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Abstract

Gromov-Witten theory is a curve counting theory in modern enumerative geometry,
developed rigorously in the 1990s. The theory is based on the notion of a stable
map from a curve to an ambient space and counts of such maps are obtained via
intersection theory in the space parametrizing such maps. Many technical tools have
been developed for computations in Gromov-Witten theory and perhaps the most
important of these is the virtual localization formula. The goal of this thesis is to
present the statement, proof and applications of this result.

In order to apply the localization formula in Gromov-Witten theory, it must be proved
for geometric objects called stacks. The theorem concerns the so-called virtual classes
in the Chow group of a stack and thus in order to give a rigorous statement, one has
to define three things: stacks, their Chow groups and virtual classes. The definitions
are somewhat involved, mostly scattered in several original papers and often ignored
in introductory material. This thesis presents the essential constructions and results
of the original papers. The proof of the localization theorem is then based on the
definition of virtual classes and properties of Chern classes on stacks.

The rest of the thesis focuses on applications of the localization theorem in Gromov-
Witten theory. Before the applications, a general introduction to Gromov-Witten
theory is presented. More specifically, the stack of stable maps is constructed
and some important geometric properties of stable maps are proved. The virtual
localization formula is then applied to the Gromov-Witten theory of the projective
line. In particular, using an explicit formula for the localization, Hurwitz numbers are
expressed as integrals of tautological classes in the moduli space of curves. As another
application, the explicit formula is used to evaluate so-called Hodge integrals. These
examples illustrate the interesting and non-trivial consequences of the localization
theorem.
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Tiivistelmä

Gromovin–Wittenin teoria on modernin enumeratiivisen geometrian osa-alue, jossa
pyritään laskemaan käyrien lukumääriä jossain ympäröivässä avaruudessa. Teorian
matemaattisesti täsmällinen perusta muotoiltiin tarkasti 1990-luvulla ja pohjautuu
niin sanotun stabiilin kuvauksen käsitteeseen. Gromovin–Wittenin teoriassa on
käytössä monia teknisiä työkaluja, joista mahdollisesti tärkein on virtuaaliluokan
lokalisaatiolause. Tämän työn tavoitteena on esittää lauseen täsmällinen muotoilu ja
todistus sekä sovelluksia Gromovin–Wittenin teoriassa.

Jotta lokalisaatiolausetta voidaan soveltaa Gromovin–Wittenin teoriassa, se täytyy
muotoilla skeemoja yleisemmille geometrisille objekteille, joita kutsutaan pinoiksi.
Lokalisaatiolause koskee pinojen virtuaaliluokkia, jotka ovat luokkia pinojen Chow-
ryhmässä. Lauseen täsmällistä muotoilua varten tulee siis määritellä kolme asiaa:
pinot, niiden Chow-ryhmät ja virtuaaliluokat. Näiden objektien tarkat määritelmät
ovat suhteellisen teknisiä ja hajallaan useissa alkuperäisissä artikkeleissa ja tässä
työssä on tavoitteena antaa tiivis, mutta täsmällinen yhteenveto näiden artikkelei-
den tärkeimmistä tuloksista. Lokalisaatiolauseen todistus perustuu virtuaaliluokan
määritelmään ja Chern-luokkien ominaisuuksiin pinoilla.

Lokalisaatiolauseen todistuksen jälkeen työssä esitellään lokalisaatiolauseen sovelluk-
sia Gromovin–Wittenin teoriassa. Gromovin–Wittenin teorian perusteiden esittelyn
jälkeen keskitytään projektiviisen suoran tapaukseen ja sovelletaan lokalisaatiolauset-
ta kahdessa esimerkissä. Ensimmäiseksi näytetään, miten Hurwitz-luvut voidaan
esittää niin sanottujen tautologisten luokkien integraaleina, ja toiseksi johdetaan
suljettu muoto niin sanotuille Hodge-integraaleille. Molemmat esimerkit havainnollis-
tavat lokalisaatiolauseen mielenkiintoisia ja epätriviaaleja seurauksia.

Avainsanat Gromovin–Wittenin teoria, pinot, Chow-ryhmä, virtuaalinen
perusluokka, virtuaalilokalisaatio, Hurwitz-luvut, Hodge-integraalit
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1 Introduction
Given a smooth projective variety X and a homology class β ∈ H2(X), we can
construct the moduli stack M g,n(X, β) of stable maps from a genus g curve with
n marked points to X representing the class β. In Gromov-Witten theory, we are
interested in this stack and its intersection theory. For example, Gromov-Witten
invariants are obtained by intersecting certain cycles in the Chow group of M g,n(X, β)
with the so-called virtual fundamental class. Concrete computations in the theory
are often difficult and it is very convenient to have powerful general tools at one’s
disposal. In case X is equipped with a torus action, there is an important tool
called the virtual localization formula. The action on X induces an action on the
stack M g,n(X, β) and the localization formula allows one to reduce computations on
M g,n(X, β) to computations on the fixed stack. This tool has been used for example
in Gromov-Witten theory of P1 in [24] and [9] and in Donaldson-Thomas theory in
[23].

The standard reference for the localization formula in the literature is [14]. That
paper is written mostly in the language of schemes and the authors note in the
appendix how the proof is adapted to stacks. The aim in this thesis is to develop the
technical language needed to state and prove the result entirely in the language of
stacks, which is the right setting for applications in Gromov-Witten theory and other
areas of modern enumerative geometry. The proof in this thesis is mostly extracted
from the more general proof given in [6] with some simplifications. For a reader with
some familiarity with the basics of Gromov-Witten theory, this thesis can hopefully
serve as an introduction to some of the more technical aspects underlying modern
enumerative geometry, which are often ignored or only treated in special cases in
introductory material (e.g. in [12]). Let us now describe the contents of each section
in more detail.

The first technical difficulty of Gromov-Witten theory is that the space of stable
maps M g,n(X, β) is generally a stack and not a scheme. Thus, in section 2 we will
introduce the language of stacks using definitions of Mumford [7] and Artin [2]. In
general, the moduli spaces M g,n(X, β) will not be ”nice” even as Deligne-Mumford
stacks. They will often be singular and of impure dimension, but they will however
be proper (compact), which is a crucial thing we want.

In Gromov-Witten theory, we want to compute intersections on the stack M g,n(X, β)
and thus one has to show that the essential parts of Fulton’s intersection theory
from [11] can be transferred to stacks. The theory of Chow groups on stacks was
introduced by Vistoli in the case of Deligne-Mumford stacks [27] and later by Kresch
for algebraic stacks [18]. In section 3 we will summarize the essential definitions and
results of these papers. We will mostly omit the proofs.

Since the stacks M g,n(X, β) are in general badly behaved, we define the notion
of a virtual fundamental class which should in some sense be analogous to the
usual fundamental class of a smooth stack. Defining Gromov-Witten invariants by
intersecting with a virtual fundamental class is crucial for Gromov-Witten invariants
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to satisfy the axioms proposed in [16]. In section 4, we will define virtual fundamental
classes in a general algebro-geometric setting following the work of Behrend and
Fantechi [4].

In section 5, we turn to the main result of this thesis. We will state and prove the
virtual localization formula in the generality of [14] (see Theorem 5.2 for the precise
statement). The proof is very close to the one given in [6], but we will prove the
result in a slightly less general context, avoiding the language of cosections.

In section 6, we will give an introduction to Gromov-Witten theory. In particular,
we will give a rigorous definition of the stacks M g,n(X, β) and prove some of their
geometric properties. We will also construct virtual fundamental classes for these
stacks using the definitions from section 4.

Section 7 is dedicated to showing how localization turns integrals over M g,n(P1, d)
to graph combinatorics and computations in various moduli spaces of curves. As
the first application of this, we will first show how Hurwitz numbers are related to
integrals in the moduli space of curves, following [24]. The second application is to
so-called Hodge integrals in M g,1, following [9].

2 Introduction to Stacks
Modern moduli theory makes heavy use of the language of stacks which we now
introduce. Let us first explain on a high level why stacks are needed.

2.1 Moduli spaces as stacks
Suppose we want to parametrize some class of algebro-geometric objects (e.g. smooth
curves of genus g or vector bundles on a scheme) by some kind of algebro-geometric
space. In the ideal situation, we are able to find a scheme M that does the job. This
means that a morphism of schemes T → M should correspond to a family of the
geometric objects over T . Thus we want

{families over T} ↔ {morphisms T →M}.

In modern algebraic geometry, this can be expressed by saying that if we look at the
category of families of the geometric objects over schemes then M represents this
category.

So it is natural to start with the category and try to find a scheme representing it.
However, due to presence of automorphisms and other technical problems, we cannot
always construct such a representative as a scheme. Thus it is important to study
these categories by themselves. This is precisely where stacks come in. With this
motivation in mind, we will present the precise definitions.
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2.2 Stacks
If X ,S are categories and p : X → S is a functor, we say X is a category over S.
For an object U ∈ S, we denote by X (U) the objects in X over U , i.e. objects
T ∈ X such that p(T ) = U . X (U) is a category when taking the morphisms to be
morphisms over idU .

Definition 2.1. Let S be a category. A category X over S is said to be fibered in
groupoids over S if

(i) Given a morphism φ : U → V in S and an object Y ∈ X (V ), there is X ∈ X (U)
and a morphism f : X → Y over φ.

(ii) These lifts satisfy the following universal property. Given morphsisms h : X →
Z, g : Y → Z in X over morphsims φ : U → W and ϕ : V → W in S. If
ψ : U → V is a morphism s.t. ϕψ = φ in S then there is a unique lift
f : X → Y of ψ s.t. gf = h.

Note that property (ii) above implies that the lifts of property (i) are unique up to
unique isomorphism. Suppose from now on, that for a morphism φ : U → V in S and
an object Y ∈ X (V ) we fix a lift f : X → Y of φ and denote this by X = φ∗Y . For a
composition U φ−→ V

ψ−→ W , (ψφ)∗ and φ∗ψ∗ are the same up to unique isomorphism.
We assume in what follows that a category S has products and fiber products.

Definition 2.2. Let S be a category. A Grothendieck topology on S assigns to each
object U in S, a set of families of morphisms {Ui → U}i, called coverings of U , that
satisfy the following properties:

(i) If V → U is an isomorphism in S then {V → U} is a covering of U .

(ii) If {Ui → U} is a covering of U , then for a morphism V → U the set {Ui×U V →
V } is a covering of V (we assumed fiber products exist in S).

(iii) If {Ui → U}i and {Uij → Ui}j are coverings, then the compositions {Uij →
Ui → U}i,j form a covering.

A site is a category with a Grothendieck topology. More material on Grothendieck
topologies can be found in [28].

Definition 2.3. Let Sch be the category of schemes. Given a scheme X, an étale
cover is a family of étale morphisms {Ui → X}i such that ⨆︁Ui → X is surjective.
This defines a Grothendieck topology on Sch and we call the resulting site the big
étale site and denote it by Schét.

We now give the definition of a stack.

Definition 2.4. Let X be a category fibered in groupoids over a site S. X is called
a stack if
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(a) (Morphism glue) Given V ∈ Ob(S) and X, Y ∈ X (V ), the functor

S(V )→ Sets
(U φ−→ V ) ↦→ HomX (U)(φ∗X,φ∗Y )

is a sheaf.

(b) (Objects glue) Let {Ui → U} be a covering of U in S. Given Xi ∈ X (Ui) and
isomorphisms φi : Xij → Xji over Uij satisfying the cocycle conditions, there is
an object X ∈ X (U) s.t. Xi is (isomorphic to) the pullback of X via Ui → U .

Morphisms of stacks X ,Y over S is a functor f : X → Y that (strictly) commutes
with the morphsism pX : X → S, pY : Y → S. From now on, we consider S = Schét.

Example. Given a scheme X, we can consider the category over Schét whose objects
over a scheme T are morphisms T → X and the morphisms are X-morphisms of
schemes. One can check that this is a stack over Schét. We will denote this stack by
the same letter X and speak of a scheme also in the case we actually mean the stack
associated to a scheme.

Example. Let g ≥ 2 be an integer. Consider the category Mg whose objects over a
scheme T are smooth proper morphisms C → T , whose geometric fibers are connected
genus g curves. Morphisms between families are Cartesian diagrams

C ′ C

T ′ T

Then Mg is a stack.

Definining the fiber product of stacks is quite easy. Let f : X → Z, g : Y → Z be
morphisms of stacks. Then the fiber product X ×Z Y is the category consisting of
objects (x, y, φ), where x ∈ X (T ), y ∈ Y(T ) and an isomorphism φ : f(x) ∼−→ g(y).
A morphism (x, y, φ)→ (x′, y′, φ′) of objects over S and T respectively is defined by
a triple (h, α, β), consisting of a morphism h : S → T and morphisms α : x→ x′ and
β : y → y′ over h s.t.

f(x) g(y)

f(x′) g(y′)

φ

f(α) g(β)

φ′

commutes. We get a 2-commutative diagram

X ×Z Y Y

X Z

p2

p1 g

f

that satisfies the usual universal property (where the diagrams now only 2-commute).
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Definition 2.5. A morphism F : X → Y of stacks is representable by schemes if for
any scheme S and a morphism S → Y , the fiber product X ×Y S is a scheme.

Proposition 2.1. Let X be a stack. The diagonal X → X × X is representable
if and only if for any schemes S, T and morphisms S → X and T → X , the fibre
product S ×X T is a scheme or equivalently any morphism S → X from a scheme is
reprentable by schemes.

Proof. For schemes S and T and morphisms S → X and T → X , the square

S ×X T S × T

X X × X

is Cartesian so if the diagonal is representable then S ×X T is a scheme.

Conversely, suppose that every S → X is representable by schemes. Let f : T →
X × X be a morphism from a scheme. Then the projections fi : T → X define a
morpshim p = f1 × f2 : T × T → X ×X and p ◦∆T = f . We can thus decompose
the Cartesian square of T ×X ×X T into two Cartesian squares

T ×X ×X T T ×X T X

T T × T X × X

∆

∆T p

By assumption T ×X T is a scheme so everything in the left square is a scheme. In
particular T ×X ×X T is a scheme which is what we wanted to show.

Definition 2.6. Let P be property of morphisms of schemes that is stable under
base change and étale local on the target. A morphism F : X → Y representable by
schemes is said to have property P if for any scheme S and a morphism S → Y , the
morphism X ×Y S → S has property P.

2.3 Deligne-Mumford stacks
Next, we define the notion of a Deligne-Mumford stack. There are slightly different
conventions depending on the author but we have chosen a definition given by Deligne
and Mumford in [7]. This is also the definition used in [4], [27] and [18].

Definition 2.7. We say a stack X is quasi-separated if the diagonal morphism is
representable, quasi-compact and separated.

Definition 2.8. A stack X is a Deligne-Mumford stack (DM stack for short) if

(a) the diagonal morphism X → X ×X is representable (by schemes) and

(b) there is a scheme U and a morphism U → X that is surjective and étale.
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The morphism U → X above is called an atlas of X and is representable by (a) using
Proposition 2.1.

Deligne and Mumford note that this is the right definition for quasi-separated DM
stacks. The stacks appearing in applications are indeed usually quasi-separated so
this definition suffices for our purposes. Next, we introduce several properties of
Deligne-Mumford stacks that will be needed.

Definition 2.9. A stack X is separated if the diagonal morphism X → X ×Spec(Z) X
(which is representable by schemes) is proper.

Let us now see how properties of schemes and morphisms of schemes transfer to
DM stacks. Let P be a property of morphisms of schemes that is stable under base
change and étale local on the domain and codomain. More precisely, this means
that if f : U → V is a morphism of schemes and {Ui → U} and {Vj → V } are étale
covers then for diagrams

Ui U

Vi V

fi f

we have P(fi) for all i if and only if P(f). Such properties include e.g flat, smooth,
locally of finite type, unramified étale, etc...

Proposition 2.2. Let F : X → Y be a representable morphism of DM stacks. Then
P holds for F if and only if for atlases U → X and V → Y and a commutative
diagram

U X

V Y

f F

P holds for f .

Proof. Suppose that we’re given U → X , V → Y as in the statement. From the
universal property of fiber products, we have the diagram

U

XV X

V Y

ét. surj.

ét. surj.

ét. surj.

In fact, the dashed arrow is also an étale surjection. Since the property P is étale
local on the source, by descent, the morphism XV → V has property P if and only if
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U → V does. It is easy to show that this suffices.

Motivated by this, a (not necessarily representable) morphism F : X → Y of DM
stacks is said to have the property P if for every commutative diagram of atlases
as in the above proposition, the map f has the property P. In fact, by a descent
argument, it suffices to find only one such diagram.

In a similar fashion, we say that a DM stack X has some étale local property of
schemes if there is an atlas U → X where U has that property. We say also that
X is quasi-compact if there is an atlas U → X such that U is quasi-compact and
a morphism F : X → Y is quasi-compact if for any quasi-compact scheme T , the
morphsism X ×Y T is quasi-compact.

An important and nice property of DM stacks that we want our moduli stacks to
have is properness. First, a morphism F : X → Y of DM stacks is of finite type if it
is quasi-compact and locally of finite type.

Definition 2.10. A morphism F : X → Y of DM stacks is proper if it is separated,
finite type and, locally over Y , there is a DM stack Z and a commutative diagram

Z X

Y
H F

with G surjective, H representable and proper.

When we say some property P of morphisms holds for F : X → Y locally over Y we
mean that there is an atlas U → Y s.t. the property holds for X ×Y U → U . So if F
is proper, there is an atlas U → Y and a commutative diagram:

Z X ×Y U

U

H

so that H is representable and proper and G is surjective.

2.4 Algebraic stacks
The notion of an algebraic stack is weaker than Deligne-Mumford in two respects.
First, we require that the diagonal is representable by algebraic spaces. Recall
that an algebraic space is a sheaf of sets X on Schét s.t. there is a surjective étale
representable morphism U → X from a scheme U . We say a morphism X → Y of
stacks is representable by algebraic spaces if for any Y-scheme T , the fiber product
X ×Y T is an algebraic space (thought of as a stack). The second thing is that the
presentation by a scheme is now only smooth and not necessarily étale.

Definition 2.11. A stack X over Schét is an algebraic stack if
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(i) The diagonal X → X ×X is representable by algebraic spaces.

(ii) There is a scheme U and a smooth surjective morphism U → X .

Note now that property (i) above implies U → X from a scheme U is automatically
representable by algebraic spaces. Thus if T → X is a morphism from a scheme
U ×X T → T is a morphism from an algebraic space. Saying this is smooth and
surjective means that if we take an étale presentation W → U ×X T , then the
composition

W → U ×X T → T

is a smooth and surjective morphism of schemes.

3 Chow Groups on Stacks
This section aims to summarize the basic definitions and results regarding Chow
groups on stacks. As a reference we use the papers of Vistoli [27] and Kresch [18]. The
constructions of Vistoli are preformed on Deligne-Mumford stacks and are natural
generalizations of the theory developed by Fulton in [11]. It is imporant to note that
with the definitions of Vistoli, some important constructions from Fulton’s theory
e.g. intersection products and Chern classes work only with Q-coefficients. Another
important thing to note is that push-forward by a proper non-representable morphism
is defined only with rational coefficients. This is important when we want to do
enumerative geometry on a Deline-Mumford stack X proper over k. The degree map
is defined as the push-forward of the non-representable proper structure morphism
p : X → Speck and hence defined only with rational coefficients.

Kresch’s definition is a bit more technical, but produces a theory of integral Chow
groups on algebraic stacks. An important thing to note is that the push-forward
in this theory is in general defined for so called projective morphisms which are in
particular representable. Representability is required if we want integer coefficients,
as noted in the previous paragraph.

If the reader is not concerned about technicalities, in many cases one can assume
that the basic results that hold for intersection theory on schemes are valid for stacks
too. However, one has to be careful whether some result holds for algebraic stacks
or only Deligne-Mumford stacks and whether one has to work with Q- coefficients
instead of Z.

3.1 Naïve Chow groups
In this section we summarize the basic construction given in Vistoli. The construction
of the Chow groups and basic operations takes place on Deligne-Mumford stacks.
The construction of Chow groups follows closely the definition for schemes in [11], i.e.
we simply take integral closed substacks modulo rational equivalence. For algebraic
stacks this definition is not enough, but these ”naïve” Chow groups will serve as a
starting point of the more general definition.
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We assume in this section that all stacks are DM stacks and all stacks and schemes
are of finite type over a fixed field k. We also assume that for a DM stack X, there
is a scheme M and a proper morphism X →M .

Definition 3.1. Let X be a stack. A k-cycle is an element of the free abelian group
Zk(X) generated by integral closed substacks of X of dimension k. We set

Z∗(X) =
⨁︂
k≥0

Zk(X).

We define
Wk(X) =

⨁︂
Z

k(Z)∗,

where the sum is taken over integral substacks Z of dimension k+1 and k(Z) denotes
the field of rational functions consisting of morphisms U → A1 for open substack U
of Z. The group of rational equivalences is then

W∗(X) =
⨁︂
k≥0

Wk(X).

As in the case of schemes we should be able to define a divisor associated with a
rational function and therefore a homomorphism

Wk(X)→ Zk(X)

and the cokernel of this map is the Chow group.

A novel way of formulating this is presented in [13] and goes as follows. We consider
a stack X and the associated étale site Xét (the category of étale morphisms U → X).
Since étale is in particular flat, we get a presheaf Z of groups on the étale site
defined simply by

(U ét−→ X) ↦→ Z(U).
Similarly we get a presheaf W corresponding to the groups W (U) for schemes.

In fact, one can pretty easily show that this is a sheaf. The map div : W (U)→ Z(U)
for schemes gives a morphism of sheaves div : Z → W . In particular we have a map
of the groups of global sections and we claim that these are equal to Z(X) and W (X)
defined previously.

Let U → X be an atlas for X. Then the group of global sections of a sheaf F on the
étale site Xét is given by

Γ(X,F ) = Eq(F (U → X) ⇒ F (U ×X U → X))

where the two maps are induced by the two projections. For Z , we have a natural
map Z(X)→ Z(U) and showing that Z(X) ∼= Γ(X,F ) amounts to showing that the
sequence

Z(X)→ Z(U) ⇒ Z(U ×X U)
is exact. This is the content of Lemmas 4.2 and 4.3 in [13].

Thus we get a map div : W (X)→ Z(X) and
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Definition 3.2. we define the kth Chow group Ak(X) to be the cokernel of

div : Wk(X)→ Zk(X)

and the Chow group of X to be

A∗(X) =
⨁︂
k≥0

Ak(X)

and the Chow group with rational coefficients is

A∗(X)Q = A∗(X)⊗Q.

Let Z → X be a closed substack (not necessarily integral) and let U → X be a
presentation. We note that ZU = Z ×X U is a closed subscheme of U and defines a
cycle [ZU ] ∈ Z(U). We have of course p∗

1[ZU ] = [Z ×X (U ×X U)] = p∗
2[ZU ] and since

Z is a sheaf, [ZU ] comes from a unique cycle [Z] ∈ Z(X) called the cycle associated
to Z.

Next, we define the pullbacks and pushforwards. To define pushforwards we need
to know what the degree of a morphism of stacks means. In [27], the definitions
are motivated by two properties for schemes. First, we recall how the degree of a
morphism of schemes is defined. Let f : X → Y be a separated dominant morphism
of finite type and Y integral. If f generically quasi-finite, there is a nonempty open
subset U ⊆ Y s.t. f−1(U)→ U is flat and finite. In this case we define deg(X/Y )
be the degree of f∗OX as a locally free sheaf on U . If f is not generically quasi-finite,
we set deg(X/Y ) = 0.

Suppose now that X → Y, V → Y are separated dominant morphism of integral
schemes. We have

deg(X/Y ) = deg(X ×Y V/V ).
Also, if U → X is a separated dominant morphism of integral schemes then

deg(U/Y ) = deg(U/X) deg(X/Y )

so that
deg(X/Y ) = deg(U/Y )/ deg(U/X).

The first one can be used as a definition for representable morphism of stacks and
the second in the non-representable case.

Definition 3.3. Let f : X → Y be a separated dominant morphism of finite type of
integral stacks. Let U → X and V → Y be integral atlases. If f is representable we
define

deg(X/Y ) = deg(X ×Y V/V )
and if not, we define

deg(X/Y ) = deg(U/Y )/ deg(U/X).
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Lemma 1.16 of [27] shows that these notions of degree are well-defined. With our
assumption that X admits proper morphism to a scheme, the map IX → X from
the inertia stack is representable, finite and separated. Thus we may define

δ(X) = deg(IX/X).

For the next result, recall that for a field extension K/L, we have [K : L] = deg(K/L)
if the extension is finite and [K : L] = 0 if the extension is infinite.

Proposition 3.1. Let f : X → Y be a separated dominant morphism of finite type
of integral stacks. Then

deg(X/Y ) = δ(X)
δ(Y ) [K(X) : K(Y )].

Now can define f ∗ for f flat, f∗ for f proper. And after this we transfer the basic
construction in [11] to stacks. This gives us an intersection product and importantly
it gives us the refined Gysin homomorphisms.

The definitions are now as follows:

Definition 3.4. Let f : X → Y be a morphism of DM stacks.

(a) (Push-forward) If f is proper, then for an integral closed substack V of X we
define

f∗[V ] = deg(V/W )[W ],

where W is the stack theoretic image of V in Y . Note that since the degree
might be rational in general we get

f∗ : Z(X)Q → Z(Y )Q.

In case f is representable we have

f∗ : Z(X)→ Z(Y ).

(b) (Pull-back) If f is flat we define

f ∗[W ] = [W ×Y X]

for an integral closed substack W of Y . This defines

f ∗ : Z(Y )→ Z(X)

Theorem 3.1. The above homomorphisms pass to rational equivalence and we obtain
pull-backs and push-forwards for DM stacks.
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3.2 Chow groups on algebraic Stacks
Next, we will introduce Kresch’s construction of Chow groups on algebraic stacks
[18]. The approach of Vistoli does not work directly with algebraic stacks, since
in many cases there are not enough integral substacks to get a meaningful theory.
We present this more general definition and note that in the new Chow groups will
reduce to ones defined earlier when we restrict to DM stacks and work with rational
coefficients.

We will then show that these more general Chow groups have flat pull-backs and
projective push-forwards and that they satisfy the usual properties. We will also
construct the top Chern class operator and based on that define the other Chern
classes. Importantly, the defining property and the other basic properties (e.g.
commutativity, projection and pull-back formulas) of Chern classes continues to hold
in this more general context. Lastly, we need to define refined Gysin pull-backs for
regular local immersions and then see that these in fact satisfy the functoriality,
commutativity and compatibility with pull-backs and push-forwards.

3.2.1 The Chow group

Although we noted that Vistoli’s naïve Chow groups do not in themselves give a
nice theory for algebraic stacks, they can be defined also in the category of algbraic
stacks and we denote these by

A◦
k(X) = coker(Wk(X)→ Zk(X))

following [18]. The Chow groups A∗(X) will be constructed via two limits. First
we take a direct limit of the naïve Chow groups of vector bundles of X. We obtain
groups denoted ˆ︁Ak(X). The second direct limit is a limit of certain quotients ofˆ︁Ak(Y ) taken over projective morphisms Y → X which finally gives us Ak(X). Here
are the details.

In what follows, a stack means an algebraic stack of finite type over a field. The
definitions of Edidin and Graham in [8] can be rephrased to define Edidin-Graham-
Totaro Chow groups as ˆ︁Ak(X) = lim−→

BX

A◦
k+rank(E)(E),

where BX is the set of isomorphism classes of vector bundles on X. By Remark
2.1.5 in [18], this is a direct system and thus the limit makes sense. This is a quite
natural definition but this is a sufficient definition only for algebraic stacks that are
quotient stacks X = [Y/G]. In this case we recover the groups which Edinin-Graham
denote by AGk (Y ) as noted in Remarks 2.1.7 in Kresch.

For example, we will see that stacks of stable maps – central objects in Gromov-
Witten theory – are quotient stacks and the above definition suffices. However, in
some cases, we have an algebraic stack X that only has a stratification by quotient
stacks. This means that there are locally closed substacks Ui = [Yi/Gi] of X that
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form a stratification. Roughly speaking, we then take the Chow group of X to be⨆︂ ˆ︁A(Ui)

modulo some reasonable identifications. Let us make this precise.

Definition 3.5. A morphism f : Y → X is projective if it factors (up to 2-
isomorphism) as

Y → P(E)→ X,

where the first arrow is a closed immersion, E is a coherent sheaf of OX-modules and
the second arrow is the projection.

We now define the directed set of projective X-stacks.

Definition 3.6. A projective X-stack is a pair (Y, f), where f : Y → X is a projective
morphism. A morphism of projective X-stacks (Y, f) → (Y ′, f ′) is a morphism
φ : Y → Y ′ together with a 2-morphism α from f to f ′ ◦ φ. We say (φ, α) is an
inclusion of components if φ is an isomorphism onto a union of connected components
of Y ′. We denote by AX , the set of isomorphism classes of projective X-stacks. We
define (Y, f) ⪯ (Y ′, f ′) whenever there is an inclusion of components (Y, f)→ (Y ′, f ′).
With this partial ordering, AX forms a directed set.

Given a morphism f : X → Y of stacks, we often consider the groups
ˆ︁Afk(X) = lim−→

BY

A◦
k+rank(E)(f ∗E),

called the restricted Edinin-Graham-Totaro Chow groups. Note that we have natrual
morphims ιf : ˆ︁Afk(X) → ˆ︁Ak(X) and f∗ : ˆ︁Afk(X) → ˆ︁Ak(Y ). With this in mind, let
(Y, f) be a projective X-stack. Given a pair of projective morphisms p1, p2 : T → Y
of stacks, we define the set

ˆ︁Bp1,p2
k (Y ) = {p1∗α1 − p2∗α2 | βi ∈ ˆ︁Api

k (T ) and ιp1(α1) = ιp2(α2)}

Then the union ˆ︁Bk(Y ) =
⋃︂

f◦p1≃f◦p2

ˆ︁Bp1,p2
k (Y ),

where≃means 2-isomorphism, is a subgroup and it turns out that ( ˆ︁Ak(Y )/ ˆ︁Bk(Y ))(Y,f)∈AX

is a direct system and we make our final definition of the Chow groups of algebraic
stacks.

Definition 3.7. For an algebraic stack X, the Chow groups Ak(X) are defined by

Ak(X) = lim−→
AX

( ˆ︁AkY/ ˆ︁BkY ).

We let
A∗(X) =

⨁︂
k

Ak(X)

and
A∗(X)Q = A∗(X)⊗Q
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For concreteness, let us see how we represent elements of A∗(X). By definition an
element α ∈ Ak(X) is represented by a pair (f, α′), where f : Y → X is a projective
morphism and α′ ∈ ˆ︁AkY/ ˆ︁BkY . We may choose a representative α′ ∈ ˆ︁AkY . We
usually denote an element of Ak(X) by this pair (f, α′). Sometimes we go further
and choose a representative α′′ ∈ A◦

k+rank(E)(E) of α′ for some vector bundle E → Y .

3.2.2 Basic operations

The first thing to do now is, of course, to define push-forwards and pull-backs. These
are very natural and one can easily guess what the right definitions are.

Definition 3.8. Let f : X → Y be a projecive morphism. Then given (h, α) where
h : Z → X and α ∈ ˆ︁Ak(Z) we simply set

f∗(h, α) = (f ◦ h, α)

Next, suppose f : X → Y is flat. Then given (h, α) as above, think of α ∈ A◦(F ) for
a vector bundle F on Z. These form the Cartesian diagram

f ′∗F F

Z ′ Z

X Y

f̃ ′

h′

f ′

h

f

Then we simply define
f ∗(h, α) = (h′, f̃ ′∗α)

Note that f̃ ′∗ descends to f ′∗ : ˆ︁A∗(Z)→ ˆ︁A∗(Z ′) and we may equivalently define

f ∗(h, α) = (h′, f ′∗α).

These definitions are independent of the representatives chosen and therefore gives
us the desired homomorphisms

f ∗ : A(Y )→ A(X)

and

f∗ : A(X)→ A(Y ).

The following result is useful for dealing with push-forwards. We will see a consequence
of this shortly, when proving an imporant identity of top Chern classes. This is
Remark 2.1.16 in [18].
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Lemma 3.1. Let f : X → Y and p1, p2 : T → X be projective morphisms s.t. f ◦ p1
and f ◦ p2 are 2-isomorphic. Given βi ∈ ˆ︁Api(X) for i = 1, 2 we have

(f, p2∗β2 − p1∗β1) = (p1 ◦ f, ιp2(β2)− ιp1(β1))
in A∗(Y ). In particular,

(f ◦ p1∗) = (f ◦ p1, ιp1(β1))

Proof. As hinted by Kresch we consider q1, q2 : T ⊔T → X⊔T where and q1 = p1⊔1T
and q2 = 1T ⊔ p2. Then we notice that ιq1(β1, β2) = ιq2(β1, β2) and hence we have by
definition of the subgroups ˆ︁B∗ that

q1∗(β1, β2) = (p1∗β1, ιp2(β2))
= q2∗(β1, β2) = (p2∗β2, ιp1(β1))
∈ ˆ︁A∗(X ⊔ T )/ ˆ︁B∗(X ⊔ T ).

Rearranging gives
p2∗β2 − p1∗β1 = ιp2(β2)− ιp1(β1) ∈ ˆ︁A∗(X ⊔ T )/ ˆ︁B∗(X ⊔ T ).

Now X → X ⊔ T and T → X ⊔ T are inclusions of components and the above shows
that (f, p2∗β2 − p1∗β1) and (f ◦ p1, ιp2(β2) − ιp1(β1)) agree in X ⊔ T so this shows
that when we pass to the limit, we obtain

(f, p2∗β2 − p1∗β1) = (f ◦ p1, ιp2(β2)− ιp1(β1))

The next theorem tells us that push-forwards and pull-backs have the nice basic
properties that we would expect. In particular they are functorial and satisfy the
push-pull formula.

Theorem 3.2. The Chow groups A∗(X) defined above satisfy the following properties.

(i) (Functoriality) If f, g are flat, then

(f ◦ g)∗ = g∗ ◦ f ∗.

If f, g are projective then
(f ◦ g)∗ = f∗ ◦ g∗.

(ii) (Push-pull formula) If the diagram

X ′ X

Y ′ Y

g′

f ′ f

g

is Cartesian, f is projective and g is flat, then we have

g∗f∗ = f ′
∗g

′∗.

Proof. Immediate from the definitions.
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3.2.3 Chern classes

Next, we define the top Chern class operator for vector bundle E on a stack X. This
definition is also extremely simple.

Definition 3.9. Let π : E → X be a vector bundle on a stack X. An element of
Ak(X) is represented by (f, α), where f : Y → X is a projective morphism π′ : F → Y
is a vector bundle and α ∈ A◦

k+rank(F )(F ). Let s : F → F ⊕ f ∗E be the zero section.
We define

ctop(E) ∩ (f, α) = (f, s∗α).

Here s∗ is defined on the naïve Chow groups.

This is well-defined and descends to rational equivalence to give

ctop(E) ∩ − : Ak(X)→ Ak−r(E),

where r = rank(E).

Here’s the basic property for the top Chern class that will be used many times in
the proof of the virtual localization formula.

Proposition 3.2. Let E → X be a vector bundle on a stack X and let s be the zero
section of X. Then

s∗α = π∗(ctop(E) ∩ α)

for α ∈ A(X).

Proof. Let us see what the right hand side gives us. We consider α as (f, α), where
f : Y → X projective and α ∈ ˆ︁Ak(Y ). We can further think of α as being an element
of A◦(F ) for a vector bundle F on Y . We form the three level Cartesian square

f ∗E ⊕ F F

f ∗E Y

E X

f ′

π′

f

π

We have by definition that

ctop(E) ∩ (f, α) = (f, s′′
∗α),

where s′′ is the zero section of the bundle f ∗E ⊕ F → F . Next, we look at the
diagram
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f ∗E ⊕ f ∗E ⊕ F f ∗E ⊕ F

f ∗E Y

E X

f ′

π′

f

π

and note that by definition

π∗(f, β) = (f ′, p∗
2,3β)

where p2,3 : f ∗E ⊕ f ∗E ⊕ F → f ∗E ⊕ F is the projection onto the second and third
factors. If p1,3 is the projection onto the first and third factors then Lemma 3.1 shows
that (f ′, p∗

2,3β) = (f ′, p∗
1,3β) and since p∗

1,3β and β define the same class in the limit
over vector bundles, we see that

π∗(f, β) = (f ′, p∗
2,3β) = (f ′, β′),

where β′ ∈ ˆ︁A(f ∗E) is the element determined by β. But note that β′ is simply s′
∗α.

Thus we’ve shown
π∗(ctop(E) ∩ (f, α)) = (f ′, s′

∗α).
Now we simply note that

s∗(f, α) = (s ◦ f, α) = (f ′ ◦ s′, α) = (f ′, s′
∗α)

where the last equality is again Lemma 3.1. This completes the proof.

With this definition, we can define Segre classes exactly as they are defined in Fulton
and then general Chern classes are defined also as in Fulton. For a vector bundle E
on a stack X one defines the projective bundle p : P (E) → X just as for schemes.
Then there is a tautological line bundle OE(1) on P (E) and we define

si(E) ∩ α = p∗(ctop(OE(1))i ∩ p∗α).

Then one forms the total Segre class

s(E) =
∑︂

si(E)ti

and the Chern classes ci(E) come from the total Chern class

c(E) = s(E)−1 =
∑︂

ci(E)ti

The following properties of Chern classes are the most important for our purposes.
The statements are almost identical to those of Fulton.

Theorem 3.3. Let f : X → Y be a morphism of stacks and let E be a vector bundle
on Y .
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(i) (Pull-back formula) If f is flat then

f ∗(ci(E) ∩ α) = ci(f ∗E) ∩ f ∗α

for α ∈ A(Y ).

(ii) (Projection formula) If f is flat then

f∗(ci(f ∗E) ∩ α) = ci(E) ∩ f∗α

for α ∈ A(X).

(iii) (Whitney sum formula) If

0→ F → E → F ′ → 0

is a short exact sequence of vector bundles on X, then

c(E) = c(F )c(F ′).

Remark. The formula s∗α = π∗(ctop(E) ∩ α) holds for cr(E) too and thus cr(E) =
ctop(E) and we can use these interchangeably. In particular all the nice properties
(projection, pull-back, commutativity etc...) hold for the top Chern class.

The next result is crucial for a good theory of Chow groups. It states that if we
have a vector bundle or more generally a vector bundle stack (to be defined in next
section) the pull-back of the projection morphism gives an isomorphism of Chow
groups (up to an appropriate shift in degree).

Theorem 3.4. Let E be a vector bundle (or more generally a vector bundle stack) on
a Deligne-Mumford stack X. Then π∗ : Ak(X)→ Ak+rank(E)(E) is an isomorphim.

A curious reader can find the proof in Kresch as Proposition 4.3.2. The proof uses
Noetherian induction as the correponding proof in Fulton, but uses an extended
excision sequence which requires some homological algebra which we will not introduce
in this thesis.

Given a vector bundle E on a Deligne-Mumford stackX with a zero section s : X → E,
we denote by s∗ the inverse of of the pull-back π∗. Applying s∗ is often referred to
as ”interesecting with the zero section s”. Note that Proposition 3.2 takes the form

s∗s∗α = ctop(E) ∩ α.

3.2.4 Refined Gysin Homomorphisms

Recall that a morphism f : X → Y is a local immersion if f is representable and
there is a smooth atlas V → Y and closed immersion of schemes g : S → T and a
commutative diagram

S T

X ×Y V V

g

f ′
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with the vertical maps being étale surjections. We say that f is a regular local
immersion if g is a regular immersion. To define the refined Gysin homomorphism,
we shall need a specialization homomorphism coming from deformation to the normal
cone as in Fulton. Let us recall the construction.

Given a local immersion f : X → Y we can form the deformation space M◦ = M◦
XY

with

X × P1 M◦

P1

so that restricted to A1 = P1 \ {∞} we get the immersion X × A1 → Y × A1 and
over ∞ we get a closed immersion X ↪→ CXY = C. We consider the diagram

Ak+1(C) Ak+1(M◦) Ak+1(Y × A1) 0

Ak(C) Ak(Y )

i∗ j∗

i∗

σ

p∗

where the top row is the excision sequence, i∗ is given by intersection with the divisor
C in M◦ and p∗ is the pull-back of the projection Y × A1 → Y . Then i∗i∗ = 0 and
by exactness of the top row, we get σ as a composition

σ : Ak(Y ) p∗
−→ Ak+1(Y × A1) (j∗)−1

−−−→ Ak+1(M◦)/i∗(Ak+1(C)) i∗−→ Ak(C)

which is called the specialization homomorphism. We can describe it more explicitly
as follows.

Let g : T → Y be projective, E → T a vector bundle and consider [V ] ∈ A◦(E).
Then unwinding definitions and copying the argument from Proposition 5.2 in [11]
gives

σ(g, [V ]) = (g′, [CVW ]).

Now we finally come to the construction of refined Gysin pull-backs which is the
most important construction in intersection theory.

Let i : X → Y be a regular local immersion so that C = CXY is a vector bundle
stack and let g : Y ′ → Y be any morphism. We form the Cartesian diagram

X ′ Y ′

X Y

i′

g f

i

Now C ′ = CX′Y ′ ↪→ g∗C and if s : X ′ → g∗C is the zero section, we define i! as the
composition

i! : Ak(Y ′) σ−→ Ak(C ′)→ Ak(g∗C) s∗
−→ Ak(X ′).
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4 Introduction to Virtual Fundamental Classes
The reference for this section is the original paper of Behrend and Fantechi [4]. The
idea here is to give a minimal summary of the basic definitions and results needed for
the constructions. The localization formula in Section 5 concerns the objects defined
in this section. Let us now give some motivation for the rather abstract constructions
that we’re about to present.

In Gromov-Witten theory, a central goal is to compute Gromov-Witten invariants
which are intersections of certain classes in the moduli space of stable maps. However,
the moduli space is often very ill-behaved, e.g. reducible, of impure dimension
and highly singular and computing intersections on the whole moduli space does
not produce invariants with nice properties. The ”nice properties” here mean that
the Gromov-Witten invariants should produce a so-called cohomological field theory
formulated axiomatically by Kontsevich and Manin in [16]. In [4], Behrend and
Fantechi constructed a so called virtual fundamental class which has the property
that taking intersections against this class makes the axioms of cohomological field
theory hold for GW invariants. In this section we describe the necessary constructions
for arbitrary DM stacks and later look at the special case of the moduli of stable
maps. We now give a very brief summary of the construction and then hop into
more details. A more concrete introduction to virtual classes with lots of examples
can be found in [3].

Given a DM stack X of finite type over a field k, we construct the so called intrinsic
normal sheaf NX and a closed subcone CX of NX , called the intrinsic normal cone.
The cone CX will be of pure dimension 0 and is an object related to the singularities
of X. An obstruction theory is a map of complexes ϕ : E• → L•

X , where L•
X is the

cotangent complex of X and E• and ϕ satisfy certain conditions in cohomology. The
obstruction theory is said to be perfect if E• is isomorphic to a two-term complex of
vector bundles and in this case we can construct a vector bundle stack E with closed
immersions

CX ↪→ NX ↪→ E.

We obtain the virtual class [X]vir by intersecting the class of CX in A0(E) with the
zero section of E.

We will now explain the construction in more detail. In this section we assume all
stacks to be quasi-separated and locally of finite type over a field k. The constructions
use derived categories and the reader can find a brief introduction to derived categories
in the appendix.

4.1 Cone stacks
Let us begin by introducing the notion of a cone stack.

Definition 4.1. Let X be a DM stack.

(a) (Cones) Let S = ⨁︁
i≥0 S

i be a graded quasi-coherent sheaf of OX-algebras, s.t.
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S0 = OX and S1 generates S. Then we can form an X-stack

C = Spec(S)

called a cone over X. A morphism of cones is an X-morphism induced by a
graded morphism of graded OX-algebras. A closed immersion of cones defines
a closed subcone. The morphsim 0: X → C defined by projection S → OX is
the vertex of C and there is an A1-action γ : A1×C → C given by a moprhism
S → S[x] defined by s ∈ Si ↦→ sxi. (The axioms of an A1-action are the
natural ones and are spelled out in [4])

(b) (Abelian cones) A cone of the form

C(F ) = Spec(Sym(F ))

for a coherent sheaf of OX-modules F is called an abelian cone.

Example. A vector bundle E on X is an abelian cone E = C(E∨), where E is the
sheaf of sections of E.

Example. If i : X → Y is a closed immersion with ideal sheaf I then

CX/Y = Spec
⎛⎝⨁︂
n≥0

I n/I n+1

⎞⎠
is the normal cone of X in Y and

NX/Y = C((I /I 2)∨)

is the normal sheaf of X in Y .

Exact sequences of cones are defined in a natural way.

Definition 4.2. Let E be a vector bundle and C,D cones over X. A sequence

0→ E → C → D → 0

is exact if locally over X the sequence splits, i.e., there is a morphism C → E
inducing an isomorphism C → E ×D.

Given a vector bundle E and a cone C on X with a morphism d : E → C, we define
what it means for E to act on C. This gives rise to the notion of C being an E-cone
and imporantly we can form a quotient [C/E] which will be an object called a cone
stack. Here are the precise definitions.

Let d : E → C be a morphism where E = Spec(Sym(E∨)) is a vector bundle and
C = Spec(⨁︁Si) is a cone. Then d is defined by a morphism⨁︂

Si → Sym(E∨)

which gives
S1 → E∨
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and hence
S1 → E∨ ⊕ S1

and finally this induces

γ : E × A(C) = Spec(Sym(E∨ ⊕ S1))→ A(C) = Spec(Sym(S1))

Definition 4.3. If E and C are as above, we say C is an E-cone, if C is invariant
under the action γ : E × A(C)→ A(C) defined above.

We can now define a quotient [C/E] for an E-cone C as follows. The construction is
completely analogous to how we define quotient stacks of group actions.

Constuction. Given an X-scheme T , we define the objects over T in [C/E] to be
diagrams

P C

T

where P is a E-torsor over T and P → C is E-equivariant. Recall that an E-torsor
over T is a T -stack P with an E-action s.t. P → T is E-invariant and locally trivial.
[C/E] is an X-stack and comes with a vertex 0: X → [C/E] and an A1-action which
are defined in the obvious way.

We will show that these quotients are examples of cone stacks which we now define.

Definition 4.4 (Cone, abelian cone and vector bundle stacks). Let (C, 0, γ) be an
algebraic X-stack together with a section 0: X → C and an A1-action γ : A1×C→ C
is a cone stack if étale locally there is a smooth surjective A1-equivariant morphism
C → C from a cone C over X such that C ×C,0 X is a vector bundle. We call such
C → C a local presentation. If the local presentations can be chosen to be abelian
cones (resp. vector bundles) then C is a an abelian cone (resp. vector bundle) stack.

Example. If d : E → C is a morphism that makes C an E-cone then the diagram

E × C C

C [C/E]

p

σ

is Cartesian, where σ is the action and p is the projection. Note that we also have
the Cartesian diagram

E E × C

X C

id×0

p

0

and combining with the previous diagram shows that
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E C

X [C/E]

d

0

is Cartesian. Thus C → [C/E] is a global presentation for [C/E] so that [C/E] is a
cone stack. We will meet this Cartesian diagram again when proving the localization
formula (see Lemma 5.2).

4.2 Intrinsic normal cone
Let X be a Deligne-Mumford stack. We let Xét be the small étale site and we let
Xfppf be the big fppf site of X and denote the corresponding topoi (categories of
sheaves) by the same letters. A sheaf on Xfppf can be restricted to a sheaf on Xét,
denote this functor by v∗. We also have the functor v−1

(v−1F )(U → X) = lim
V

ét−→X

F (V → X)

where the limit is taken over étale morphisms V → X s.t. U → X factors through
V → X. These functors define a morphism of topoi

v : Xfppf → Xét.

In fact, if Ofppf and Oét are the sheaves of rings given by OX , then we have a
morphism of sheaves

v−1Oét → Ofppf

and so v is a morphism of ringed topoi. Thus we get an induced functor

v∗ : Mod(Xét)→ Mod(Xfppf)
v∗(M) = Ofppf ⊗v−1Oét v

−1M

This is a right exact functor and we have enough projectives so we may take the left
derived functor in the derived category

Lv∗ : D−(Oét)→ D−(Ofppf).

We write M•
fppf = Lv∗M• for M• ∈ D−(Oét). We also have the right derived functor

RH om(−,Ofppf) : D−(Ofppf)→ D+(Ofppf)

and we denote the image of M• ∈ D−(Ofppf) by

M•∨ := RH om(M•,Ofppf).

In what follows, we will be interested in complexes M•∨
fppf = RH om(Lv∗M•,Ofppf).

Also, given a complex E• of abelian sheaves on a topos X, we introduce the notation

h1/h0(E•) := [ker(E1 → E2)/coker(E−1 → E0)].
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Now given a Deligne-Mumford stack of finite type over a field k, it has a cotangent
complex L•

X ∈ D−(Oét) [25]. Using the above notation, we can make the following
definition.

Definition 4.5. Let X be a DM stack of finite type over a field k. We define the
intrinsic normal sheaf of X to be

NX := h1/h0(((L•
X)fppf)∨)

where we recall that

((L•
X)fppf)∨ = (Lv∗L•

X)∨ = RH om(Lv∗L•
X ,Ofppf).

We construct the intrinsic normal cone CX of a DM stack locally of finite type over
k as follows. Consider the diagram

U M

X

f

i

where U affine k-scheme of finite type, i étale, M smooth affine k-scheme of finite
type and f local immersion. We call (U,M) a local embedding of X.

From basic algebraic geometry we get the sequence

TU → f ∗TM → NU/M → 0

and we know that there is an embedding CU/M ↪→ NU/M . The interesting thing to
note is that CU/M is invariant under the action of f ∗TM and hence is a f ∗TM -cone.
We can thus form the quotient [CU/M/f ∗TM ]. One can the glue together these cone
stacks coming from all local embeddings to form a cone stack CX which is the intrinsic
normal cone.

Proposition 4.1. Let X be a DM stack locally of finite type over a field k. Then
there is a cone stack CX over X s.t. for any local embedding (U,M) of X, we have

CX
⃓⃓⃓
U

= [CU/M/f ∗TM ].

We also have
NX

⃓⃓⃓
U

= [NU/M/f
∗TM ].

We obtain a closed embedding
CX ↪→ NX .

So the above proposition gives a fairly concrete geometric local description of the
intrinsic normal sheaf and intrinsic normal cone.
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4.3 Obstruction theories and the virtual fundamental class
The final thing in the construction of the virtual fundamental class involves a choice.
We need to construct a so called perfect obstruction theory which then naturally
defines a vector bundle stack where NX and hence CX live as closed substacks.

Let us first give the abstract general definition and then see a result of Behrend and
Fantechi that gives a deformation theoretic meaning to the construction.

Definition 4.6. Let X be a DM stack and let E• ∈ D(OXét) satisfy the following
two conditions.

(1) hi(E•) = 0 for i > 0.

(2) hi(E•) coherent for 0 and −1.

Then a morphism ϕ : E• → L•
X is called an obstruction theory for X if h0(ϕ) is an

isomorphism and h−1(ϕ) is surjective.

Let us now see why these objects deserve the name ”obstruction theory”. Let X be a
DM stack and let g : T → X be a morphism from a scheme. In deformation theory,
we’re interested in studying the infinitesimal deformations of such maps. This is
formally done by taking a square zero extension of T i.e. a scheme T and a closed
embedding T → T s.t. the ideal sheaf J of T has J2 = 0 and asking whether g can
be extended to g : T → X. Note that g gives rise to

g∗L•
X → L•

T

and
L•
T → L•

T/T

∼−→ τ≥−1L
•
T/T

= J [1].

Composition of these gives

ω(g) ∈ Hom(g∗L•
X , J [1]) = Ext1(g∗L•

X , J).

Basic deformation theory says that ω(g) = 0 iff extensions g exist. g∗L•
X → L•

T →
L•
T/T

defines a morphism

ob(g) : C(J) = h1/h0(L•∨
T/T

)→ h1/h0(g∗L•∨
X ) = g∗NX .

We also get a morphism
g∗ϕ∨ : g∗NX → g∗E

and we denote ϕ∨(ob(g)) = g∗ϕ∨ ◦ ob(g). Finally, we have the following result.

Theorem 4.1 (Behrend-Fantechi). Let ϕ : E• → L•
X be a morphism as in definition

4.9. Then the following are equivalent.

(a) ϕ : E• → L•
X is an obstruction theory.

(b) ϕ∨ is a closed immersion.



33

(c) The obstruction ϕ∗(ω(g)) = ω(g) ◦ ϕ = 0 iff an extension g exists. In this case
the extensions are a Ext0(g∗E•, J)-torsor.

(d) The sheaf of extensions Ext(g, T ) (a sheaf on Tét) is isomorphic to the sheaf
Hom(ϕ∨(ob(g)), 0) of A1 equivariant morphisms, where 0 denotes the vertex
0: C(J)→ g∗E.

So obstruction theories contain information about the deformations and their ob-
structions. We finally come to the main definitions of this section.

Recall that an element E• ∈ D(OXét) is of perfect amplitude contained in [−1, 0] if it
is locally isomorphic (in D(OXét)) to a two term complex E−1 → E0 of finite rank
vector bundles.

Definition 4.7. We say an obstruction theory E• → L•
X is perfect if E• is of perfect

amplitude contained in [−1, 0].

This is a way of guaranteeing that E above is actually a vector bundle stack. Indeed,
if ϕ : E• → L•

X is a perfect obstruction theory, then locally we have

E = h1/h0((E•
fppf)∨) ∼= h1/h0([E0 → E1]) = [E1/E0]

and this is precisely by definition what it means to be a vector bundle stack. Thus
by the intersection theory of Kresh, we can intersect with the zero section of E.

Definition 4.8. Given a perfect obstruction theory ϕ : E• → L•
X of X, we define

the virtual fundamental class of X to be

[X]vir := 0!
E[CX ].

Up to this point, we have basically just given a whole lot of definitions, so let us now
turn to the main techical result of this thesis, namely the torus localization formula
for the virtual classes.

5 Virtual Localization
In this section our goal is to prove a very important theorem concerning Deligne-
Mumford stacks equipped with a torus action. Roughly speaking, the theorem says
that we can compute the virtual fundamental class defined above by computing the
virtual fundamental class of the fixed stack up to some normal bundle contributions.

As we will see later, in case of Gromov-Witten invariants of P1, this reduces integrals
on the moduli of stable maps to integrals on the moduli stacks of stable curves and
combinatorics of certain graphs.

The result was proven for torus actions on schemes by Graber and Pandharipande in
[14] and they noted in the appendix why the statement is true also for DM stacks.
They made the technical assumption that the scheme or a stack admits an embedding
into a smooth scheme or stack. This assumption can be dropped and we will present
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the proof given in the more recent paper by Chang, Kiem and Li [6] with some
modifications. We start by giving the definitions and a few crucial lemmas needed
for the precise statement and proof.

5.1 The setup and statement
Let X be a proper DM stack over C with an action of a torus T = C∗. In [26] a
quotient stack [X/T ] is constructed as T -torsors as usual. We shall assume that
[X/T ] is also a Delinge-Mumford stack and of locally finite type over C. We shall
define the equivariant Chow group of X of the torus action to be

AT∗ (X) := A∗([X/T ]).

Our starting point is the following result.

Theorem 5.1 ([18], Theorem 5.3.5). Let X be a DM stack with a torus action.
Let XT denote the fixed stack and let t = c1(O(1)) ∈ A∗(BT ). Then the inclusion
XT → X induces an isomorphism

A∗(XT )⊗Q Q[t, t−1]→ AT∗ (X)⊗Q[t] Q[t, t−1].

To use this result for a virtual fundamental class [X]vir, we need an equivariant
perfect obstruction theory. We note that there is an induced T -action on L•

X s.t. L•
X

is equivariant and hence L•
X can be viewed as an element of D([X/T ]).

Definition 5.1. A T -equivariant perfect obstruction theory of X is an object
E• ∈ D([X/T ]) and a morphism E• → L•

X s.t. this is a perfect obstruction theory
for X.

Note that a T -equivariant perfect obstruction theory defines a T -equivariant virtual
fundamental class [X]virT ∈ A∗([X/T ]) which we shall denote by [X]vir by slight abuse
of notation.

Let E• → L•
X be a T -equivariant perfect obstruction theory for X. In [6] it is

proved that E•,f
i → L•

Xi
is a T -equivariant perfect obstruction theory, where Xi is

a connected component of the fixed locus XT and E•,f
i is the T -fixed part of the

pull-back of E• to Xi.

The virtual normal bundle N vir
i of Xi is defined to be the dual of the complex E•,m

i .
We assume that each N vir

i has a locally free global resolution [Ni,0 → Ni,1] i.e. N vir
i

is quasi-isomorphic to [Ni,0 → Ni,1]. In this case we write e(N vir
i ) = e(Ni,0)/e(Ni,1),

where e denotes the top Chern class.

The main theorem we are about to prove is the following.

Theorem 5.2 (Torus localization). Let X be a Delinge-Mumford stack equipped with
a torus action (with above assumptions). With notation as above, we have

[X]vir =
∑︂

ιi∗(
[Xi]vir
e(N vir

i )) ∈ AT∗ (X)⊗Q[t] Q[t, t−1].
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We start with a few lemmas.

5.2 Preliminary results
Given a closed immersion ι : Y → X and a vector bundle stack E s.t. CY/X embeds
into E as a closed substack, we define ι! as the composition

ι! : A∗(X) σ−→ A∗(CY/X) i∗−→ A∗(E) s∗
−→ A∗(Y ).

For a regular local immersion one can simply take E = NX/Y and we recover the
definition of Kresh.

Lemma 5.1. Let X be a DM stack, let N , E be vector bundle stacks on X. Then
for α ∈ A∗(E) we have

0!
E⊕N (α) = 0!

N 0N ∗0!
E(α)

In particular, if N is a vector bundle N then

0!
E⊕N(α) = e(N) ∩ 0!

E(α)

Proof. Consider the following Cartesian diagram of zero sections

X E

N E ⊕N

0N

0E

s

s′

Using compatibility and functoriality of refined Gysin maps we obtain

0!
N 0N ∗(0!

E(α)) = 0!
N (s′!s∗α)

= (s′ ◦ 0N )!(s∗α)
= 0!

E⊕N (s∗α)

Identify s∗α with α and the first part is proved. The second formula follows immedi-
ately from the basic formula for top Chern classes

0!
N0N ∗α = e(N) ∩ α.

Next, we provide a basic formula for quotient cones.

Lemma 5.2. Let f : N0 → N1 be a morphism of vector bundles on a DM stack X
making N1 an N0-cone so that [N1/N0] is defined. Then

e(N1) ∩ α = e(N0) ∩ 0!
[N1/N0]0[N1/N0]∗α

Proof. The square
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N0 N1

X Q

f

πN0 g

0Q

is Cartesian, where Q = [N1/N0]. Apply π!
N0 to the basic formula

0!
N00N0 ∗α = e(N0) ∩ α

to obtain
0N0 ∗α = e(π∗

N0N0) ∩ π!
N0α = e(f ∗π∗

N1N0) ∩ π!
N0α

by the pull-back formula. Using the projection formula we have
0N1 ∗α = f∗0N0 ∗α = e(π∗

N1N0) ∩ f∗π
!
N0α.

Now f∗π
!
N0 = g!0Q∗ and hence 0!

N1f∗π
!
N0 = 0!

N1g
!0Q∗ = 0!

Q0Q∗ which implies

e(N1) ∩ α = 0!
N1(0N1 ∗α) = e(0∗

N1π
∗
N1N0) ∩ 0!

N1f∗π
!
N0α

= e(N0) ∩ 0!
Q0Q∗α.

and this completes the proof.

The next lemma is the familiar self-intersection formula. Suppose that in the definition
of ι! above, we can take E to be a vector bundle N on Y .

Lemma 5.3. For α ∈ A∗(Y ) we have

ι!ι∗α = e(N) ∩ α

Proof. By definition of ι!, we have
ι!ι∗(α) = 0!

N(i∗(σ(ι∗α)))
Suppose i∗ ◦ σ ◦ ι∗ = 0N ∗. Then

ι!ι∗(α) = 0!
N(0N ∗(α))

= e(N) ∩ α
by the basic formula for Euler classes and this is the desired result. To prove that

i∗ ◦ σ ◦ ι∗ = 0N ∗

we just recall that σ is defined as
σ[V ] = [CV ∩XV ]

and hence for [V ] = ι∗[V ] we’ve
σ[V ] = [CV V ] = [V ]

so that it becomes clear that
i∗ ◦ σ ◦ ι∗[V ] = 0N ∗[V ].
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5.3 The proof
We shall now prove Theorem 5.2. Recall that we assume [X/T ] is actually Deligne-
Mumford so that the lemmas proved above can be applied in the T -equivariant
Chow. Since everything (obstruction theory, cones, vector bundle stacks) is defined
T -equivariantly, they descend to [X/T ]. For notational convenience we denote the
objects on X and their counterparts on [X/T ] with the same symbols.

Proof of Theorem 5.2. First, we apply the theorem of Kresh stated above. If we
denote by Xi the connected components of XT with inclusions ιi : Xi → X then we
have

[X]vir =
∑︂
i

ιi∗(αi)

in the localized equivariant Chow. Thus

ι!i[X]vir = ι!i(ιi∗(αi)) = e(N0) ∩ αi (1)

by Lemma 5.3 (which we can apply since we assume [X/T ] is actually Deligne-
Mumford). But we can also compute ι!i[X]vir as follows. By the definition of [X]vir
and Lemma 4.7 in [21], we have

ι!i[X]vir = ι!i0!
E [CX ] = (0E ◦ ιi)!

Ei⊕N0 [CX ]

By definition (0E ◦ ιi)!
Ei⊕N0 gives

(0E ◦ ιi)!
Ei⊕N0 [CX ] = 0!

Ei⊕N0 [CXi×ECX/CX
] = 0!

Ei⊕N0 [CXi
]

where we usedXi×ECX = Xi and [CXi/CX
] = [CXi

]. Now using Lemma 5.1, Lemma 5.2
and Ei = Efi ⊕Q we get

0!
Ei⊕N0 [CXi

] = e(N0) ∩ 0!
Ef

i ⊕Q[CXi
]

= e(N0) ∩ 0!
Q0Q∗(0

!
Ef

i

[CXi
])

= e(N1) ∩ (0!
Ef

i

[CXi
])

= e(N1) ∩ [Xi]vir.

So we’ve shown
ι!i[X]vir = e(N1) ∩ [Xi]vir. (2)

Putting (1) and (2) together, we see that

αi = e(N1) ∩ [Xi]vir
e(N0)

and finally that

[X]vir =
∑︂
i

ιi∗(αi) =
∑︂
i

ιi∗(
e(N1) ∩ [Xi]vir

e(N0)
).
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In neater form
[X]vir =

∑︂
i

ιi∗(
[Xi]vir
e(N vir

i )).

Remark. The proof differs from the one given in [6] in the way we proved Eq. (2).
The attempt here was to give a somewhat simpler proof avoiding the arguments
using various distinguished triangles.

6 The Stack of Stable Maps and Gromov-Witten
theory

We will now define stacks of stable maps which are the basic object of interest in
Gromov-Witten theory and prove some geometric properties of stable maps. The
rest of the thesis is dedicated to showing how Gromov-Witten theory and localization
can be used to prove identities in the moduli space of curves.

6.1 Stacks of stable Maps
Let X be a smooth projective variety over C. In Gromov-Witten theory we think
of curves as maps C → X from a curve C. Our goal is to define a proper moduli
stack parametrizing such curves and then count curves in this space satisfying some
constraints.

One naturally starts by considering smooth projective domain curves. However,
these do not give us a proper moduli stack. To compactify, we allow the domains to
become nodal. This turns out to be enough and the domain curves will be so called
prestable curves.

Definition 6.1. An n-pointed, genus g prestable curve (C, p1, . . . , pn) is a connected,
projective, reduced, at worst nodal curve of (arithmetic) genus g together with n
marked points lying on the non-singular locus of C. A family of n-pointed, genus g
prestable curves is a flat and projective morphism C → T with n sections pi : T → C
s.t. for each geometric point t ∈ T , (Ct, {pi(t)}) is a n-pointed, genus g prestable
curve.

Next, we look at maps from such domains to X. More specifically, we will study
maps such that f∗[C] = β for a fixed homology class β ∈ H2(X). Since we’re in the
algebraic category, it should be stated precisely what we mean by a ”homology class”.
The following definition is made in [5].

Definition 6.2. Let f : C → X be a morphism from a family C → T of prestable
curves to a scheme X. Then for each t ∈ T , the morphism ft = f

⃓⃓⃓
Ct

gives a
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homomorphism

Pic(X)→ Z
L ↦→ deg(f ∗

t L).

This defines a locally constant map

T → HomZ(Pic(X),Z)

which call the homology class of C and denote by f∗[C].

More specifically, we define

H2(X)+ = {α ∈ HomZ(Pic(X),Z) | α(L) ≥ 0 for ample L}

and one can see that f∗[C] ∈ H2(X)+.

We shall also need to impose a stablility condition on the morphisms to X to eliminate
the possibility of infinitely many automorphisms. This gives rise to the notion of
stable maps introduced for the first time in the literature by Kontsevich in [17].

Definition 6.3. Let β ∈ H2(X)+. A stable map from n-pointed genus g curve to
X of class β is a triple (C → T, {pi}, µ : C → X), where (C, {pi}) is a family of
n-pointed, genus g prestable curves and µ : C → X is morphism s.t. f∗[C] = β and
any genus 0 collapsed component (i.e. component mapping to a points) of C has
at least 3 special points and a genus 1 collapsed component has at least one special
point. By a special point we mean a node or a marked point.

Morphisms between stable maps are given by commutative diagrams

C ′ C X

T ′ T

µ′

□

µ

compatible with all the structure (marked points, homology class, etc.). We denote
the category of stable maps to X from genus g curves with n marked points having
class β by M g,n(X, β). This can be shown to be a stack and in fact we can say much
more.

6.2 M g,n(Pr, d) as a quotient stack
Next, we will see that M g,n(X, β) can be viewed as a quotient stack of a quasi-
projective scheme. We follow arguments presented in [12] and [1]. We start with a
lemma from [12].

Lemma 6.1. Let π : C → S be a flat family of quasi-stable curves over S. Let L and
M be line bundles on C whose degrees on each irreducible component of a geometric
fiber Cs coincide. Then there is a unique closed subscheme T → S satisfying
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(a) There is a line bundle N on T s.t. (L ⊗M−1)
⃓⃓⃓
T

∼= π∗(N ).

(b) T is universal in the sense that if R→ S is a morphism and N is a line bundle
s.t. (L ⊗M−1)

⃓⃓⃓
R

∼= π∗(N ), then R→ S factors as through T .

We also need the following result. The proof relies on existence and quasi-projectivity
of certain moduli spaces.

Lemma 6.2 ([1], Lemma 2.5.). Let M,D be positive integers. Let M g,n(Pr, d)DM
denote the category of stable maps (C → T, {pi}, f : C → Pr) together with a non-
degenerate embedding C ↪→ PMT of degree D. M g,n(Pr, d)DM is a stack that is rep-
resentable by a quasi-projective scheme that has a natural PGL(M + 1)-action
(translating the embedding).

Proof sketch. The domain curves are parametrized by the Hilber scheme HP
M of

closed subschemes of PM with Hilbert polynomial P (t) = Dt + 1 − g. The data
of marked points can be represented as elements of (PM)n. There is then a closed
subscheme H1 ⊆ HP

M × (PM)n defined by the condition that the points lie on the
curve. Restricting further, there is a quasi-projective subscheme H2 ⊆ H1 consisting
of prestable curves, i.e. the curve is at worst nodal and the marked points are distinct
and lie on the non-singular locus. We pull the universal family UP

M → HP
M back to

H2 to get a family U2 → H2. By a result of Grothendieck, there is a quasi-projective
scheme S parametrizing morphisms C → Pr, where C is a fiber of U2 → H2. Then
we let H3 ⊆ H2 × S be the closed subscheme consisting of pairs where the first
coordinate is the domain curve of the second coordinate. As the final step, we take
the take the open subscheme H ⊆ H3 where the sheaf

ωU/H3(
∑︂

pi)⊗ f ∗O(3)

is ample. This subscheme represents the stack M g,n(Pr, d)DM .

Finally we’re ready to prove the following proposition.

Proposition 6.1. M g,n(Pr, d) is the quotient stack of a quasi-projective scheme. In
particular, it is an algebraic stack.

Proof. Let (C → T, {pi}, µ : C → Pr) be a stable map of degree d from n-pointed
curve of genus g to Pr. We consider the line bundle

L = ωC/T (p1 + . . .+ pn)⊗ µ∗(OPr(3)).

There is an integer f = f(g, n, r, d) > 0 s.t. Lf very ample and h1(Ct,Lf) = 0. On
each geometric fiber Ct we have

deg(Lf ) = f · (2g − 2 + n+ 3d) = D

and
h0(Ct,Lf ) = D − g + 1 = M + 1
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In particular M,D depend only on (g, n, r, d). We consider the quasi-projective
scheme H parametrizing stable curves embedded in PM with degree D. This scheme
has a natural action of PGL(M + 1). We take a closed subscheme V of H that
corresponds to embeddings whose sheaf coincides with Lf which exists by Lemma 6.1.
This subscheme is in fact invariant under the PGL(M + 1)-action. We have the
morphism

V →M g,n(Pr, d)

forgetting the embedding and clearly this map is invariant under the PGL(M + 1)-
action and hence descends to

[V/PGL(M + 1)]→M g,n(Pr, d).

To construct the inverse, let (π : C → T, {pi}, f : C → Pr) in M g,n(Pr, d) be given.
For each t ∈ T we let B(H0(Ct,Lf)) be the set of all bases of H0(Ct,Lf) ∼= CM+1

and consider the bundle P over T whose fiber over t ∈ T is P(B(H0(Ct,Lf))). P
has an action of PGL(H0(Ct,Lf )) ∼= PGL(M + 1) on the fibers. Each element of a
fiber is a given by a basis for H0(Ct,Lf ) and thus defines an embedding Ct ↪→ PM .
This defines a map P → V which is easily seen to be PGL(M + 1)-invariant. P is a
principal PGL(M + 1)-bundle and indeed

P V

T

defines an element of [V/PGL(M + 1)]. Thus we have defined a morphism

M g,n(Pr, d)→ [V/PGL(M + 1)].

These two maps are inverses of each other and thus we’ve proven

M g,n(Pr, d) ∼= [V/PGL(M + 1)].

In particular, we conclude that M g,n(Pr, d) is an algebraic stack.

The stability condition of stable maps ensure that points in M g,n(Pr, d) have finite
stabilizers and using this one can show that M g,n(Pr, d) is a DM stack. Alterna-
tively, we can appeal to Proposition 4.1. in [5] which tells us that the diagnoal of
M g,n(Pr, d) is representable, unramified and finite. These properties allow us to say
that M g,n(Pr, d) is a DM stack in the sense of Definition 2.8. Furthermore, one can
actually prove that M g,n(Pr, d) is a proper DM stack. However showing properness
requires quite a lot of work which we do not present in this thesis. The main steps
are outlined in [1] and we will only state the final conclusion needed in this thesis.
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Theorem 6.1. M g,n(Pr, d) is a proper Deligne-Mumford stack over C that admits a
projective coarse moduli scheme M over C.

This can be used to prove the same result for M g,n(X, β) for any smooth projective
variety X. This gives us enough structure on M g,n(X, β) to be able to do intersection
theory and construct the virtual fundamental classes on this stack. In particular,
when X = Pr we have torus actions on M g,n(Pr, d) and we can employ the torus
localization theorem as we will see later in the case r = 1.

6.3 Geometric properties of M g,n(X, β)
There are various geometrically interesting operations on the moduli stacks of stable
maps. We will give a brief account of the basics and refer the reader to e.g. [5] for
more details and complete proofs.

The first very useful geometric property of the moduli stack M g,n(X, β) is that there
is a universal family of curves over it. By this we mean that there is a stack Ug,n(X, β)
and a morphism µ : Ug,n(X, β)→ X that satisfies the following universal property.
Given a stable map (C → T, {pi}, f : C → X) there are morphisms T →M g,n(X, β)
and C → Ug,n(X, β) s.t. the diagram

C Ug,n(X, β) X

T M g,n(X, β)

f

commutes and the square is Cartesian.

Proposition 6.2. Let Ug,n(X, β) be the stack consisting of quadruples (C, p, f,∆),
where (C, p, f) is a stable map from an n-pointed genus g curve over T to X and
∆: T → C is a section. Let µ : Ug,n(X, β)→ X be the morphism (C, p, f,∆) ↦→ f ◦∆
and let π : Ug,n(X, β) → M g,n(X, β) be the morphism forgetting the section. This
stack is the universal family over M g,n(X, β) in the above sense.

Proof. Let (C, p, f) be a stable map from an n-pointed genus g curve over T to X and
∆: T → C a section. Given a C-scheme S, we have the composition S → C → T .
We can pull-back C → T to a stable map over S given by S ← CS = S×T C

f◦p2−−→ X
we have the obvious section S → CS and hence we get an element in Ug,n(X, β).
This defines a morphism C → Ug,n(X, β) and hence a morphism

C → T ×Mg,n(X,β) Ug,n(X, β)

Let
(S → T, (C ′ → S, p′, f ′,∆), α) ∈ T ×Mg,n(X,β) Ug,n(X, β).
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By definition α : (CS, qi, fS) ∼−→ (C ′, p′, f ′) and thus we get a morphism

S
∆−→ C ′ α−1

−−→ CS → C.

We have defined a morphism

T ×Mg,n(X,β) Ug,n(X, β)→ C.

One then checks that this is an inverse for the previous map and hence that the
diagram

C Ug,n(X, β) X

T M g,n(X, β)

f

is commutes.

We can actually do better. It turns out that there is a more natural way to represent
the universal curve. Namely, we will prove that Ug,n(X, β) ∼= M g,n+1(X, β). We need
a two lemmas.

Lemma 6.3 (Contraction). Let (C, x1, . . . , xn+1, f) be a stable map. Then there is
a stable map (C ′ → T, x′

1, . . . , x
′
n, f

′) and a morphism p : C → C ′ s.t. p(xi) = x′
i for

i ≤ n and if x = p(xn+1) then p−1(x) is either a rational component or a point and
p
⃓⃓⃓
p−1(x)

is an isomorphism and f = f ′ ◦ p.

Proof sketch. Suppose T = Spec(C) Let E be the irreducible component containing
xn+1. If E remains stable after removing xn+1 we simply take C ′ = C, x′

i = xi for
i ≤ n and f ′ = f . Suppose E becomes unstable when xn+1 is removed. Then E
must be a rational collapsed component having exactly three special points.

If E has one node and two marks, one of which is xn+1, then we take C ′ = C − E,
with marks x1, . . . , xn and the obvious map p : C → C ′. Since f maps E to a point,
it descends to f ′ : C ′ → X s.t. f = f ′p.

If E has two nodes y1, y2 then we take C ′ = C − E/(y1 ∼ y2). I.e. we remove E and
identify the two nodes. We let p : C ′ → C be the map collapsing E to a point.

The above process can be applied in families.

Note that the contraction operation defines a morphims

π : M g,n+1(X, β)→M g,n(X, β)

forgetting the last mark.
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Lemma 6.4 (Stabilization). Let (C, x1, . . . , xn, f) be a stable map and ∆: T →
C a section. Then there is a unique (up to isomorphism) stable map (C ′ →
T, x′

1, . . . , x
′
n+1, f

′) and a morphism p : C ′ → C s.t. C is a contraction of C ′ in
the sense of the above lemma and p(x′

n+1) = ∆.

Proof sketch. Let (C, x1, . . . , xn, f) be a stable map and ∆: T → C a section. Then
by adding sections z1, . . . , zN , we can make

(C, z1, . . . , zN , x1, . . . , xn)

a stable curve i.e. rational components have at least three special components and
elliptic ones have at least one special point. Now by theorem 2.4. of [15], there is a
stable curve

(C ′, z′
1, . . . , z

′
N , x

′
1, . . . , x

′
n, x

′
n+1)

and a morphism
p : C ′ → C

making C is a contraction of C ′ and so that p(xn+1) = ∆. Then we simply take
f ′ = fp and clearly

(C ′, z′
1, . . . , z

′
N , x

′
1, . . . , x

′
n+1, f

′)

is a stable map. Just apply Lemma 6.3 several times to get rid of the z′
i to obtain

the desired stable map

To prove uniqueness we must show that two (n + 1)-pointed stable curves having
the same contraction are isomorphic. This is straightforward by the construction of
contractions.

With these two lemmas we can prove the following.

Proposition 6.3. We have Ug,n(X, β) ∼= M g,n+1(X, β) and the isomorphism is com-
patible with the forgetful morphisms Ug,n(X, β)→M g,n(X, β) and π : M g,n+1(X, β)→
M g,n(X, β).

Proof. Let (C, x1, . . . , xn+1, f) be a stable map. Then Lemma 6.3 defines a stable
map

(C ′, x′
1, . . . , x

′
n, f

′) ∈M g,n(X, β)

and a section T
xn+1−−−→ C

p−→ C ′. Thus we get a morphism

M g,n+1(X, β)→ Ug,n(X, β).

Now Lemma 6.4 shows that this morphism of stacks is (essentially) surjective. The
uniqueness part of Lemma 6.4 shows that this is also fully fatihful. Thus the morphism
is an equivalence.
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Another imporant collection of morphisms on M g,n(X, β) are the evaluation mor-
phisms,

evi : M g,n(X, β)→ X.

The last operation on the stacks M g,n(X, β) we will mention here is called gluing or
clutching.

Proposition 6.4 (Clutching). Given g1, g2, n1, n2 ≥ 0 and a partition {1, . . . , n} =
A ⊔B, we have a morphism

γg1,g2,A,B : M g1,n1+1(X, β)×M g2,n2+1(X, β)→M g,n+2(X, β),

where n = n1 + n2 and g = g1 + g2. Applying contraction twice we get

β : M g1,n1+1(X, β)×M g2,n2+1(X, β)→M g,n(X, β).

β is called the clutching morphism.

To summarize, we have defined contraction that removes marks, a stabilization that
adds marks and clutching that glues marks. Note that all of these are available
already in the moduli space of curves. The only new things are the evaluation maps
which are defined in terms of the maps to X.

6.4 The virtual fundamental class of M g,n(X, β)
We will give a general idea of the construction of the virtual class using tools of section
4. Let X be a smooth projective variety and β ∈ H2(X)+. Let π : U →M g,n(X, β)
be the universal family. By Proposition 6.3 above, we have U = M g,n+1(X, β) and
we let µ : U → X be the evaluation at the last marked point. We let Mg,n denote
the category of prestable curves and we let ε : M g,n(X, β)→Mg,n be the morphism
forgetting the map to X. We note that Mg,n is a smooth algebraic stack. To simplify
notation, we will denote M = Mg,n and M = M g,n(X, β).

By properties in Theorem 8.1 in [25], the diagram

U X

M Spec(C)

π

µ

induces a morphism
µ∗L•

X → L•
U .

The diagram

U U

M M

π
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is Cartesian, where U is the universal curve overM. π is flat so induces an isomorphism

π∗L•
M/M

∼−→ L•
U/U.

Putting these together gives

e : µ∗L•
X → L•

U → L•
U/U → π∗L•

M/M
.

Taking the dual and applying the higher direct image Rπ∗ functor gives

Rπ∗(e∨) : Rπ∗(π∗T •
M/M

)→ Rπ∗(µ∗T •
X).

Now Rπ∗(π∗T •
M/M

) is isomorphic to T •
M/M

and by taking duals once again, we obtain

ϕ : (Rπ∗(µ∗T •
X))∨ → L•

M/M
.

We denote
E• := (Rπ∗(µ∗T •

X))∨

and it can be shown that

Proposition 6.5. The morphism ϕ : E• → L•
M/M

is a perfect relative obstruction
theory.

The proof of the above propostion is a relative version of proposition 6.3. in [4].

Note that in section 4 we defined obstruction theories only in the absolute case, but
the definitions are basically the same in the relative case, see [4] Section 7. Now as
in the absolute case, we have closed immersions

CM/M ↪→ NM/M ↪→ E := h1/h0(E•∨)

and the virtual fundamental class of M g,n(X, β) is

[M g,n(X, β)]vir = 0!
E[CM/M].

6.5 Gromov-Witten Theory
Gromov-Witten theory can be broadly described as studying the stacks of stable
maps M g,n(X, β). One important aspect of the theory is the study of so-called
Gromov-Witten invariants. To define these, recall that we have the evaluation maps

evi : M g,n(X, β)→ X.

And putting these together we obtain

ev : M g,n(X, β)→ Xn.

Then we make the following definition.
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Definition 6.4. Given classes γi ∈ A∗(X), we define the Gromov-Witten invariants
to be

IXg,n,β(γ1 · · · γn) =
∫︂

[Mg,n(X,β)]vir
ev∗(γ1 ⊗ . . .⊗ γn).

Remark. The right hand side is by definition

deg(ev∗(γ1 ⊗ . . .⊗ γn) ∩ [M g,n(X, β)]vir) ∈ Q.

The result is a rational number in general by the remarks given in section 3. To
reiterate, the reason was that we have deg = p∗, where the structure morphism
p : M g,n(X, β) → Spec(C) is non-representable a and proper and hence the push-
forward is defined only with rational coefficients.
Remark. The cap product in the above definition is defined as the refined intersection,
i.e. if we have a morphism f : M → X to a smooth projective variety, then we can
define f ∗(α) ∩ β = Γ!

f(α × β) where Γf : M → M × X is the map x ↦→ (x, f(x))
which is a regular local immersion since X is smooth. That such a product exists
when M is a DM stack can be extracted from results of section 3.

The invariant IXg,n,β(γ1 · · · γn) is intuitively interpreted as counting the number of
genus g, n-marked curves of class β on X that intersect the classes γi. This is
not always geometrically meaningful since the counts may be rational numbers.
However, even if the counts are rational, in some cases there are ways to extract the
”enumerative” information from the numbers.

Note that non-zero invariants occur only when
∑︂

codim(γi) = (dimX − 3)(1− g)−
∫︂
β
c1(X) + n.

In the rest of the thesis we’re mainly interested in other types of integrals on
M g,n(X, β). In particular, we will study the Gromov-Witten theory of the target P1.

As a first example we will study intergals of classes pulled back via the so called
branch morphism

br : M g,n(P1, d)→ Symr(P1)

constructed in [10]. In the second example we will study integrals of the classes

x = e(R1π∗(µ∗OP1)), y = e(R1π∗(µ∗OP1(−1))).

On the moduli stack of genus g stable curves with n marks M g,n we have the line
bundles Li = x∗

i (ωUg,n/Mg,n
), where π : Ug,n → M g,n is the universal curve and the

Hodge bundle E = π∗(ωUg,n/Mg,n
). We define the tautological classes

ψi := c1(Li),
λi := ci(E).
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Hodge integrals are then intgrals of these tautological classes over M g,n.

In both of the examples we will see how the torus localization formula applied to the
mentioned integrals gives us information about hodge integrals in the moduli space
of curves.

7 Applications
In this section, we will show how the localization formula reduces the Gromov-Witten
theory of P1 to graph combinatorics and integrals involving the tautological classes
in various moduli spaces of curves which we can compute e.g. via Kontsevich’s
theorem. First we will give the general formula and then apply this formula to the
two examples mentioned above.

7.1 The torus action and fixed locus
On P1 we consider the T = C∗-action given by t · [v0, v1] = [v0, tv1]. We identify 0 and
∞ with p0 = [1, 0], p1 = [0, 1] respectively. This induces a T -action on M g,n(P1, d) by
acting on the image. In what follows, we denote M = M g,n(P1, d). An element in the
fixed locus MT over a scheme S is given by a tuple (µ, {αg}g∈T (S)), where µ ∈M(S)
and αg : µ ∼−→ g · µ is an isomorphism and αgh = αh ◦ αg. For precise definitions and
constructions, see [26].

Let us see what the fixed stack looks like. Let µ denote a fixed point over C. Note
that an isomorphism αg : µ ∼−→ g · µ is just an automorphism of the domain of µ s.t.
µ ◦αg = g · µ. An automorphism of the domain preserves special points, ramification
points and collapsed components and thus their images under µ are fixed points
of P1, i.e. they are p0 or p1. The noncollapsed components are also nice. Let E
be a noncollapsed component and consider the restriction µ : E → P1. By Hurwitz
forumula

2g(E)− 2 = −2d(E) +
∑︂

(mx − 1).
Since ramification points map to 0 and ∞, we have∑︂

x

(mx − 1) =
∑︂

µ(x)=0
(mx − 1) +

∑︂
µ(x)=∞

(mx − 1) = 2d(E)−#µ−1(0)−#µ−1(∞).

µ
⃓⃓⃓
E

is nonconstant so there must be zeros and poles and hence

2g(E)− 2 = −2d(E) +
∑︂

(mx − 1) = −#µ−1(0)−#µ−1(∞) < 0.

Thus g(E) = 0 and #µ−1(0) + #µ−1(∞) = 2 so there are two ramification points
with full ramification and the possible marks or nodes lie at the ramification points.

Using the above information we can describe a T -fixed point in terms of a graph and
some additional data Γ = (V,E,N, γ, j, δ), where

(i) V is the vertex set,
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(ii) g : V → Z≥0 is a genus map,

(iii) j : V → {0, 1} is a bipartite structure,

(iv) E an edge set s.t. Γ connected,

(v) d : E → Z>0 degree map,

(vi) N = {1, . . . , n} set of markings attached to vertices,

(vii) g = ∑︁
v γ(v) + h1(Γ),

(viii) and d = ∑︁
e∈E δ(e).

The set of such graphs is denoted Gg,n(P1, d). The graph corresponding to a the
T -fixed point µ is constructed as follows:

(i) V = π−1({p0, p1})

(ii) γ : V → Z≥0 genus map, where the genus of an isolated point is by definition
equal to zero.

(iii) j : V → {0, 1} defined by µ(v) = pj(v).

(iv) E is the set of non-collapsed irreducible components.

(v) d : E → Z>0 degree map.

(vi) N = {1, . . . , n} the n marks. We denote by N(v) the set of markings attached
to vertex v.

This correspondence gives a bijection between Gg,n(P1, d) and the C∗-fixed compo-
nents of M .

Figure 1: A C∗-invariant curve and the corresponding graph. C is a collapsed
component and D non-collapsed.
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In the above figure, C is a collapsed component and D is a non-collapsed component.
C has three marked points which are visible in the graph. In D the node and marked
point are also the two ramification points of that component.

Given a vertex v and incident edge e, we call the pair (v, e) a flag. We denote by
F (v) the set of flags associated to a vertex v. Let (C → Spec(C), {pi}, µ : C → P1)
be a T -fixed point and Γ is the associated graph. Then the dividing the domain into
components gives an element in

MΓ =
∏︂
v∈V

M g(v),N(v)∪F (v).

If A is a finite set, we define M g,A to be the stack of stable curves of genus g whose
fixed points are labeled by A.

Conversely, let
(Cv)v∈V ∈MΓ

be C-point. For each e ∈ E we have the corresponding vertices v0, v1 ∈ V s.t.
j(vi) = i. We take a P1 and glue 0 to p(v0,e) (the marked point labeled by (v0, e)) in
Cv0 and glue ∞ to p(v1,e) in Cv1 . Doing this for every edge, we obtain a prestable
curve C whose corresponding graph is Γ and we can define a morphism µ : C → P1

to be constant j(v) on a vertex v and to be z ↦→ zd(e) on a rational component
corresponding to an edge. This process can be applied in families to obtain a
morphism

MΓ →M.

The image is precisely a connected component FΓ of the fixed locus MT corresponding
to a graph Γ.

7.2 Localization
Given a stable map µ with graph Γ there is a natural action by automorphisms
of the Galois covers corresponding to edges i.e. an action by ∏︁

edges Z/d(e)Z. A
second action is given by the symmeries of the graph Aut(Γ). Aut(Γ) actually acts
on ∏︁edges Z/d(e) and thus the semidirect product AΓ = ∏︁

edges Z/d(e) ⋊ Aut(Γ) on
MΓ.

As a semidirect product, AΓ admits

1→
∏︂
e∈E

Z/d(e)→ AΓ → Aut(Γ)→ 1

We can form the quotient stack QΓ = [MΓ/AΓ]. This descends to give a closed
immersion of DM stacks

τΓ/AΓ : QΓ →M.
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Note that ∏︁Z/d(e) acts trivially on MΓ. Here in fact QΓ is nonsingular so [QΓ]vir =
[QΓ]. We may now apply localization formula to obtain

[M g,n(P1, d)]vir =
∑︂

Γ∈Gg,n(P1,d)

(τΓ/AΓ)∗[QΓ]
e(N vir

Γ )

=
∑︂

Γ∈Gg,n(P1,d)

1
|AΓ|

τΓ∗[MΓ]vir
e(N vir

Γ ) .

Already one can see that we’re reducing computing integrals over virtual class of
stable maps to computing integrals over various stacks M g,n.

Next, we would like to compute 1/e(N vir
Γ ) as explicitly as possible. We will present

the computation here following [24] with the hope of clarifying some steps to the
reader. We start with sequences 6.7 and 6.8 of [24] and Whitney formula. These give
us that

1
e(N vir) = e(Ext0(ΩC(P ),OC)m)

e(Ext1(ΩC(P ),OC)m)
· e(H

1(C, π∗TP1)m)
e(H0(C, π∗TP1)m) ,

where the superscript m denotes the moving part. Note that we’re representing a
vector bundle by its fibers. In the computations we shall have to distinguish between
different type of vertices. We introduce the following notation:

VS(Γ) = {v ∈ V | 2g(v)− 2 + |N(v)|+ |F (v)| > 0}
VE(Γ) = {v ∈ V | g(v) = 0, |N(v)| = 0, |F (v)| = 2}
VU(Γ) = {v ∈ V | g(v) = 0, |N(v)| = 0, |F (v)| = 1}
VM(Γ) = {v ∈ V | g(v) = 0, |N(v)| = 1, |F (v)| = 1}.

VS are the stable vertices, i.e. ones corresponding to collapsed components. VE is
the set of nodes between edge components, VU are the unmarked isolated vertices
and VM are the marked isolated vertices.

Given a flag F = (e, v) (edge and incident vertex) we denote by xF the point of
intersection of the edge and vertex. We have the exact normalization sequence

0→ OC →
⨁︂
v∈VS

OCv ⊕
⨁︂
e∈E
OCe →

⨁︂
F=(v,e)
v∈VS

OxF
⊕
⨁︂
v∈VE

Ov → 0

We twist the above sequence by π∗TP1 and take the long exact sequence in cohomology
to get

0→ H0(C, π∗TP1)→
⨁︂
v∈VS

H0(Cv, π∗TP1)⊕
⨁︂
e∈E

H0(Ce, π∗TP1)

→
⨁︂

F=(v,e)
v∈VS

Tpj(v)P
1 ⊕

⨁︂
v∈VE

Tpj(v)P
1 → H1(C, π∗TP1)

→
⨁︂
v∈VS

H1(Cv, π∗TP1)⊕
⨁︂
e∈E

H1(Ce, π∗TP1)→ 0.
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We want to compute the Euler classes of the direct sums. First considerH1(Cv, π∗TP1).
This is just H1(Cv,OCv)⊗ Tpi(v)P1. By Serre duality H1(Cv,OCv) ∼= H0(Cv, ω)∨ and
this is by definition the dual of the Hodge bundle E on Mγ(v),val(v). Thus taking the
Euler class of the tensor product gives us

e(H1(Cv, π∗TP1)m) =
g(v)∑︂
i=0

(−1)ic1(Tpj(v)P
1)g(v)−ici(E) =

g(v)∑︂
i=0

(−1)i((−1)j(v)t)g(v)−iλi

Next, consider an edge component Ce. We take the Euler sequence of P1, pull back
to Ce via π and take cohomology and we get

0→ C→ H0(O(d(e)))⊗ C2 → H0(Ce, π∗TP1)→ 0

π : Ce → P1 looks like [x, y] ↦→ [xd(e), yd(e)] and Thus C∗ acts on Ce by t · [x, y] =
[x, t1/d(e)y] hence the induced C∗-action on H0(O(d(e))) is defined on monomials by
t · xd(e)−iyi = ti/d(e)xd(e)−iyi. Thus the non-zero weights of the action on H0(O(d(e)))
are i

d(e) for i = 1, . . . , d(e). The weights on the tensor product H0(O(d(e)))⊗ C are
thus i

d(e) and i
d(e) − 1. Since the sequence is equivariant, the nontrivial weights of

the action on H0(Ce, π∗TP1) are thus determined. Recall that for the 1-dimensional
representation Ca of T with character t ↦→ ta we have c1(Ca) = c1(C⊗a

1 ) = ac1(C1) =
at so we get

e(H0(Ce, π∗TP1)m) =
d(e)∏︂
i=1

(︄
it

d(e)

)︄ d(e)−1∏︂
i=0

(︄
( i

d(e) − 1)t
)︄

= t2d(e) d(e)!
d(e)2d(e)

d(e)−1∏︂
i=0

(i− d(e))

= (−1)d(e) d(e)!2
d(e)2d(e) t

2d(e).

Notice that H0(Cv, π∗TP1) = Tpi(v)P1 and H1(Ce, π∗TP1) vanishes. Finally, the node
contributions are (−1)j(v)t. Thus using Whitney sum formula we have computed
that

e(H1(C, π∗TP1)m)
e(H0(C, π∗TP1)m) =

∏︂
e∈E

(︄
(−1)d(e)t−2d(e)d(e)2d(e)

d(e)!2

)︄

·
∏︂
v∈VS

⎛⎝g(v)∑︂
i=0

(−1)i((−1)j(v)t)g(v)−iλi

⎞⎠
·
∏︂

v node
(−1)j(v)t

Next, we need to handle the bundles Ext0(ΩC(P ),OC)m,Ext1(ΩC(P ),OC)m.
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Let us first look at Ext1(ΩC(P ),OC). We have the Grothendieck local-to-global
sequence

0→ H1(C,H om(ΩC(P ),OC))→ Ext1(ΩC(P ),OC)→ H0(C,E xt1(ΩC(P ),OC))→ 0.

By the basic properties of Ext groups, we have

E xt1(ΩC(P ),OC) ∼= E xt1(Ω,OC)⊗OC(−P )

sinceOC(−P ) is invertible. IfU be the nonsingular locus ofC we have E xt1(ΩC ,OC)
⃓⃓⃓
U

∼=
E xt1(ΩC

⃓⃓⃓
U
,OC

⃓⃓⃓
U

) = 0 since ΩC

⃓⃓⃓
U

is locally free. Thus E xt1(ΩC ,OC) is supported
precisely at the nodes, so this reduces to a local calculation at the nodes.

At a node, C is étale locally Spec(C[x, y]/(xy)). Let A = C[x, y]/(xy) and let
X = Spec(A). We have

E xt1X(˜︁ΩA, ˜︁A) ∼= ˜︂Ext1
A(ΩA, A)

Consider the exact sequence of A-modules

0→ (xdy + ydx)→ Adx+ Ady → ΩA → 0

This is a free resolution of ΩA and we get the exact sequence

0→ HomA(ΩA, A)→ HomA(Adx+ Ady,A)
→ HomA((xdy + ydx), A)→ Ext1

A(ΩA, A)→ 0

HomA(Adx+Ady,A) ∼= A⊕A since f ∈ HomA(Adx+Ady,A) is given by specifying
f(dx), f(dy). The image in HomA(xdx+ ydx) ∼= A is the morphism f(xdy + ydx) =
xf(dy) + yf(dx) and thus the cokernel is A/(Ax+ Ay) ∼= A/(x)⊗A A/(y). Finally
we have

Ext1
A(ΩA, A) ∼= A/(x)⊗A A/(y)

Thus at the node p we have

E xt1X(˜︁ΩA, ˜︁A)p ∼= (A/(x)⊗A A/(y))p

and this can be identified as

E xt1X(˜︁ΩA, ˜︁A)p = T0Z1 ⊗ T0Z2

where T0Zi are the tangent spaces at the origin of the two components. Going back
to the global case we see that

E xt1(ΩC ,OC) =
⨁︂

Ti ⊗ T ′
i
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where the sum is taken over nodes and the tangent spaces are the tangent spaces of
the two branches. Thus

E xt1(ΩC(P ),OC) = (
⨁︂

Ti ⊗ T ′
i )⊗OC(−P ) ∼=

⨁︂
Ti ⊗ T ′

i

since the marked points do not lie on the nodes and

H0(E xt1(ΩC(P ),OC)) =
⨁︂

Ti ⊗ T ′
i .

The space H1(H om(ΩC(P ),OC)) is C∗-fixed so

e(Ext1(ΩC(P ),OC)m) = e(
⨁︂

Ti ⊗ T ′
i ) =

∏︂
F=(v,e)
v∈VS

(ωF − ψF )
∏︂
v∈VE

(ω(v,e) + ω(v,e′)),

where ωF = (−1)j(v)t
d(e) and in the second product e and e′ are the two edges connected

to vertex v ∈ VE.

Let π : C̃ → C be the normalization of C, then we have

π∗H om(ΩC̃(P + nodes),OC̃) = H om(ΩC(P ),OC).

And thus

Hom(ΩC̃(P + nodes),OC̃) = H0(C̃,H om(ΩC̃(P + nodes),OC̃))
∼= H0(C,H om(ΩC(P ),OC))
= Hom(ΩC(P ),OC)

Thus

Hom(ΩC(P ),OC) =
⨁︂
e

Hom(ΩCe(Pe),OCe)⊕
⨁︂
v∈VS

Hom(ΩCv(Pv),OCv)

=
⨁︂
e

Hom(ΩCe(Pe),OCe)

since the collapsed components are stable.

The C∗-moving part of the above comes from the tangent spaces at unmarked isolated
vertices.

Hom(ΩC(P ),OC)m =
⨁︂

F=(v,e)
v∈VU

TvCe

So finally
e(Hom(ΩC ,OC)m) =

∏︂
F=(v,e)
v∈VU

ωF
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Putting all of the above calculations together we obtain a formula for Euler class the
virtual normal bundle

1
e(N vir) =

∏︂
F=(v,e)
v∈VU

ωF
∏︂

F=(v,e)
v∈VS

(ωF − ψF )−1 ∏︂
v∈VE

(ω(v,e) + ω(v,e′))−1

·
∏︂
e∈E

(︄
(−1)d(e)t−2d(e)d(e)2d(e)

d(e)!2

)︄

·
∏︂
v∈VS

⎛⎝g(v)∑︂
i=0

(−1)i((−1)j(v)t)g(v)−iλi

⎞⎠
·
∏︂

v node
(−1)j(v)t

(3)

In general the above formula for the virtual normal bundle looks rather complicated,
but we will see that in many applications it reduces to something very tractable.

7.3 Hurwitz numbers
The Hurwitz number Hg,d is the number of degree d genus g covers of P1 étale over
∞ (in particular unramified) with

r = 2g − 2 + 2d

simple ramification points. There is a branch morphism

br : M g,0(P1, d)→ Symr(P1)

and Hg,d can be computed in M g(P1, d) by

Hg,d =
∫︂

[Mg(P1,d)]vir
br∗(ξp),

where ξp denotes the class in Symr(P1) representing r points in P1 (see [10]). In fact,
we can take ξp = r[p0].

To compute the RHS, we will apply the localization formula for [M g(P1, d)]vir. We
get ∫︂

[Mg(P1,d)]vir
br∗(ξp) =

∑︂
Γ∈Gg(P1,d)

1
|AΓ|

∫︂
MΓ

τ ∗
Γ(br∗(ξp))
e(N vir

Γ )

Let us find the graphs Γ for which τ ∗
Γ(br∗(ξp)) ̸= 0. Given a T -fixed C → P1, the

image under br is T -fixed so it is of the form br(C → P1) = (r − a)[p0] + a[p1] for
some 0 ≤ a ≤ r. But ξp = r[p0] so we have br∗(ξp)

⃓⃓⃓
MΓ

= 0 when a ≠ 0. Thus the
surviving terms are ones for which br(MΓ) = r[p0].

Luckily there is only one connected component satisfying this requirement and it
is easy to describe. br(MΓ) = r[p0] means that all ramification points, collapsed
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components and nodes map to p0. This means that there is a single collapsed
component Cv of genus g with d edges attached, each with degree 1. This graph has
MΓ = M g,d. The formula for the virtual normal bundle reduces simply to

1
e(N vir

Γ ) = (−1)dtd∏︁d
i=1(t− ψi)

· (−1)dt−2d ·
(︄ g∑︂
i=0

(−1)itg−iλi

)︄
· td

=
∑︁g
i=0(−1)itg−iλi∏︁d
i=1(t− ψi)

Then it is an easy fact that
τ ∗

Γbr
∗(r[p0]) = r!tr.

Finally, the automorphisms of Γ are just permutations of the edges and hence

|AΓ| = d!

Thus ∫︂
[Mg(P1,d)]vir

br∗(ξp) = r!
d!

∫︂
Mg,d

∑︁g
i=0(−1)iλi∏︁d
i=1(1− ψi)

.

We have proved the following theorem.

Theorem 7.1. Let Hg,d denote the number of branched covers of P1 that are unram-
ified over ∞ and have r = 2g − 2 + 2d simple ramification points. Then

Hg,d = (2g − 2 + 2d)!
d!

∫︂
Mg,d

∑︁g
i=1(−1)iλi∏︁d
j=1(1− ψj)

With a more involved analysis one can generalize this formula to allow arbitrary
ramification profile over ∞. The following formula is proved in [24].

Theorem 7.2. Let µ = (m1, . . . ,ml) be a partition of a positive integer d. Let
Hg,µ denote the number of branched covers of P1 that have profile µ over ∞ and
r = 2g − 2 + d+ l simple ramification points away from ∞. Then

Hg,µ = (2g − 2 + d+ l)!
|Aut(µ)|

l∏︂
i=1

mmi
i

mi!

∫︂
Mg,l

∑︁g
i=0(−1)iλi∏︁l

j=1(1−mjψj)

Since the Hurwitz numbers can be computed purely combinatorially, these results
give us a lot of information about integrals in the moduli space of curves.

For example we can look at g = 1 and µ = (d). In this case

H1,µ = (d+ 1)!d
d

d!

∫︂
M1,1

1− λ1

1− dψ1
.

Now dimM1,1 = 1 so we have∫︂
M1,1

1− λ1

1− dψ1
=
∫︂
M1,1
−λ1 + dψ1
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by expanding the denominator as a geometric series and taking codimension 1 classes.
So

H1,µ = (d+ 1)dd
∫︂
M1,1

dψ1 − λ1

First if d = 1, then LHS is the number of degree 1 covers simply ramified over two
points which is impossible. So LHS vanishes and we obtain∫︂

M1,1
ψ1 =

∫︂
M1,1

λ1

Next, take d = 2. This time the Hurwitz number is the number of degree 2 covers
of P1 simply ramified over ∞ and 3 other simple ramification points. There is one
isomorphism class of such covers and since the cover has an automorphism group of
order two H1,(2) = 1/2 and hence

1
2 = 3 · 22

∫︂
M1,1

2ψ1 − λ1 = 12
∫︂
M1,1

ψ1

so we get ∫︂
M1,1

λ1 =
∫︂
M1,1

ψ1 = 1
24 .

Thus for µ = (d)

H1,µ = (d+ 1)dd( d24 −
1
24) = (d2 − 1)dd

24
is the number of genus 1, degree d covers fully ramified over ∞.

7.4 Hodge integrals
As a second application of localization formula for P1, we show how localization can
be used to find relations for Hodge integrals∫︂

Mg,1
ψ2g−2+i

1 λg−i

following the arguments of Faber and Pandharipande in [9].

We package the integrals in a generating series

fξ(t) = 1 +
∑︂
g≥1

g∑︂
i=1

t2gξi
∫︂
Mg,1

ψ2g−2+i
1 λg−i.

and the important result proved in [9] is the following.

Proposition 7.1 (Faber-Pandharipande). For all ξ ∈ Z

fξ(t) = f0(t)ξ+1.
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From this we can extract explicit formulas such as this.

Proposition 7.2. We have

1 +
∑︂
g≥1

tg
∫︂
Mg,1

ψ3g−2
1 = exp(t/24).

and thus ∫︂
Mg,1

ψ3g−2
1 = 1

24gg!

Proof. The integrals appear in i = g terms in fξ(t). Consider

fξ(
√︂
t/ξ) = 1 +

∑︂
g≥1

g∑︂
i=1

tgξi−g
∫︂
Mg,1

ψ2g−2+i
1 λg−i

Taking ξ →∞, we’re left with the relevant terms

lim
ξ→∞

fξ(
√︂
t/ξ) = 1 +

∑︂
g≥1

tg
∫︂
Mg,1

ψ3g−2
1

By Proposition 7.1, we have

lim
ξ→∞

fξ(
√︂
t/ξ) = lim

ξ→∞
f0(
√︂
t/ξ)ξ+1

= lim
ξ→∞

⎛⎝1 +
∑︂
g≥1

(︄
t

ξ

)︄2g ∫︂
Mg,1

ψ2g−2
1 λg

⎞⎠ξ+1

For a power series
p(x) =

∑︂
k≥0

akx
k

we have
exp(a1x) = lim

n→∞

(︃
p
(︃
x

n

)︃)︃n
.

Using this and the fact that
∫︁
M1,1

λ1 = 1
24 we obtain

lim
ξ→∞

fξ(
√︂
t/ξ) = exp(t/24).

This proves the proposition.

Let us now finish by proving Proposition 4. We will consider M = M g,0(P1, 1). The
fixed locus X is now particularly easy to describe. The maps have degree one so
there is only one rational component in a fixed point. The edge connects two stable
vertices of genus g1 and g2 with no marked points. Let us denote the connected
component corresponding to genus splitting g = g1 + g2 by Xg1,g2 . Localization and
Eq. (3) gives us ∫︂

[M ]vir
γ =

∑︂
g1+g2=g

∫︂
Xg1,g2

(−1)gι∗(γ)Λ1(−1)
1− ψ1

Λ2(−1)
1− ψ2

,
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where we use notation

Λj(k) =
gj∑︂
i=0

kiλgj−i ∈ A∗(M gj ,1)

following [9].

Let π : U →M be the universal family and µ : U → P1 the universal map. We have
the following natural classes

x = e(R1π∗(µ∗OP1)), y = e(R1π∗(µ∗OP1(−1))).

The pull-backs of these in the localization requires choosing equivariant lifts of the
torus action. These are induced by equivariant lifts of the action on P1 to OP1 and
OP1(−1). These are determined by the weights on the fibers over p0 and p1. For any
α, β ∈ Z we can choose weights [α, α] for the action on OP1 and weigts [β, β + 1] on
OP1(−1).

One can then show that

ι∗x = Λ1(−α)Λ2(α)
ι∗y = Λ1(−β)Λ2(β + 1)

and therefore localization gives∫︂
[M ]vir

x ∩ y = (−1)g
∑︂

g1+g2=g

∫︂
Xg1,g2

Λ1(−1)Λ1(−α)Λ1(−β)
1− ψ1

Λ2(−1)Λ2(α)Λ2(β + 1)
1− ψ2

=: (−1)gIg(α, β).

and∫︂
[M ]vir

y ∩ y = (−1)g
∑︂

g1+g2=g

∫︂
Xg1,g2

Λ1(−1)Λ1(−α)Λ1(−β)
1− ψ1

Λ2(−1)Λ2(α + 1)Λ2(β + 1)
1− ψ2

=: (−1)gJg(α, β)

In particular, Ig, Jg are independent of α and β. Along with this independence we
will utilize Mumford’s identities

Λj(1)Λj(−1) = (−1)gj

Λj(0)Λj(0) = δgj0.

With these tools, we’re ready to prove Proposition 7.1.

Proof of Proposition 7.1. We can immediately notice that

f0(it) = 1 +
∑︂
g≥1

t2g(−1)g
∫︂
Mg,1

ψ2g−2
1 λg = 1 +

∑︂
g≥1

t2g
∫︂
Mg,1

(−1)gλg
1− ψ1
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and by Mumford’s identities

Ig(0, 0) =
∫︂
Mg,1

(−1)gλg
1− ψ1

so
f0(it) = 1 +

∑︂
g≥1

t2gIg(0, 0)

Similarly one can check that

f 2
0 (it) = 1 +

∑︂
g≥1

t2gJg(0,−1).

Now we utilize the independence of Ig, Jg of the inputs to relate f0(it) and f 2
0 (it) to

fξ(it) and fξ+1(it) respectively. By looking at the expressions for Ig and Jg obvious
choices are Ig(ξ, 0) and Jg(0, ξ). Indeed, by defining

gξ(t) = 1 +
∑︂
g≥1

t2g
∫︂
Mg,1

Λ(−1)Λ(−ξ)Λ(0)
1− ψ1

we have

f0(it) = 1 +
∑︂
g≥1

t2gIg(ξ, 0) = gξ(t)fξ(it)

f 2
0 (it) = 1 +

∑︂
g≥1

t2gJg(0, ξ) = gξ(t)fξ+1(it)

Thus
gξ(t)fξ+1(it) = f0(it)f0(it) = f0(it)gξ(t)fξ(it)

and the result follows.

8 Summary
In this thesis we introduced the technical foundations of Gromov-Witten theory,
namely the notion of stacks, their Chow groups and then the notion of virtual
fundamental classes. The aim was to gather material scattered in several papers to give
a shorter exposition of the main definitions. Stacks are the central geometric objects
in modern moduli theory and hence increasingly important for algebraic geometers.
We saw how the Chow theoretic constructions of Fulton could be transferred to
stacks. For enumerative geometry on stacks, e.g. Gromov-Witten theory, the
ordinary fundamental group isn’t nice enough and we had to define a so called virtual
fundamental class, against which we evaluate integrals.

Having covered the rigorous foundations of Gromov-Witten theory, we proceeded to
prove an important formula regarding the virtual fundamental classes of Delinge-
Mumford stacks, called the torus localization formula. The formula allowed us to
write the virtual fundamental class of a DM stack with a torus action in terms of
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the virtual class of the fixed stack and normal bundle contributions. The normal
bundle contribution was computed for M g,n(P1, d) and then applied in special cases
to obtain information about the integrals of the tautological classes in the moduli
space of stable curves. The torus localization is still one of the only powerful tools
for computations in Gromov-Witten theory. For more recent computations using
localization, see e.g. [22] or [19].
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A Appendix: Derived categories
In section 4 we consider various derived categories. For the interested reader, We
will quickly give the necessary definitions and ideas without going into many details.
A standard reference for derived categories is the book by Gelfand and Manin[20].

Let A be an abelian category (zero objects, zero morphsims, cokernel and kernels
exist). We start with a category that is easy to understand. The category of complexes
K(A) whose objects are complexes E•, i.e. sequences (Ei)i∈Z of objects of A with
morphisms di : Ei → Ei+1

· · · → Ei−1 di−1
−−→ Ei di

−→ Ei+1 → · · ·

such that di+1 ◦ di = 0. Usually we simply denote d = di. Morphisms ϕ : E• → F •

are simply maps ϕi : Ei → F i for each i and these commute with the maps di. The
ith cohomology of a complex E• is

hi(E•) = ker(di)
im(di−1) .

Note that a morphism ϕ : E• → F • defines a morphims hi(ϕ) : hi(E•)→ hi(F •).

The following kind of morphism is important.

Definition A.1. A morphism ϕ : E• → F • is a quasi-isomorphim is the induced
maps hi(ϕ) on cohomology are isomorphisms.

There is also a nice situation in which we can say that two maps induce the same
map on cohomology.

Definition A.2. We say two maps f, g : E• → F • are homotopic if f − g = ds+ sd
for a collection of morphisms si : Ei → F i+1.

It is now natural to work up to homotopy, i.e., we consider the homotopy category
H(A) whose objects are those of K(A) and the morphisms are homotopy classes of
moprhims in K(A). Next we would like to define a category where quasi-isomorphisms
are invertible so that in this new category a morphism of complexes is an isomorphism
if and only if the induced map on cohomology is an isomorphism. This new category
is the derived category of A. The definition of this category is easy, but many details
have to be checked.

Definition A.3. LetA be an abelian category. Let Σ be the set of quasi-isomorphsims
in H(A). The derived category D(A) of A is the category whose objects are the
objects of H(A) and a morphism E• → F • is a diagram

G•

E• F •

s f

where s, f ∈ H(A) and s ∈ Σ. Two such morphisms E• → F •, are considered
equivalent whenever there are t1, t2 ∈ Σ s.t. the following diagram commutes
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G•
1

E• G• F •

G•
2

s1 f1
t1

t2s2 f2

Composition of morphisms E•
1 → E•

2 → E•
3 is defined as (s1 ◦ t, f2 ◦ g) in the diagram

G•

G•
1 G•

2

E•
1 E•

2 E•
3

t g

s1 f1 s2 f2

Proposition A.1. Let notation be as in the above definition.

(1) The equivalence of morphisms in D(A) above is an equivalence relation.

(2) The composition rule above is well-defined, i.e. does not depend on the choice
of arrows.

(3) The composition rule is associative.

We shall need two things for the proof. First one is that the shifting functor
A• ↦→ A[1]• makes H(A), and hence H(A), a triangulated category. This means that
for any morphism ϕ : A• → B• in K(A) there is a mapping cone M [ϕ]• that fits into

A• ϕ−→ B• →M [ϕ]• → A[1]•.

usually abbreviated as
A• ϕ−→ B• →M [ϕ]• +1−→

A sequence of morphisms A• → B• → C• → A[1]•, is called a distinguished triangle
if we have ϕ̃ : Ã• → B̃• and isomorphisms in the commutative diagram

Ã• B̃• M [ϕ̃]• Ã[1]•

A• B• C• A[1]•
∼

ϕ̃

∼ ∼ ∼

ϕ

where the rightmost map is the shifted version of the leftmost map. A distinguished
triangle induced a long exact sequence in cohomology.

The second thing is that

Proposition A.2. Σ forms a so called multiplicative system in H(A) which means
that it satisfies the following three properties:
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(a) Identity morphisms are in Σ and it is closed under composition.

(b) The following property and its dual hold. Given s ∈ Σ and f in H(A) there is
t ∈ Σ and g in H(A) forming the diagram

W • F •

E• G•

t

g

s

f

(c) Given morphisms f, g in K(A), there exists s ∈ Σ such that sf = sg if and
only if there exists t ∈ Σ such that ft = gt.

Remark. We need to work in the homotopy category H(A) for (c) to hold. One
could define D(A) as the localization of K(A) but the proof of Proposition A.1 is
simplified greatly when using (c) above.

Proof. (a) is obvious. We’ll prove (b) in K(A) and prove only the claim stated above
since the dual proof gives the dual claim.

Keep the notation from the statement. We form the mapping cone

F • s−→ G• u−→M [s]• → F [1]•.

We get morphism uf : E• →M [s]•. Taking the cone for this morphism (and rotating)
gives

M [uf ][−1]• E• M [s]• M [uf ]•

F • G• M [s]• F [1]•
g

t

f

uf

id

s u

We have to show t is a quasi-isomorphsim. One can show that

F • s−→ G• u−→M [s]• → F [1]•.

gives a long exact sequence

· · · → hi(F •) ∼−→ hi(G•) −→ hi(M [s]•)→ hi+1(F •) ∼−→ hi+1(G•)→ · · ·

which implies that hi(M [s]•) = 0 for each i. Similarly taking cohomology of the
triangle of uf gives

· · · −→ hi(M [s]•)⏞ ⏟⏟ ⏞
=0

−→ hi(M [uf ]•)→ hi+1(E•) −→ hi+1(M [s]•)⏞ ⏟⏟ ⏞
=0

→ · · ·

which tells us that t is a quasi-isomorphism. This completes the proof of (b).

For (c), it suffices to show that if ft = 0 in H(A) for t ∈ Σ then there is s ∈ Σ s.t.
sf = 0 in H(A) since the other implication is the dual statement.

So suppose ft ∼ 0 in K(A), where t ∈ Σ. Then clearly we can form the diagram
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A• E• M [t]• A[1]•

0 F • F • 0

t

f

u

g

s id

which commutes in H(A). g is defined by (b, a) ↦→ f(a). So f = gu. Next, we take
the mapping cone of g

M [t]• g−→ F • i−→M [g]• →M [t][1]•.

Then one can check that

si : M [t]i →M [g]i−1

a ↦→ (0, a)

satisfies
ig = sd+ ds

and thus ig ∼ 0 (this is why we need to work in H(A) and not K(A)). Arguments
above in the proof of (b) show that hi(M [t]•) = 0 for each i since t is a quasi-
isomorphsim and also that i must be a quasi-isomorphism. Finally,

if = igu ∼ 0u = 0

and this completes the proof.

Now we’re ready to prove Propostition 4.1.

Proof of Proposition A.1. We will refer to properties of Proposition A.2 just by their
letters. Now part (1) follows easily from (b). For part (2) we take the diagrams

W •
i

G•
1 G•

2

E•
1 E•

2 E•
3

ti gi

s1 f1 s2 f2

for i = 1, 2. We use property (b) to obtain

W • W •
2

W •
1 G•

1

h1

h2

t2

t1
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where hi ∈ Σ. We note that

s2g1h1 = f1t1h1 = f1t2h2 = s2g2h2

and by property (c) there is u ∈ Σ such that

g1h1u = g2h2u

and hence a commutative diagram

W •
1

G•
1 W̃ • G•

2

W •
2

t1 g1
h1u

h2u
t2 g2

where h1u, h2u ∈ Σ by (a).
Remark. The same proof works for any triangulated category C with a multiplicative
system S to show that the localization of C at S is a well-defined category.

Now we have the obvious functor Q : K(A) → D(A) and we note that the image
of a quasi-isomorphism is an isomorphism. Furthermore, we have the following
universal property. If C is any category and C F : K(A) → C a functor taking
quasi-isomorphisms to isomorphisms, then F factors uniquely through Q. Sometimes
we define D(A) to be a category satisfying this universal property. Then the above
discussion shows that it exists and by the universal property it is unique up to unique
isomorphism.
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