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1 INTRODUCTION

These notes cover the lectures of the first named author at 2021 IHES Summer School on ‘Enu-
merative Geometry, Physics and Representation Theory’ with additional details and references.
They cover the definition of Khovanov–Rozansky triply graded homology, its basic properties,
and recent advances, as well as three algebro-geometricmodels for link homology: braid varieties,
Hilbert schemes on singular curves and affine Springer fibers, and Hilbert schemes of points on
the plane.
The relations between these models are very subtle and partially conjectural, and yet to be fully

understood. Braid varieties can be defined for arbitrary positive braids, and their homology (with
the weight filtration) is most clearly related to link homology. By the work of Mellit [90], they
can be used as building blocks for character varieties over punctured surfaces. On the other hand,
braid varieties generalize open Richardson and positroid varieties [21, 34–36] which are important
for the study of cluster algebras.
Hilbert schemes on singular curves, compactified Jacobians, and affine Springer fibers can be

defined for algebraic links, or (more or less equivalently) for matrices with entries in Laurent
series. The characteristic polynomial of such a matrix defines a plane curve singularity which
intersects a small sphere at a link. The Hilbert schemes of points on a plane curve singularity are
closely related to the ‘local’ version of the Hitchin fibration [87, 92], and ‘local’ curve-counting
invariants [86]. On the other hand, they play an important role in the generalized Springer theory
[41, 68] for Coulomb branch algebras defined by Braverman, Finkelberg, and Nakajima [14, 15].
A beautiful conjecture of Oblomkov, Rasmussen, and Shende [97] relates the homology of

Hilbert schemes of points on singular curves to the Khovanov–Rozansky homology of the cor-
responding links. By the above, one expects a direct relation between the homology of these
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 539

Hilbert schemes and of the corresponding braid variety, similar in spirit to the non-abelian Hodge
correspondence between the character varieties and the Hitchin system [24]. This also remains
a tantalizing conjecture. We review the precise statements and the state of the art for these
conjectures below.
Finally, yet another model for link homology comes from the Hilbert scheme of points on the

plane. Roughly speaking, to any braid on 𝑛 strands one associates a coherent sheaf on Hilb𝑛(ℂ2)
whose cohomology matches the Khovanov–Rozansky homology of the link. Such a sheaf, or
rather a complex of sheaves, was constructed by Oblomkov and Rozansky in a series of papers
[98–105]. Another approach [57] highlights the importance of the graded algebra generated by
the homologies of the powers of the full twist braid. We describe this algebra explicitly follow-
ing [48] and explain its relation to the homogeneous coordinate ring of the Hilbert scheme. This
model is also closely related to the ‘refined Chern–Simons invariants’ of Aganagic–Shakirov and
Cherednik [1, 26].
In the case of torus knots, all of the abovemodels yield explicit, yet very different combinatorial

descriptions. The Khovanov–Rozansky homology for torus knots was computed in [89], and the
homology of the braid varieties (which in this case coincide with the open positroid strata in the
Grassmannians) was computed in [34]. The homology of the Hilbert schemes on singular curves
and affine Springer fibers was computed earlier in numerous papers, starting from [84]. Finally,
the sheaves on Hilb𝑛(ℂ2) for torus knots were constructed in [56] using the elliptic Hall alge-
bra. The comparison between all these answers is highly nontrivial, and is related to the ‘rational
Shuffle conjecture’ in combinatorics of Macdonald polynomials, proved in [88].
Throughout the notes, we track various structures and homological operations in link homol-

ogy, and describe their appearance in various models. In particular, we have an action of the
polynomial algebra where the number of variables equals the number of link components. From
the topological point of view, this corresponds to the action of the homology of the unknot on the
homology of an arbitrary link with a chosen marked point. Furthermore, link homology admits
a deformation, or ‘𝑦-ification’ [48] where a polynomial algebra in an additional set of variables
plays an important role. Finally, there is an action of the Lie algebra 𝔰𝔩2 in the 𝑦-ified homology
[49] which implies the symmetry exchanging the two sets of variables. All these structures indi-
cate that the relation between link homology and the geometric models holds on a much deeper
categorical level than just isomorphisms of triply graded vector spaces.

1.1 Organization of the paper

The notes are organized as follows. In Section 2, we remind the readers of the basics of knot theory,
such as the braid group and theorems of Alexander and Markov on braid closures.
In Section 3, we define Khovanov–Rozansky homology using Soergel bimodules and Rouquier

complexes. We describe amethod to recursively compute the homology of torus (and other) links,
and present many examples.
Section 4 is focused on braid varieties. We define braid varieties, outline their basic properties,

and explain their relation to link homology and positroid varieties.
In Section 5, we describe more subtle properties and homological operations in link homology.

In particular, we define 𝑦-ified homology and compute it for all powers of the full twist. We also
define ‘tautological classes’ in Khovanov–Rozansky homology and use them to outline the proof
of the ‘𝑞 − 𝑡’ symmetry in this homology. These abstract algebraic constructions are compared to
the actual tautological classes in the homology of braid varieties.
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540 GORSKY et al.

In Section 6, we define Hilbert schemes on singular curves, compactified Jacobians,
affine Springer fibers, and discuss the relations between them. We state the Oblomkov–
Rasmussen–Shende conjecture and discuss the known evidence for it. A connection to geometric
representation theory of Coulomb branch algebras is also discussed.
In Section 7, we define the Hilbert scheme of points on the plane and describe its properties,

in particular, present it as a symplectic resolution and construct the Procesi bundle. We state an
explicit conjecture relating braids to sheaves on the Hilbert scheme, and discuss some examples
and approaches to the proof.

1.2 Further reading

In these lectures,we chose to focus on topics in linkhomologymost closely related to commutative
algebra and algebraic geometry. Unfortunately, this means that we had to skip many other topics
of interest, which are also important for understanding the big picture.
In defining link homology, we focus on Soergel bimodules and do not discuss other approaches

using webs, foams and categorified quantum groups, referring the reader to [110, 116] for more
details. We do not discuss Khovanov [74] or 𝔰𝔩(𝑁) Khovanov–Rozansky homology [76] and their
relation to HOMFLY homology, and refer to [111, 112] instead.
We mostly avoid representation theory and categorification aspects. In particular, we do not

define Hecke algebras or work with diagrammatics of Soergel bimodules, and refer the reader to
[32] for these instead. We refer to [58, 59] for the connections with the rational Cherednik algebra,
and to [56, 88] for the connections with the DAHA and elliptic Hall algebra.
We also do not discuss very rich combinatorics of 𝑞, 𝑡-Catalan numbers and Macdonald

polynomials [5, 9, 42, 47, 56, 61–64, 88] which deserves to be a subject of a separate course.
Finally, we recommend several other surveys on link homology [91, 95, 96, 112].

2 BACKGROUND ON LINK INVARIANTS

In this section, we record some basic facts on link invariants. The braid group on 𝑛 strands has
generators 𝜎1, … , 𝜎𝑛−1 and relations

𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1, 𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 (|𝑖 − 𝑗| > 1). (2.1)

We will visualize the generators 𝜎𝑖 as positive crossings, and 𝜎−1𝑖 as negative crossings:

The strands in a braid are labeled from 1 to 𝑛, and the composition is given by vertical stacking.
The following theorems [2, 8, 85] relate links and braids.

Theorem 2.1 (Alexander). Any link can be obtained as a closure of some braid.

Theorem 2.2 (Markov). Two braid closures represent the same link if and only if the braids are
related by a sequence of the following moves:
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 541

We will refer to these moves as to conjugation and (respectively, positive and negative) stabi-
lization, or collectively as Markov moves. Using these theorems, we can sketch a possible strategy
of constructing link invariants as follows.

∙ Assign some objects to crossings 𝜎±
𝑖
.

∙ Verify braid relations (2.1). This would yield a braid invariant.
∙ Describe an operation for closing a braid.
∙ Verify that the result is invariant under Markov moves (conjugation and stabilization).

Most of link invariants described in these lectures will follow this strategy. Sometimes it will be
helpful to consider slightly weaker invariants for braid closures, which do not change only under
conjugation, or under conjugation and positive stabilization.

3 KHOVANOV–ROZANSKY HOMOLOGY: DEFINITIONS AND
COMPUTATIONS

All link homologies and most of the computations in these notes can be defined with inte-
ger coefficients. For the interest of clarity and various technical simplifications, we work over
ℂ instead.

3.1 Soergel bimodules and Rouquier complexes

Consider the ring 𝑅 = ℂ[𝑥1, … , 𝑥𝑛] with the action of the symmetric group 𝑆𝑛 which permutes
the variables. We will consider various rings of invariants, most importantly the rings 𝑅𝑠𝑖 of poly-
nomials that are invariant under the transposition 𝑥𝑖 ↔ 𝑥𝑖+1, 𝑖 = 1, … , 𝑛 − 1. We will work with
𝑅 − 𝑅 bimodules which we alternatively interpret as modules over ℂ[𝑥1, … , 𝑥𝑛, 𝑥′1, … , 𝑥

′
𝑛] where

the left action of 𝑅 corresponds to the action of 𝑥𝑖 , and the right action corresponds to the action of
𝑥′
𝑖
. Given two 𝑅 − 𝑅 bimodules𝑀 and𝑁, we can consider their tensor product𝑀 ⊗𝑅 𝑁. The left
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542 GORSKY et al.

action of 𝑅 on𝑀,𝑁 will be denoted by 𝑥𝑖 , 𝑥′𝑖 , respectively, and the right action will be denoted by
𝑥′
𝑖
, 𝑥′′
𝑖
, respectively. Note that this is consistent with the relations on the tensor product𝑀 ⊗𝑅 𝑁.

Remark 3.1. To ease the notation, we will sometimes write 𝑀𝑁 for 𝑀 ⊗𝑅 𝑁. If, on the other
hand, we are taking the tensor product over a ring other than 𝑅, we will always indicate this in
the notation.

Note that the ring 𝑅 is graded, with deg(𝑥𝑖) = 2 for every 𝑖 = 1, … , 𝑛. We will work with graded
𝑅-bimodules, so we have a decomposition 𝑀 =

⨁
𝑗∈ℤ 𝑀𝑗 with 𝑥𝑖𝑀𝑗,𝑀𝑗𝑥𝑖 ⊆ 𝑀𝑗+2. The tensor

product of graded bimodules is naturally graded, and we will denote the grading shift by (1), so
that𝑀(1)𝑖 = 𝑀𝑖+1.

Remark 3.2. Note that, under this convention for the grading shift, if the graded dimension of𝑀
is gdim(𝑀) =

∑
𝑖 𝑄

𝑖 dim𝑀𝑖 , then gdim(𝑀(1)) = 𝑄−1 gdim(𝑀).

For us, the most important bimodules are

𝐵𝑖 ∶= 𝑅 ⊗𝑅𝑠𝑖 𝑅(1) =
ℂ[𝑥1, … , 𝑥𝑛, 𝑥

′
1, … , 𝑥

′
𝑛](

𝑥𝑖 + 𝑥𝑖+1 = 𝑥
′
𝑖
+ 𝑥′

𝑖+1
, 𝑥𝑖𝑥𝑖+1 = 𝑥

′
𝑖
𝑥′
𝑖+1
, 𝑥𝑗 = 𝑥

′
𝑗
(𝑗 ≠ 𝑖, 𝑖 + 1)

) ,
where 𝑠𝑖 = (𝑖 𝑖 + 1) and 𝑖 runs from 1 to (𝑛 − 1). Note that, due to the grading shift, the degree of
𝑥𝑗 ∈ 𝐵𝑖 is 1 for every 𝑗. Likewise, the degree of 1 ∈ 𝐵𝑖 is −1.

Definition 3.3. The category SBim𝑛 of Soergel bimodules is the smallest full subcategory of the
category of graded 𝑅 − 𝑅-bimodules containing 𝑅 and 𝐵𝑖 and closed under direct sums, grading
shifts, tensor products and direct summands.

Lemma 3.4. We have

𝐵𝑖 ⊗𝑅 𝐵𝑖 ≃ 𝐵𝑖(1) ⊕ 𝐵𝑖(−1). (3.1)

Proof. Let 𝑠 = (𝑖 𝑖 + 1). We have

𝐵𝑖 ⊗𝑅 𝐵𝑖 = (𝑅 ⊗𝑅𝑠 𝑅(1)) ⊗𝑅 (𝑅 ⊗𝑅𝑠 𝑅(1)) = 𝑅 ⊗𝑅𝑠 𝑅 ⊗𝑅𝑠 𝑅(2).

Decompose 𝑅 = 𝑅𝑠 ⊕ 𝑅𝜖 where 𝜖 denotes the 𝑠-alternating part. As graded 𝑅𝑠-bimodules, 𝑅𝜖 ≅
𝑅𝑠(−2) (the isomorphism divides 𝑝 ∈ 𝑅𝜖 by 𝑥𝑖 − 𝑥𝑖+1 or more generally by 𝛼𝑠). Therefore, we
obtain

𝑅 ⊗𝑅𝑠 (𝑅
𝑠 ⊕ 𝑅𝜖) ⊗𝑅𝑠 𝑅(2) = [𝑅 ⊗𝑅𝑠 𝑅(2)] ⊕ [𝑅 ⊗𝑅𝑠 𝑅

𝑠(−2) ⊗𝑅𝑠 𝑅(2)]

= 𝐵𝑖(1) ⊕ 𝐵𝑖(−1). □

Example 3.5. One can also check the equation

𝐵𝑖 ⊗𝑅 𝐵𝑖+1 ⊗𝑅 𝐵𝑖 ≃ 𝐵𝑖 ⊕ 𝐵𝑖,𝑖+1, where 𝐵𝑖,𝑖+1 = 𝑅 ⊗𝑅𝑠𝑖 ,𝑠𝑖+1 𝑅(3). (3.2)

Note that 𝑠𝑖 and 𝑠𝑖+1 generate a subgroup in 𝑆𝑛 isomorphic to 𝑆3.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 543

Remark 3.6. The category of Soergel bimodules can be defined for any Coxeter group. The ana-
logues of 𝐵𝑖 correspond to simple reflections, the analogue of (3.1) holds on the nose and the
analogue of (3.2) holds with certainmodifications. We refer to [32] for more details and references
on Soergel bimodules.

We will be working with the homotopy category of (bounded) complexes of Soergel bimodules
which we denote by𝑛 ∶= 𝑏(SBim𝑛).

Remark 3.7. The category of Soergel bimodules is additive but not abelian. This means that the
homotopy category𝑏(SBim𝑛) still makes sense, but one cannot a priori define a derived category
of Soergel bimodules. In principle, one can consider a subcategory of the derived category of all
𝑅 − 𝑅 bimodules generated by Soergel bimodules, but this would lead to lots of confusion and
incorrect answers. For example, in the derived category the complexes of (3.3) are isomorphic up
to a grading shift.
This situation might be compared to the construction of the derived category as the homo-

topy category of projective modules. Indeed, by the work of Soergel [121] the category of Soergel
bimodules is closely related to the Bernstein–Gelfand–Gelfand category , and Soergel modules
correspond to projective objects in that category.

Next, we describe some morphisms between Soergel bimodules.

Lemma 3.8.

(a) There is a natural projection from 𝐵𝑖(−1) to 𝑅 which sends 1 to 1.
(b) There is a well-defined morphism of bimodules 𝑅 → 𝐵𝑖(1) which sends 1 to 𝑥𝑖 − 𝑥′𝑖+1.

Proof. Any 𝑅 − 𝑅-bimodule homomorphism 𝐵𝑖 = 𝑅 ⊗𝑅𝑠 𝑅 → 𝑅 needs to send the bimodule gen-
erator 1 ⊗ 1 somewhere in 𝑅. After fixing this, bilinearity forces the map to be an 𝑅-multiple of
𝑓 ⊗ g ↦ 𝑓g . Finally, since 1 ∈ 𝐵𝑖 has degree−1while 1 ∈ 𝑅 has degree 0,we need the shift𝐵𝑖(−1)
to have a map of graded bimodules.
Similarly, ignoring gradings for the time being, a map 𝜇 ∶ 𝑅 → 𝐵𝑖 needs to send 𝜇 ∶ 1 ↦∑
𝑖 𝑎𝑖 ⊗𝑅𝑠 𝑏𝑖 for some 𝑎𝑖, 𝑏𝑖 . For this to be a bimodule homomorphism, we need 𝑝𝜇(1) = 𝜇(1)𝑝

since 𝑅 is commutative. Decomposing 𝑝 = 𝑝𝑠 + 𝛼𝑠𝑝𝜖 we get∑
𝑖

𝑎𝑖 ⊗ 𝑏𝑖𝑝
𝑠 + 𝛼𝑠𝑎𝑖 ⊗ 𝑏𝑖𝑝

𝜖 =
∑
𝑖

𝑎𝑖 ⊗ 𝑏𝑖𝑝
𝑠 + 𝑎𝑖 ⊗ 𝑏𝑖𝛼𝑠𝑝

𝜖

meaning that 1 ↦ 1 ⊗ 𝛼𝑠 + 𝛼𝑠 ⊗ 1 works. For the𝑊 = 𝑆𝑛 case, we have 𝛼𝑠 = 2(𝑥𝑖 − 𝑥′𝑖+1). That
multiples of 𝜇 are all the homomorphisms can be seen, for example, from the tensor-hom
adjunction for bimodules and the first part.
Concretely, let us prove that there is a map of bimodules 𝑅 → 𝐵𝑖 which sends 1 to 𝑥𝑖 − 𝑥′𝑖+1. We

need to check that it sends the defining ideal for 𝑅 inside the defining ideal for 𝐵𝑖 . Indeed,

(𝑥𝑖 − 𝑥
′
𝑖+1)(𝑥𝑖 − 𝑥

′
𝑖 ) = (symmetric in 𝑥′𝑖 , 𝑥

′
𝑖+1) = (𝑥𝑖 − 𝑥𝑖+1)(𝑥𝑖 − 𝑥𝑖) = 0,

similarly

(𝑥𝑖 − 𝑥
′
𝑖+1)(𝑥𝑖+1 − 𝑥

′
𝑖+1) = (𝑥

′
𝑖 − 𝑥

′
𝑖+1)(𝑥

′
𝑖+1 − 𝑥

′
𝑖+1) = 0.
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544 GORSKY et al.

Note that

1 ⊗ 𝛼𝑠 + 𝛼𝑠 ⊗ 1 = (𝑥𝑖 − 𝑥𝑖+1) + (𝑥
′
𝑖 − 𝑥

′
𝑖+1)

= 2𝑥𝑖 − (𝑥𝑖 + 𝑥𝑖+1) + (𝑥
′
𝑖 + 𝑥

′
𝑖+1) − 2𝑥

′
𝑖+1 = 2(𝑥𝑖 − 𝑥

′
𝑖+1),

so the two solutions agree up to a scalar. Finally, note that since 𝑥𝑖 − 𝑥′𝑖+1 has degree 1 in 𝐵𝑖 , we
need to shift the degree on 𝐵𝑖 in order to make this a map of graded 𝑅-bimodules. □

Remark 3.9. Note that we have Hom𝑅-bimod(𝑅, 𝐵𝑖) = 𝑅(−1), since the map 1 → 𝑥𝑖 − 𝑥
′
𝑖+1

has
degree 1.

Using the above maps between 𝐵𝑖 and 𝑅, we can define Rouquier complexes as their cones:

𝑇𝑖 ∶= [𝐵𝑖(−1) → 𝑅], 𝑇−1𝑖 = [𝑅 → 𝐵𝑖(1)]. (3.3)

Here the underlined terms are in the homological degree zero and the maps are defined in
Lemma 3.8. The following is the fundamental result of Rouquier [117]:

Theorem 3.10 [117]. The complexes 𝑇𝑖 and 𝑇−1𝑖 satisfy braid relations up to homotopy:

𝑇𝑖 ⊗𝑅 𝑇
−1
𝑖 ≃ 𝑅, 𝑇𝑖 ⊗𝑅 𝑇𝑖+1 ⊗𝑅 𝑇𝑖 ≃ 𝑇𝑖+1 ⊗𝑅 𝑇𝑖 ⊗𝑅 𝑇𝑖+1, 𝑇𝑖 ⊗𝑅 𝑇𝑗 = 𝑇𝑗 ⊗𝑅 𝑇𝑖, (|𝑖 − 𝑗| > 1).

The proof of the first relation is sketched as a lemma below. The second equation can be proved
similarly using (3.2), and the last equation is obvious.

Lemma 3.11. The complex 𝑇𝑖 ⊗𝑅 𝑇
−1
𝑖

is homotopy equivalent to 𝑅.

Proof. The tensor product of complexes is

[𝐵𝑖(−1)
𝑚
55→𝑅]⊗𝑅

[𝑅
Δ
5→ 𝐵𝑖(1)]

= [𝐵𝑖(−1)
𝑚⊕𝛿
55555→𝑅 ⊕ 𝐵𝑖 ⊗ 𝐵𝑖

Δ⊕𝜇
5555→ 𝐵𝑖(1)]

for 𝛿 = id ⊗ Δ◦𝑚 and 𝜇 = 𝑚 ⊗ id. Recall from Lemma 3.4 that 𝐵𝑖 ⊗𝑅 𝐵𝑖 ≅ 𝐵𝑖(1) ⊕ 𝐵𝑖(−1). This
gives a subcomplex [𝐵𝑖(−1) → 𝐵𝑖(−1) ⊕ 𝐵𝑖(1) → 𝐵𝑖(1)] ≅ 0 (with differentials as above) leaving
us with

𝑇𝑖 ⊗𝑅 𝑇
−1
𝑖 ≅ [0 → 𝑅 → 0] = 𝑅. □

Given a braid 𝛽 = 𝜎𝜖1
𝑖1
⋯𝜎

𝜖𝑟
𝑖𝑟
where 𝜎𝑖 are the braid group generators and 𝜖𝑖 = ±1, we can define

the corresponding Rouquier complex

𝑇𝛽 ∶= 𝑇
𝜖1
𝑖1
⊗𝑅 ⋯⊗𝑅 𝑇

𝜖𝑟
𝑖𝑟
.

By Theorem 3.10, this complex is a well-defined object in the homotopy category𝑛.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 545

Example 3.12. We have

𝑇2𝑖 = [𝐵𝑖(−1) ⊕ 𝐵𝑖(−3) → 𝐵𝑖(−1) ⊕ 𝐵𝑖(−1) → 𝑅] ≅ [𝐵𝑖(−3) → 𝐵𝑖(−1) → 𝑅]

and claim

𝑇𝑘𝑖 ≅ [𝐵𝑖(−2𝑘 + 1) → 𝐵𝑖(−2𝑘 + 3) → ⋯→ 𝐵𝑖(−1)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑘

→ 𝑅].

Indeed, if 𝑇𝑘−1
𝑖

is such then, decomposing 𝑇𝑘
𝑖
= 𝑇𝑘−1

𝑖
𝑇𝑖 we get

⎡⎢⎢⎣𝐵𝑖𝐵𝑖(−2𝑘 + 2) →
𝐵𝑖(−2𝑘 + 3)

⊕
𝐵𝑖𝐵𝑖(−2𝑘 + 4)

→
𝐵𝑖(−2𝑘 + 5)

⊕
𝐵𝑖𝐵𝑖(−2𝑘 + 6)

→ ⋯
𝐵𝑖(−3)
⊕

𝐵𝑖𝐵𝑖(−2)
→
𝐵𝑖(−1)
⊕

𝐵𝑖(−1)
→ 𝑅

⎤⎥⎥⎦.
Using 𝐵𝑖𝐵𝑖 ≅ 𝐵𝑖(1) ⊕ 𝐵𝑖(−1) and the form of the differentials above, this simplifies to what
we want.

3.2 Khovanov–Rozansky homology

Next, we define the operation corresponding to the braid closure. If𝑀 is an 𝑅 − 𝑅 bimodule, we
define its Hochschild cohomology as

ℍ𝑖(𝑀) ∶= Ext𝑖𝑅 −bimod(𝑅,𝑀).

Given a complex𝑀∙ = (𝑀𝑘, 𝑑) of𝑅 − 𝑅 bimodules (in particular, of Soergel bimodules), we define
complexes

ℍ𝑖(𝑀∙) = (ℍ
𝑖(𝑀𝑘), 𝑑𝑖),

where 𝑑𝑖 is the differential induced by 𝑑. In other words, we apply the functorℍ𝑖(−) separately for
each 𝑖, and term-wise in𝑀∙. The output is a collection of complexes of 𝑅-modules, one for each
Hochschild degree.

Remark 3.13. More abstractly, for each 𝑖 ℍ𝑖(−) defines an additive functor on the category of 𝑅 − 𝑅
bimodules, and hence an additive functor on the category of Soergel bimodules. We extend this
functor to the homotopy category𝑛.

Remark 3.14. The definition of ℍ𝑖(−)might appear a bit unnatural from the viewpoint of Soergel
category. This issue is resolved in [7] where it is proved that the functors ℍ𝑖(−) are representable,
that is, there are certain explicit complexes of Soergel bimodules 𝑊𝑖 such that Hom(𝑊𝑖, −) ≃
ℍ𝑖(−).

In particular, for 𝑖 = 0 we get ℍ0(𝑀) = Hom𝑅−bimod(𝑅,𝑀) for a bimodule𝑀 and

ℍ0(𝑀∙) = Hom𝑅−bimod(𝑅,𝑀∙)

for a complex𝑀∙. Here we regard Hom between two complexes as a complex in a standard way.
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546 GORSKY et al.

Definition 3.15. The Khovanov–Rozansky homology of the braid 𝛽 is defined as the homology
of the Hochschild homology of the Rouquier complex 𝑇𝛽 :

HHH(𝛽) = 𝐻(ℍ(𝑇𝛽)).

The Khovanov–Rozansky homology is triply graded.

∙ The 𝑄-grading corresponds to the internal grading on Soergel bimodules where all 𝑥𝑖 have
degree 2. Note that all morphisms in definitions of 𝑇𝑖 and 𝑇−1𝑖 are homogeneous, and Equations
(3.1) and (3.2) hold with appropriate grading shifts.

∙ The 𝑇-grading is the homological grading in the Rouquier complex 𝑇𝛽 .
∙ The 𝐴-grading is the Hochschild degree which equals 𝑖 for ℍ𝑖 .

Theorem 3.16 [75, 77]. The Khovanov–Rozansky homology HHH(𝛽) is a link invariant, up to
an overall grading shift. More precisely, HHH(𝛽) is invariant under conjugation and positive
stabilization, while negative stabilization shifts it up by one 𝐴–degree.

Remark 3.17. It is possible to fix the ambiguity of grading shift and get an honest link invariant,
see, for example, [125].

For most of these notes, we will focus on the 𝐴 = 0 part of Khovanov–Rozansky homology,
which corresponds toℍ0. It is invariant under conjugation and positive stabilization, but vanishes
after a single negative stabilization.

Example 3.18. Continuing Example 3.12, we can apply ℍ0 = Hom(𝑅,−) term-wise and obtain:

Hom(𝑅, 𝑇𝑘𝑖 ) ≅ [𝑅(−2𝑘) → 𝑅(−2𝑘 + 2) →⋯→ 𝑅(−2) → 𝑅
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑘+1

],

cf. Remark 3.9. The differentials in 𝑇𝑘
𝑖
alternate between 𝑥𝑖 − 𝑥′𝑖 and 𝑥𝑖 − 𝑥

′
𝑖+1

(so that (𝑥𝑖 −
𝑥′
𝑖
)(𝑥𝑖 − 𝑥

′
𝑖+1
) = 0 as in Lemma 3.8), hence the differentials in Hom(𝑅, 𝑇𝑘

𝑖
) alternate between

𝑥𝑖 − 𝑥𝑖 = 0 and 𝑥𝑖 − 𝑥𝑖+1. For example,

Hom(𝑅, 𝑇2𝑖 ) = [𝑅(−4)
0
5→ 𝑅(−2)

𝑥𝑖−𝑥𝑖+1
5555555→ 𝑅]

and

Hom(𝑅, 𝑇3𝑖 ) = [𝑅(−6)
𝑥𝑖−𝑥𝑖+1
5555555→ 𝑅(−4)

0
5→ 𝑅(−2)

𝑥𝑖−𝑥𝑖+1
5555555→ 𝑅].

One can easily compute the homology of the resulting complex and obtain that the Poincaré
polynomials of the 𝐴 = 0 part of HHH(𝑇(2, 2)) and HHH(𝑇(2, 3)) are

HHH𝐴=0(𝑇(2, 2)) =
𝑄4𝑇−2

(1 − 𝑄2)2
+

1
1 − 𝑄2

, HHH𝐴=0(𝑇(2, 3)) =
1 + 𝑄4𝑇−2

1 − 𝑄2
.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 547

3.3 Recursions and parity

As one can see from the definition, the complex𝑇𝛽 grows exponentially in the number of crossings
in a braid, which quickly makes the direct computation of Khovanov–Rozansky homology, even
with a help of a computer, unfeasible. This was amajor stumbling block in link homology for over
a decade until significant progress was obtained in a series of papers of Elias, Hogancamp, and
Mellit [31, 70, 71, 89]. This culminates in the following:

Theorem 3.19 [71]. The Khovanov–Rozansky homology of all positive torus links 𝑇(𝑚, 𝑛) is sup-
ported in even homological degrees and the corresponding Poincaré polynomial can be computed
using an explicit recursion.

Example 3.20. The Poincaré polynomial for the 𝐴 = 0 part of HHH(𝑇(𝑛, 𝑛 + 1)) is given by the
𝑞, 𝑡–Catalan polynomial defined by Garsia and Haiman in [42].

Remark 3.21. Theorem 3.19 confirms a series of conjectures about the combinatorics of
HHH(𝑇(𝑚, 𝑛)) proposed in [46, 56, 58, 97].

Let us describe the idea behind the proof of this theorem. Hogancamp in [69] observed that for
each 𝑛 there exists a complex of Soergel bimodules 𝐾𝑛 satisfying the following relations:

where throughout the notes we use the change of variables

𝑞 = 𝑄2, 𝑡 = 𝑇2𝑄−2, 𝑎 = 𝐴𝑄−2. (3.4)

These pictures should be read in the following way: each picture

 14692120, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12761 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



548 GORSKY et al.

corresponds to a (bounded) complex of Soergel bimodules, and stacking crossings on top (respec-
tively, bottom) of this picture means tensoring by the corresponding Rouquier complex on the
right (respectively, left). The closing of the last strand in (3) denotes taking ℍℂ[𝑥𝑛+1](𝐾𝑛+1), which
yields a complex of Soergel bimodules in one variable less, identified with a shifted sum of the
complexes 𝐾𝑛.

Example 3.22. Let us check that the complex 𝐾2 = [𝑅(−4)
Δ
→ 𝐵(−3)

𝑥𝑖−𝑥
′
𝑖

→ 𝐵(−1)
𝑚
→ 𝑅] satis-

fies the above properties, in particular, eats crossings. Indeed, 𝐾2 = [𝑇−1(−4) → 𝑇], so thanks
to Lemma 3.11 and Example 3.12 we have

𝑇𝐾2 = [𝑅(−4) → 𝑇2] = [𝑅(−4) → 𝐵(−3) → 𝐵(−1) → 𝑅] = 𝐾2.

One can check that the differentials agree with this computation.
Alternatively, one can check that𝐾2, as a complex of vector spaces (or left𝑅-modules) is acyclic.

If we tensor it with 𝐵, we get an acyclic complex of free 𝐵-modules, so it must be contractible.
Therefore, 𝐵𝐾2 ≃ 0 and 𝑇𝐾2 ≃ 𝐾2.

Example 3.23. Continuing with Example 3.18, the Poincaré polynomials of HHH0(𝑇(2, 2)),
HHH0(𝑇(2, 3)) in the 𝑞, 𝑡-variables become

HHH0(𝑇(2, 2)) =
𝑞𝑡−1

(1 − 𝑞)2
+

1
1 − 𝑞

= 𝑡−1
𝑞 + 𝑡 − 𝑞𝑡

(1 − 𝑞)2
, HHH0(𝑇(2, 3)) =

1 + 𝑞𝑡−1

1 − 𝑞
= 𝑡−1

𝑞 + 𝑡

1 − 𝑞
.

In general, one can check that for two-stranded torus knots:

HHH0(𝑇(2, 2𝑘 + 1)) =
1 + 𝑞𝑡−1 + 𝑞2𝑡−2 +⋯ + 𝑞𝑘𝑡−𝑘

1 − 𝑞
.

Note that (up to a power of 𝑡 which corresponds to an overall grading shift) the Poincaré poly-
nomials are given by rational functions where the numerator is symmetric in 𝑞 and 𝑡, and the
denominator is a power of (1 − 𝑞). The symmetry between 𝑞 and 𝑡 is much less clear in variables𝑄
and 𝑇, which is one of themotivations behind the change of variables (3.4). See also Theorem 5.17.

In the following section, we show how to use the properties of 𝐾𝑛 to recursively compute the
link homology. Note that any combination of 𝑎, 𝑞, 𝑡 has even (homological) 𝑇-degree. The recur-
sion would follow from the repeated simplification of the braid diagram using the above relations
and the following standard lemma:

Lemma 3.24. Suppose that we have an exact triple of complexes

0 → 𝐴∙ → 𝐵∙ → 𝐶∙ → 0

and the homology of both𝐴∙ and 𝐶∙ is supported in even homological degrees. Then the homology of
𝐵∙ is supported in even homological degrees and

𝐻𝑘(𝐵∙) = 𝐻𝑘(𝐴∙) ⊕ 𝐻𝑘(𝐶∙) for all 𝑘.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 549

For the reader’s convenience, we also write an explicit recursion from [71]. By a binary sequence
wemean a (possibly empty) sequence of 0’s and 1’s. If 𝑣 = 𝑣1 … 𝑣𝓁 is a binary sequence, we denote|𝑣| ∶= ∑

𝑣𝑖 , the number of 1’s appearing in 𝑣.

Theorem 3.25 [71]. Let 𝑣 and𝑤 be a pair of binary sequences with |𝑣| = |𝑤|. Let 𝑝(𝑣, 𝑤) denote the
unique family of polynomials, indexed by such pairs of binary sequences, satisfying the following.

(1) 𝑝(∅, 0𝑛) = (1+𝑎
1−𝑞

)𝑛 and 𝑝(0𝑚, ∅) = (1+𝑎
1−𝑞

)𝑚.
(2) 𝑝(𝑣1, 𝑤1) = (𝑡𝓁 + 𝑎)𝑝(𝑣, 𝑤), where |𝑣| = |𝑤| = 𝓁.
(3) 𝑝(𝑣0, 𝑤1) = 𝑝(𝑣, 1𝑤).
(4) 𝑝(𝑣1, 𝑤0) = 𝑝(1𝑣, 𝑤).
(5) 𝑝(𝑣0, 𝑤0) = 𝑡−𝓁𝑝(1𝑣, 1𝑤) + 𝑞𝑡−𝓁𝑝(0𝑣, 0𝑤), where |𝑣| = |𝑤| = 𝓁.

Then the triply graded Khovanov–Rozansky homology of 𝑇(𝑚, 𝑛) is free over ℤ of graded rank
𝑝(0𝑚, 0𝑛).

3.4 Examples

Example 3.26. Let us use the recursion to compute the homology of two-strand torus links. We
can write

The first term evaluates to 𝑡−1(𝑡 + 𝑎)(1 + 𝑎)while the second term evaluates to 𝑡−1𝑞(1 + 𝑎)2. Since
both of them have even homological shifts, the differential vanishes, and the Poincaré polynomial
equals

𝑡−1(𝑡 + 𝑎)(1 + 𝑎)

1 − 𝑞
+
𝑡−1𝑞(1 + 𝑎)2

(1 − 𝑞)2
=
𝑡−1(1 + 𝑎)

(1 − 𝑞)2
(𝑡 + 𝑎 − 𝑞𝑡 − 𝑎𝑞 + 𝑞 + 𝑎𝑞)

=
𝑡−1(1 + 𝑎)

(1 − 𝑞)2
(𝑡 + 𝑞 − 𝑞𝑡 + 𝑎) =

𝑡−1(1 + 𝑎)

(1 − 𝑞)

(
𝑡 +

𝑞

1 − 𝑞
+

𝑎
1 − 𝑞

)
.

We can apply the same relation with 𝑇(2,𝑚) braid added below. On the left, we get 𝑇(2,𝑚 + 2)
while on the right we get 𝑇(2,𝑚) followed by 𝐾2 (which is the same as 𝐾2 since it eats crossings)
and 𝑇(2,𝑚). By induction in 𝑚, we conclude that for all positive 𝑚 the homology of 𝑇(2,𝑚) is
supported in even homological degrees, and the Poincaré polynomial is given by

HHH(𝑇(2,𝑚 + 2)) =
𝑡−1(𝑡 + 𝑎)(1 + 𝑎)

1 − 𝑞
+ 𝑞𝑡−1HHH(𝑇(2,𝑚)).

This recursion is easy to solve with the initial conditions

HHH(𝑇(2, 0)) =
(1 + 𝑎)2

(1 − 𝑞)2
, HHH(𝑇(2, 1)) =

(1 + 𝑎)

(1 − 𝑞)
.

One can compare this with Example 3.18.

 14692120, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12761 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



550 GORSKY et al.

Example 3.27. For a more complicated example, let us compute the homology of the (3,3) torus
link. Consider the braid

It is easy to see that 𝑇(3, 3) = 𝑇(2, 2) ⋅ 𝐿3. By applying the recursion from Example 3.26 to
𝑇(2, 2), we resolve 𝑇(3, 3) by 𝑡−1𝐾2𝐿3 and 𝑡−1𝑞𝐿3. By the main recursion, 𝐾2𝐿3 is resolved by
𝑡−2𝐾3 and 𝑡−2𝑞(𝐾2 ⊔ 1). To resolve 𝐿3, we can write

Finally, we can use the recursion to write

which we already computed. As a result, we proved that HHH(𝑇(3, 3)) is supported in even
homological degrees, and refer the reader to [31, 71] for the final answer.

Example 3.28. A similar computation yields the following Khovanov–Rozansky homology of
𝑇(3, 4) torus knot, first computed in [29]:

The homology is 11-dimensional (the generators correspond to the dots in the picture) and concen-
trated in three 𝐴-degrees. The 𝑄-degree is marked on a horizontal axis, 𝐴-degree on the vertical
axis and 𝑇-degree is marked next to the dots.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 551

4 BRAID VARIETIES

4.1 Braid varieties and their properties

In this lecture, we describe a geometric model for Khovanov–Rozansky homology of positive
braids. Given 1 ⩽ 𝑖 ⩽ 𝑛 − 1, we consider the matrix

𝐵𝑖(𝑧) =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0
0 ⋱
⋮ 0 1 ⋮

1 𝑧
⋱ 0

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
where the nontrivial 2 × 2 block is at the 𝑖th and (𝑖 + 1)-st positions.

Lemma 4.1. 𝐵𝑖(𝑧1)𝐵𝑖+1(𝑧2)𝐵𝑖(𝑧3) = 𝐵𝑖+1(𝑧3)𝐵𝑖(𝑧2 − 𝑧1𝑧3)𝐵𝑖+1(𝑧1).

Proof. Without loss of generality, we may work with 3 × 3-matrices, 𝑖 = 1. The left-hand side is

⎛⎜⎜⎝
0 1 0
1 𝑧1 0
0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
1 0 0
0 0 1
0 1 𝑧2

⎞⎟⎟⎠
⎛⎜⎜⎝
0 1 0
1 𝑧3 0
0 0 1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0 0 1
1 0 𝑧1
0 1 𝑧2

⎞⎟⎟⎠
⎛⎜⎜⎝
0 1 0
1 𝑧3 0
0 0 1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0 0 1
0 1 𝑧1
1 𝑧3 𝑧2

⎞⎟⎟⎠
and the right-hand side is

⎛⎜⎜⎝
1 0 0
0 0 1
0 1 𝑧3

⎞⎟⎟⎠
⎛⎜⎜⎝
0 1 0
1 𝑧2 − 𝑧1𝑧3 0
0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
1 0 0
0 0 1
0 1 𝑧1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0 1 0
0 0 1
1 𝑧2 − 𝑧1𝑧3 𝑧3

⎞⎟⎟⎠
⎛⎜⎜⎝
1 0 0
0 0 1
0 1 𝑧1

⎞⎟⎟⎠ =
⎛⎜⎜⎝
0 0 1
0 1 𝑧1
1 𝑧3 𝑧2

⎞⎟⎟⎠ .
□

Given a positive braid

𝛽 = 𝜎𝑖1 ⋯𝜎𝑖𝑟

we define, following Mellit [90], the braid matrix

𝐵𝛽(𝑧1, … , 𝑧𝑟) = 𝐵𝑖1(𝑧1)⋯𝐵𝑖𝑟 (𝑧𝑟).

and the braid variety

𝑋(𝛽) =
{
(𝑧1, … , 𝑧𝑟) ∶ 𝐵𝛽(𝑧1, … , 𝑧𝑟) is upper-triangular

}
⊂ ℂ𝑟.

It follows from Lemma 4.1 and the obvious equality 𝐵𝑖(𝑧)𝐵𝑗(𝑤) = 𝐵𝑗(𝑤)𝐵𝑖(𝑧) for |𝑖 − 𝑗| > 1, that
𝐵𝛽 satisfies the braid relations (2.1) up to a change of variables, and the variety 𝑋(𝛽) does not
depend on the braid word for 𝛽 up to isomorphism. Clearly, 𝑋(𝛽) is an affine algebraic variety in
ℂ𝑟 cut out by

(𝑛
2

)
equations.
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552 GORSKY et al.

Example 4.2. To describe 𝑋(𝜎3) we compute(
0 1
1 𝑧1

)(
0 1
1 𝑧2

)(
0 1
1 𝑧3

)
=

(
1 𝑧2
𝑧1 1 + 𝑧1𝑧2

)(
0 1
1 𝑧3

)
=

(
𝑧2 1 + 𝑧2𝑧3

1 + 𝑧1𝑧2 𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3

)
.

This is upper triangular if and only if 1 + 𝑧1𝑧2 = 0, equivalently 𝑧1 ≠ 0, so 𝑋(𝜎3) = ℂ∗𝑧1
× ℂ𝑧3 .

Example 4.3. Similarly, 𝑋(𝜎4) will be related to the matrix(
𝑧2 1 + 𝑧2𝑧3

1 + 𝑧1𝑧2 𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3

)(
0 1
1 𝑧4

)
=

(
1 + 𝑧2𝑧3 𝑧2 + 𝑧4 + 𝑧2𝑧3𝑧4

𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3 1 + 𝑧1𝑧2 + 𝑧4𝑧1 + 𝑧3𝑧4 + 𝑧1𝑧2𝑧3𝑧4

)
.

This is upper-triangular if 𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3 = 0. This is a hypersurface in ℂ3 times ℂ𝑧4 . Note that
we can rewrite this equation as 𝑧1 + 𝑧3(1 + 𝑧1𝑧2) = 0. If 1 + 𝑧1𝑧2 = 0 then 𝑧1 = 0, contradiction.
Therefore, 1 + 𝑧1𝑧2 ≠ 0 and 𝑧3 = −

𝑧3
1+𝑧1𝑧2

, so that

𝑋(𝜎4) = {1 + 𝑧1𝑧2 ≠ 0} × ℂ𝑧4

and hence it is smooth of dimension 3.

Example 4.4. Similarly, 𝑋(𝜎5) corresponds to

⎛⎜⎜⎝
𝑧2 + 𝑧4 + 𝑧2𝑧3𝑧4 𝑧2𝑧3 + 𝑧2𝑧5 + 𝑧2𝑧3𝑧4𝑧5 + 𝑧4𝑧5 + 1

1 + 𝑧1𝑧2 + 𝑧4𝑧1 + 𝑧3𝑧4 + 𝑧1𝑧2𝑧3𝑧4
𝑧2𝑧3𝑧1 + 𝑧2𝑧5𝑧1 + 𝑧2𝑧3𝑧4𝑧5𝑧1
+ 𝑧4𝑧5𝑧1 + 𝑧1 + 𝑧3 + 𝑧3𝑧4𝑧5 + 𝑧5

⎞⎟⎟⎠ .
This is upper-triangular if

1 + 𝑧1𝑧2 + 𝑧4𝑧1 + 𝑧3𝑧4 + 𝑧1𝑧2𝑧3𝑧4 = (1 + 𝑧1𝑧2) + 𝑧4(𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3) = 0.

Similarly to the previous case, one can check that this hypersurface is isomorphic to the open
subset {𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3 ≠ 0} and does not depend on 𝑧5, so that it is smooth of dimension 4.

Note that in all these examples there is a torus action on 𝑋(𝜎𝑘) defined by the equation

𝑡.(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5) ↦ (𝑡𝑧1, 𝑡
−1𝑧2, 𝑡𝑧3, 𝑡

−1𝑧4, 𝑡𝑧5).

This can be generalized as follows.

Lemma 4.5.

(a) We have diag(𝑡1, … , 𝑡𝑛) ⋅ 𝐵𝑖(𝑧) = 𝐵𝑖(𝑧′)𝐷 for some 𝑧′ and some diagonal matrix 𝐷.
(b) Part (a) defines the action of the torus 𝑇 ∶= (ℂ∗)𝑛−1 on the braid variety 𝑋(𝛽) for any 𝑛-strand

braid 𝛽.

 14692120, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12761 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 553

(c) The torus action on 𝑋(𝛽) is free if 𝛽 closes up to a knot (with one component). In this case, we
have

𝑋(𝛽) = [𝑋(𝛽)∕𝑇] × 𝑇.

Proof.

(a) It is clearly enough to verify for a single crossing, and here it is enough to work with 2 ×
2-matrices. We have:(

𝑡1 0
0 𝑡2

)(
0 1
1 𝑧

)
=

(
0 𝑡1
𝑡2 𝑡2𝑧

)
=

(
0 1

1 𝑡2
𝑡1
𝑧

)(
𝑡2 0
0 𝑡1

)
.

(b) 𝑡 ∈ (ℂ∗)𝑛 acts on the left - moving everything to the right in 𝐵𝛽(𝑧) using (a) multiplies entries
of 𝑧 by 𝑡𝑤𝑘(𝑖𝑘+1)𝑡

−1
𝑤𝑘(𝑖𝑘)

and permutes entries of 𝑡 by 𝑤(𝛽). The upper-triangularity condition
doesn’t change. So, we get an action.

(c) If the closure is a knot, the above dictates 𝑡𝑖𝑡−1𝑤(𝑖) = 1 for all 𝑖. So, the stabilizers are all trivial.
Now assume that 𝛽 closes up to a knot, and let 𝑟 ∶= 𝓁(𝛽) be the length of the braid 𝛽. If
we consider the subvariety 𝑋′(𝛽) consisting of 𝑧 ∈ 𝑋(𝛽) such that 𝐵𝛽(𝑧) has a fixed diagonal
((−1)𝑟, 1, … , 1) then it is straightforward to see that 𝑋′(𝛽) ≅ 𝑋(𝛽)∕𝑇 and that 𝑋(𝛽) ≅ 𝑋′(𝛽) ×
𝑇. □

The following theorem generalizes Examples 4.2–4.4 to an arbitrary number of strands.

Theorem 4.6 [19–21]. Suppose that 𝛽 = 𝛾Δ where Δ is the positive half-twist braid and 𝛾 is an
arbitrary positive braid. Then the following holds.

(a) 𝑋(𝛽) is nonempty if and only if 𝛾 contains Δ as a subword. In what follows, we assume that this
is the case.

(b) 𝑋(𝛽) is smooth of (expected) dimension 𝓁(𝛽) −
(𝑛
2

)
= 𝓁(𝛾).

(c) The variety 𝑋(𝛽) is an invariant of 𝛾Δ−1 under cyclic rotation and positive stabilization.
(d) 𝑋(𝛽) has a smooth compactification (depending on a braid word for 𝛽) where the complement

to 𝑋(𝛽) is a normal crossings divisor with stratification labeled by the subwords of 𝛾 containing
Δ.

Cyclic rotation in part (c) has the following meaning: suppose that 𝛾1 = 𝜎𝑖𝛾′ and 𝛾2 = 𝛾′𝜎𝑛−𝑖
for some positive braid 𝛾′. Note that

𝛾1Δ
±1 = 𝜎𝑖𝛾

′Δ±1, 𝛾2Δ
±1 = 𝛾′𝜎𝑛−𝑖Δ

±1 = 𝛾′Δ±1𝜎𝑖,

so that 𝛽1 = 𝛾1Δ and 𝛽2 = 𝛾2Δ are related by a cyclic rotation of a braid word. This is a somewhat
weaker notion than conjugation. The braids 𝛾1Δ−1 and 𝛾2Δ−1 are conjugate as well.

Remark 4.7. Note that the braid 𝛾Δ−1 = 𝛽Δ−2 which appears in part (c) is not necessarily positive.

Remark 4.8. The combinatorics of the strata in the compactification in part (d) is described by the
subword complex of 𝛾 defined by Knutson and Miller [81]. In fact, this compactification coincides
with the brick variety of the braid word 𝛽, studied by Escobar in [33].
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554 GORSKY et al.

It is sometimes more convenient to work with the following modification of the braid variety

𝑋(𝛽;𝑤0) ∶= {(𝑧1, … , 𝑧𝑟) ∶ 𝐵𝛽(𝑧1, … , 𝑧𝑟)𝑤0 is upper-triangular} ⊆ ℂ𝑟,

where 𝑤0 ∈ 𝑆𝑛 is the longest element, 𝑤0 = [𝑛, 𝑛 − 1,… , 1] which is interpreted in the equa-
tion above as a permutation matrix. In fact, in the context of Theorem 4.6 we have, see
[20]

𝑋(𝛽) = 𝑋(𝛾Δ) = 𝑋(𝛾; 𝑤0) × ℂ
(𝑛2).

Note that this explains the appearance of the ℂ-factor in Examples 4.2–4.4.

Example 4.9. As in Example 4.3, we get

𝑋(𝜎4) = {1 + 𝑧1𝑧2 ≠ 0} × ℂ𝑧4 = 𝑋(𝜎
3; 𝑤0) × ℂ,

where

𝑋(𝜎3; 𝑤0) = {1 + 𝑧1𝑧2 ≠ 0}.

This compactifies to ℙ1 × ℙ1, with the following strata of the complement: the hyperbola {1 +
𝑧1𝑧2 = 0}, two lines at infinity, and three pairwise intersection points of these. The strata are in
bijection with nonempty subwords of 𝜎3.

Let us briefly comment on the ideas behind the proof of Theorem 4.6(c), following [21]. First,
to the braid 𝛽 = 𝛾Δ one can associate a Legendrian link which has the smooth type of the closure
of 𝛽Δ−2 = 𝛾Δ−1. This is done using ‘pigtail closure’ of 𝛽, see [21, 22]. Next, to any Legendrian
link Chekanov [25] associated a dg algebra  and proved that its cohomology is a Legendrian link
invariant. See also [22] for a construction of  over the integers and more details.
An important invariant of a dga  is its augmentation variety defined as Aug() = Spec𝐻0().

By the work of Kálmán [73] for a positive braid 𝛾 the dga  coincides with the Koszul complex for
the equations defining 𝑋(𝛾;𝑤0), so that Aug() = 𝑋(𝛾; 𝑤0).
See [21] for an explicit description of , Aug() and their behavior under braid moves,

conjugation and positive stabilization.

4.2 Homology of braid varieties

The following result has been discussed in, for example, [90, 120], but in this form it was stated
and proved only recently in [122, Corollary 4].

Theorem 4.10. The 𝑇 = (ℂ∗)𝑛-equivariant Borel–Moore homology of𝑋(𝛽) has a nontrivial weight
filtration. The associated graded for this filtration is isomorphic to

gr𝑊𝐻
𝑇
∗,𝐵𝑀(𝑋(𝛽)) ≃ HHH

𝑛(𝛽).

Here the weight grading corresponds, up to an overall shift in [122, Corollary 4], to the 𝑞-grading, and
the homological grading corresponds to the sum of the 𝑞 and 𝑡-gradings. The action of the variables
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 555

𝑥𝑖 on the right-hand side corresponds to the equivariant parameters, that is, the generators of the
𝑇-equivariant homology of a point.

Remark 4.11. Note that the variety used in [122, Corollary 4] slightly differs from our 𝑋(𝛽) and
[122, Corollary 4]. uses 𝐺-equivariant homology instead of 𝑇-equivariant one. Nevertheless, by
[122, Remark B.4.3] the corresponding homologies are isomorphic.

Remark 4.12. Similar results in sheaf- and Soergel-theoretic form appear in [117, 123, 124].

Remark 4.13. Note that by the main result of [50] we have

HHH𝑛(𝛽) = HHH0(𝛽Δ−2) = HHH0(𝛾Δ−1).

As we discussed above, this is invariant under conjugation and positive stabilization of 𝛾Δ−1 in
agreement with Theorem 4.6(c).

Remark 4.14. In [122], Trinh has also extended Theorem 4.10 to all Hochschild degrees using
Springer theory.

Remark 4.15. Since 𝑋(𝛽) is smooth, on the level of triply graded vector spaces Theorem 4.10 may
be also stated in terms of usual singular cohomology. Namely, the Verdier dualizing sheaf of 𝑋(𝛽)
is simply 𝜔𝑋(𝛽) ≅ ℂ[−dim𝑋(𝛽)], and the equivariant BM homology agrees as a doubly graded
vector space with the equivariant cohomology. This is however not the case for the more general
varieties appearing in the extension to higher Hochschild degrees, and equivariant BM homology
(or up to a linear duality, cohomology with compact supports) seems to be themost natural choice
also in view of Subsection 6.4.

Let us sketch some ideas in the proof of Theorem 4.10, referring the reader to [122] for
more details.
First, recall the bimodules 𝐵𝑖 = 𝑅 ⊗𝑅𝑠𝑖 𝑅. To give a geometric interpretation to these, consider

the Bott–Samelson variety [17]

BS𝑖 = {( ,
′) ∶  , ′ complete flags,𝑗 =  ′𝑗 for 𝑗 ≠ 𝑖}.

We have line bundles 𝑗 = 𝑗∕𝑗−1 and ′𝑗 =  ′
𝑗
∕ ′

𝑗−1
and the corresponding Chern classes

𝑥𝑗 = 𝑐1(𝑗), 𝑥
′
𝑗 = 𝑐1(

′
𝑗).

Clearly, 𝑗 ≃ ′
𝑗
and 𝑥𝑗 = 𝑥′𝑗 for 𝑗 ≠ 𝑖, 𝑖 + 1. Furthermore,

𝑗+1∕𝑗−1 ≃  ′𝑗+1∕
′
𝑗−1 (4.1)

is filtered both by 𝑖 ,𝑖+1 and by ′𝑖 ,
′
𝑖+1
, so the elementary symmetric functions in 𝑥𝑖, 𝑥𝑖+1 and

𝑥′
𝑖
, 𝑥′
𝑖+1

describe Chern classes of the rank two bundle (4.1) and hence agreewith each other. These
are precisely the defining equations for 𝐵𝑖 .
Given a tensor product 𝐵𝑖1 ⊗⋯⊗ 𝐵𝑖𝑟 , we can define the more general Bott–Samelson variety

as the space of sequences of flags ( (1), … , (𝑟+1)) such that ( (𝑠), (𝑠+1)) satisfy the conditions for
BS𝑖𝑠 for all 𝑠.
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556 GORSKY et al.

Next, we associate some geometric objects to Rouquier complexes 𝑇𝑖 associated to positive
braids. We say that two flags  , ′ are in position 𝑠𝑖 if 𝑗 =  ′

𝑗
for 𝑗 ≠ 𝑖 and 𝑖 ≠  ′

𝑖
. This is an

open subset of BS𝑖 complementary to the diagonal. To a Rouquier complex 𝑇𝛽 = 𝑇𝑖1 ⊗⋯⊗ 𝑇𝑖𝑟 ,
we associate the openBott–Samelson varietyOBS𝛽 consisting of sequences of flags ( (1), … , (𝑟+1))
such that ( (𝑡), (𝑡+1)) are in position 𝑠𝑖𝑡 . The open Bott–Samelson variety was considered in the
work of Broué, Michel and Deligne [18, 27], and later in [120], it plays a prominent role in the
Deligne–Lusztig theory [28]. In particular, Deligne proved in [27] that OBS𝛽 is an invariant of the
braid 𝛽 and does not change under braid relations up to a (canonical) isomorphism.
To compute the homology of OBS𝛽 , one can use the exact sequence in equivariant cohomol-

ogy coming from excision and inclusion–exclusion. Namely, the open Bott–Samelson variety has
a natural embedding into the closed Bott–Samelson variety for the same braid word. Its com-
plement is a union of closed Bott–Samelson varieties corresponding to subwords of 𝛽 with one
letter skipped, the intersections of which correspond to subwords of 𝛽 with two letters skipped
and so on. As a result, we can compute the homology of OBS𝛽 using the homologies of closed
Bott–Samelson varieties for all possible subwords of 𝛽. This is parallel to the expansion of 𝑇𝛽 as a
complex built out of tensor products of 𝐵𝑖 for all subwords of 𝛽.
Finally, we need to compare the open Bott–Samelson variety OBS𝛽 to the braid variety 𝑋(𝛽).

This is given by the following Lemma. Let 𝛽be the braid 𝛽 read in the opposite direction.

Lemma 4.16 [21].

(a) The variety 𝑋( 𝛽;𝑤0) is a subset of OBS𝛽 where the first flag  (1) is chosen to be standard, and
the last flag  (𝑟+1) is chosen to be antistandard:  (𝑟+1) = 𝑤0 (1).

(b) The variety 𝑋( 𝛽) is a subset of OBS𝛽 where both the first and the last flags are chosen to be
standard.

Identification of the first and last flag in (b) corresponds to closing the braid and computing
HHH𝑛.
The compactification of 𝑋(𝛽) mentioned in Theorem 4.6 corresponds, up to replacing 𝛽 by 𝛽,

to the compactification ofOBS𝛽 by BS𝛽 . Note that this compactification depends on the choice of
a braid word for 𝛽.

Example 4.17. Let us compute the homology of the varieties 𝑋(𝛽) for 𝛽 = 𝜎3, 𝜎4 from Exam-
ples 4.2 and 4.3. Note that for 𝛽 = 𝜎3 by Lemma 4.5 the torus action is free, and the equivariant
homology is related to the non-equivariant homology by a trivial factor.
The homology of 𝑋(𝜎3) = ℂ∗ × ℂ is clear. To compute the homology of 𝑋(𝜎4) = {1 + 𝑧1𝑧2 ≠

0} × ℂ we use the Alexander duality. The hyperbola {1 + 𝑧1𝑧2 = 0} is isomorphic to ℂ∗ and has
nontrivial 𝐻0 and 𝐻1, or, equivalently, nontrivial cohomology with compact support 𝐻2,𝑐 and
𝐻1,𝑐. Now

𝐻𝑖({1 + 𝑧1𝑧2 ≠ 0}) = 𝐻
4−1−𝑖,𝑐({1 + 𝑧1𝑧2 = 0}),

so we have nontrivial𝐻1 and𝐻2. Since it is connected, we also have𝐻0. To sum up, we have

𝐻0(𝑋(𝜎4)) = 𝐻1(𝑋(𝜎4)) = 𝐻2(𝑋(𝜎4)) = ℤ,

and the other homologies vanish.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 557

Example 4.18. The computation for𝑋(𝜎5) from Example 4.4 is similar: by the Alexander duality
we have

𝐻𝑖({𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3 ≠ 0}) = 𝐻
6−1−𝑖,𝑐({𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3 = 0}) = 𝐻

5−𝑖,𝑐({1 + 𝑧1𝑧2 ≠ 0})

while by the Poincaré duality we have

𝐻5−𝑖,𝑐({1 + 𝑧1𝑧2 ≠ 0}) = 𝐻𝑖−1({1 + 𝑧1𝑧2 ≠ 0}).

Therefore,

𝐻0(𝑋(𝜎5)) = 𝐻1(𝑋(𝜎5)) = 𝐻2(𝑋(𝜎5)) = 𝐻3(𝑋(𝜎5)) = ℤ,

and the other homologies vanish. Note that 𝜎5 closes up to a knot, so 𝑇 = ℂ∗ action on 𝑋(𝜎5) is
free and by Lemma 4.5(c) we have

𝐻∗(𝑋(𝜎5)) = 𝐻∗(ℂ∗) × 𝐻∗𝑇𝑋(𝜎
5),

so that

𝐻0𝑇(𝑋(𝜎
5)) = 𝐻2𝑇(𝑋(𝜎

5)) = ℤ

and other equivariant homology vanish. This agrees with the 𝐴 = 0 Khovanov–Rozansky
homology of the trefoil 𝑇(2, 3), see Example 3.18.

Example 4.19. Consider the three strand braid 𝛽 = (𝜎1𝜎2)7 which corresponds to the (3,4) torus
knot obtained as the closure of 𝛽Δ−2. It has a free action of the torus 𝑇 = (ℂ∗)2 and the quotient
𝑋(𝛽Δ−1; 𝑤0)∕𝑇 is isomorphic to the 𝐸6 cluster variety (see Example 4.25). Its homology

gr𝑝𝑊𝐻
𝑘(𝑋(𝛽Δ−1; 𝑤0)∕𝑇) = gr

𝑝
𝑊𝐻

𝑘
𝑇(𝑋(𝛽))

with the weight filtration was computed by Lam and Speyer in [83] and is given by the following
table:

𝐻0 𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6

𝑘 − 𝑝 = 0 1 0 1 0 1 0 1
𝑘 − 𝑝 = 1 0 0 0 0 1 0 0

This matches the bottom row of the Khovanov–Rozansky homology of 𝑇(3, 4) in Example 3.28.

4.3 From braid varieties to positroid varieties

Following the recent work of Galashin and Lam [34, 35] and [21], we relate the braid varieties to
positroid varieties in the Grassmannian defined in [80].
Recall that the Grassmannian Gr(𝑘, 𝑛) parameterizes 𝑘-dimensional subspaces in 𝑛-

dimensional space, which can be presented as the row span of a 𝑘 × 𝑛 matrix of maximal rank.
Let 𝑣1, … , 𝑣𝑛 be the columns of such matrix, extend these periodically by setting 𝑣𝑖+𝑛 = 𝑣𝑖 .
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558 GORSKY et al.

The open positroid stratum Π𝑘,𝑛 is defined by the conditions that all the cyclically consecutive
𝑘 × 𝑘 minors

Δ𝑖,…,𝑖+𝑘−1 = det(𝑣𝑖, … , 𝑣𝑖+𝑘−1)

are nonzero.

Lemma 4.20 [21].We have

Π𝑘,𝑛 = (ℂ
∗)𝑛−𝑘 × 𝑋(𝛽𝑘,𝑛−𝑘Δ;𝑤0),

where 𝛽𝑘,𝑛−𝑘 = (𝜎1⋯𝜎𝑘−1)
𝑛−𝑘 is the (𝑘, 𝑛 − 𝑘) torus braid on 𝑘 strands.

Example 4.21. Consider the openpositroid varietyΠ2,4. SinceΔ1,2 ≠ 0, we canuse rowoperations
to write the matrix as (

1 0 𝑎 𝑏
0 1 𝑐 𝑑

)
.

Other conditions on minors imply

𝑎 ≠ 0, 𝑑 ≠ 0, 𝑎𝑑 − 𝑏𝑐 ≠ 0.

By denoting 𝑥 = 𝑏∕𝑎, 𝑦 = −𝑐∕𝑑 we get 𝑥𝑦 + 1 ≠ 0 which is the defining inequality of 𝑋(𝜎3; 𝑤0).

Example 4.22. Similarly, for Π2,5 we get the matrix(
1 0 𝑎 𝑏 𝑒
0 1 𝑐 𝑑 𝑓

)
such that𝑎 ≠ 0, 𝑓 ≠ 0, 𝑎𝑑 − 𝑏𝑐 ≠ 0, 𝑏𝑓 − 𝑑𝑒 ≠ 0.Without loss of generality, we can get rid of (ℂ∗)3
and assume that 𝑎 = 𝑓 = 𝑎𝑑 − 𝑏𝑐 = 1, then 𝑑 = 1 + 𝑏𝑐. Now

𝑏𝑓 − 𝑑𝑒 = 𝑏 − (1 + 𝑏𝑐)𝑒 ≠ 0.

If we denote 𝑧1 = 𝑏, 𝑧2 = 𝑐, 𝑧3 = −𝑒, we get

𝑧1 + (1 + 𝑧1𝑧2)𝑧3 = 𝑧1 + 𝑧3 + 𝑧1𝑧2𝑧3 ≠ 0

which is the defining inequality of 𝑋(𝜎4; 𝑤0).

Example 4.23. Consider a pair of permutations 𝑤, 𝑢 ∈ 𝑆𝑛 such that 𝑤 ⩾ 𝑢 in the Bruhat order.
Then

𝑋(𝛽(𝑤)𝛽(𝑢−1𝑤0); 𝑤0) = 𝑅𝑤,𝑢

is the open Richardson variety in the complete flag variety in ℂ𝑛. Here 𝛽(𝑤) and 𝛽(𝑢−1𝑤0) are
positive braid lifts of permutations 𝑤 and 𝑢−1𝑤0, respectively.

If in addition 𝑤 satisfies the so-called 𝑘-Grassmannian condition, then by [80] the open
Richardson variety 𝑅𝑤,𝑢 is isomorphic to a more general positroid variety Π𝑤,𝑢 ⊂ Gr(𝑘, 𝑛), the
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 559

variety Π𝑘,𝑛 corresponds to the case when 𝑢 = 1 and 𝑤 is the maximal 𝑘-Grassmannian permu-
tation. In [21], the variety Π𝑤,𝑢 is proven to be isomorphic (up to ℂ∗ factors) to braid varieties
for four different braids, some on 𝑛 strands (like in Example 4.23) and some on 𝑘 strands (like in
Lemma 4.20). We refer to [21] for more details.
Finally, we would like to mention an emerging connection between braid varieties and cluster

varieties, although the latter are out of scope of these notes. In particular, by [36, 118] all positroid
varietiesΠ𝑤,𝑢 are cluster varieties, while by [19] braid varieties of the form𝑋(𝛽;𝑤0) have a cluster
structure provided that 𝛽 contains 𝑤0 as a subword, see also [23, 38–40, 119].

Example 4.24. The braid variety 𝑋(𝜎𝑘; 𝑤0) corresponding to the (2, 𝑘 − 1) torus link, is iso-
morphic (up to a certain torus) to the positroid variety Π2,𝑘+1, and to the cluster variety of type
𝐴𝑘−2.

Example 4.25. The braid variety 𝑋((𝜎1𝜎2)4Δ;𝑤0) corresponding to the (3,4) torus knot, is iso-
morphic (up to a certain torus) to the positroid variety Π3,7, and to the cluster variety of type
𝐸6.

It is yet unclear how the cluster structure reveals itself in link homology. However, one piece of
this structure already plays an important role: any cluster variety carries a canonical closed 2-form
[43] (which is symplectic under nice circumstances) which has constant coefficients in all cluster
charts. This form yields an interesting operator in link homology of homological degree 2, which
is constructed for all (not necessary positive) braids in the next section. For more (sometimes
conjectural) connections between link homology and cluster algebras, the reader is referred to
the recent preprint [37].

5 𝒚-IFICATION AND TAUTOLOGICAL CLASSES

In this lecture, we describe various homological operations in Khovanov–Rozansky homology.
The easiest to describe is the action of a polynomial algebra on the homology of an arbitrary link
with a choice of marked point, which corresponds to an action by the homology of the unknot.
By moving the marked point, one obtains a family of ‘dot-sliding homotopies’ which give rise to
an exterior algebra action in link homology. These can then be used to define a deformation, or
‘𝑦-ification’ of Khovanov–Rozansky homology.
Furthermore, we will sketch a construction of a commuting family of ‘tautological classes’ in

𝑦-ified homology, and define an action of the Lie algebra 𝔰𝔩2 on the 𝑦-ified homology.

5.1 Polynomial action

Recall that to any braid 𝛽 we associate the Rouquier complex 𝑇𝛽 consisting of 𝑅 − 𝑅 bimodules,
or, equivalently, a complex of ℂ[𝑥1, … , 𝑥𝑛, 𝑥′1, … , 𝑥

′
𝑛]-modules. Let us describe the properties of

this complex.
First, observe that for any symmetric function 𝑓(𝑥1, … , 𝑥𝑛) ∈ ℂ[𝑥1, … , 𝑥𝑛]𝑆𝑛 the actions of

𝑓(𝑥1, … , 𝑥𝑛) and of 𝑓(𝑥′1, … , 𝑥
′
𝑛) on 𝑇𝛽 coincide. Indeed, this is true for 𝐵𝑖 and arbitrary products

of 𝐵𝑖 , and hence for any Soergel bimodule.
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560 GORSKY et al.

More abstractly, we can consider a bimodule

𝐵 ∶= 𝐵𝑤0 = 𝑅 ⊗𝑅𝑆𝑛 𝑅 =
ℂ[𝑥1, … , 𝑥𝑛, 𝑥

′
1, … , 𝑥

′
𝑛]

𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥
′
1, … , 𝑥

′
𝑛) for any 𝑓 ∈ ℂ[𝑥1, … , 𝑥𝑛]𝑆𝑛

Note that the bimodule 𝐵 is also an algebra as a quotient of the polynomial algebra. By the above,
we obtain the following.

Lemma 5.1. The action of ℂ[𝑥1, … , 𝑥𝑛, 𝑥′1, … , 𝑥
′
𝑛] on the Rouquier complex 𝑇𝛽 factors through the

action of 𝐵.

Next, we can compare the actions of 𝑥𝑖 and 𝑥′𝑖 . More precisely:

Theorem 5.2. The action of 𝑥𝑖 on 𝑇𝛽 is homotopic to the action of 𝑥′𝑤(𝑖) where𝑤 is the permutation
corresponding to the braid 𝛽.

Example 5.3. For example, consider the braid 𝛽:

We have 𝑥1 ∼ 𝑥′2, 𝑥2 ∼ 𝑥
′
1 and 𝑥3 ∼ 𝑥

′
3 on the corresponding Rouquier complex 𝑇𝛽 . Note that after

the braid closure we identify 𝑥𝑖 with 𝑥′𝑖 , so that 𝑥1 becomes homotopic to 𝑥2, 𝑥2 to 𝑥1 and 𝑥3
to itself.

Theorem 5.2 has a very important consequence for the structure of link homology.

Corollary 5.4. Suppose that a braid 𝛽 closes up to a link 𝐿 with 𝑟 components. Then HHH(𝐿) is
naturally a module over a polynomial ring in 𝑟 variables, one variable per component of 𝐿.

Note that the components of 𝐿 correspond to the cycles in the corresponding permutation 𝑤.

5.2 Dot-sliding homotopies and 𝒚-ification

The following lemma outlines the proof of Theorem 5.2 for a single crossing. The general case is
obtained by combining these elementary ‘dot-sliding homotopies’.

Lemma 5.5. The actions of 𝑥𝑖 and 𝑥′𝑖+1 on the Rouquier complex 𝑇𝑖 = [𝐵𝑖 → 𝑅] are homotopic.

Proof. We want to construct a map ℎ ∶ 𝑅 → 𝐵𝑖 satisfying ℎ𝑑(𝑓 ⊗𝑅𝑠𝑖 g) = 𝑥𝑖𝑓 ⊗𝑅𝑠𝑖 g − 𝑓 ⊗𝑅𝑠𝑖

g𝑥𝑖+1 and𝑑ℎ(𝑓) = (𝑥𝑖 − 𝑥𝑖+1)𝑓, where𝑑 = 𝑚 is the unique bimodule bap𝐵𝑖 → 𝑅 sending 1 ⊗𝑅𝑠𝑖 1
to 1. Applying ℎ𝑑(1 ⊗𝑅𝑠𝑖 1), it is clear that we must have ℎ(1) = 𝑥𝑖 ⊗𝑅𝑠𝑖 1 − 1 ⊗𝑅𝑠𝑖 𝑥𝑖+1. This is
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 561

exactly the map Δ constructed in Lemma 3.8. Now it is straightforward to check that ℎ indeed
gives a homotopy between 𝑥𝑖 and 𝑥′𝑖+1.

□

Example 5.6. Let us describe an explicit homotopy between the left and right 𝑅-actions for the
two-strand braid 𝜎2.
Thanks to Lemma 5.5, we have a homotopy between 𝑥1 and 𝑥′2 on 𝑇, so (𝑥1 − 𝑥

′
2) ⊗ 1 is

null-homotopic on 𝑇 ⊗ 𝑇, such a homotopy is given by ℎ ⊗ 1. Similarly, 1 ⊗ (𝑥2 − 𝑥
′
1) is null-

homotopic. But 𝑥′2 ⊗ 1 = 1 ⊗ 𝑥2. Thus, ℎ ⊗ 1 − 1 ⊗ ℎ gives a homotopy between 𝑥1 ⊗ 1 and
1 ⊗ 𝑥′1. It is easy to see that the same map ℎ ⊗ 1 − 1 ⊗ ℎ gives a homotopy between 𝑥2 ⊗ 1 and
1 ⊗ 𝑥′2 (perhaps up to a scalar multiple). Alternatively, if we actually want to do computations,
we have:

The above complex works because, on 𝑅, 𝑥1 − 𝑥′1 = 𝑥2 − 𝑥
′
2 = 0 and, on 𝐵, 𝑥1 + 𝑥2 = 𝑥′1 +

𝑥′2, equivalently 𝑥1 − 𝑥
′
1 = 𝑥

′
2 − 𝑥2, so the diagram shows that both 𝑥1 − 𝑥′1 and 𝑥

′
2 − 𝑥2 are

null-homotopic, as wanted.

Let 𝜉𝑖 be the homotopies between 𝑥𝑖 and 𝑥′𝑤𝑖 , that is,

[𝑑, 𝜉𝑖] = 𝑥𝑖 − 𝑥
′
𝑤(𝑖)

We can choose 𝜉𝑖 so that they square to zero and anticommute (since this holds for a single cross-
ing by Lemma 5.5). Now we can introduce formal variables 𝑦1, … , 𝑦𝑛 and consider the deformed
differential

𝐷 = 𝑑 +
𝑛∑
𝑖=1

𝜉𝑖𝑦𝑖. (5.1)

From the above discussion, we get

𝐷2 =
𝑛∑
𝑖=1

(𝑥𝑖 − 𝑥
′
𝑤(𝑖)
)𝑦𝑖

which vanishes after closing the braid and identifying different 𝑦𝑖 on the same link component.
This allows one to define a deformation (or 𝑦-ification) of Khovanov–Rozansky homology:

HY(𝛽) = 𝐻∗
(
ℍ(𝑇𝛽 ⊗ ℂ[𝑦1, … , 𝑦𝑛], 𝐷)∕(𝑦𝑖 − 𝑦𝑤(𝑖))

)
.

It has the following properties:
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562 GORSKY et al.

Theorem 5.7 [48]. The 𝑦-ified link homology is invariant under conjugation and stabilization and
defines a topological link invariant. If a braid 𝛽 closes up to a link 𝐿 with 𝑟 components thenHY(𝐿)
is naturally a module over ℂ[𝑥1, … , 𝑥𝑟, 𝑦1, … , 𝑦𝑟].

Example 5.8. Let us compute the 𝑦-ified homology of 𝜎2. By Example 5.6, the 𝑦-fied complex for
𝜎2 has the form

If we apply Hom(𝑅,−) (or, equivalently, compute 𝑦-ified homology in 𝑎-degree zero) to this, we
get

The homology of this complex is an 𝑅[𝑦]-module with two generators (say, 𝑧 and 𝑤) and one
relation 𝑧(𝑦1 − 𝑦2) = 𝑤(𝑥1 − 𝑥2). This module is isomorphic to an ideal in 𝑅[𝑦] generated by 𝑥1 −
𝑥2 and 𝑦1 − 𝑦2.

Remark 5.9. The complex with backward pointing arrows might look unusual to the reader.
We can rewrite it in a more conventional way by ‘unrolling’ the variable 𝐲 = 𝑦1 − 𝑦2, which has
homological degree 2, and writing 𝑅[𝑦] =

⨁∞
𝑘=0 𝐲

𝑘𝑅[𝑦1 + 𝑦2]:

This example can be generalized as follows:

Theorem 5.10 [48]. Let 𝑇(𝑛, 𝑘𝑛) be the (𝑛, 𝑘𝑛) torus link with 𝑛 components. The corresponding
braid is the 𝑘th power of the full twist on 𝑛 strands (𝑘 ⩾ 0). Then:

(a) HY(𝑇(𝑛, 𝑘𝑛)) ≃  𝑘 , where

 = ∩𝑖≠𝑗(𝑥𝑖 − 𝑥𝑗, 𝑦𝑖 − 𝑦𝑗, 𝜃𝑖 − 𝜃𝑗)

is the ideal inHY(unlink) = ℂ[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛, 𝜃1, … , 𝜃𝑛]. InHochschild degree zero we get

HY𝐴=0(𝑇(𝑛, 𝑘𝑛)) ≃ 𝐽𝑘,
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 563

where

𝐽 = ∩𝑖≠𝑗(𝑥𝑖 − 𝑥𝑗, 𝑦𝑖 − 𝑦𝑗) ⊂ ℂ[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛]

is the ideal defining the union of all diagonals in (ℂ2)𝑛;
(b) the ideals  and 𝐽 are free over ℂ[𝑦1, … , 𝑦𝑛] and

HHH(𝑇(𝑛, 𝑘𝑛)) =  𝑘∕(𝑦) 𝑘, HHH0(𝑇(𝑛, 𝑘𝑛)) = 𝐽𝑘∕(𝑦)𝐽𝑘.

Note that in Theorem 5.10 it is much easier to first describe the 𝑦-ified homology, and then
obtainHHH as a quotient by themaximal ideal in 𝑦𝑖 . This seems to indicate that 𝑦-ified homology
has better properties than HHH, as we see in the next section.

5.3 Tautological classes and symmetry

Consider the dg algebra which is a free resolution of 𝑅 over 𝐵 = 𝑅
⨂

𝑅𝑆𝑛 𝑅:

 = 𝐵[𝑢1, … , 𝑢𝑛, 𝜉1, … , 𝜉𝑛], 𝑑(𝜉𝑖) = 𝑥𝑖 − 𝑥
′
𝑖 , 𝑑(𝑢𝑘) =

𝑛∑
𝑖=1

ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 )𝜉𝑖,

where ℎ𝑘−1(𝑥𝑖, 𝑥′𝑖 ) denotes the complete symmetric function of degree 𝑘 − 1 on the variables
𝑥𝑖, 𝑥

′
𝑖
, and the grading on  is given by deg(𝑥𝑖) = deg(𝑥′𝑖 ) = 0, deg(𝜉𝑖) = 1, and deg(𝑢𝑖) = 2 for

𝑖 = 1, … , 𝑛.

Lemma 5.11. We have 𝑑2 = 0 in.

Proof. First note that thanks to the graded Leibniz rule, it is enough to show that 𝑑2 = 0 on
generators. Indeed, if 𝑏 and 𝑐 are homogeneous then

𝑑2(𝑏𝑐) = 𝑑(𝑑(𝑏)𝑐 + (−1)|𝑏|𝑏𝑑(𝑐)) = 𝑑2(𝑏)𝑐 + (−1)|𝑑(𝑏)|𝑑(𝑏)𝑑(𝑐) + (−1)|𝑏|𝑑(𝑏)𝑑(𝑐) + 𝑏𝑑2(𝑐)
= 𝑑2(𝑏)𝑐 + 𝑏𝑑2(𝑐),

where the last equality follows since |𝑏| = |𝑑(𝑏)| − 1. Now, that 𝑑2(𝑥𝑖) = 𝑑2(𝑥′𝑖 ) = 𝑑2(𝜉𝑖) = 0 is
obvious from the definition. As for 𝑢𝑘 we have

𝑑2(𝑢𝑘) =
𝑛∑
𝑖=1

ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 )(𝑥𝑖 − 𝑥

′
𝑖 ) =

𝑛∑
𝑖=1

𝑥𝑘𝑖 − (𝑥
′
𝑖 )
𝑘 = 0.

□

Theorem 5.12 [49]. The algebra  acts on the Rouquier complex 𝑇𝛽 for any 𝛽, such that 𝑥𝑖 act as
usual, the action of𝑥′

𝑖
is twisted by the permutation𝑤 corresponding to 𝛽, and 𝜉𝑖 act by the dot-sliding

homotopies as above.

Theorem 5.12 follows from two lemmas below. Indeed, by Lemma 5.14 the dg algebra acts on
Rouquier complexes𝑇±

𝑖
(such that𝑢𝑖 act by 0), and by Lemma 5.13 there is a coproduct onwhich

allows to define the structure of-module on the tensor product𝑀 ⊗𝑅 𝑁 of two-modules. Note
that in general 𝑢𝑖 act nontrivially on 𝑇𝛽 , see Example 5.15.
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564 GORSKY et al.

Lemma 5.13. There is a chain map→ ⊗𝑅  defined by the equations

Δ(𝑥𝑖) = 𝑥𝑖 ⊗ 1, Δ(𝑥′𝑖 ) = 1 ⊗ 𝑥′𝑖 , Δ(𝜉𝑖) = 𝜉𝑖 ⊗ 1 + 1 ⊗ 𝜉𝑖,

Δ(𝑢𝑘) = 𝑢𝑘 ⊗ 1 + 1 ⊗ 𝑢𝑘 +
𝑛∑
𝑖=1

ℎ𝑘−2(𝑥𝑖, 𝑥
′
𝑖 , 𝑥

′′
𝑖 )𝜉𝑖 ⊗ 𝜉𝑖.

Proof. We need to check that Δ commutes with the differentials. This is clear for 𝑥𝑖 . Let us check
for 𝜉𝑖:

𝑑(Δ(𝜉𝑖)) = 𝑑(𝜉𝑖 ⊗ 1 + 1 ⊗ 𝜉𝑖) = (𝑥𝑖 − 𝑥
′
𝑖 ) ⊗ 1 + 1 ⊗ (𝑥𝑖 − 𝑥

′
𝑖 )

but, just as before, 𝑥′
𝑖
⊗ 1 = 1 ⊗ 𝑥𝑖 , and 𝑥′′𝑖 is just a shorthand for 1 ⊗ 𝑥′

𝑖
. So, we see that

𝑑(Δ(𝜉𝑖)) = 𝑥𝑖 − 𝑥
′′
𝑖 = Δ(𝑑(𝜉𝑖)).

Finally, let us compute 𝑑(Δ(𝑢𝑘)):

𝑑(Δ(𝑢𝑘)) = 𝑑(𝑢𝑘 ⊗ 1 + 1 ⊗ 𝑢𝑘 +
𝑛∑
𝑖=1

ℎ𝑘−2(𝑥𝑖, 𝑥
′
𝑖 , 𝑥

′′
𝑖 )𝜉𝑖 ⊗ 𝜉𝑖)

=
𝑛∑
𝑖=1

[ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 )𝜉𝑖 ⊗ 1 + 1 ⊗ ℎ𝑘−1(𝑥𝑖, 𝑥

′
𝑖 )𝜉𝑖

+ ℎ𝑘−2(𝑥𝑖, 𝑥
′
𝑖 , 𝑥

′′
𝑖 )((𝑥𝑖 − 𝑥

′
𝑖 ) ⊗ 𝜉𝑖 − 𝜉𝑖 ⊗ (𝑥𝑖 − 𝑥

′
𝑖 ))],

where the last negative sign is due to the graded Leibniz rule. Recalling that 𝑥′
𝑖
= 𝑥′

𝑖
⊗ 1 = 1 ⊗ 𝑥𝑖

and 𝑥′′
𝑖
= 1 ⊗ 𝑥′

𝑖
we can rewrite as

𝑛∑
𝑖=1

[ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 )𝜉𝑖 ⊗ 1 + ℎ𝑘−1(𝑥

′
𝑖 , 𝑥

′′
𝑖 )1 ⊗ 𝜉𝑖

+ℎ𝑘−2(𝑥𝑖, 𝑥
′
𝑖 , 𝑥

′′
𝑖 )((𝑥𝑖 − 𝑥

′
𝑖 )(1 ⊗ 𝜉𝑖) − (𝑥

′
𝑖 − 𝑥

′′
𝑖 )(𝜉𝑖 ⊗ 1))]

=
𝑛∑
𝑖=1

[(ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 ) + ℎ𝑘−2(𝑥𝑖, 𝑥

′
𝑖 , 𝑥

′′
𝑖 )(𝑥

′′
𝑖 − 𝑥

′
𝑖 ))(𝜉𝑖 ⊗ 1)

+ (ℎ𝑘−1(𝑥
′
𝑖 , 𝑥

′′
𝑖 ) + ℎ𝑘−2(𝑥𝑖, 𝑥

′
𝑖 , 𝑥

′′
𝑖 )(𝑥𝑖 − 𝑥

′
𝑖 ))(1 ⊗ 𝜉𝑖)].

Now we observe that ℎ𝑘−1(𝑥𝑖, 𝑥′𝑖 ) + ℎ𝑘−2(𝑥𝑖, 𝑥
′
𝑖
, 𝑥′′
𝑖
)(𝑥′′

𝑖
− 𝑥′

𝑖
) = ℎ𝑘−1(𝑥𝑖, 𝑥

′′
𝑖
) and, similarly,

ℎ𝑘−1(𝑥
′
𝑖
, 𝑥′′
𝑖
) + ℎ𝑘−2(𝑥1, 𝑥

′
𝑖
, 𝑥′′
𝑖
)(𝑥𝑖 − 𝑥

′
𝑖
) = ℎ𝑘−1(𝑥𝑖, 𝑥

′′
𝑖
). Then,

𝑑(Δ(𝑢𝑘)) =
𝑛∑
𝑖=1

ℎ𝑘−1(𝑥𝑖, 𝑥
′′
𝑖 )(𝜉𝑖 ⊗ 1 + 1 ⊗ 𝜉𝑖) = Δ(𝑑(𝑢𝑘)). □

Lemma 5.14. The dg algebra acts on the Rouquier complex 𝑇𝑖 .

Proof. By degree considerations, all 𝑢𝑘 have to act by 0 on 𝑇𝑖 . The action of 𝑥𝑖 is given by the left
action of𝑅 on𝑇𝑖 , while the action of 𝑥′𝑖 is given by the right action of𝑅 twisted by the automorphism
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 565

𝑠𝑖 ∶ 𝑅 → 𝑅, so that 𝑥′
𝑖
is given by right multiplication by 𝑥𝑖+1, for example. Finally, the action of

𝜉𝑖 is given by the homotopy ℎ constructed in Lemma 5.5, the action of 𝜉𝑖+1 is the negative of this
homotopy, and 𝜉𝑘 acts by 0 for 𝑘 ≠ 𝑖, 𝑖 + 1. Let us verify that this indeed gives an action of  on
𝑇𝑖 .
Since all themaps appearing in the Rouquier complex aremaps of 𝑅-bimodules, they commute

with both the left and right action of 𝑅, as needed. Any symmetric polynomial is, in particular,
symmetric in the 𝑖 and 𝑖 + 1-st variables, so the left and right actions of symmetric polynomials
on 𝑇𝑖 coincide. This verifies that we have an action of 𝐵 = 𝑅 ⊗𝑅𝑆𝑛 𝑅 with trivial differential.
By definition of the action and Lemma 5.5, we have 𝑑𝜉𝑖 = 𝑥𝑖 − 𝑥′𝑖 , and 𝑑𝜉𝑖+1 = 𝑥𝑖+1 − 𝑥

′
𝑖+1
. The

twist 𝑠𝑖 fixes every other variable, and the left and right actions of every other variable on 𝑇𝑖 and
on 𝑅 coincide. Thus, for 𝑘 ≠ 𝑖, 𝑖 + 1 we get 𝑑𝜉𝑘 = 0 = 𝑥𝑘 − 𝑥′𝑘, as needed.
Finally, we need to check that

∑𝑛
𝓁=1 ℎ𝑘−1(𝑥𝓁 , 𝑥

′
𝓁)𝜉𝓁 acts by 0. Since 𝜉𝓁 acts by 0 unless 𝓁 = 𝑖, 𝑖 +

1, we simply get ℎ𝑘−1(𝑥𝑖, 𝑥′𝑖 )𝜉𝑖 + ℎ𝑘−1(𝑥𝑖+1, 𝑥
′
𝑖+1
)𝜉𝑖+1. But the action is defined so that 𝜉𝑖+1 = −𝜉𝑖 ,

and this further simplifies as (ℎ𝑘−1(𝑥𝑖, 𝑥𝑖′ ) − ℎ𝑘−1(𝑥𝑖+1, 𝑥′𝑖+1))𝜉𝑖+1. On 𝐵𝑖 this is zero because 𝜉𝑖+1
is already zero there. On 𝑅, we get:

ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 ) − ℎ𝑘−1(𝑥𝑖+1, 𝑥

′
𝑖+1) = ℎ𝑘−1(𝑥𝑖, 𝑥𝑖+1) − ℎ𝑘−1(𝑥𝑖+1, 𝑥𝑖) = 0. □

Example 5.15. Let us construct the action of the dg algebra on the Rouquier complex for 𝜎2.
Thanks to Lemma 5.14, we get an action of⊗ on 𝑇 ⊗ 𝑇 = 𝜎2. Composing with the coprod-

uct map of Lemma 5.13 , this induces an action of on 𝑇 ⊗ 𝑇 = 𝜎2. Let us be more explicit. The
action of 𝑢1 has to be 0, because 𝑢1 acts by zero on 𝑇 and Δ(𝑢1) = 𝑢1 ⊗ 1 + 1 ⊗ 𝑢1. The action of
𝑥𝑖 (respectively, 𝑥′𝑖 ) is given by left (respectively, right) multiplication by 𝑥𝑖 . The action of 𝜉1 is the
homotopy of Example 5.6 and the action of 𝜉2 the negative of this. Finally, by degree considerations
𝑢2 can only be nonzero on 𝑅, and there it is the map 𝑅 → 𝐵 constructed in Lemma 3.8.

That 𝑑𝑥1 = 𝑑𝑥2 = 𝑑𝑥′1 = 𝑑𝑥
′
2 = 0 follows because all the maps involved in the complex 𝐵 →

𝐵 → 𝑅 are bimodule homomorphisms. That 𝑑𝜉1 = 𝑥1 − 𝑥′1 and 𝑑𝜉2 = −𝑑𝜉1 = 𝑥2 − 𝑥
′
2 is essen-

tially Example 5.6 above. So, we only need to check the relation 𝑑𝑢2 = (𝑥1 + 𝑥′1)𝜉1 + (𝑥2 + 𝑥
′
2)𝜉2.

Note that the right-hand side is zero, while the left-hand side is the composition of the maps

𝑅⟶ 𝐵
𝑥1−𝑥

′
1

⟶ 𝐵. To check that it is zero, it suffices to check that it is zero when evaluated at 1.
Here, we have:

(𝑥1 − 𝑥
′
1)(𝑥1 ⊗𝑅𝑠 1 − 1 ⊗𝑅𝑠 𝑥2) = 𝑥

2
1 ⊗𝑅𝑠 1 − 𝑥1 ⊗𝑅𝑠 𝑥2 − 𝑥1 ⊗𝑅𝑠 𝑥1 + 1 ⊗𝑅𝑠 𝑥1𝑥2

= (𝑥21 + 𝑥1𝑥2) ⊗𝑅𝑠 1 − 𝑥1 ⊗𝑅𝑠 (𝑥1 + 𝑥2)

= (𝑥21 + 𝑥1𝑥2 − 𝑥1(𝑥1 + 𝑥2)) ⊗𝑅𝑠 1 = 0.

Remark 5.16. Note that, similarly to Example 5.15, 𝑢1 acts by zero on any Rouquier complex 𝑇𝛽 .

To sum up Theorem 5.12, there is an action of interesting operators 𝜉𝑖, 𝑢𝑘 on Rouquier com-
plexes 𝑇𝛽 but these do not commute with the differential on 𝑇𝛽 . To resolve this issue, we use the
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566 GORSKY et al.

𝑦-ified complex with the differential

𝐷 = 𝑑 +
𝑛∑
𝑖=1

𝜉𝑖𝑦𝑖

and define

𝐹𝑘 = 𝑢𝑘 +
𝑛∑
𝑖=1

ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 )
𝜕
𝜕𝑦𝑖

.

Then we get the following:

Theorem 5.17 [49].

(a) We have

[𝐷, 𝐹𝑘] = 0, [𝐹𝑘, 𝐹𝑙] = 0,

[𝐹𝑘, 𝑥𝑖] = 0, [𝐹𝑘, 𝑦𝑖] = ℎ𝑘−1(𝑥𝑖, 𝑥
′
𝑖 ).

In particular, 𝐹𝑘 define a family of commuting operators onHY(𝛽).
(b) The operator 𝐹2 satisfies a ‘hard Lefschetz’ condition and lifts to an action of 𝔰𝔩2 on HY(𝛽). As

a corollary,HY(𝛽) is symmetric.

For knots, we haveHY(𝛽) = HHH(𝛽) ⊗ ℂ[𝑥, 𝑦], soHHH(𝛽) is symmetric aswell. Thiswas con-
jectured by Dunfield, Gukov, and Rasmussen in [29], see Example 3.28 for the visually symmetric
representation of HHH(𝑇(3, 4)), and Examples 3.18 and 3.23 for HHH(𝑇(2, 𝑛)).
Note that the ‘curious hard Lefschetz’ property in the homology of positroid varieties was

established in [36, 83].

5.4 Geometric analogue

The construction of the operators 𝑢𝑘 and 𝐹𝑘 via the coproduct on is similar to (and motivated
by) the construction of the tautological classes on character varieties [10, 11, 72, 89] which we
briefly recall in this section. Let 𝐺 = 𝐺𝐿(𝑛) and let 𝑄 be a symmetric function in 𝑛 variables of
degree 𝑟. Then one can use the Bott–Shulman–Stasheff construction [72] to obtain the following
differential forms and cohomology classes:

Φ0(𝑄) ∈ 𝐻
2𝑟(𝐵𝐺), Φ1(𝑄) ∈ Ω

2𝑟−1(𝐺), Φ2(𝑄) ∈ Ω
2𝑟−2(𝐺 × 𝐺)…

such that 𝑑Φ1(𝑄) = 0 (so that Φ1(𝑄) defines a cohomology class on 𝐺) and

𝑑Φ2(𝑄) = 𝜋
∗
1Φ1(𝑄) + 𝜋

∗
2Φ1(𝑄) − 𝑚

∗Φ1(𝑄),

where𝑚 ∶ 𝐺 × 𝐺 → 𝐺 is the multiplication map.
One can think of these classes as follows: first, recall that the cohomology of𝐵𝐺 is isomorphic to

the 𝐺-equivariant cohomology of a point, and to ℂ[𝔤]𝐺 ≃ ℂ[𝑥1, … , 𝑥𝑛]𝑆𝑛 , so a symmetric function
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 567

𝑄 naturally defines a cohomology class Φ0(𝑄). In particular, the cohomology of 𝐵𝐺 = 𝐵𝐺𝐿(𝑛) is
a free polynomial algebra generated in degrees 2, 4, … , 2𝑛.
Next, we consider the Leray spectral sequence

𝐻∗(𝐺) ⊗ 𝐻∗(𝐵𝐺) ⇒ 𝐻∗(𝐸𝐺) = ℂ

associated to the universal fibration 𝐸𝐺 → 𝐺. The class [Φ1(𝑄)] ∈ 𝐻2𝑟−1(𝐺) is characterized by
the fact that it kills Φ0(𝑄) ∈ 𝐻2𝑟(𝐵𝐺) in this spectral sequence. We refer to [72] for an explicit
construction of the differential form Φ1(𝑄) representing this cohomology class. In particular,
the cohomology of 𝐺𝐿(𝑛) is a free polynomial algebra generated by anticommuting variables in
degrees 1, 3, … , 2𝑛 − 1.
The form Φ2(𝑄) corresponds to the equation

𝑚∗[Φ1(𝑄)] = 1 ⊗ [Φ1(𝑄)] + [Φ1(𝑄)] ⊗ 1. (5.2)

Although this equation holds in cohomology (where𝑚∗ ∶ 𝐻∗(𝐺) → 𝐻∗(𝐺) ⊗ 𝐻∗(𝐺)), it does not
hold for the actual differential formsΦ1(𝑄) on the nose. The difference between the left and right-
hand sides in (5.2) can be then written as 𝑑Φ2(𝑄) and it turns out that such Φ2(𝑄) can be written
explicitly. We refer to [11, 72, 89] for more details and explicit formulae for Φ1(𝑄) and Φ2(𝑄).

Example 5.18. If 𝑄 =
∑
𝑥2
𝑖
, then

Φ2(𝑄) = Tr(𝑓
−1𝑑𝑓 ∧ 𝑑gg−1).

These forms can be used for ‘gluing’ various𝐺-valued functions. Given𝑓 ∶ 𝑋 → 𝐺 and g ∶ 𝑌 →
𝐺 for some 𝑋 and 𝑌, assume that

𝑓∗Φ1(𝑄) = 𝑑𝜔𝑋, g∗Φ1(𝑄) = 𝑑𝜔𝑌,

then we can define a new form

𝜔𝑋×𝑌 = 𝜔𝑋 + 𝜔𝑌 + (𝑓 × g)∗Φ2(𝑄) ∈ Ω
2𝑟−2(𝑋 × 𝑌). (5.3)

It follows from the above that

𝑑𝜔𝑋×𝑌 = (𝑓 ⋅ g)∗Φ1(𝑄).

Equation (5.3) is similar to the construction of the coproduct on . Mellit [90] used this con-
struction with 𝑄 =

∑
𝑥2
𝑖
, cf. Example 5.18, to define a 2-form on an arbitrary braid variety 𝑋(𝛽).

Note that the 2-form on 𝑋(𝛽) is closed, since Φ2(𝑄) vanishes on upper-triangular matrices, but
we cannot expect it to be symplectic in general, since dim(𝑋(𝛽)) is not necessarily even. However,
Mellit takes a closed subvariety 𝑌(𝛽) ⊆ 𝑋(𝛽) by fixing the diagonal of the matrix 𝐵𝛽 , and takes
the quotient𝑌(𝛽) ∶= 𝑌(𝛽)∕𝑇 by the action of an appropriate torus 𝑇, see [90, Definition 5.3.7] for
details.

Theorem 5.19 [90]. The above construction produces a symplectic form on 𝑌(𝛽) which satisfies
‘curious hard Lefschetz’ with respect to the weight filtration in cohomology.
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568 GORSKY et al.

6 ALGEBRAIC LINKS AND AFFINE SPRINGER THEORY

6.1 Algebraic links

Let 𝑓(𝑥, 𝑦) be a polynomial in two variables. Consider the plane curve𝐶 = {𝑓(𝑥, 𝑦) = 0} ⊂ ℂ2. We
assume that 𝐶 passes through the origin and has a singular point there.
Consider the intersection 𝐿 = 𝐶 ∩ 𝑆3𝜀 of 𝐶 with a small three-sphere with center at the origin

and radius 𝜀. It is a classical result of Milnor [93] that for 𝜀 small enough the intersection is trans-
verse (so that 𝐿 is a smooth link in 𝑆3) and the topological type of 𝐿 does not depend on 𝜀. Such
links are called algebraic links.

Example 6.1. The node {𝑥𝑦 = 0} corresponds to the Hopf link (that is, the (2,2) torus link). The
cusp {𝑥2 = 𝑦3} corresponds to the trefoil knot, that is,𝑇(2, 3).More generally, the singularity {𝑥𝑚 =
𝑦𝑛} corresponds to a positive (𝑚, 𝑛) torus link which has 𝑑 = 𝐺𝐶𝐷(𝑚, 𝑛) components.

It is known that (local) irreducible components of 𝐶 at the origin correspond to the connected
components of the link 𝐿. In particular, if 𝐶 is irreducible (and reduced) then 𝐿 is an algebraic
knot with one component. Such knots are classified in [30] and are all iterated cables of torus
knots. The cabling parameters correspond to the Puiseux expansion of 𝐶. For links with more
components, the classification is more complicated, and we refer to [30] for all details.

6.2 Oblomkov–Rasmussen–Shende conjectures

Oblomkov, Rasmussen, and Shende proposed a remarkable conjecture relating the singular curves
to Khovanov–Rozansky homology. Recall that the Hilbert scheme of 𝑛 points on 𝐶 consists of ide-
als 𝐼 ⊂ 𝐶 such that dim𝐶∕𝐼 = 𝑛. We will also consider the local version of the Hilbert scheme
where the ideals are contained in 𝐶,0 =

ℂ[[𝑥,𝑦]]
𝑓(𝑥,𝑦)

.

Conjecture 6.2 [97]. One has

HHH0(𝐿) =
∞⨁
𝑘=0

𝐻∗(Hilb𝑘(𝐶, 0)).

Here the right-hand side is bigraded by the number of points 𝑘 and the homological degree, and the
two gradings are related to the gradings on the left-hand side by an explicit change of variables.

Remark 6.3. In [97], there is also a conjectural model for higher Hochschild degrees using slightly
more complicated moduli spaces.

In the next few examples, we will verify Conjecture 6.2 in some special cases.

Example 6.4. Let us describe the Hilbert schemes Hilb𝑛(𝐶, 0) for the node {𝑥𝑦 = 0}, which
corresponds to the Hopf link 𝐿 = 𝑇(2, 2).
First, we note that a (topological) basis of 𝐶,0 is given by the monomials

1, 𝑥, 𝑥2, 𝑥3, … , 𝑦, 𝑦2, 𝑦3, … . Now we claim that a nonzero ideal 𝐼 ⊆ 𝐶,0 satisfies exactly one
of the three following properties.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 569

(a) It is properly contained in ℂ[[𝑥]] ⊆ 𝐶,0.
(b) It is properly contained in ℂ[[𝑦]] ⊆ 𝐶,0.
(c) It has finite codimension.

The ideals in (a) are precisely those of the form (𝑥𝑛) for 𝑛 > 0, they are properly contained
in ℂ[[𝑥]] thanks to the relation 𝑦𝑥 = 0 and they do not have finite codimension, as ℂ[[𝑦]] ⊆
𝐶,0∕(𝑥

𝑛). The ideals in (b) are similarly described. Finally, if an ideal 𝐼 is not properly contained
in ℂ[[𝑥]] nor in ℂ[[𝑦]], then there exist 𝑚, 𝑛 such that 𝑥𝑚, 𝑦𝑛 ∈ 𝐼. But then the quotient 𝐶,0∕𝐼
is spanned by 1, 𝑥, … , 𝑥𝑚−1, 𝑦, … , 𝑦𝑛−1, so 𝐼 has finite codimension. We will now focus on ideals
satisfying (c).
We claim that every ideal of finite codimension is either principal, of the form (𝛼𝑥𝑖 + 𝛽𝑦𝑗) for

𝛼 ≠ 0, 𝛽 ≠ 0 or an ideal of the form (𝑥𝑖, 𝑦𝑗). Assume first that 𝐼 is principal, so 𝐼 = (𝑓). We may
also assume that 𝐼 ≠ 𝐶,0. Since 𝐼 has finite codimension, 𝑓 = g(𝑥) + ℎ(𝑦), where g(𝑥), ℎ(𝑦) ≠ 0.
Multiplying by a unit in ℂ[[𝑥]] and then by a unit in ℂ[[𝑦]], we see that 𝑓 may be assumed to be
of the form 𝛼𝑥𝑖 + 𝛽𝑦𝑗, where 𝑖 = 𝜈(g), 𝑗 = 𝜈(ℎ) are the valuations of g and ℎ, that is, the minimal
power of 𝑥 (respectively, 𝑦) that appears with nonzero coefficient in g (respectively, ℎ).
Now assume that 𝐼 is not principal, say 𝐼 = (𝛼𝑘𝑥𝑖𝑘 + 𝛽𝑘𝑦𝑗𝑘 ) for some 𝑘 > 1. Note that (𝛼𝑥𝑖 +

𝛽𝑦𝑗) ⊇ (𝛼′𝑥𝑚 + 𝛽′𝑦𝑛) if 𝑖 < 𝑚 and 𝑗 < 𝑛. From here, we can see that every non-principal ideal is
of the form (𝑥𝑖, 𝑦𝑗).
Now, 𝐶,0∕(𝑥𝑖, 𝑦𝑗) has basis 1, 𝑥, … , 𝑥𝑖−1, 𝑦, … , 𝑦𝑗−1, so (𝑥𝑖, 𝑦𝑗) ∈ Hilb𝑖+𝑗−1(𝐶, 0). On the other

hand, note that (𝛼𝑥𝑖 + 𝛽𝑦𝑗) contains both 𝑥𝑖+1 and 𝑦𝑗+1. Fromhere, we can see that (𝛼𝑥𝑖 + 𝛽𝑦𝑗) ∈
Hilb𝑖+𝑗(𝐶, 0).
Finally, since all the ideals of the form (𝛼𝑥𝑖 + 𝛽𝑦𝑗) with 𝛼, 𝛽 ≠ 0 contain 𝑦𝑗+1 and 𝑥𝑖+1, we see

that

lim
𝛼→0

(𝛼𝑥𝑖 + 𝛽𝑦𝑗) = (𝑥𝑖+1, 𝑦𝑗), lim
𝛽→0

(𝛼𝑥𝑖 + 𝛽𝑦𝑗) = (𝑥𝑖, 𝑦𝑗+1),

so that {(𝛼𝑥𝑖 + 𝛽𝑦𝑗), (𝑥𝑖+1, 𝑦𝑗), (𝑥𝑖, 𝑦𝑗+1) ∣ 𝛼, 𝛽 ≠ 0} = ℙ1 ⊆ Hilb𝑖+𝑗(𝐶, 0), and we get that for 𝑛 >
1, Hilb𝑛(𝐶, 0) is a chain of 𝑛 − 1 projective lines ℙ1, dual to the 𝐴𝑛 Dynkin diagram, where each
ℙ1 corresponds to a way of writing 𝑛 as a sum of two positive integers. The remaining cases,
Hilb1(𝐶, 0) and Hilb0(𝐶, 0) are clearly just points.
Let us verify Conjecture 6.2 in this case. The generating function for the Poincaré polynomials

of Hilb𝑘(𝐶, 0) equals

∑
𝑘,𝑖

𝑞𝑘𝑡𝑖 dim𝐻𝑖(Hilb𝑘(𝐶, 0)) = 1 + 𝑞 + 𝑞2(1 + 𝑡2) + 𝑞3(1 + 2𝑡2) +⋯ =
1

1 − 𝑞
+

𝑞2𝑡2

(1 − 𝑞)2
.

This agrees with the Poincaré polynomial of HHH0(𝐿), computed in Example 3.23, up to the
change of variables 𝑡 ↦ 1∕𝑞𝑡2 and the computation in Example 3.26 up to the change of variables
𝑡 ↦ 1∕𝑞2𝑡.

Example 6.5. Let us describe the Hilbert schemes for the cusp {𝑥3 = 𝑦2} which we can
parameterize by 𝑥 = 𝑡2, 𝑦 = 𝑡3 so that 𝐶,0 = ℂ[[𝑡2, 𝑡3]].
First, we claim that a nonzero ideal 𝐼 ⊆ ℂ[[𝑡2, 𝑡3]] has finite codimension. Let 𝐼 be such an

ideal and 0 ≠ 𝑓 ∈ 𝐼. Let g(𝑡) ∈ ℂ[[𝑡]] be a unit such that g𝑓 = 𝑡𝑘. Note that g(𝑡) may not belong
to ℂ[[𝑡2, 𝑡3]] but 𝑡2g does. Thus, 𝑡𝑘+2 ∈ 𝐼, and we have proved that every nonzero ideal contains a
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570 GORSKY et al.

monomial. It remains to observe that ℂ[[𝑡2, 𝑡3]]∕(𝑡𝑘) has 1, 𝑡2, 𝑡3, … , 𝑡𝑘−1, 𝑡𝑘+1 as a basis, so every
ideal generated by a monomial is finite codimensional and the claim follows.
Now we claim that every proper ideal in ℂ[[𝑡2, 𝑡3]] is either principal, of the form (𝑡𝑘 + 𝜆𝑡𝑘+1)

for some 𝜆 ∈ ℂ, or of the form (𝑡𝑘, 𝑡𝑘+1). Assume first that 𝐼 is principal, say 𝐼 = (𝑓). Let 𝑘 =
𝜈(𝑓). We have seen in the paragraph above that 𝑡𝑘+2, 𝑡𝑘+3,⋯ ∈ 𝐼, so we may assume 𝑓 has the
form 𝑡𝑘 + 𝜆𝑡𝑘+1, as needed. Now note that (𝑡𝓁 + 𝜇𝑡𝓁+1) ⊆ (𝑡𝑘 + 𝜆𝑡𝑘+1) if 𝓁 > 𝑘 + 1. From here, it
follows that the non-principal ideals have the form (𝑡𝑘, 𝑡𝑘+1).
Now note that ℂ[[𝑡2, 𝑡3]]∕(𝑡𝑘, 𝑡𝑘+1) has basis 1, 𝑡2, 𝑡3, … , 𝑡𝑘−1, so we have that (𝑡𝑘, 𝑡𝑘+1) ∈

Hilb𝑘−1(𝐶, 0). On the other hand, ℂ[[𝑡2, 𝑡3]]∕(𝑡𝑘 + 𝜆𝑡𝑘+1) has basis 1, 𝑡2, 𝑡3, … , 𝑡𝑘−1, 𝑡𝑘+1, and
(𝑡𝑘 + 𝜆𝑡𝑘+1) ∈ Hilb𝑘(𝐶, 0).
To conclude, we have that Hilb0(𝐶, 0) and Hilb1(𝐶, 0) are both points, while for 𝑘 ⩾ 2

Hilb𝑘(𝐶, 0) = {(𝑡𝑘 + 𝜆𝑡𝑘+1), (𝑡𝑘+1, 𝑡𝑘+2) ∣ 𝜆 ∈ ℂ} = ℙ1.

The generating function has the form

1 + 𝑞 + 𝑞2(1 + 𝑡2) + 𝑞3(1 + 𝑡2) +⋯ =
1 + 𝑞2𝑡2

1 − 𝑞
,

which again coincideswith the Poincaré polynomial ofHHH0(𝑇(2, 3)), computed in Example 3.23
up to the change of variables 𝑡 ↦ 1∕𝑞2𝑡.

Example 6.6. Similarly to Example 6.5, let us describe theHilbert schemes for the curve {𝑥2𝑘+1 =
𝑦2}. Let us, first, classify the principal ideals in ℂ[[𝑡2, 𝑡2𝑘+1]]. Just as in Example 6.5, we can see
that if 𝐼 = (𝑓) is a principal ideal then we may assume 𝑓 has the form 𝑓 = 𝑡𝑚 + 𝑎1𝑡

𝑚+1 +⋯ +
𝑎2𝑘−1𝑡

𝑚+2𝑘−1. Note, however, that we may multiply 𝑓 by powers of 𝑡2 to get rid of the monomials
of the form 𝑡𝑚+2𝑖 . Thus, the principal ideals of ℂ[[𝑡2, 𝑡2𝑘+1]] have the form:

(𝑡2 + 𝜆1𝑡
2𝑘+1) ∈ Hilb2(𝐶, 0)

(𝑡4 + 𝜆1𝑡
2𝑘+1 + 𝜆2𝑡

2𝑘+3) ∈ Hilb4(𝐶, 0)

⋮ ⋮

(𝑡2𝑘−2 + 𝜆1𝑡
2𝑘+1 +⋯ + 𝜆𝑘−1𝑡

2𝑘−2+2𝑘−1) ∈ Hilb2(𝑘−1)(𝐶, 0)

(𝑡𝑚 + 𝜆1𝑡
𝑚+1 + 𝜆𝑚+3𝑡 +⋯ + 𝜆𝑘𝑡

𝑚+2𝑘−1) ∈ Hilb𝑚(𝐶, 0),

where𝑚 ⩾ 2𝑘.
Assume now that 𝐼 is not principal, say 𝐼 = (𝑓𝑖)𝓁𝑖=1. We may assume that each 𝑓𝑖 has the form

stated above, that is, 𝑓𝑖 = 𝑡𝑚𝑖 + 𝜆𝑖,1𝑡𝑚𝑖+1 +⋯ + 𝜆𝑖,𝑘𝑡
𝑚𝑖+2𝑘−1. Note that if 𝑚1 ∶= min(𝑚𝑖), then 𝐼

already contains all monomials of the form 𝑡𝑚1+2𝑚+𝑗 . So, we may assume that 𝑚1 ⩽ 𝑚𝑖 ⩽ 𝑚1 +
2𝑘 − 1 for all 𝑖. Moreover, if 𝑚𝑖 = 𝑚𝑗 then we can replace (𝑓𝑖, 𝑓𝑗) by (𝑓𝑖, 𝑓𝑗 − 𝑓𝑖) and we get rid
of the 𝑡𝑚𝑗 term in 𝑓𝑗 . In other words, we may assume that 𝑚𝑖 ≠ 𝑚𝑗 if 𝑖 ≠ 𝑗. Moreover, if 𝑚𝑗 =
𝑚𝑖 + 2𝑝, then we can substitute (𝑓𝑖, 𝑓𝑗) with (𝑓𝑖, 𝑓𝑗 − 𝑡2𝑝𝑓𝑖) to get rid of the 𝑡

𝑚𝑗 term in 𝑓𝑗 . So,
we may assume that all 𝑚𝑖 ’s have different parity. To recap: an ideal is generated by at most 2
elements. We have

(𝑡2, 𝑡2𝑘+1) ∈ Hilb1(𝐶, 0)

(𝑡4, 𝑡2𝑘+1) ∈ Hilb2(𝐶, 0)
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 571

(𝑡4 + 𝜆1𝑡
2𝑘+1, 𝑡2𝑘+3) ∈ Hilb3(𝐶, 0)

(𝑡6, 𝑡2𝑘+1) ∈ Hilb3(𝐶, 0)

(𝑡6 + 𝜆1𝑡
2𝑘+1, 𝑡2𝑘+3) ∈ Hilb4(𝐶, 0,

(𝑡6 + 𝜆1𝑡
2𝑘+1 + 𝜆2𝑡

2𝑘+3, 𝑡2𝑘+5) ∈ Hilb5(𝐶, 0)

⋮ ⋮

(𝑡𝑚, 𝑡𝑚+1) ∈ Hilb𝑚−𝑘(𝐶, 0)

(𝑡𝑚 + 𝜆1𝑡
𝑚+1, 𝑡𝑚+3) ∈ Hilb𝑚−𝑘+1(𝐶, 0)

⋮ ⋮

(𝑡𝑚 + 𝜆1𝑡
𝑚+1 +⋯ + 𝜆𝑘−1𝑡

𝑚+2𝑘−3, 𝑡𝑚+2𝑘−1) ∈ Hilb𝑚−1(𝐶, 0).

Let us briefly justify why we can assume the second generator, of higher degree, is simply a
monomial. We do this in the case 𝐼 = (𝑡𝑚, 𝑡𝑚+1), which is the most involved one. We will make
heavy use of the fact that 𝑡𝑚+2𝑘ℂ[[𝑡]] ⊆ 𝐼. A priori, we have the ideal

(𝑡𝑚 + 𝜆1𝑡
𝑚+1 +⋯ + 𝜆𝑘𝑡

𝑚−2𝑘+1, 𝑡𝑚+1 + 𝜇1𝑡
𝑚+2 + 𝜇2𝑡

𝑚+4 +⋯ + 𝜇𝑘−1𝑡
𝑚+2𝑘−2).

We can multiply 𝑓 ∶= 𝑡𝑚 + 𝜆1𝑡𝑚+1 +⋯ + 𝜆𝑘𝑡
𝑚−2𝑘+1 by 𝜇𝑘−1𝑡2𝑘−2 and subtract to g ∶= 𝑡𝑚+1 +

𝜇1𝑡
𝑚+2 + 𝜇2𝑡

𝑚+4 +⋯ + 𝜇𝑘−1𝑡
𝑚+2𝑘−2 to get rid of the 𝜇𝑘−1𝑡𝑚+2𝑘−2 term. This introduces a mono-

mial of the form 𝑡𝑚+2𝑘−1 in g . But now we can multiply g by a scalar multiple of 𝑡2𝑘−2 to get rid of
this term, too. We have substituted g by g1 = 𝑡𝑚+1 + 𝜇1𝑡𝑚+2 + 𝜇2𝑡𝑚+4 +⋯ + 𝜇𝑘−2𝑡

𝑚+2𝑘−4. Note
that the coefficients 𝜇1, 𝜇2, … , 𝜇𝑘−2 have not changed.
Now we can do the same trick and multiply 𝑓 by an appropriate scalar multiple of 𝑡2𝑘−4 to

get rid of the 𝑡2𝑘−4 term in g1. This will introduce 𝑡𝑚+2𝑘−3 and 𝑡𝑚+2𝑘−1 terms. As we have seen
before, we can easily get rid of the 𝑡𝑚+2𝑘−1 term. If we want to get rid of the 𝑡𝑚+2𝑘−3 term, we will
introduce a 𝑡𝑚+2𝑘−2 term, without introducing any new 𝑡𝑚+2𝑘−4 terms. But we have seen that we
can get rid of the 𝑡𝑚+2𝑘−2 term. We can then use recursion to reduce g to simply 𝑡𝑚+1. Then use
this monomial to simplify 𝑓 to just 𝑡𝑚. Thus, we get: Hilb0(𝐶, 0) and Hilb1(𝐶, 0) are both points,
while:

Hilb2(𝐶, 0) = {(𝑡2 + 𝜆1𝑡
2𝑘+1)} ∪ {(𝑡4, 𝑡2𝑘+1)}

Hilb3(𝐶, 0) = {(𝑡4 + 𝜆1𝑡
2𝑘+1, 𝑡2𝑘+3)} ∪ {(𝑡6, 𝑡2𝑘+1)}

Hilb4(𝐶, 0) = {(𝑡4 + 𝜆1𝑡
2𝑘+1 + 𝜆2𝑡

2𝑘+3)} ∪ {(𝑡6 + 𝜆1𝑡
2𝑘+1, 𝑡2𝑘+3)} ∪ {(𝑡8, 𝑡2𝑘+1)}

⋮

Hilb𝑚(𝐶, 0) = {(𝑡𝑚 + 𝜆1𝑡
𝑚+1 + 𝜆𝑚+3𝑡 +⋯ + 𝜆𝑘𝑡

𝑚+2𝑘−1)} ∪

{(𝑡𝑚+1 + 𝜆1𝑡
𝑚+2 +⋯ + 𝜆𝑘−1𝑡

𝑚+2𝑘−2, 𝑡𝑚+2𝑘)} ∪⋯ ∪ {(𝑡𝑚+𝑘, 𝑡𝑚+𝑘+1)}

for 𝑚 ⩾ 2𝑘. So, we can pave Hilb𝑚(𝐶, 0) by affine spaces, and the closure of each one of these
affine spaces equals the union of the affine spaces of smaller or equal dimension. Thus, we see
that Hilb2,Hilb3 are homeomorphic to ℙ1, Hilb4,Hilb5 have the homology of ℙ2, … , Hilb𝑚 have
the homology of ℙ𝑘 for𝑚 ⩾ 2𝑘 (and, in fact, Hilb𝑚 ≅ Hilb𝑛 for𝑚, 𝑛 ⩾ 2𝑘).
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572 GORSKY et al.

The generating function has the form

1 + 𝑞 + (𝑞2 + 𝑞3)(1 + 𝑡2) + (𝑞4 + 𝑞5)(1 + 𝑡2 + 𝑡4) +⋯ + 𝑞2𝑘(1 + 𝑡2 +⋯ + 𝑡2𝑘) +⋯

=
1 + 𝑞2𝑡2 + 𝑞4𝑡4 +⋯ + 𝑞2𝑘𝑡2𝑘

1 − 𝑞
.

Up to the change of variables 𝑡 ↦ 1∕𝑞𝑡2, this again coincides with the Poincaré polynomial of
HHH𝑎=0(𝑇(2, 2𝑘 + 1)) computed in Example 3.23.

In Examples 6.4–6.6, we have verified Conjecture 6.2 for the Hopf link as well as for positive
(2, 2𝑘 + 1)-torus knots. However, Conjecture 6.2 is wide open in general. Here we collect some
facts and references for partial results.

(a) By a remarkable result of Maulik [86], the generating function for the Euler characteristics of
the Hilbert schemes matches the HOMFLY-PT polynomial:

∞∑
𝑘=0

𝑞𝑘𝜒(Hilb𝑘(𝐶, 0)) = HOMFLY − PT(𝐿; 𝑞, 𝑎 = 0).

(b) For torus knots, both sides can be computed combinatorially and compared. The Khovanov–
Rozansky homology is computed by Theorem 3.25, while Hilb𝑘(𝐶, 0) has an explicit paving
by affine cells. The combinatorial formula for the dimension of these cells is given in [97]
(see more details below), this yields an explicit formula for the Poincaré polynomial of the
homology.

(c) Recall that for an 𝑟-component link 𝐿 its homologyHHH0(𝐿) has a natural action of the poly-
nomial algebraℂ[𝑥1, … , 𝑥𝑟]. For 𝑟 = 1, this action on theHilbert scheme side was constructed
in [87, 92, 113] and for 𝑟 > 1 it was constructed in [78]. Roughly speaking, the operator 𝑥𝑖 adds
a point on 𝑖th component of the curve 𝐶, but one needs to use a versal deformation of 𝐶 to
make it precise. We refer to [78] for more details.

6.3 Affine Springer theory

Next, we would like to give yet another interpretation of Hilb𝑛(𝐶, 0) using geometric representa-
tion theory. Let us choose a projection of 𝐶 to some line, and let 𝑛 be the degree of this projection.
We will regard the line as a local model for the ‘base curve’ and 𝐶 as a ‘spectral curve’.

Remark 6.7. The choice of the projection naturally splits the unit sphere in ℂ2 as a union of two
solid tori. Indeed, the equation of the sphere is |𝑥|2 + |𝑦|2 = 𝜀2 and the solid tori are |𝑥|2 ⩽ 𝜀2

2
and|𝑦|2 ⩽ 𝜀2

2
. For 𝜀 small the intersection of 𝐶 with a sphere defines a closed 𝑛-strand braid which is

contained in one of the tori. This is known as a braid monodromy construction, see, for example,
[4], and references therein.

We will use the following results.

Lemma 6.8. Let 𝐶 be a germ of an arbitrary plane curve (possibly non-reduced) given by the
equation {𝑓(𝑥, 𝑦) = 0}.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 573

(a) One can replace 𝑓(𝑥, 𝑦) by a polynomial of some degree 𝑛 in 𝑥 with coefficients given by power
series in 𝑦.

(b) A (topological) basis in𝐶,0 is given by monomials of the form 𝑥𝑎𝑦𝑏, 𝑎 ⩽ 𝑛 − 1. In other words,
𝐶,0 is a free ℂ[[𝑦]]–module of rank 𝑛 with basis 1, … , 𝑥𝑛−1.

(c) The multiplication by 𝑥 and 𝑦 in this basis is given by the matrices:

𝑌 ↦

⎛⎜⎜⎜⎜⎜⎝

𝑦 0 0 ⋯ 0
0 𝑦 0 ⋯ 0
0 0 𝑦 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑦

⎞⎟⎟⎟⎟⎟⎠
, 𝑋 ↦

⎛⎜⎜⎜⎜⎜⎝

0 0 0 ⋯ −𝑓0(𝑦)
1 0 0 ⋯ −𝑓1(𝑦)
0 1 0 ⋯ −𝑓2(𝑦)
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ −𝑓𝑛−1(𝑦)

⎞⎟⎟⎟⎟⎟⎠
In particular, the characteristic polynomial of the secondmatrix equals det(𝑋 − 𝑥 ⋅ 𝐼) = 𝑓(𝑥, 𝑦).

Proof.

(a) We may assume that 𝑓(0, 0) = 0. The Weierstrass preparation theorem says that in the local
ring ℂ[[𝑥, 𝑦]] we can write 𝑓 as

𝑓 = 𝑢(𝑥𝑛 + 𝑓𝑛−1(𝑦)𝑥
𝑛−1 +⋯ + 𝑓0(𝑦)),

where 𝑢 is a unit and 𝑓𝑛−1(𝑦), … , 𝑓0(𝑦) ∈ ℂ[[𝑦]]. Thus, we can write the local ring 𝐶,0 =
ℂ[[𝑥, 𝑦]]∕(𝑓) as ℂ[[𝑥, 𝑦]]∕(𝑥𝑛 +⋯ + 𝑓0(𝑦)). The value 𝑛 is the degree of the projection of the
curve 𝑓(𝑥, 𝑦) = 0 to the 𝑦-axis (that is, the number of solutions of 𝑓(𝑥, 𝑦0) = 0 for generic 𝑦0).

(b) Thanks to part (a), we may replace 𝑓 by a polynomial of the form 𝑥𝑛 + 𝑓𝑛−1(𝑦)𝑥
𝑛−1 +

⋯ + 𝑓0(𝑦). Thus, 𝐶,0 is the quotient of the algebra ℂ[[𝑥, 𝑦]] modulo the relation 𝑥𝑛 =
−𝑓𝑛−1(𝑦)𝑥

𝑛−1 −⋯ − 𝑓0𝑦. It is easy to see that this is a free ℂ[[𝑦]]-module with basis
1, 𝑥, 𝑥2, … , 𝑥𝑛−1.

(c) Clearly, 𝑦(𝑥𝑎𝑦𝑏) = 𝑥𝑎𝑦𝑏+1, while

𝑥(𝑥𝑎𝑦𝑏) =

{
𝑥𝑎+1𝑦𝑏 𝑎 < 𝑛 − 1

(−𝑓𝑛−1(𝑦)𝑥
𝑛−1 −⋯ − 𝑓0(𝑦))𝑦

𝑏 𝑎 = 𝑛 − 1,

which coincides with the formula in part (c). □

Remark 6.9. Note that in this presentation the roles of 𝑥 and 𝑦 are not symmetric, and the value
of 𝑛 depends on the choice of the projection.

Example 6.10. For the cusp 𝐶 = {𝑥2 = 𝑦3} we have 𝐶,0 = ℂ[[𝑥]]⟨1, 𝑦, 𝑦2⟩ so that
𝑌 =

⎛⎜⎜⎝
0 0 𝑥2

1 0 0
0 1 0

⎞⎟⎟⎠.
On the other hand, we can choose a different projection and write 𝐶,0 = ℂ[[𝑦]]⟨1, 𝑥⟩ so that

𝑋 =

(
0 𝑦3

1 0

)
.

In both cases, the characteristic polynomial equals (up to sign) 𝑥2 − 𝑦3.
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574 GORSKY et al.

We will use Lemma 6.8 to give a description of Hilb𝑁(𝐶, 0) when 𝑁 ≫ 0 and 𝐶 is irreducible,
see also Subsection 6.4. First, let us recall that for the group 𝑆𝐿𝑛 the affine Grassmannian is the
ind-variety

𝐺𝑟𝑆𝐿𝑛 ∶= 𝑆𝐿𝑛(ℂ((𝑥)))∕𝑆𝐿𝑛(ℂ[[𝑥]]).

The affine Grassmannian 𝐺𝑟𝑆𝐿𝑛 has the following interpretation. A lattice 𝑉 ⊆ ℂ((𝑥))𝑛 = ℂ𝑛((𝑥))
is a freeℂ[[𝑥]]-submodule of rank 𝑛 such that𝑉 ⊗ℂ[[𝑥]] ℂ((𝑥)) = ℂ𝑛((𝑥)). In other words, a lattice
𝑉 is theℂ[[𝑥]]-span of aℂ((𝑥))-basis (𝑣1, … , 𝑣𝑛) ofℂ𝑛((𝑥)). Let us say that a lattice𝑉 is of 𝑆𝐿𝑛-type
if we can find such a basis so that the determinant of the matrix with columns 𝑣1, … , 𝑣𝑛 is 1. It is
known then that the affine Grassmannian parameterizes such lattices,

𝐺𝑟𝑆𝐿𝑛 = {𝑉 ⊆ ℂ
𝑛((𝑥)) ∶ 𝑉 is a lattice of 𝑆𝐿𝑛-type}.

Remark 6.11. Of course, one can do a similar constructionwith𝐺𝐿𝑛 instead of 𝑆𝐿𝑛, and obtain that
the affine Grassmannian 𝐺𝑟𝐺𝐿𝑛 = 𝐺𝐿𝑛(ℂ((𝑥)))∕𝐺𝐿𝑛(ℂ[[𝑥]]) parameterizes all lattices in ℂ

𝑛((𝑥)).

Using this description, if 𝑌 is an 𝑛 × 𝑛-matrix with coefficients in ℂ((𝑥)) we can define the
affine Springer fiber

Sp𝑌 ∶=
{
𝑉 ∈ 𝐺𝑟𝑆𝐿𝑛 ∣ 𝑌𝑉 ⊆ 𝑉

}
⊆ 𝐺𝑟𝑆𝐿𝑛 .

We will be interested in the case when the matrix 𝑌 comes from a polynomial 𝑓(𝑥, 𝑦) via the
Weierstrass preparation theorem, as in Lemma 6.8 (with the roles of 𝑥 and 𝑦 interchanged) and
Example 6.10. In this case, the affine Springer fiber Sp𝑌 has the following properties.

(a) If (𝐶, 0) is irreducible then Sp𝑌 is isomorphic to the compactified Jacobian of 𝐶, that is, the
moduli space of rank 1 torsion-free sheaves ‘of degree zero’ on 𝐶 (see, for example, [87]). It is
also isomorphic to theHilbert schemeHilb𝑁(𝐶, 0) for𝑁 ≫ 0. In particular, Sp𝑌 is a projective
variety.

(b) If (𝐶, 0) has 𝑟 components then there is an action of ℤ𝑟−1 on Sp𝑌 by translations, and of
(ℂ∗)𝑟−1. In particular, Sp𝑌 is an ind-variety with infinitely many irreducible components, all
of the same dimension, which are permuted by the action of ℤ𝑟−1.

Remark 6.12. In the 𝐺𝐿𝑛-case we drop the degree condition in part (a) above, and in (b) we get
an action of ℤ𝑛. The 𝐺𝐿𝑛-affine Springer fibers can be interpreted as the compactified Picard
schemes of 𝐶, and in this generality are simply unions of ℤ = 𝜋1(𝐺𝐿𝑛) copies of the 𝑆𝐿𝑛-affine
Springer fibers.

Remark 6.13. Alternatively, one can define compactified Jacobian of (𝐶, 0) by considering a param-
eterization of the curve (𝑥(𝑡), 𝑦(𝑡)) so that 𝐶,0 = ℂ[[𝑥(𝑡), 𝑦(𝑡)]]. In this case, the compactified
Jacobian is the moduli space of 𝐶,0-submodules of ℂ[[𝑡]] up to a shift by a power of 𝑡.

If 𝐶 is irreducible and reduced, there is a deep cohomological relationship between the affine
Springer fiber/compactified Jacobian and the Hilbert schemes on (𝐶, 0), coming from the natural
Abel–Jacobi map interpreting ideal sheaves as torsion-free sheaves.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 575

Theorem 6.14 [87, 92]. One has

∞⨁
𝑘=0

𝐻∗(Hilb𝑘(𝐶, 0)) = gr𝑃𝐻
∗(Sp𝑌) ⊗ ℂ[𝑥],

where gr𝑃 refers to the associated graded with respect to a certain ‘perverse’ filtration on the
cohomology of Sp𝑌 .
Furthermore, there is an action of 𝔰𝔩2 on𝐻∗(Sp𝑌) satisfying ‘curious hard Lefshetz’ property with

respect to the perverse filtration.

Remark 6.15. A slightly weaker version of the theorem also holds for the reducible case with
appropriate modifications, as shown in [87, Theorem 3.11]. A representation-theoretic proof in
the irreducible case is given in [113].

The action of 𝔰𝔩2 is similar to the action on the cohomology of the braid variety (with weight
filtration) from Theorem 5.19 and to the action in link homology from Theorem 5.17.

Conjecture 6.16 Shende [120]. Let 𝐶 be an irreducible plane curve singularity, 𝐿 the correspond-
ing algebraic knot and 𝛽 the corresponding braid on 𝑛 strands. Then one has the isomorphism of
the compactly supported cohomology of the braid variety and the singular cohomology of the affine
Springer fiber

𝐻∗𝑐 (𝑋(𝛽Δ;𝑤0)∕(ℂ
∗)𝑛−1) ≃ 𝐻∗(Sp𝑌),

where the (halved) weight filtration on the left-hand side matches the perverse filtration on the right.

Remark 6.17. Conjecture 6.16 is closely related to the framework of so-called 𝑃 = 𝑊 conjectures
of de Cataldo–Hausel–Migliorini [24] relating the weight filtration on the cohomology of the
character varieties and their cousins (such as braid varieties) and the perverse filtration on the
cohomology of the Hitchin moduli spaces and their cousins (such as affine Springer fibers). We
refer to [24] for more context.

Example 6.18. Let 𝐶 = {𝑥2 = 𝑦2}, then

𝑋 =

(
0 𝑦2

1 0

)
.

The corresponding affine Springer fiber is an infinite chain of ℙ1, with the lattice ℤ acting
by translations.

Example 6.19. Let us compute the homology of the compactified Jacobian of the singularity
{𝑥𝑚 = 𝑦𝑛}. As in Remark 6.13, we are classifyingℂ[[𝑡𝑛, 𝑡𝑚]]-submodules𝑀 ⊆ ℂ[[𝑡]]. Any element
of ℂ[[𝑡]] has an order, that is, minimal degree in 𝑡 with a nonzero coefficient. Up to a shift by a
power of 𝑡, we can assume that such a module 𝑀 contains an element of order 0 in 𝑡. Let Γ𝑚,𝑛
denote the semigroup generated by𝑚 and𝑛, then for each element ofΓ𝑚,𝑛 there is a corresponding
element of 𝑀 and it is completely determined by the element of order 0. Also, Γ𝑚,𝑛 contains all
integers starting from (𝑚 − 1)(𝑛 − 1), hence 𝑡(𝑚−1)(𝑛−1)ℂ[[𝑡]] ⊂ 𝑀.We have the following cases.
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576 GORSKY et al.

(a) (𝑚, 𝑛) = (2, 3). We have Γ2,3 = {0, 2, 3, 4, …} and there are two types of ℂ[[𝑡2, 𝑡3]]–modules:

(1 + 𝜆𝑡), (1, 𝑡) = ℂ[[𝑡]].

The first family of modules forms an affine line, so altogether we get 𝐽𝐶2,3 = ℙ1.
(b) (𝑚, 𝑛) = (2, 2𝑘 + 1). We have

Γ2,2𝑘+1 = {0, 2, … , 2𝑘, 2𝑘 + 1, 2𝑘 + 2,…}

and there are the following types of ℂ[[𝑡2, 𝑡2𝑘+1]]–modules:

(1 + 𝜆1𝑡 +⋯ + 𝜆𝑘𝑡
2𝑘−1),

(1 + 𝜆1𝑡 +⋯ + 𝜆𝑘−1𝑡
2𝑘−3, 𝑡𝑘−1),

⋮

(1 + 𝜆1𝑡, 𝑡
3, … , 𝑡𝑘−1),

(1, 𝑡, 𝑡3, … , 𝑡𝑘−1) = ℂ[[𝑡]].

This yields a cell decomposition of the compactified Jacobian with one cell of dimensions
𝑘, 𝑘 − 1,… , 1, 0. The reader should compare this with Example 6.6.

(c) (𝑚, 𝑛) = (3, 4). We have

Γ3,4 = {0, 3, 4, 6, 7, …}

and there are the following types of ℂ[[𝑡3, 𝑡4]]–modules:

(1 + 𝜆1𝑡 + 𝜆2𝑡
2 + 𝜆3𝑡

5),

(1 + 𝜆1𝑡 + 𝜆2𝑡
2, 𝑡5),

(1 + 𝜆1𝑡, 𝑡
2, 𝑡5),

(1 + 𝜆1𝑡 + 𝜆2𝑡
2, 𝑡 + 𝜇𝑡2, 𝑡5),

(1, 𝑡, 𝑡2) = ℂ[[𝑡]].

In the fourth case we can change basis to

(1 + (𝜆2 − 𝜇𝜆1)𝑡
2, 𝑡 + 𝜇𝑡2, 𝑡5),

so we can assume 𝜆1 = 0 and there are two parameters 𝜇, 𝜆2. The compactified Jacobian then
has one 3-cell (first case), two 2-cells (second and fourth cases), one 1-cell and one 0-cell. It is
a singular 3-dimensional variety with homology given by the following table

𝐻0 𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6

𝑘 − 𝑝 = 0 1 0 1 0 1 0 1
𝑘 − 𝑝 = 1 0 0 0 0 1 0 0

The rows indicate the difference between the homological degree and the perverse filtra-
tion, so that 𝐻4 has rank 2 and nontrivial perverse filtration. This table matches the one in
Example 4.19.

For general coprime (𝑚, 𝑛) the compactified Jacobian of 𝐶 = {𝑥𝑚 = 𝑦𝑛} is always paved by
affine cells, and the dimensions of these cells can be computed by a combinatorial formula which

 14692120, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12761 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 577

can be written in several different ways [52–54, 67, 84, 109]. We will not write an explicit formula
but mention the following:

Lemma 6.20. The Euler characteristic of the compactified Jacobian of 𝐶 = {𝑥𝑚 = 𝑦𝑛} equals the
rational Catalan number:

𝑐𝑚,𝑛 =
(𝑚 + 𝑛 − 1)!

𝑚!𝑛!
=

1
𝑚 + 𝑛

(
𝑚 + 𝑛
𝑛

)
.

Proof. The naturalℂ∗-action on the curve lifts to theℂ∗ action on theHilbert scheme of points and
on the compactified Jacobian. It is easy to see that (if𝑚, 𝑛 are coprime) the only fixed points of this
action are ideals (respectively, submodules) generated by monomials in 𝑡. The fixed points in the
compactified Jacobian then correspond (up to translation by an integer) to the subsets Δ ⊂ ℤ⩾0
which are invariant under both shifts by𝑚 and 𝑛, that is,Δ +𝑚 ⊂ Δ,Δ + 𝑛 ⊂ Δ. There are several
ways to enumerate such subsets, here is one.
Sincewe are considering invariant subsets ofℤ⩾0 up to translation by an integer,wemay assume

that 0 ∈ Δ, so that the whole semigroup Γ𝑚,𝑛 is contained in Δ. Consider the𝑚 × 𝑛 rectangle and
fill it with numbers 𝑚𝑛 −𝑚𝑥 − 𝑛𝑦 where we assume that the bottom left box has coordinates
(𝑥, 𝑦) = (1, 1). Here is an example for (𝑚, 𝑛) = (3, 4):

One can check that all nonnegative integers in ℤ⩾0 ⧵ Γ𝑚,𝑛 appear exactly once in this rectangle
in the cells strictly below the diagonal. It follows that the (𝑚, 𝑛)-invariant subsets Δ containing
0 correspond to Young diagrams in this rectangle contained strictly below the diagonal, or,
equivalently, the lattice paths from northwest to southeast corner which stay below the diagonal.
Here is an example for the subset Δ = {0, 𝟏, 3, 4, 𝟓, 6, …} where we mark in bold the numbers
added to Γ3,4:

The number of such paths equals

𝑐𝑚,𝑛 =
(𝑚 + 𝑛 − 1)!

𝑚!𝑛!
=

1
𝑚 + 𝑛

(
𝑚 + 𝑛
𝑛

)
. □

Theorem 6.21 [55]. The dimensions of the cells in the compactified Jacobians of {𝑥𝑚 =
𝑦𝑛}, 𝐺𝐶𝐷(𝑚, 𝑛) = 1 are given by a recursive formula, which matches the recursion for Khovanov–
Rozansky homology of torus knots in Theorem 3.25 and in [71].
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578 GORSKY et al.

We refer to [55] for more details. Also, we have the following description of the cohomology
ring of the compactified Jacobian in this case.

Theorem 6.22 [106, 107]. The cohomology ring of the compactified Jacobian of {𝑥𝑚 =
𝑦𝑛}, 𝐺𝐶𝐷(𝑚, 𝑛) = 1 is generated by tautological classes of degrees 2, 4, … , 2𝑛 − 2 satisfying certain
explicit relations [107].

Remark 6.23. It is natural to expect that the tautological classes in Theorem 6.22 are related to
the ones in link homology, defined in Theorem 5.17. The precise relation between these is yet to
be established.

Next, we consider curves with more components. Consider the curve {𝑥𝑘𝑛 = 𝑦𝑛} which corre-
sponds to the (𝑛, 𝑘𝑛) torus link. The companion matrix of the polynomial 𝑥𝑘𝑛 − 𝑦𝑛 is conjugate
in 𝐺𝐿(𝑛, ℂ((𝑡))), or even 𝑆𝐿𝑛(ℂ((𝑡))), to the matrix

𝑌 =
⎛⎜⎜⎝
𝜁1𝑥

𝑛 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜁𝑛𝑥

𝑛

⎞⎟⎟⎠,
where 𝜁1, … , 𝜁𝑛 are distinct roots of unity of degree 𝑛. There is an action of the latticeℤ𝑛−1 on Sp𝑌
by translations, as well as of the diagonal torus (ℂ∗)𝑛−1, both coming from the natural centralizer
action on Sp𝑌 . In [79] the second author compared the equivariant Borel–Moore homology of Sp𝑌
in this case with the homology of (𝑛, 𝑘𝑛) torus link following Theorem 5.10.

Theorem 6.24 [79].

(a) One has

𝐻∗,𝐵𝑀(Sp𝑌) = HHH
0(𝑇(𝑛, 𝑘𝑛))

⨂
ℂ[𝑥1,…,𝑥𝑛]∕(

∏
𝑖 𝑥𝑖−1)

ℂ[𝑥±1 , … , 𝑥
±
𝑛 ]∕

(∏
𝑖

𝑥𝑖 − 1

)
,

where the action of 𝑥𝑖 on the left-hand side is given by the lattice ℤ𝑛−1, and on the right-hand
side by Theorem 5.10.

(b) Similarly,

𝐻𝑇∗,𝐵𝑀(Sp𝑌) = HY
0(𝑇(𝑛, 𝑘𝑛))

⨂
ℂ[𝑥1,…,𝑥𝑛]∕

∏
𝑖 𝑥𝑖−1

ℂ[𝑥±1 , … , 𝑥
±
𝑛 ]∕

(∏
𝑖

𝑥𝑖 − 1

)
,

where 𝑇 = (ℂ∗)𝑛−1 and the equivariant parameters 𝑦1, … , 𝑦𝑛 with
∑
𝑖 𝑦𝑖 = 0 match the ones

appearing in the 𝑦-ification on the right. One can avoid the restrictions to the codimension 1
subtori by considering the 𝐺𝐿𝑛-affine Springer fibers instead.

For more details on the geometry of the affine Springer fibers corresponding to (𝑛, 𝑘𝑛) torus
links, and its connections to quantum groups we refer the reader to [3, 6, 44, 66]. The braid variety
for (𝑛, 𝑘𝑛) torus links is discussed in [10, 65].

 14692120, 2023, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12761 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [18/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 579

6.4 Generalized affine Springer fibers

In [14, 15], Braverman, Finkelberg, and Nakajima defined a remarkable family of algebras, called
Coulomb branch algebras, associated to a reductive group𝐺 and its representation𝑁. In fact, they
defined both a commutative algebra𝐺,𝑁 and its quantizationℏ

𝐺,𝑁
. In [45], Goresky–Kottwitz–

MacPherson defined a generalized affine Springer fiber for (𝐺,𝑁) parameterized by a vector in
𝑁((𝑡)) and in [41, 68] Hilburn–Kamnitzer–Weekes and Garner–Kivinen proved (under somemild
assumptions), that𝐺,𝑁 acts on its Borel–Moore homology whileℏ

𝐺,𝑁
acts on its loop rotation-

equivariant Borel–Moore homology.
It turns out that all Hilbert schemes of points on singular curves are special cases of this

construction.

Theorem 6.25 [41].

(a) For any curve 𝐶 (not necessarily reduced!) the union ⊔𝑘Hilb𝑘(𝐶, 0) is isomorphic to a certain
generalized affine Springer fiber for 𝐺 = 𝐺𝐿(𝑛),𝑁 = 𝔤𝔩(𝑛) ⊕ ℂ𝑛. Here 𝑛, as above, denotes the
degree of the projection of 𝐶 onto some line.

(b) There is an action of𝐺,𝑁 on
⨁

𝑘 𝐻
∗(Hilb𝑘(𝐶, 0)).

(c) If the curve 𝐶 is quasi-homogeneous then there is a ℂ∗-action on Hilb𝑘(𝐶, 0) and ℏ
𝐺,𝑁

acts in
the corresponding equivariant cohomology.

Remark 6.26. By the work of Kodera and Nakajima [82], the quantized BFN algebraℏ
𝐺,𝑁

for

(𝐺,𝑁) = (𝐺𝐿(𝑛), 𝔤𝔩(𝑛) ⊕ ℂ𝑛)

is isomorphic to the spherical rational Cherednik algebra of type 𝑆𝑛. We refer to [59] for more
details and the combinatorial description of the action of the rational Cherednik algebra on⨁

𝑘 𝐻
∗
ℂ∗
(Hilb𝑘(𝐶, 0)).

7 𝐇𝐢𝐥𝐛𝒏(ℂ𝟐) AND LINKHOMOLOGY

7.1 Hilbert scheme and its properties

In this lecture, we outline some results and conjectures relating the Hilbert scheme of points
on the plane to link homology. First, we recall the definition and main properties of the Hilbert
scheme, and refer to the book [94] for all details.
The Hilbert scheme is defined as

Hilb𝑛(ℂ2) ∶= {𝐼 ⊂ ℂ[𝑥, 𝑦] ideal ∶ dimℂ[𝑥, 𝑦]∕𝐼 = 𝑛}.

It is a smooth algebraic symplectic variety of dimension 2𝑛. It is also a conical symplectic resolution
in the sense of [12, 13]: the naturalmap𝜋 ∶ Hilb𝑛(ℂ2) → 𝑆𝑛(𝐶2)which sends an ideal to its support
is a resolution of singularities, and

𝑆𝑛ℂ2 = Spec ℂ[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛]
𝑆𝑛
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580 GORSKY et al.

is a singular affine Poisson variety in a way that is compatible with the map 𝜋. The two ℂ∗ actions
on ℂ2 which scale the coordinates lift to an action of (ℂ∗)2 on the Hilbert scheme. Inside (ℂ∗)2,
we have two distinguished 1-dimensional tori.

∙ The Hamiltonian torus 𝐻 = {(ℎ, ℎ−1) ∣ ℎ ∈ ℂ∗} acts as (𝑥, 𝑦) ↦ (ℎ𝑥, ℎ−1𝑦). The reason it is
called Hamiltonian is that it preserves the symplectic form.

∙ The scaling torus 𝑆 = {(𝑠, 𝑠) ∣ 𝑠 ∈ ℂ∗} acts as (𝑥, 𝑦) ↦ (𝑠𝑥, 𝑠𝑦). Note that it scales the symplectic
form by 𝑠2. It contracts the whole 𝑆𝑛ℂ2 to the origin.

Remark 7.1. Abusing the notation, let us denote by 𝑠 and 𝑡 the gradings on a (ℂ∗ × ℂ∗)-equivariant
sheaf onHilb𝑛(ℂ2) induced by the actions of 𝑆 and 𝑇, respectively. Likewise, we denote by 𝑞 and 𝑡
the gradings corresponding to the left and right, respectively, ℂ∗-factors in ℂ∗ × ℂ∗. Note that we
have ℎ = 𝑞𝑡−1 and 𝑠 = 𝑞𝑡.

The action of the torus 𝑆 is the reason why we have the adjective conical in conical symplectic
resolution, for it contracts the affinization 𝑆𝑛(ℂ2) ofHilb𝑛(ℂ2) to a single point. The Hamiltonian
torus𝐻 has the following properties.

∙ The attracting subvariety

𝐿 = {𝑝 ∈ Hilb𝑛(ℂ2) ∶ lim
ℎ→0

ℎ.𝑝 exists}

is Lagrangian in Hilb𝑛(ℂ2) and coincides with Hilb𝑛(ℂ2, ℂ) = 𝜋−1({𝑦 = 0}) (since
limℎ→0(ℎ𝑥, ℎ

−1𝑦) exists if and only if 𝑦 = 0).
∙ The 𝐻-fixed points are isolated and correspond to monomial ideals. The monomial ideals in
Hilb𝑛(ℂ2) are in correspondence with partitions of 𝑛, as follows. Given a Young diagram 𝜆 of
size 𝑛 (in French notation), the monomial ideal 𝐼𝜆 is generated by all monomials outside 𝜆.

For example, the diagram 𝜆 = (6, 5, 2, 1) corresponds to the ideal 𝐼𝜆 = (𝑥6, 𝑥5𝑦, 𝑥2𝑦2, 𝑥𝑦3, 𝑦4).

Note that there is a tautological rank 𝑛 bundle  on the Hilbert scheme, whose fiber over an
ideal 𝐼 given by ℂ[𝑥, 𝑦]∕𝐼. We will need a line bundle
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 581

det  = ∧𝑛 =∶ (1).

Finally, to connect to Subsection 6.4, in the terminology of [14, 15], Hilb𝑛(ℂ2) is both the
Higgs branch and the Coulomb branch for the 3d 𝑁 = 4 gauge theory corresponding to (𝐺,𝑁) =
(𝐺𝐿(𝑛), 𝔤𝔩(𝑛) ⊕ ℂ𝑛) (compare with Theorem 6.25 and Remark 6.26) and to the quiver

of affine type 𝐴0.

7.2 Hilbert schemes and link homology

We are ready to discuss the relation between the Hilbert scheme and link homology. The follow-
ing conjecture was formulated in [57] and mostly proved in a series of papers by Oblomkov and
Rozansky [98–105].

Conjecture 7.2. To a braid 𝛽 on 𝑛 strands one can associate a ℂ∗ × ℂ∗-equivariant coherent sheaf
𝛽 onHilb𝑛(ℂ2, ℂ) with the following properties.

(a) One has

HHH(𝛽) ≃ 𝐻∗ℂ∗×ℂ∗
(
Hilb𝑛(ℂ2, ℂ),𝛽 ⊗ ∧∙ ∨

)
as triply graded vector spaces. The 𝑞 and 𝑡 gradings on the right-hand side correspond to the
ℂ∗ × ℂ∗ action, and the 𝑎-grading corresponds to the power of ∧∙ ∨. The relation between the
gradings (𝑎, 𝑞, 𝑡) on the right and (𝐴, 𝑄, 𝑇) on the left is given by (3.4).

(b) The action of symmetric functions in 𝑥𝑖 on the left corresponds to the action of

ℂ[𝑥1, … , 𝑥𝑛]
𝑆𝑛 ⊂ ℂ[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛]

𝑆𝑛 = 𝐻0(Hilb𝑛(ℂ2),)

on the right-hand side. In particular, the action of 𝑥𝑖 onHHH(𝛽) determines the support of 𝛽 .
(c) In particular, (b) implies that for 𝛽 which closes up to a knot all 𝑥𝑖 act the same way, and 𝛽 is

supported onHilb𝑛(ℂ2, 0) × ℂ ⊂ Hilb𝑛(ℂ2, ℂ).
(d) Adding a full twistFT = (𝜎1⋯𝜎𝑛−1)

𝑛 to a braid 𝛽 corresponds to tensoring the sheaf𝛽 by(1).
(e) The sheaf 𝛽 extends to a sheaf ̃𝛽 on the whole Hilb𝑛(ℂ2) which corresponds to the 𝑦-ified

homologyHY(𝛽).

Example 7.3. The torus braid 𝛽 = 𝑇(𝑛, 𝑘𝑛 + 1) corresponds to the line bundle(𝑘) on the punc-
tual Hilbert scheme Hilb𝑛(ℂ2, 0). In particular, 𝑇(2, 3) corresponds to (1) on Hilb2(ℂ2, 0) = ℙ1,
𝑇(2, 2𝑘 + 1) corresponds to (𝑘) on Hilb2(ℂ2, 0), and it is easy to see that for 𝑘 > 0 the bigraded
space of sections of (𝑘) on ℙ1 matches HHH0(𝑇(2, 2𝑘 + 1)) computed in Example 3.18 up
to regrading.
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582 GORSKY et al.

Furthermore,𝑇(3, 4) corresponds to(1) onHilb3(ℂ2, 0)which is isomorphic to the (projective)
cone over twisted cubic in ℙ3. One can check that

dim𝐻0(Hilb3(ℂ2, 0),(1)) = 5.

More generally, by [62] one can compute𝐻0(Hilb𝑛(ℂ2, 0),(1)) andmatch it with the 𝑞, 𝑡-Catalan
numbers [42].

For general torus braids 𝛽 = 𝑇(𝑚, 𝑛), the description of 𝛽 is more complicated. Consider the
flag Hilbert scheme

FHilb𝑛(ℂ2, 0) ∶= {ℂ[𝑥, 𝑦] ⊃ 𝐼1 ⊃ … ⊃ 𝐼𝑛},

where all 𝐼𝑘 are ideals in ℂ[𝑥, 𝑦] of codimension 𝑘 supported at the origin. It is a very singular
space, which can be equipped with the structure of a virtual complete intersection (or of a dg
scheme) [57]. It comes with the projection

𝑝 ∶ FHilb𝑛(ℂ2, 0) → Hilb𝑛(ℂ2, 0), (𝐼1, … , 𝐼𝑛) ↦ 𝐼𝑛

and a collection of line bundles 𝑘 = 𝐼𝑘−1∕𝐼𝑘.

Theorem 7.4 [56, 57, 100]. Suppose that 𝐺𝐶𝐷(𝑚, 𝑛) = 1. The sheaf 𝑚,𝑛 corresponding to 𝛽 =
𝑇(𝑚, 𝑛) is given by

𝑚,𝑛 = 𝑝∗(
𝑎1
1 ⋯

𝑎𝑛
𝑛 ),

where 𝑎𝑘 = ⌈ 𝑘𝑚
𝑛

⌉ − ⌈ (𝑘−1)𝑚
𝑛

⌉.
Note that here we consider 𝑝∗ as the derived pushforward for the morphism of dg schemes. We

refer the reader to [56, 57, 100] for more details.

Remark 7.5. One can consider the sheaves 𝑝∗(
𝑎1
1 ⋯

𝑎𝑛
𝑛 ) for arbitrary exponents 𝑎1, … , 𝑎𝑛. These

correspond to the braids

𝛽(𝑎1, … , 𝑎𝑛) ∶= 𝓁𝑎11 ⋯𝓁𝑎𝑛𝑛 𝜎1⋯𝜎𝑛,

where

𝓁𝑖 = 𝜎𝑖−1⋯𝜎1𝜎1⋯𝜎𝑖−1

are Jucys–Murphy braids. We refer to [57, 100] for more details on the relation between
such sheaves and braids (called Coxeter braids in [100]) and to [9, 47] for the corresponding
combinatorial results and identities.

7.3 Procesi bundle and the identity braid

Next, we would like to associate sheaves to the identity braid and the powers of the full twist. For
this, we will need the following constructions of Haiman [63, 64]. Let𝑋𝑛 denote the reduced fiber
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 583

product of Hilb𝑛(ℂ2) with (ℂ2)𝑛 over 𝑆𝑛(ℂ2):

Theorem 7.6 [63]. The space 𝑋𝑛 satisfies the following properties.

(a) 𝑋𝑛 is the blowup of (ℂ2)𝑛 along the union of all diagonals {𝑃𝑖 = 𝑃𝑗}.
(b) 𝑋𝑛 = Proj

⨁∞
𝑘=0 𝐽

𝑘 , where

𝐽 = ∩𝑖≠𝑗(𝑥𝑖 − 𝑥𝑗, 𝑦𝑖 − 𝑦𝑗)

is the ideal defining the union of diagonals. Also, 𝐽𝑘 is free over ℂ[𝑦1, … , 𝑦𝑛].
(c) 𝑞∗𝑋𝑛 =  is a vector bundle onHilb𝑛(ℂ2) of rank 𝑛!. It is called the Procesi bundle.
(d) We have the following diagram:

where the maps 𝑝 and 𝑞 are as above, and 𝑟 sends a flag of ideals (𝐼1, … , 𝐼𝑛) to the ordered
collection of supports of 𝐼𝑘−1∕𝐼𝑘 . Then

𝑝∗FHilb𝑛(ℂ2) = 𝑞∗𝑋𝑛 =  .

Part (d) of the theorem is implicit in [63] and proved in [57] in more detail.
Finally, the sheaf 1 corresponding to the identity braid coincides with 𝑝∗FHilb𝑛(ℂ2,ℂ) (simi-

larly to Theorem 7.4) and hence is isomorphic to the Procesi bundle  restricted to Hilb𝑛(ℂ2, ℂ).
Similarly, 𝛽 = 𝑇(𝑛, 𝑘𝑛) correspond to the vector bundle

𝑛,𝑘𝑛 =  ⊗ (𝑘)

restricted to Hilb𝑛(ℂ2, ℂ). Note that for 𝑘 ⩾ 0 by the projection formula we have

𝐻0(Hilb𝑛(ℂ2, ℂ), ⊗ (𝑘)) = 𝐻0(𝑋𝑛(ℂ
2, ℂ),(𝑘)) = 𝐽𝑘∕(𝑦)𝐽𝑘

since 𝐻0(𝑋𝑛,(𝑘)) = 𝐽𝑘 is free over ℂ[𝑦1, … , 𝑦𝑛]. This agrees with the Khovanov–Rozansky
homology of the full twist by Theorem 5.10.
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584 GORSKY et al.

7.4 𝒚-ification and symmetry

Many interesting structures in link homology become transparent when considering Hilb𝑛(ℂ2).
Aswementioned above, 𝑦-ification corresponds to the extension of the sheaf𝛽 fromHilb𝑛(ℂ2, ℂ)
to a sheaf ̃𝛽 on the whole Hilbert scheme of points. More precisely, we have the following 𝑦-ified
version of Conjecture 7.2:

Conjecture 7.7. To a braid 𝛽 on 𝑛 strands one can associate a ℂ∗ × ℂ∗-equivariant coherent sheaf
̃𝛽 onHilb𝑛(ℂ2) with the following properties.

(a) One has

HY(𝛽) ≃ 𝐻∗ℂ∗×ℂ∗
(
Hilb𝑛(ℂ2), ̃𝛽 ⊗ ∧∙ ∨

)
as triply graded vector spaces (with the same grading conventions as in Conjecture 7.2).

(b) The action of symmetric functions in 𝑥𝑖 and 𝑦𝑢 on the left corresponds to the action of

ℂ[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛]
𝑆𝑛 = 𝐻0(Hilb𝑛(ℂ2),)

on the right-hand side.
(c) In particular, (b) implies that for 𝛽 which closes up to a knot the sheaf ̃𝛽 is supported on

Hilb𝑛(ℂ2, 0) × ℂ2 ⊂ Hilb𝑛(ℂ2), and agrees with the trivial extension of 𝛽 .
(d) Adding a full twistFT = (𝜎1⋯𝜎𝑛−1)

𝑛 to a braid 𝛽 corresponds to tensoring the sheaf ̃𝛽 by(1).
(e) The restriction of ̃𝛽 toHilb𝑛(ℂ2, ℂ) agrees with 𝛽 .

For example, for the identity braid we get the Procesi bundle ̃1 =  . Similarly, 𝛽 = 𝑇(𝑛, 𝑘𝑛)
correspond to the vector bundle

̃𝑛,𝑘𝑛 =  ⊗ (𝑘).

As above, by Theorem 7.6 the space of sections of this bundle agree withHY0(𝑇(𝑛, 𝑘𝑛)) computed
in Theorem 5.10.
Finally, we can comment on the 𝑞 − 𝑡 symmetry and 𝔰𝔩2 action in link homology which we saw

in Theorems 5.17, 5.19, and 6.14. The group 𝑆𝐿(2) ⊂ 𝐺𝐿(2) naturally acts on ℂ2 by linear changes
of coordinates, and this action extends to the action of 𝑆𝐿(2) on Hilb𝑛(ℂ2).
One then expects that the sheaf ̃𝛽 is equivariant with respect to this action. Since ∧∙ ∨ is also

𝑆𝐿(2)-equivariant, we get a natural action of the group 𝑆𝐿(2) and its Lie algebra 𝔰𝔩2 on the cor-
responding link cohomology. Since the action extends to the action of 𝐺𝐿(2), it is easy to see that
the generators of 𝔰𝔩2 interact with 𝑞 and 𝑡 gradings (corresponding to ℂ∗ × ℂ∗ ⊂ 𝐺𝐿(2)) correctly.
The symmetry between 𝑞 and 𝑡 is then realized by the action of the Weyl group 𝑆2 ⊂ 𝑆𝐿(2).
Note that Hilb𝑛(ℂ2, ℂ) is not preserved by the action of 𝑆𝐿(2), so one cannot expect the action

of 𝑆𝐿(2) inHHH(𝛽) for arbitrary links. On the other hand,Hilb𝑛(ℂ2, 0) is preserved by this action,
so one indeed has an action of 𝑆𝐿(2) in the reduced homology HHH(𝛽) if 𝛽 closes up to a knot.

7.5 Approaches to the proof

In this subsection, we outline some of the approaches to the proof of Conjecture 7.2. The first
proof, and the only one which is complete at the moment, is realized by Oblomkov and Rozansky
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 585

[98–105]. In short, they define a new link homology theory using matrix factorizations on a com-
plicated algebraic variety related to the flagHilbert schemeFHilb𝑛(ℂ2) (or rather a certain smooth
ambient space where FHilb𝑛(ℂ2) is cut out by certain equations). In [98], Oblomkov and Rozan-
sky prove that their construction satisfies braid relations and is invariant underMarkovmoves, so
it does indeed define a link invariant. In further papers, they formalize the relation between their
invariant, FHilb𝑛(ℂ2) and Hilb𝑛(ℂ2), and associate a sheaf on Hilb𝑛(ℂ2) to any braid. Finally, in
[105] they construct a functor from their category ofmatrix factorizations to the category of Soergel
bimodules, and prove that their invariant agrees with Khovanov–Rozansky homology defined
using the latter. We refer the reader to [96] for an introduction to Oblomkov–Rozansky theory.
Another approach, due to the first author,Hogancamp andWedrich relates the derived category

of the Hilbert scheme to the ‘annular’ category of links in the solid torus. The proper definition of
the latter [51, 60] uses themachinery of derived categorical traces and is out of scope of these notes.
Still, we would like to note that by [16, 63, 64] the derived category ofHilb𝑛(ℂ2) is generated by the
Procesi bundle  and its direct summands, so it is essentially determined by the endomorphism
algebra

End() = ℂ[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛]⋊ 𝑆𝑛.

On the other hand, the annular category is generated by the object Tr(1) which is the closure of
the identity braid. It is proved in [51] that

End(Tr(1)) = ℂ[𝑥1, … , 𝑥𝑛, 𝜃1, … , 𝜃𝑛]⋊ 𝑆𝑛,

where 𝜃𝑖 are odd variables while 𝑥𝑖 are, as above even. Experts in geometric representation the-
ory might recognize the connection with character sheaves following [114, 115]. The similarity of
these results suggest a direct relation between the two categories, but the detailed proofs are yet
to be completed.
Finally, let us sketch the third approach, as outlined in [57]. Consider the graded algebra

 ∶=
∞⨁
𝑘=0

Hom(𝑅, FT𝑘),

where FT = (𝜎1⋯𝜎𝑛−1)
𝑛 is the full twist as above. The multiplication is given by the natural

product (coming from the invertibility of FT)

Hom(𝑅, FT𝑘) ⊗ Hom(𝑅, FT𝓁) → Hom(𝑅, FT𝑘+𝓁)

Recall that by Theorem 5.10 we have

Hom(𝑅, FT𝑘) = 𝐽𝑘∕(𝑦)𝐽𝑘, 𝐽 = ∩𝑖≠𝑗(𝑥𝑖 − 𝑥𝑗, 𝑦𝑖 − 𝑦𝑗),

so in fact by Theorem 7.6(b) the graded algebra  coincides with the graded coordinate algebra of
𝑋𝑛(ℂ

2, ℂ). Given an arbitrary braid 𝛽, we can consider a graded module

∞⨁
𝑘=0

Hom(𝑅, 𝛽 ⋅ FT𝑘)
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586 GORSKY et al.

over the graded algebra , and hence a sheaf on Proj  = 𝑋𝑛(ℂ2, ℂ). By pushing forward along 𝑞,
we obtain a sheaf on Hilb𝑛(ℂ2). In [57], this construction is expected to lift to a dg functor

𝑏(SBim𝑛) → 𝐷𝑏(Hilb𝑛)

satisfyingConjecture 7.2. Aswith the previous approach, there are significant homological algebra
subtleties that have to be overcome to complete the proof.

Example 7.8. Let us compute the graded algebra  for 𝑛 = 2. Recall that 𝑇(2, 2𝑘) correspond to
the following complexes of Soergel bimodules:

𝑇(2, 0) = 𝑅

𝑇(2, 2) = [𝐵 → 𝐵 → 𝑅]

𝑇(2, 4) = [𝐵 → 𝐵 → 𝐵 → 𝐵 → 𝑅]

…

and

Hom(𝑅, 𝑇(2, 0)) = 𝑅

Hom(𝑅, 𝑇(2, 2)) = [𝑅
0
5→ 𝑅

𝑥1−𝑥2
555555→ 𝑅]

Hom(𝑅, 𝑇(2, 4)) = [𝑅
0
5→ 𝑅

𝑥1−𝑥2
555555→ 𝑅

0
5→ 𝑅

𝑥1−𝑥2
555555→ 𝑅].

…

In particular, Hom(𝑅, 𝑇(2, 2)) has two generators 𝑧 and 𝑤 and one relation 𝑤(𝑥1 − 𝑥2) = 0. One
can check that Hom(𝑅, 𝑇(2, 4)) has generators 𝑧2, 𝑧𝑤,𝑤2 and no more new relations (that is,
𝑤(𝑥1 − 𝑥2) = 0 implies 𝑧𝑤(𝑥1 − 𝑥2) = 𝑤2(𝑥1 − 𝑥2) = 0). Similarly, Hom(𝑅, 𝑇(2, 2𝑘)) has gener-
ators 𝑧𝑘, 𝑧𝑘−1𝑤,… ,𝑤𝑘 and all relations follow from𝑤(𝑥1 − 𝑥2) = 0. By taking the direct sum over
𝑘, we get

 =
𝑅[𝑧, 𝑤]

𝑤(𝑥1 − 𝑥2) = 0
=

ℂ[𝑥1, 𝑥2, 𝑧, 𝑤]

𝑤(𝑥1 − 𝑥2) = 0
.

Here 𝑥1, 𝑥2 are in degree zero and 𝑧, 𝑤 are in degree 1.

Example 7.9. Let us do the same computation in the 𝑦-ified category. This is very similar to
Example 7.8 but now the relation reads 𝑤(𝑥1 − 𝑥2) = 𝑧(𝑦1 − 𝑦2), see Example 5.8 for details. We
get the graded algebra

𝑦 =
𝑅[𝑦][𝑧, 𝑤]

𝑤(𝑥1 − 𝑥2) = 𝑧(𝑦1 − 𝑦2)
=

ℂ[𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧, 𝑤]

𝑤(𝑥1 − 𝑥2) = 𝑧(𝑦1 − 𝑦2)
,

where 𝑥1, 𝑥2, 𝑦1, 𝑦2 are in degree zero and 𝑧, 𝑤 are in degree 1. Note that Proj 𝑦 is the blowup of
(ℂ2)2 along the diagonal {𝑥1 = 𝑥2, 𝑦1 = 𝑦2}which is isomorphic to the isospectral Hilbert scheme
𝑋2.
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