closed of
characteristic zero. We also take K as the field of coefficients for the Borel-Moore
homology of the (generalized) affine Springer fibers we will be considering.

There is another field we need to keep track of, namely the field F over which
we consider GLn. The reader may want to restrict to the case F = k((t)), i.e. a
function field over a finite field, but we believe that with appropriate definitions,
everything in this section can be made to work over a mixed-characteristic F . In
either case, the BM homology of Spγ considered in the previous section should
be interpreted as the étale cohomology of the Verdier dualizing complex placed in
negative degrees, and we use K = Qℓ-coefficients.

To conform with much of the affine Springer fiber and Hilbert scheme literature,
the reader may also work with the discretely valued field F = C((t)) and work in
singular BM homology for the associated analytic space of Spγ , where γ is taken
to be regular semisimple and we use K = C-coefficients in homology. Note that the
Shalika germs of γ cannot be defined in terms of harmonic analysis in this case, as
F is not locally compact. Be that as it may, via Theorem 6.27 the germs can still
be defined, up to appropriate normalization, as the coefficients in the expansion
of the combinatorially defined master symmetric function f(f⃗,p⃗,q⃗) = fp⃗,q⃗ from Eq.

(6.6).

9.1. The Fock space and Hilbert schemes on A2. Let Hilbn(A2) be the Hilbert
scheme of n points on A2, see e.g. [35]. There is a natural action of G2

m on it given
by scaling the coordinates on A2. The following theorem is by now classical, and
should admit an obvious generalization to other K than K = C.

Proposition 9.1 ( [35]). When K = C, the direct sum of the equivariant K-theory
groups of Hilbn(A2), n ≥ 0 is upon localization naturally isomorphic to F :

K(Hilb●) ∶= (⊕
n≥0

KG2
m(Hilbn(A2)))⊗C[q±,t±] C(q, t) ≅ F ≅ Symq,t

The fixed point basis on the left corresponds to the basis ∣λ⟩ = H̃λ on the right.

Keeping the above assumptions, from [26,69] we have

Proposition 9.2. Under the isomorphism of Proposition 9.1, the action of the
elliptic Hall algebra E on the Fock space F from Theorem 4.7 is realized on K(Hilb●)
by certain geometric correspondences.

We recall the following Theorem from [31, Theorem 1.1.].
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Theorem 9.3. Let F = C((t)). To each conjugacy class of (regular) semisimple
γ ∈ gln(F ) and a compact subgroup Lγ ⊆ ZG(F )(γ), we may associate a quasi-
coherent sheaf

Fγ ∈ QCohGm(Hilbn(T ∗Gm))

with the property that

Γ(Hilbn(T ∗Gm),Fγ(m)) =H
Lγ
∗ (Sptmγ)

Moreover, the homological grading on the affine Springer fiber side can be recovered
from the Gm-action dilating cotangent fibers on Hilbn(T ∗Gm).

This theorem is proved using a Coulomb branch Z-algebra construction, whose
details will not be explained here. Roughly speaking, Fγ is first constructed as a
Z≥0-graded module over the homogeneous coordinate ring of Hilbn(T ∗Gm)), which
can be obtained by a certain blow-up as explained in op. cit. The k-th graded

piece of the module giving rise to Fγ is defined as H
Lγ
∗ (Sptkγ) and the action of

the homogeneous coordinate ring on⊕k≥0H
Lγ
∗ (Sptkγ) is defined using a convolution

product similar to [27].

Remark 9.4. The proof of [31, Theorem 1.1.] works verbatim in the case F = k((t))
with étale cohomology replacing singular cohomology for Spγ but for example the
convolution product has not been defined yet in the case when F is of mixed
characteristic.

9.2. Hilbert schemes on spectral curves. We now sketch an extension of The-
orem 9.3 for Lγ the identity subgroup along the lines of [27,31], to produce from a
regular semisimple γ ∈ g(F ) a sheaf

Fγ ∈ QCohGm×Gm(Hilb(A2))

The other Gm-action now present records the ”number of points” grading on the
homology of the Hilbert scheme of points Hilb●(C) for the spectral curve C =
{char(γ) = 0}, or equivalently the ”connected component” grading on the homology
of a generalized (GLn,Ad+V )-affine Springer fiber associated to the companion
matrix of γ as in [27]. Note that unlike for ordinary affine Springer fibers, we need
to choose a representative in the conjugacy class of γ.

As shown in loc. cit., the GASF is just the intersection of the positive part of the
affine Grassmannian with the ordinary affine Springer fiber for γ conjugated to its
companion matrix. To construct the module appearing in Theorem 9.3, we need an
analogous notion to the dilation γ ↦ tkγ appearing in the statement of the Theorem.
First of all, let γ be the companion matrix of a polynomial f = ∑n

i=0 aix
i ∈ F [x]

and let χ(t) = diag(tn−1, tn−2, . . . , t,1) where t is a uniformizer of F . Then we have

Lemma 9.5. For any k, the matrix

χktkγχ−k

is the companion matrix of fk ∶= ∑n
i=0 t

(n−i)kaix
i.

We denote by Ck the germ of the plane curve singularity (recall F ∈ {k((t)),C((t))})

Ck ∶= {char(tkχkγχ−k) = fk = 0}
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Example 9.6. Let γ = (0 t3

1 0
) be the companion matrix of x2 − t3 ∈ F [x]. Then

χktkγχ−k = (0 t3+2k

1 0
) is the companion matrix of x2 − t3+2k.

Now we will use the Z-algebra construction in [31, Section 5] with ”flavor sym-
metry”. Namely, in the notation of loc. cit., we let ηk be the cocharacter of
G̃Ln(F ) = GLn(F ) × F × sending t ↦ (χk, t−(n−1)k). The corresponding one-

parameter subgroup acts on gln(F )+Fn by γ ↦ tkχkγχ−k and v ↦ t−(n−1)kχkv = v,
so that (1,0, . . . ,0)t ↦ (1, . . . ,0)t. As explained in [31, Section 5.3.], the sequence
{ηk}∞k=0 of cocharacters defines a Coulomb branch Z-algebra
(9.1) ●A● =⊕

i<j
ηiAηj

depending on two parameters (c, h̵).
Since on the Ad-factor ηk is just a twisted form of the usual dilation cocharacter

γ ↦ tkγ, which corresponds to the shift functor in the trigonometric Cherednik
algebra case studied in [31], we make the following conjecture.

Conjecture 9.7. The Z-algebra of Eq. (9.1) with parameters specialized to c =
−νh̵, h̵ = 1 can be identified with the Z-algebra constructed by Gordon and Stafford
in [28] for the rational Cherednik algebra of gln. Here ν ∈ C − (Z + 1

2
).

It would follow from this conjecture that at h̵ = 0, the above Z-algebra de-
generates to ”the” homogeneous coordinate ring of Hilbn(A2) as explained e.g.
in [28, Proposition 1.7.].

Remark 9.8. For the ”standard” dilation cocharacter η′i acting by (γ, v)↦ (tiγ, tiv),
the degeneration result, i.e. that η′iAη′j at h̵ = 0 equals the global sections of O(i−j)
on Hilbn(A2), follows from [10, Section 3].

Assuming the above degeneration for ●A●, the construction of [31, Section 7]
yields

Proposition 9.9. There exits a quasi-coherent sheaf Fγ on Hilbn(A2) such that
by the main theorem of [27] the global sections of O(k)⊗Fγ are given by the Borel-
Moore homologies of Hilbert schemes of points on the curves Ck:

H0(O(k)⊗Fγ) =H∗(Hilb●(Ck))
Finally, one hopes to compare the results of [69] and [26] on the K-theory of

Hilbn(A2) to the construction of Fγ as follows. Recall the convolution action of the
EHA on the K−theory K(Hilb●) from Proposition 9.2. Parallel to the construction

of the full master symmetric function f̂γ of Definition 6.32, one can use this action
to recursively construct a K-class [Gγ] ∈ K(Hilb●) from the datum of γ as in Eq.
(6.8). Via the identification of K(Hilb●) and Sym, we have a ”deformed Shalika
germ expansion”

[Gγ] = f̂γ = ∑
λ⊢n

Γ̃λt(γ)H̃λ

Remark 9.10. In the recursive construction of f̂γ , which is arguably closer to
the ”constructible” than the ”coherent” realization of affine character sheaves, one
may think of the passage from γ> to γ as an action by the EHA on the level of the
K−group of the ”rigid part” of the direct sum of derived categories of GLn(F )-
equivariant constructible sheaves on gln(F ), but this seems difficult to make precise.
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Note that the sheaf Fγ from Proposition 9.9 is G2
m-equivariant. Conjecturally

it is also coherent, in which case we may write its class in localized equivariant
K-theory as a linear combination of fixed point classes. Recall from Proposition
9.1 that the fixed points are indexed by λ ⊢ n and correspond to H̃λ in the Fock
space. Now writing

[Fγ] = ∑
λ⊢n

Γ̂λt(γ)H̃λ

inside K(Hilb●) gives us coefficients Γ̂λ(γ) ∈ Q(q, t).
It seems natural to conjecture an equality of K-theory classes [Fγ] = [Gγ], or

equivalently whether Γ̂λ(γ) = Γ̃λ(γ), where the LHS and RHS are as defined above.
This would in particular imply the following conjecture.

Conjecture 9.11. The coefficients Γ̂λ(γ) limit to the Shalika germs Γλ(γ) of γ
as t → 1. In particular, they can be thought of as a natural t-deformation of the
Shalika germs of γ and

[Fγ]
t→1ÐÐ→ fγ

Besides looking at K-theory classes, similar to [31, Conjecture 1.9.] one can
even make the stronger conjecture that we have an equality Fγ = Gγ for an actual

(class of a) complex Gγ ∈DbCohG
2
m(Hilbn(A2)) constructed using e.g. the functors

in [60]. This seems too much to hope for, as the construction of Gγ involves derived

pushforwards and is in some examples a genuine complex in DbCohG
2
m(HilbnA2),

whereas Fγ is always concentrated in a single degree by construction. It is for
example possible that Gγ is the image of Fγ by a perverse autoequivalence on the
Hilbert scheme, but we have no evidence to support such a guess.

Remark 9.12. When F = C((t)) and γ is homogeneous and elliptic i.e. its char-
acteristic polynomial is quasi-homogeneous with a single Puiseux pair (m,n) the
coefficients Γ̂λ(γ) appear, up to multiplication by a combinatorial factor, at the
end of [64, Section 5] under the name gm/n and some values for them are computed
using explicit combinatorics of the Hilbert schemes on the spectral curves. One can
check that these coefficients limit to the Shalika germs as t→ 1.

Conjecture 9.11 applies to any compact regular semisimple element, including
homogeneous non-elliptic elements. For example, when γ is a split equivalued

element of valuation 1, the master symmetric function fγ = q(
n
2
)pn1 only has a non-

vanishing leading Shalika germ, see Corollaries 6.47 and 2.44. On the other hand,
[31, Proposition 9.11.] in the trigonometric case suggests that

[Fγ] = ∇pn1 ,

whose expansion in the modified Macdonald polynomials is quite nontrivial. How-
ever, up to a power of q, this expansion limits as t→ 1 to the Shalika expansion fγ ,
as is easy to see from the multiplicativity of ∇ at t = 1.

From the point of view of harmonic analysis, finding a good interpretation for the
categorification and t−deformation of Shalika and other germs seems fascinating.
We leave these explorations for future work.
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