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1 | INTRODUCTION

These notes cover the lectures of the first named author at 2021 IHES Summer School on ‘Enu-
merative Geometry, Physics and Representation Theory’ with additional details and references.
They cover the definition of Khovanov-Rozansky triply graded homology, its basic properties,
and recent advances, as well as three algebro-geometric models for link homology: braid varieties,
Hilbert schemes on singular curves and affine Springer fibers, and Hilbert schemes of points on
the plane.

The relations between these models are very subtle and partially conjectural, and yet to be fully
understood. Braid varieties can be defined for arbitrary positive braids, and their homology (with
the weight filtration) is most clearly related to link homology. By the work of Mellit [90], they
can be used as building blocks for character varieties over punctured surfaces. On the other hand,
braid varieties generalize open Richardson and positroid varieties [21, 34-36] which are important
for the study of cluster algebras.

Hilbert schemes on singular curves, compactified Jacobians, and affine Springer fibers can be
defined for algebraic links, or (more or less equivalently) for matrices with entries in Laurent
series. The characteristic polynomial of such a matrix defines a plane curve singularity which
intersects a small sphere at a link. The Hilbert schemes of points on a plane curve singularity are
closely related to the ‘local’ version of the Hitchin fibration [87, 92], and ‘local’ curve-counting
invariants [86]. On the other hand, they play an important role in the generalized Springer theory
[41, 68] for Coulomb branch algebras defined by Braverman, Finkelberg, and Nakajima [14, 15].

A beautiful conjecture of Oblomkov, Rasmussen, and Shende [97] relates the homology of
Hilbert schemes of points on singular curves to the Khovanov-Rozansky homology of the cor-
responding links. By the above, one expects a direct relation between the homology of these
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Hilbert schemes and of the corresponding braid variety, similar in spirit to the non-abelian Hodge
correspondence between the character varieties and the Hitchin system [24]. This also remains
a tantalizing conjecture. We review the precise statements and the state of the art for these
conjectures below.

Finally, yet another model for link homology comes from the Hilbert scheme of points on the
plane. Roughly speaking, to any braid on n strands one associates a coherent sheaf on Hilb"(C?)
whose cohomology matches the Khovanov-Rozansky homology of the link. Such a sheaf, or
rather a complex of sheaves, was constructed by Oblomkov and Rozansky in a series of papers
[98-105]. Another approach [57] highlights the importance of the graded algebra generated by
the homologies of the powers of the full twist braid. We describe this algebra explicitly follow-
ing [48] and explain its relation to the homogeneous coordinate ring of the Hilbert scheme. This
model is also closely related to the ‘refined Chern-Simons invariants’ of Aganagic-Shakirov and
Cherednik [1, 26].

In the case of torus knots, all of the above models yield explicit, yet very different combinatorial
descriptions. The Khovanov-Rozansky homology for torus knots was computed in [89], and the
homology of the braid varieties (which in this case coincide with the open positroid strata in the
Grassmannians) was computed in [34]. The homology of the Hilbert schemes on singular curves
and affine Springer fibers was computed earlier in numerous papers, starting from [84]. Finally,
the sheaves on Hilb"(C?) for torus knots were constructed in [56] using the elliptic Hall alge-
bra. The comparison between all these answers is highly nontrivial, and is related to the ‘rational
Shuffle conjecture’ in combinatorics of Macdonald polynomials, proved in [88].

Throughout the notes, we track various structures and homological operations in link homol-
ogy, and describe their appearance in various models. In particular, we have an action of the
polynomial algebra where the number of variables equals the number of link components. From
the topological point of view, this corresponds to the action of the homology of the unknot on the
homology of an arbitrary link with a chosen marked point. Furthermore, link homology admits
a deformation, or ‘y-ification’ [48] where a polynomial algebra in an additional set of variables
plays an important role. Finally, there is an action of the Lie algebra 81, in the y-ified homology
[49] which implies the symmetry exchanging the two sets of variables. All these structures indi-
cate that the relation between link homology and the geometric models holds on a much deeper
categorical level than just isomorphisms of triply graded vector spaces.

1.1 | Organization of the paper

The notes are organized as follows. In Section 2, we remind the readers of the basics of knot theory,
such as the braid group and theorems of Alexander and Markov on braid closures.

In Section 3, we define Khovanov-Rozansky homology using Soergel bimodules and Rouquier
complexes. We describe a method to recursively compute the homology of torus (and other) links,
and present many examples.

Section 4 is focused on braid varieties. We define braid varieties, outline their basic properties,
and explain their relation to link homology and positroid varieties.

In Section 5, we describe more subtle properties and homological operations in link homology.
In particular, we define y-ified homology and compute it for all powers of the full twist. We also
define ‘tautological classes’ in Khovanov-Rozansky homology and use them to outline the proof
of the ‘q — ¢’ symmetry in this homology. These abstract algebraic constructions are compared to
the actual tautological classes in the homology of braid varieties.
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540 | GORSKY ET AL.

In Section 6, we define Hilbert schemes on singular curves, compactified Jacobians,
affine Springer fibers, and discuss the relations between them. We state the Oblomkov-
Rasmussen—Shende conjecture and discuss the known evidence for it. A connection to geometric
representation theory of Coulomb branch algebras is also discussed.

In Section 7, we define the Hilbert scheme of points on the plane and describe its properties,
in particular, present it as a symplectic resolution and construct the Procesi bundle. We state an
explicit conjecture relating braids to sheaves on the Hilbert scheme, and discuss some examples
and approaches to the proof.

1.2 | Further reading

In these lectures, we chose to focus on topics in link homology most closely related to commutative
algebra and algebraic geometry. Unfortunately, this means that we had to skip many other topics
of interest, which are also important for understanding the big picture.

In defining link homology, we focus on Soergel bimodules and do not discuss other approaches
using webs, foams and categorified quantum groups, referring the reader to [110, 116] for more
details. We do not discuss Khovanov [74] or 3[(IN) Khovanov-Rozansky homology [76] and their
relation to HOMFLY homology, and refer to [111, 112] instead.

We mostly avoid representation theory and categorification aspects. In particular, we do not
define Hecke algebras or work with diagrammatics of Soergel bimodules, and refer the reader to
[32] for these instead. We refer to [58, 59] for the connections with the rational Cherednik algebra,
and to [56, 83] for the connections with the DAHA and elliptic Hall algebra.

We also do not discuss very rich combinatorics of q,t-Catalan numbers and Macdonald
polynomials [5, 9, 42, 47, 56, 61-64, 88] which deserves to be a subject of a separate course.

Finally, we recommend several other surveys on link homology [91, 95, 96, 112].

2 | BACKGROUND ON LINK INVARIANTS

In this section, we record some basic facts on link invariants. The braid group on n strands has
generators 0y, ...,0,_; and relations

0i0i410; = 014100141, 0;0; = 0;0; (li—j| > D). (CAY)

We will visualize the generators o; as positive crossings, and o;l as negative crossings:

The strands in a braid are labeled from 1 to n, and the composition is given by vertical stacking.
The following theorems [2, 8, 85] relate links and braids.

Theorem 2.1 (Alexander). Any link can be obtained as a closure of some braid.

Theorem 2.2 (Markov). Two braid closures represent the same link if and only if the braids are
related by a sequence of the following moves:
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We will refer to these moves as to conjugation and (respectively, positive and negative) stabi-
lization, or collectively as Markov moves. Using these theorems, we can sketch a possible strategy
of constructing link invariants as follows.

* Assign some objects to crossings o;—'.

* Verify braid relations (2.1). This would yield a braid invariant.

* Describe an operation for closing a braid.

* Verify that the result is invariant under Markov moves (conjugation and stabilization).

Most of link invariants described in these lectures will follow this strategy. Sometimes it will be
helpful to consider slightly weaker invariants for braid closures, which do not change only under
conjugation, or under conjugation and positive stabilization.

3 | KHOVANOV-ROZANSKY HOMOLOGY: DEFINITIONS AND
COMPUTATIONS

All link homologies and most of the computations in these notes can be defined with inte-
ger coefficients. For the interest of clarity and various technical simplifications, we work over
C instead.

3.1 | Soergel bimodules and Rouquier complexes

Consider the ring R = C[xy, ..., x,,] with the action of the symmetric group S, which permutes
the variables. We will consider various rings of invariants, most importantly the rings R% of poly-
nomials that are invariant under the transposition x; & x;,;,i = 1,...,n — 1. We will work with
R — R bimodules which we alternatively interpret as modules over C[x, ..., X,, X/, ..., x,’1] where
the left action of R corresponds to the action of x;, and the right action corresponds to the action of
xlf . Given two R — R bimodules M and N, we can consider their tensor product M @y N. The left
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542 | GORSKY ET AL.

action of R on M, N will be denoted by x;, xl( , respectively, and the right action will be denoted by
xlf , xl.’ !, respectively. Note that this is consistent with the relations on the tensor product M ®j N.

Remark 3.1. To ease the notation, we will sometimes write MN for M ®; N. If, on the other
hand, we are taking the tensor product over a ring other than R, we will always indicate this in
the notation.

Note that the ring R is graded, with deg(x;) = 2 for every i = 1, ..., n. We will work with graded
R-bimodules, so we have a decomposition M = @jez M; with x;M;,M;x; C M. The tensor
product of graded bimodules is naturally graded, and we will denote the grading shift by (1), so
that M(1); = M;,;.

Remark 3.2. Note that, under this convention for the grading shift, if the graded dimension of M
is gdim(M) = ¥, Q' dim M;, then gdim(M(1)) = Q! gdim(M).
For us, the most important bimodules are

Clx,, ...,xn,x;,...,x;]

5

!/

— +/ Y ) Y 2van ..
(xl-+xl-Jrl =X F X XiXig = XX, X=X (J ¢1,1+1)>

where s; = (i i + 1) and i runs from 1 to (n — 1). Note that, due to the grading shift, the degree of
X; € B; is1for every j. Likewise, the degree of 1 € B; is —1.

Definition 3.3. The category SBim,, of Soergel bimodules is the smallest full subcategory of the
category of graded R — R-bimodules containing R and B; and closed under direct sums, grading
shifts, tensor products and direct summands.

Lemma 3.4. We have
B; ®g B; =~ Bj(1) & Bi(—1). (3.1)
Proof. Lets = (i i+ 1). We have
B; ®r B; = (R ®gs R(1)) ®r (R ®gs R(1)) = R Qs R Qgs R(2).
Decompose R = R’ @ R where ¢ denotes the s-alternating part. As graded R-bimodules, R® =
R5(—2) (the isomorphism divides p € R® by x; — x;,; or more generally by «,). Therefore, we
obtain
R Qps (R® @ R°) ®gs R(2) = [R ®s R(2)] @ [R s R*(—2) Qps R(2)]
= B;(1) ® B;(-1). (]
Example 3.5. One can also check the equation
B; ®g Biy1 ®r B; = B; @ B; 41, where B;;; = R Qgsisiss R(3). (3.2)

Note that s; and s;,; generate a subgroup in S,, isomorphic to S;.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY | 543

Remark 3.6. The category of Soergel bimodules can be defined for any Coxeter group. The ana-
logues of B; correspond to simple reflections, the analogue of (3.1) holds on the nose and the
analogue of (3.2) holds with certain modifications. We refer to [32] for more details and references
on Soergel bimodules.

We will be working with the homotopy category of (bounded) complexes of Soergel bimodules
which we denote by K,, := KP(SBim,,).

Remark 3.7. The category of Soergel bimodules is additive but not abelian. This means that the
homotopy category X°’(SBim,, ) still makes sense, but one cannot a priori define a derived category
of Soergel bimodules. In principle, one can consider a subcategory of the derived category of all
R — R bimodules generated by Soergel bimodules, but this would lead to lots of confusion and
incorrect answers. For example, in the derived category the complexes of (3.3) are isomorphic up
to a grading shift.

This situation might be compared to the construction of the derived category as the homo-
topy category of projective modules. Indeed, by the work of Soergel [121] the category of Soergel
bimodules is closely related to the Bernstein—Gelfand-Gelfand category ©, and Soergel modules
correspond to projective objects in that category.

Next, we describe some morphisms between Soergel bimodules.

Lemma 3.8.

(a) There is a natural projection from B;(—1) to R which sends 1to 1.
(b) There is a well-defined morphism of bimodules R — B;(1) which sends 1to x; — xlf e
Proof. Any R — R-bimodule homomorphism B; = R @zs R — R needs to send the bimodule gen-
erator 1 ® 1 somewhere in R. After fixing this, bilinearity forces the map to be an R-multiple of
f ® g — fg.Finally,since 1 € B; hasdegree —1 while 1 € R hasdegree 0, we need the shift B;(—1)
to have a map of graded bimodules.

Similarly, ignoring gradings for the time being, a map u : R — B; needs to send u : 1+~
Y. a; Qgs b; for some a;, b;. For this to be a bimodule homomorphism, we need pu(1) = u(1)p
since R is commutative. Decomposing p = p® + a,p® we get

Zai ® b;p* +a,a; ® b;p* = Zai ® b;p* + q; ® b;a p°
i i

meaning that 1 » 1 ® a, + ag ® 1 works. For the W = S, case, we have o, = 2(x; — xi’H). That
multiples of u are all the homomorphisms can be seen, for example, from the tensor-hom
adjunction for bimodules and the first part.

Concretely, let us prove that there is a map of bimodules R — B; which sends 1to x; — x/_ . We

need to check that it sends the defining ideal for R inside the defining ideal for B;. Indeed,
(x; = x!, )(x; — x[) = (symmetric in x, x|, ) = (x; — x;,1)(x; —x;) =0,
similarly

! ! / I / !/
O = X, )X = XG0 = O = X3, )0, = Xi,,) = 0.

LOIHPUOD PUe SLLLS L 3U3 89S *[E202/70/BT] U0 AReiq178UIIUO ABIIM ‘SOIRWRURRIN SYE IdIN AQ T9LZT 'SWIG/ZTTT OT/10p/wWo"A3]In Ae.qjeul|uo-d0syeLIpuo|//sdiy o papeojumod ' ‘€202 ‘02T269rT

00 oA

5U8017 SUOWILLOD AAIER1D 3|cedt|dde ay Ag pausenof afe sajoilie YO ‘8sn Jo S3|nJ 10} AkeiqiT autjuO A3|IAA UO (SUONIPUOD-pLE:



544 | GORSKY ET AL.

Note that
1Qag+a,®1=(x—x;49) +(x{ —x/,,)
=2x; — (6 + x40) + (] +x], ) — 2], = 20x; — X[, ),
so the two solutions agree up to a scalar. Finally, note that since x; — x/_ | has degree 1in B;, we
need to shift the degree on B, in order to make this a map of graded R-bimodules. 1

!/

Remark 3.9. Note that we have Homp piyoq(R, B;) = R(=1), since the map 1 — x; — x;,, has

degree 1.
Using the above maps between B; and R, we can define Rouquier complexes as their cones:
T, :=[B(-1) > R], T;'=[R- B1)] (33)

Here the underlined terms are in the homological degree zero and the maps are defined in
Lemma 3.8. The following is the fundamental result of Rouquier [117]:

Theorem 3.10 [117]. The complexes T; and Tl._1 satisfy braid relations up to homotopy:
T; ®r Ti_l =R, Ti®rTi1®rTi =T QrTi®rTit1, Ti®rT;=T;@r T (li—jI>1).

The proof of the first relation is sketched as a lemma below. The second equation can be proved
similarly using (3.2), and the last equation is obvious.

Lemma 3.11. The complex T; @ Tl._1 is homotopy equivalent to R.
Proof. The tensor product of complexes is
m
[Bi(-1) —R|®x
A
[R — B,(1)]
meé Adu
= [B;(-1) —R & B; ® B, — B;(1)]
for § =id ® Aom and u = m ® id. Recall from Lemma 3.4 that B; ® B; = B;(1) @ B;(—1). This

gives a subcomplex [B;(—1) - B;(—1) & B;(1) - B;(1)] = 0 (with differentials as above) leaving
us with

T,®T;'2[0>R—0]=R O

. . € €, . .
Givenabraid 8 = g, --- 0,” where o; are the braid group generators and ¢; = +1, we can define
1 r
the corresponding Rouquier complex

. € €r
Tﬁ .= ’111.11 ®R cee ®R le .

By Theorem 3.10, this complex is a well-defined object in the homotopy category K,,.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 545

Example 3.12. We have
T = [B,(—=1) ® B;(=3) = B;(~1) ® B,(=1) - R] = [B;(~3) = B;j(~1) - R|
and claim

TF = [Bi(=2k +1) > Bj(—2k + 3) > - - B(-1) > R].

k

Indeed, if T*~! is such then, decomposing T* = T*~1T; we get
1 1 1

B;(—2k + 3) B;(—2k +5) B;(-3) B;(-1)
B;B;(—2k +2) — @ - fa>) T - - @ -R|
B;B;(—2k +4) B;B;(—2k +6) B;B;(—2) B;(-1)

Using B;B; = B;(1) @ B;(—1) and the form of the differentials above, this simplifies to what
we want.

3.2 | Khovanov-Rozansky homology

Next, we define the operation corresponding to the braid closure. If M is an R — R bimodule, we
define its Hochschild cohomology as

(M) := Extl,_,. (R,M).

Given acomplex M, = (M;,d) of R — R bimodules (in particular, of Soergel bimodules), we define
complexes

H{(M.) = (H'(My), d,),

where d; is the differential induced by d. In other words, we apply the functor H!(—) separately for
each i, and term-wise in M,. The output is a collection of complexes of R-modules, one for each
Hochschild degree.

Remark 3.13. More abstractly, for each i H:(—) defines an additive functor on the category of R — R
bimodules, and hence an additive functor on the category of Soergel bimodules. We extend this
functor to the homotopy category K,,.

Remark 3.14. The definition of H!(—) might appear a bit unnatural from the viewpoint of Soergel
category. This issue is resolved in [7] where it is proved that the functors H!(—) are representable,
that is, there are certain explicit complexes of Soergel bimodules W; such that Hom(W;, —) ~

Hi(=).
In particular, for i = 0 we get H'(M) = Homg _p;,,4(R, M) for a bimodule M and
HO(M.,) = Hompg _pinoq(R, M.)

for a complex M,. Here we regard Hom between two complexes as a complex in a standard way.
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Definition 3.15. The Khovanov-Rozansky homology of the braid g is defined as the homology
of the Hochschild homology of the Rouquier complex Ts:

HHH(B) = H(H(T})).

The Khovanov-Rozansky homology is triply graded.

* The Q-grading corresponds to the internal grading on Soergel bimodules where all x; have
degree 2. Note that all morphisms in definitions of T; and Ti_1 are homogeneous, and Equations
(3.1) and (3.2) hold with appropriate grading shifts.

* The T-grading is the homological grading in the Rouquier complex Tg.

* The A-grading is the Hochschild degree which equals i for H'.

Theorem 3.16 [75, 77]. The Khovanov-Rozansky homology HHH(B) is a link invariant, up to
an overall grading shift. More precisely, HHH(B) is invariant under conjugation and positive

stabilization, while negative stabilization shifts it up by one A-degree.

Remark 3.17. 1t is possible to fix the ambiguity of grading shift and get an honest link invariant,
see, for example, [125].

For most of these notes, we will focus on the A = 0 part of Khovanov-Rozansky homology,
which corresponds to H°. It is invariant under conjugation and positive stabilization, but vanishes

after a single negative stabilization.

Example 3.18. Continuing Example 3.12, we can apply H’ = Hom(R, —) term-wise and obtain:

Hom(R, Tf) 2 [R(-2k) — R(—2k +2) — -+ - R(-2) - R],

k+1

cf. Remark 3.9. The differentials in Tlf‘ alternate between x; — x/ and x; — x! 41 (so that (x; —

xlf x; — xl.’ +1) =0 as in Lemma 3.8), hence the differentials in Hom(R, Tl?‘) alternate between

x; — x; = 0 and x; — x; ;. For example,

Hom(R,T;) = [R(—4) S R(—2) 22, R]

and

Xi—=Xj41

Hom(R,T;) = [R(—=6) —— R(—4) EA R(-2) BN R].

One can easily compute the homology of the resulting complex and obtain that the Poincaré
polynomials of the A = 0 part of HHH(T'(2, 2)) and HHH(T'(2, 3)) are

4n—2 4n—2
Q7 1 HHHA=(T(2,3)) = 29T~

A=0 —
HHH"(T2.2) = 0= om * 1= o
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3.3 | Recursions and parity

Asone can see from the definition, the complex T grows exponentially in the number of crossings
in a braid, which quickly makes the direct computation of Khovanov-Rozansky homology, even
with a help of a computer, unfeasible. This was a major stumbling block in link homology for over
a decade until significant progress was obtained in a series of papers of Elias, Hogancamp, and
Mellit [31, 70, 71, 89]. This culminates in the following:

Theorem 3.19 [71]. The Khovanov-Rozansky homology of all positive torus links T(m, n) is sup-
ported in even homological degrees and the corresponding Poincaré polynomial can be computed
using an explicit recursion.

Example 3.20. The Poincaré polynomial for the A = 0 part of HHH(T'(n, n + 1)) is given by the
g, t—Catalan polynomial defined by Garsia and Haiman in [42].

Remark 3.21. Theorem 3.19 confirms a series of conjectures about the combinatorics of
HHH(T (m, n)) proposed in [46, 56, 58, 97].

Let us describe the idea behind the proof of this theorem. Hogancamp in [69] observed that for
each n there exists a complex of Soergel bimodules K, satisfying the following relations:

i

@ | K| = [K|=[K]| ® [Ku| |[=0"+a) [ K, |

i R I P
\

@ || K =] [Kan| —a| | K, |

where throughout the notes we use the change of variables
g=Q% t=T?Q% a=AQ™" (3.4)

These pictures should be read in the following way: each picture
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corresponds to a (bounded) complex of Soergel bimodules, and stacking crossings on top (respec-
tively, bottom) of this picture means tensoring by the corresponding Rouquier complex on the
right (respectively, left). The closing of the last strand in (3) denotes taking [I-[IC[an](Kn +1)> Which
yields a complex of Soergel bimodules in one variable less, identified with a shifted sum of the
complexes K,,.

A X=X/
Example 3.22. Let us check that the complex K, = [R(—4) - B(—3) — B(-1) A R] satis-
fies the above properties, in particular, eats crossings. Indeed, K, = [T~!(—4) — T, so thanks
to Lemma 3.11 and Example 3.12 we have

TK, = [R(—4) = T?] = [R(—4) - B(-3) = B(-1) = R] =K,.

One can check that the differentials agree with this computation.

Alternatively, one can check that K, as a complex of vector spaces (or left R-modules) is acyclic.
If we tensor it with B, we get an acyclic complex of free B-modules, so it must be contractible.
Therefore, BK, ~ 0 and TK, ~ K,.

Example 3.23. Continuing with Example 3.18, the Poincaré polynomials of HHH(T(2, 2)),
HHH(T(2, 3)) in the g, t-variables become

1 t—qt 1+qt™! t
HHHY(T(2,2)) = B il HHH(T(2,3)) = Rl LI b

1-¢g2 1-gq a-q?’ 1-gq 1-q

In general, one can check that for two-stranded torus knots:

1+qrt+@%t 2+ +gktF
HHHY(T(2,2k + 1)) = g ql 7t
—q
Note that (up to a power of t which corresponds to an overall grading shift) the Poincaré poly-
nomials are given by rational functions where the numerator is symmetric in q and ¢, and the
denominator is a power of (1 — q). The symmetry between g and ¢ is much less clear in variables Q
and T, which is one of the motivations behind the change of variables (3.4). See also Theorem 5.17.

In the following section, we show how to use the properties of K,, to recursively compute the
link homology. Note that any combination of a, g, t has even (homological) T-degree. The recur-
sion would follow from the repeated simplification of the braid diagram using the above relations
and the following standard lemma:

Lemma 3.24. Suppose that we have an exact triple of complexes

0—-A —-B,—-C,—>0

and the homology of both A, and C, is supported in even homological degrees. Then the homology of
B, is supported in even homological degrees and

Hk(B-) = Hk(A') @ Hk(C,)fOI’ all k
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For the reader’s convenience, we also write an explicit recursion from [71]. By a binary sequence
we mean a (possibly empty) sequence of 0’s and I’s. If v = v, ... v, is a binary sequence, we denote
|v] := Y v;, the number of 1I's appearing in v.

Theorem 3.25 [71]. Let v and w be a pair of binary sequences with |v| = |w|. Let p(v, w) denote the
unique family of polynomials, indexed by such pairs of binary sequences, satisfying the following.
(1) p(8,0" = ()" and p(0™. %) = (D)™

@) p(v1,wl) =t + a)p(v, w), where |[v| = |w| = 7.

(3) p(v0,wl) = p(v, 1w).

(4) p(v1,w0) = p(lv, w).
(5) p(vO,w0) =t~ p(1v, 1w) + qt~* p(Ov, Ow), where |v| = |w| = 7.

Then the triply graded Khovanov-Rozansky homology of T(m,n) is free over Z of graded rank
p(0™,0™).
3.4 | Examples

Example 3.26. Let us use the recursion to compute the homology of two-strand torus links. We

can write
AN
AN AN

The first term evaluates to t ' (¢ + a)(1 + a) while the second term evaluates to t ~'q(1 + a)?. Since
both of them have even homological shifts, the differential vanishes, and the Poincaré polynomial
equals

1t 1 tq(1+a)* 711
(t+a)(1+a) g +a)* _t7( +a)(t+a_qt_aq+q+aq)

1-q 1-9)7 (1-q)7
_t'(1+a) _t'+a) q a
R A e s gy <t+1—q+1—q>'

We can apply the same relation with T(2, m) braid added below. On the left, we get T(2,m + 2)
while on the right we get T(2, m) followed by K, (which is the same as K, since it eats crossings)
and T(2,m). By induction in m, we conclude that for all positive m the homology of T(2, m) is
supported in even homological degrees, and the Poincaré polynomial is given by

it +a)1+a)

- + gt 'HHH(T (2, m)).

HHH(T(2,m + 2)) =
This recursion is easy to solve with the initial conditions
1+ a)? 1
U9 yrmre ) = $5Y.
1-9 1-9
One can compare this with Example 3.18.

HHH(T(2,0)) =

LONIPUOD PUe SWS | 341 385 *[£202/70/BT] U AkeiqiT8UIUO A8|IM ‘SOIBUBLRIN SYE IdIN AQ TO.ZT'SWIA/ZTTT OT/I0p/W00™A8 1M Aeld 1l U0"00syewpUO /Sy Woly papeo|umod ‘g ‘€202 ‘0212697 T

00 Ao Akeaqi

5U8017 SUOWILLOD AAIER1D 3|cedt|dde ay Ag pausenof afe sajoilie YO ‘8sn Jo S3|nJ 10} AkeiqiT autjuO A3|IAA UO (SUONIPUOD-pLE:



550 | GORSKY ET AL.

Example 3.27. For a more complicated example, let us compute the homology of the (3,3) torus

link. Consider the braid
\ \
L3 =
AN
N

It is easy to see that T(3,3) = T(2,2) - L. By applying the recursion from Example 3.26 to
T(2,2), we resolve T(3,3) by t7'K,L; and t~'qL,. By the main recursion, K,L; is resolved by
172K and t—2q(K, LU 1). To resolve L, we can write

VLXK \

Finally, we can use the recursion to write

X AN
K ||=¢+a)K|
e

which we already computed. As a result, we proved that HHH(T(3, 3)) is supported in even
homological degrees, and refer the reader to [31, 71] for the final answer.

]

Example 3.28. A similar computation yields the following Khovanov-Rozansky homology of
T(3,4) torus knot, first computed in [29]:

A
27 8
T 305 577
°T 6 2 4 4 6
: : : : : : :
% -4 -2 o 2 4 6 Q

The homology is 11-dimensional (the generators correspond to the dots in the picture) and concen-
trated in three A-degrees. The Q-degree is marked on a horizontal axis, A-degree on the vertical
axis and T-degree is marked next to the dots.
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4 | BRAID VARIETIES
4.1 | Braid varieties and their properties

In this lecture, we describe a geometric model for Khovanov-Rozansky homology of positive
braids. Given 1 < i < n — 1, we consider the matrix

1 0 0
o -
: 0 1
Bi(z) = 1 =z
“~ 0
0 0 1

where the nontrivial 2 X 2 block is at the ith and (i + 1)-st positions.
Lemma 4.1. B;(z,)B,,(2,)B;(z3) = B;,1(23)B;(z, — 2,23)B;1(2}).

Proof. Without loss of generality, we may work with 3 X 3-matrices, i = 1. The left-hand side is

0 1 01 0 O0)(0 1 O 0 0 1)(0 1 O 0 0 1
1 z Off0 0 1|1 z3 0Of=(1 0 z]||1 z3 O|=]0 1 z
0 0 1Jl0 1 zJl0 0 1 01 zJ\0 0 1 1 z3 2z,
and the right-hand side is
1 0 0)f0 1 0}(1 0 O 0 1 0)(1 O 0 0 1
0 0 1|1 zy—2zz3 0|0 0 1]=]0 0 1o 0 1|=]0 1 2z
(|
Given a positive braid
B=o, o

we define, following Mellit [90], the braid matrix
Bg(zy,...,2,) = B; (z,) - B; (2,).
and the braid variety
X(B) = {(zl, w3 Zp) D Bg(zy,..,2,) 18 upper—triangular} ccC.

It follows from Lemma 4.1 and the obvious equality B;(z)B;(w) = B;(w)B;(z) for |i — j| > 1, that
By satisfies the braid relations (2.1) up to a change of variables, and the variety X(5) does not
depend on the braid word for 8 up to isomorphism. Clearly, X() is an affine algebraic variety in
C’ cut out by () equations.
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552 | GORSKY ET AL.

Example 4.2. To describe X(c*) we compute
0 1 0 1 0 1\ (1 Z, 0 1
1 z,)\1 z)J\1 z) \z; 1+zz,/)\1 2z
_ Z, 1+ 2,23
T \l+2zz, z,+z3+212,25)
This is upper triangular if and only if 1 + z,z, = 0, equivalently z; # 0, so X(¢) = Cz*l X C,,.

Example 4.3. Similarly, X(c*) will be related to the matrix

z, 1+ 2,23 0 1
1+2zyz, zy+ 23+ 22,25 1 z,
_ 1+ 2,z Zy+ 24+ 25232y

This is upper-triangular if z; + z; + z;z,25 = 0. This is a hypersurface in C* times C,,- Note that

we can rewrite this equation as z; + z3(1 + z;2,) = 0. If 1 + z, z, = 0 then z; = 0, contradiction.
_ __Z

Therefore, 1 + z,z, # 0 and z; = T2, 5O that

X(0") = {1422z, # 0} X C,,
and hence it is smooth of dimension 3.
Example 4.4. Similarly, X(c°) corresponds to
Zy + 24 + 25232, Z3Z3 + 2925 + 29232425 + Z4Z5 + 1

232321 + 29252 + 292324252
1+ 212y + 2421 + 2324 + 212,252, e

+ 242521 + 21 + Z3 + 232425 + Z;5
This is upper-triangular if

14212y + 242 + 2324 + 2125232, = (1 + 2,2,) + 24(2; + 23 + 212,23) = 0.

Similarly to the previous case, one can check that this hypersurface is isomorphic to the open
subset {z; + z; + z,2,25 # 0} and does not depend on zs, so that it is smooth of dimension 4.

Note that in all these examples there is a torus action on X(c*) defined by the equation
t.(21, 29, 23,24, 25) &> (121,67 25, 825, 6 2y, t25).
This can be generalized as follows.

Lemma 4.5.

(a) We have diag(ty, ..., t,,) - B;(z) = B;(z')D for some z’ and some diagonal matrix D.
(b) Part (a) defines the action of the torus T := (C*)"*~! on the braid variety X(B) for any n-strand
braid §.
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(c) The torus action on X () is free if B closes up to a knot (with one component). In this case, we
have

X(B) = [X(B)/T]xT.

Proof.

(a) It is clearly enough to verify for a single crossing, and here it is enough to work with 2 x
2-matrices. We have:

tp 0\(0 1\ (0 t\ _ (0 1T\ /t, 0
0o )\1 z) \& 6nz) "\t 2z) 0 1)

(b) t € (C*)" acts on the left - moving everything to the right in Bg (Z) using (a) multiplies entries
of Z by twk(ikﬂ)t;; i) and permutes entries of ¢t by w(3). The upper-triangularity condition
doesn’t change. So, we get an action.

(c) If the closure is a knot, the above dictates [itL_u(li =1 for all i. So, the stabilizers are all trivial.
Now assume that 3 closes up to a knot, and let r := #(8) be the length of the braid §. If
we consider the subvariety X’(8) consisting of z € X(8) such that Bg(z) has a fixed diagonal
((=1)",1,...,1) then it is straightforward to see that X’(8) = X(B)/T and that X(B) =~ X'(B) x
T. O

The following theorem generalizes Examples 4.2-4.4 to an arbitrary number of strands.

Theorem 4.6 [19-21]. Suppose that § = yA where A is the positive half-twist braid and y is an
arbitrary positive braid. Then the following holds.

(a) X(P)is nonempty if and only if y contains A as a subword. In what follows, we assume that this
is the case.

(b) X(B) is smooth of (expected) dimension £(B) — ('21) =7(©).

(c) Thevariety X(B) is an invariant of yA~! under cyclic rotation and positive stabilization.

(d) X(B) has a smooth compactification (depending on a braid word for 5) where the complement
to X(B) is a normal crossings divisor with stratification labeled by the subwords of y containing
A.

Cyclic rotation in part (c) has the following meaning: suppose that y; = ;' and y, = y'0,,_;
for some positive braid y’. Note that

NAT =0y A, A% =y'o, AT =y A,

so that 8, = y;A and 8, = y,A are related by a cyclic rotation of a braid word. This is a somewhat
weaker notion than conjugation. The braids y;A~! and y,A~! are conjugate as well.

Remark 4.7. Note that the braid yA~! = BA~2 which appears in part (c) is not necessarily positive.
Remark 4.8. The combinatorics of the strata in the compactification in part (d) is described by the

subword complex of y defined by Knutson and Miller [81]. In fact, this compactification coincides
with the brick variety of the braid word g, studied by Escobar in [33].
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It is sometimes more convenient to work with the following modification of the braid variety
X(B;wy) :={(z,--,2,) : Bg(zy,..., Z,)w, is upper-triangular} C C',

where w, € S, is the longest element, w, = [n,n — 1, ..., 1] which is interpreted in the equa-
tion above as a permutation matrix. In fact, in the context of Theorem 4.6 we have, see
[20]

X(B) = X(yA) = X(y;we) x €©).
Note that this explains the appearance of the C-factor in Examples 4.2-4.4.
Example 4.9. Asin Example 4.3, we get
X(@") ={1422, # 0}xC, =X(0%;wy) X C,
where
X(0%wy) = {1 + 2,2z, # O}

This compactifies to P! x P!, with the following strata of the complement: the hyperbola {1 +
z,2, = 0}, two lines at infinity, and three pairwise intersection points of these. The strata are in
bijection with nonempty subwords of o3.

Let us briefly comment on the ideas behind the proof of Theorem 4.6(c), following [21]. First,
to the braid 8 = yA one can associate a Legendrian link which has the smooth type of the closure
of BA=2 = yA~!L. This is done using ‘pigtail closure’ of 3, see [21, 22]. Next, to any Legendrian
link Chekanov [25] associated a dg algebra C and proved that its cohomology is a Legendrian link
invariant. See also [22] for a construction of C over the integers and more details.

An important invariant of a dga C is its augmentation variety defined as Aug(C) = SpecH®(C).
By the work of Kalman [73] for a positive braid y the dga C coincides with the Koszul complex for
the equations defining X (y; w,), so that Aug(C) = X(y; wy).

See [21] for an explicit description of C, Aug(C) and their behavior under braid moves,
conjugation and positive stabilization.

4.2 | Homology of braid varieties

The following result has been discussed in, for example, [90, 120], but in this form it was stated
and proved only recently in [122, Corollary 4].

Theorem 4.10. The T = (C*)"-equivariant Borel-Moore homology of X () has a nontrivial weight
filtration. The associated graded for this filtration is isomorphic to

gry HY 5, (X(B)) ~ HHH"(B).

Here the weight grading corresponds, up to an overall shift in [122, Corollary 4], to the g-grading, and
the homological grading corresponds to the sum of the q and t-gradings. The action of the variables
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X; on the right-hand side corresponds to the equivariant parameters, that is, the generators of the
T-equivariant homology of a point.

Remark 4.11. Note that the variety used in [122, Corollary 4] slightly differs from our X () and
[122, Corollary 4]. uses G-equivariant homology instead of T-equivariant one. Nevertheless, by
[122, Remark B.4.3] the corresponding homologies are isomorphic.

Remark 4.12. Similar results in sheaf- and Soergel-theoretic form appear in [117, 123, 124].

Remark 4.13. Note that by the main result of [50] we have
HHH"(8) = HHH(BA™2) = HHH’(yA™).

As we discussed above, this is invariant under conjugation and positive stabilization of yA~! in
agreement with Theorem 4.6(c).

Remark 4.14. 1In [122], Trinh has also extended Theorem 4.10 to all Hochschild degrees using
Springer theory.

Remark 4.15. Since X(f8) is smooth, on the level of triply graded vector spaces Theorem 4.10 may
be also stated in terms of usual singular cohomology. Namely, the Verdier dualizing sheaf of X()
is simply @y g) = C[—dim X(B)], and the equivariant BM homology agrees as a doubly graded
vector space with the equivariant cohomology. This is however not the case for the more general
varieties appearing in the extension to higher Hochschild degrees, and equivariant BM homology
(or up to a linear duality, cohomology with compact supports) seems to be the most natural choice
also in view of Subsection 6.4.

Let us sketch some ideas in the proof of Theorem 4.10, referring the reader to [122] for
more details.

First, recall the bimodules B; = R Qs R. To give a geometric interpretation to these, consider
the Bott-Samelson variety [17]

BS; = {(F,F’) : F,F' complete flags, F; = T’j’. for j # i}.
We have line bundles £; = F;/F;_; and E;. = 7-‘]’. / 7-’](_1 and the corresponding Chern classes
x; = ¢ (L)), x;. = cl(C;).
Clearly, £; ~ E;. and x; = x} for j # i,i + 1. Furthermore,
Fis/Fjq = FJ,-H/F]{_l 4.0)

is filtered both by L;, £;,, and by L], L] 41> S0 the elementary symmetric functions in x;, x;,; and
xlf , xlf “ describe Chern classes of the rank two bundle (4.1) and hence agree with each other. These
are precisely the defining equations for B;.

Given a tensor product B; ® -+ ® B; , we can define the more general Bott-Samelson variety
as the space of sequences of flags (F, ..., FU+1) such that (F®), FG+D) satisfy the conditions for

BS; foralls.
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Next, we associate some geometric objects to Rouquier complexes T; associated to positive
braids. We say that two flags 7, 7 are in position s; if 7; = FJ{ for j #iand F; # F/. This is an
open subset of BS; complementary to the diagonal. To a Rouquier complex Ty =T; ® - ® T ,
we associate the open Bott-Samelson variety OBS consisting of sequences of flags (F(1, ..., FI+1)
such that (F®, F(+1) are in position s;,- The open Bott-Samelson variety was considered in the
work of Broué, Michel and Deligne [18, 27], and later in [120], it plays a prominent role in the
Deligne-Lusztig theory [28]. In particular, Deligne proved in [27] that OBS; is an invariant of the
braid 8 and does not change under braid relations up to a (canonical) isomorphism.

To compute the homology of OBSg, one can use the exact sequence in equivariant cohomol-
ogy coming from excision and inclusion-exclusion. Namely, the open Bott-Samelson variety has
a natural embedding into the closed Bott-Samelson variety for the same braid word. Its com-
plement is a union of closed Bott-Samelson varieties corresponding to subwords of § with one
letter skipped, the intersections of which correspond to subwords of § with two letters skipped
and so on. As a result, we can compute the homology of OBS; using the homologies of closed
Bott-Samelson varieties for all possible subwords of 8. This is parallel to the expansion of Tz as a
complex built out of tensor products of B; for all subwords of (5.

Finally, we need to compare the open Bott-Samelson variety OBS; to the braid variety X ().
This is given by the following Lemma. Let § be the braid 5 read in the opposite direction.

Lemma 4.16 [21].

(a) The variety X(;w,) is a subset of OBSg where the first flag FQ) is chosen to be standard, and
the last flag FU+V is chosen to be antistandard: FU+1 = w, 7D,

(b) The variety X(Q) is a subset of OBS;z where both the first and the last flags are chosen to be
standard.

Identification of the first and last flag in (b) corresponds to closing the braid and computing
HHH".

The compactification of X(8) mentioned in Theorem 4.6 corresponds, up to replacing § by 9,
to the compactification of OBS; by BSg. Note that this compactification depends on the choice of
a braid word for §.

Example 4.17. Let us compute the homology of the varieties X(8) for § = o3, 0* from Exam-
ples 4.2 and 4.3. Note that for § = o by Lemma 4.5 the torus action is free, and the equivariant
homology is related to the non-equivariant homology by a trivial factor.

The homology of X(c3) = C* x C is clear. To compute the homology of X(¢*) = {1 + z,z, #
0} x C we use the Alexander duality. The hyperbola {1 + z,z, = 0} is isomorphic to C* and has
nontrivial H° and H!, or, equivalently, nontrivial cohomology with compact support H>¢ and
H'¢, Now

H ({1 + 2,2, # 0}) = H*74({1 + 2,2, = 0}),
so we have nontrivial H! and HZ2. Since it is connected, we also have H°. To sum up, we have
H(X(c%) = H'(X(¢%) = H*(X(¢) = Z,

and the other homologies vanish.
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Example 4.18. The computation for X(¢°) from Example 4.4 is similar: by the Alexander duality
we have

Hi({z) + 23 + 212,23 # 0}) = HO 7' 75({z + 23 + 212,23 = 0) = HO ({1 + 2,2, # 0))
while by the Poincaré duality we have
H75({1 + 2,2, # 0}) = H;_,({1 + 2,2, # 0}).
Therefore,
H(X(0*)) = H'(X(0”)) = H*(X(¢”)) = H*(X(c")) = Z,

and the other homologies vanish. Note that o> closes up to a knot, so T = C* action on X(c°) is
free and by Lemma 4.5(c) we have

H*(X(c%)) = H*(C*) x H{X(0”),
so that
H)(X(0%)) = H{(X(*)) = Z

and other equivariant homology vanish. This agrees with the A =0 Khovanov-Rozansky
homology of the trefoil T'(2, 3), see Example 3.18.

Example 4.19. Consider the three strand braid 8 = (¢, 0,)” which corresponds to the (3,4) torus
knot obtained as the closure of A2, It has a free action of the torus T = (C*)? and the quotient
X(BA~Y; w,)/T is isomorphic to the E cluster variety (see Example 4.25). Its homology

grh H*(X(BA™ Y wy)/T) = grh, HE(X(B))

with the weight filtration was computed by Lam and Speyer in [83] and is given by the following
table:

HO | H' | H? | H® | H* | H® | H®
k—p=0|1 0 1 0 1|0 1
k—-p=1 ol 0| O 1|0

This matches the bottom row of the Khovanov-Rozansky homology of T(3,4) in Example 3.28.

4.3 | From braid varieties to positroid varieties

Following the recent work of Galashin and Lam [34, 35] and [21], we relate the braid varieties to
positroid varieties in the Grassmannian defined in [80].

Recall that the Grassmannian Gr(k,n) parameterizes k-dimensional subspaces in n-
dimensional space, which can be presented as the row span of a k X n matrix of maximal rank.
Let vy, ..., v, be the columns of such matrix, extend these periodically by setting v;,,, = v;.
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The open positroid stratum I1; , is defined by the conditions that all the cyclically consecutive
k X k minors

Ai itk—1 = det(vi’ () vi+k—1)

.....

are nonzero.

Lemma 4.20 [21]. We have
My = (€7 X X Bk o),
where B, = (o - Or_1)" " is the (k,n — k) torus braid on k strands.

Example 4.21. Consider the open positroid variety IT, 4. Since A, , # 0, we can use row operations

to write the matrix as
1 0 a b
01 ¢ d)

a#0,d+#0,ad — bc #0.

Other conditions on minors imply

By denoting x = b/a,y = —c/d we get xy + 1 # 0 which is the defining inequality of X(c3; wy).
Example 4.22. Similarly, for IT, 5 we get the matrix
<1 0 a b e>
01 ¢c d f
suchthata # 0, f # 0,ad — bc # 0,bf — de # 0. Without loss of generality, we can get rid of (C*)3
and assume thata = f = ad — bc = 1, thend = 1 + bc. Now
bf —de=b—(1+ bc)e #0.
If we denote z, = b, z, = c,z; = —e, we get
Z1+ (1 +2,2y)23 =2, + 23 + 212,23 # 0
which is the defining inequality of X(o*; wy).

Example 4.23. Consider a pair of permutations w, u € S,, such that w > u in the Bruhat order.
Then

X(BW)BW ™ wo); wo) = Ry

is the open Richardson variety in the complete flag variety in C". Here f(w) and B(u'w,) are
positive braid lifts of permutations w and u~'w,, respectively.

If in addition w satisfies the so-called k-Grassmannian condition, then by [80] the open
Richardson variety R, ,, is isomorphic to a more general positroid variety IT,,,, C Gr(k, n), the
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variety II; ,, corresponds to the case when u = 1 and w is the maximal k-Grassmannian permu-
tation. In [21], the variety IT,, ,, is proven to be isomorphic (up to C* factors) to braid varieties
for four different braids, some on n strands (like in Example 4.23) and some on k strands (like in
Lemma 4.20). We refer to [21] for more details.

Finally, we would like to mention an emerging connection between braid varieties and cluster
varieties, although the latter are out of scope of these notes. In particular, by [36, 118] all positroid
varieties IT,, ,, are cluster varieties, while by [19] braid varieties of the form X (8; w,) have a cluster
structure provided that § contains w,, as a subword, see also [23, 38-40, 119].

Example 4.24. The braid variety X(c*; w,) corresponding to the (2,k — 1) torus link, is iso-
morphic (up to a certain torus) to the positroid variety I, ; . ;, and to the cluster variety of type
Ak_2.

Example 4.25. The braid variety X((o,0,)*A; w,) corresponding to the (3,4) torus knot, is iso-
morphic (up to a certain torus) to the positroid variety II; ;, and to the cluster variety of type
E6-

It is yet unclear how the cluster structure reveals itself in link homology. However, one piece of
this structure already plays an important role: any cluster variety carries a canonical closed 2-form
[43] (which is symplectic under nice circumstances) which has constant coefficients in all cluster
charts. This form yields an interesting operator in link homology of homological degree 2, which
is constructed for all (not necessary positive) braids in the next section. For more (sometimes
conjectural) connections between link homology and cluster algebras, the reader is referred to
the recent preprint [37].

5 | y-IFICATION AND TAUTOLOGICAL CLASSES

In this lecture, we describe various homological operations in Khovanov-Rozansky homology.
The easiest to describe is the action of a polynomial algebra on the homology of an arbitrary link
with a choice of marked point, which corresponds to an action by the homology of the unknot.
By moving the marked point, one obtains a family of ‘dot-sliding homotopies’ which give rise to
an exterior algebra action in link homology. These can then be used to define a deformation, or
‘y-ification’ of Khovanov-Rozansky homology.

Furthermore, we will sketch a construction of a commuting family of ‘tautological classes’ in
y-ified homology, and define an action of the Lie algebra 3I, on the y-ified homology.

5.1 | Polynomial action

Recall that to any braid g we associate the Rouquier complex Tz consisting of R — R bimodules,
or, equivalently, a complex of C[xy, ..., X, X/, ..., x;l]-modules. Let us describe the properties of
this complex.

First, observe that for any symmetric function f(x,...,x,) € C[xl,...,xn]sn the actions of
f(xqs ., x,) and of f (xg, s xl’1) on Tﬁ coincide. Indeed, this is true for B; and arbitrary products
of B;, and hence for any Soergel bimodule.
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More abstractly, we can consider a bimodule

Clxyy e, Xy, X!, ...,xl’q]

- flxp,ennx,) = f(x{,...,x;) forany f € C[x,,...,x,]%

B :=B, =R Qs R

Note that the bimodule B is also an algebra as a quotient of the polynomial algebra. By the above,
we obtain the following.

Lemma 5.1. The action of C[xy, ..., X,,, xi, ..., X, | on the Rouquier complex T factors through the
action of B.

Next, we can compare the actions of x; and xlf . More precisely:

Theorem 5.2. The action of x; on Ty is homotopic to the action of x{v O where w is the permutation
corresponding to the braid 3.

Example 5.3. For example, consider the braid 3:

We have x; ~ x/,x, ~ x| and x; ~ x} on the corresponding Rouquier complex T5. Note that after
the braid closure we identify x; with x/, so that x; becomes homotopic to x,, x, to x; and x;
to itself.

Theorem 5.2 has a very important consequence for the structure of link homology.

Corollary 5.4. Suppose that a braid f3 closes up to a link L with r components. Then HHH(L) is
naturally a module over a polynomial ring in r variables, one variable per component of L.

Note that the components of L correspond to the cycles in the corresponding permutation w.

5.2 | Dot-sliding homotopies and y-ification

The following lemma outlines the proof of Theorem 5.2 for a single crossing. The general case is
obtained by combining these elementary ‘dot-sliding homotopies’.

Lemma 5.5. The actions of x; and xlf +1 on the Rouquier complexT; = [B; — R] are homotopic.
Proof. We want to construct a map h : R — B; satisfying hd(f Qgsi 9) = X;f Qgrsi ¢ — f Qgsi

9% and dh(f) = (x; — x;,1)f, whered = misthe unique bimodulebap B; — Rsending1 Qps; 1
to 1. Applying hd(1 ®ps; 1), it is clear that we must have h(1) = x; ®gs 1 — 1 Qps; X;,;. This is
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exactly the map A constructed in Lemma 3.8. Now it is straightforward to check that 4 indeed
gives a homotopy between x; and x/ 41

B—23R
xi—xi’+1

B—%3 R O

Example 5.6. Let us describe an explicit homotopy between the left and right R-actions for the
two-strand braid o2.

Thanks to Lemma 5.5, we have a homotopy between x; and xg on T, so (x; — xé) ®1is
null-homotopic on T ® T, such a homotopy is given by 7 ® 1. Similarly, 1 ® (x, — xi) is null-
homotopic. But x; ®1=1®x,. Thus, h®1—1Q® h gives a homotopy between x; ® 1 and
1® xg. It is easy to see that the same map h ® 1 — 1 ® h gives a homotopy between x, ® 1 and
1® x; (perhaps up to a scalar multiple). Alternatively, if we actually want to do computations,
we have:

B—3%B—%3R
1 /)
B2 p_dyp

Vv X Wi use, , X —x =x,—x] = , , X+ X, =X
The above complex works because, on R, x; —x| =X, —x, =0 and, on B, x; + X, = x| +

1
x), equivalently x; — x| = x, — x,, so the diagram shows that both x; — x| and x} — x, are
null-homotopic, as wanted.

Let £; be the homotopies between x; and x| , that is,
_ /
[d’ gl] =X — xw(i)
We can choose &; so that they square to zero and anticommute (since this holds for a single cross-

ing by Lemma 5.5). Now we can introduce formal variables y,, ..., ¥, and consider the deformed
differential

n
i=1
From the above discussion, we get
n
D2 = Z(xi - x:U(i))yi
i=1

which vanishes after closing the braid and identifying different y; on the same link component.
This allows one to define a deformation (or y-ification) of Khovanov-Rozansky homology:

HY () = H* (H(Tg ® Cly1, s Yul, D)/ i = Yui))-

It has the following properties:
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Theorem 5.7 [48]. The y-ified link homology is invariant under conjugation and stabilization and
defines a topological link invariant. If a braid 3 closes up to a link L with r components then HY (L)
is naturally a module over C[Xy, ..., X,, Y15 e s V1 ]-

Example 5.8. Let us compute the y-ified homology of o2. By Example 5.6, the y-fied complex for
o2 has the form

If we apply Hom(R, —) (or, equivalently, compute y-ified homology in a-degree zero) to this, we
get

/N X1—X
R[y] Rly] — Ryl

Y1=)2

The homology of this complex is an R[y]-module with two generators (say, z and w) and one
relation z(y; — y,) = w(x; — x,). This module is isomorphic to an ideal in R[y] generated by x; —
x; and y; — y,.

Remark 5.9. The complex with backward pointing arrows might look unusual to the reader.
We can rewrite it in a more conventional way by ‘unrolling’ the variable y = y; — y,, which has
homological degree 2, and writing R[y] = @, Y*R[y; + y,]:

R[y; + y,] ;) R[y; + y,] ﬂ) Ry, +¥,]

—

YR[y1 + y,] —O> YR[y; + y,] ﬂ) YR[y; + y,]

y
Y2R[y1 +¥3] —2 2RIy, + ;] 2= y2R[y; + ]

This example can be generalized as follows:

Theorem 5.10 [48]. Let T(n, kn) be the (n, kn) torus link with n components. The corresponding
braid is the kth power of the full twist on n strands (k > 0). Then:

(a) HY(T(n, kn)) ~ J*, where
J =0izj(x; = x;,¥; —¥;,6; = 6;)
istheidealin HY (unlink) = C[x,, ..., X,;, ¥15 - » Y» 01, - » 8,,]. In Hochschild degree zero we get

HYA=(T(n, kn)) ~ J¥,
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where

J = ﬁl-#j(xl- - xj’yi _y]) C C[xl, ,xn,yl, ’yl’l]

is the ideal defining the union of all diagonals in (C?)";
(b) theideals J andJ are free over C[y;, ..., ¥, ] and

HHH(T(n,kn)) = J*/(y)J*, HHH(T(n, kn)) = J* /(y)J*.

Note that in Theorem 5.10 it is much easier to first describe the y-ified homology, and then
obtain HHH as a quotient by the maximal ideal in y;. This seems to indicate that y-ified homology
has better properties than HHH, as we see in the next section.

5.3 | Tautological classes and symmetry

Consider the dg algebra .4 which is a free resolution of R over B = R Qs, R:

n

A=Bluy, oty &5, §) dE) = X — X, dw) = Y ey (x, X)E;,

i=1
where hy_;(x;,x!) denotes the complete symmetric function of degree k —1 on the variables

X, xl.’, and the grading on A is given by deg(x;) = deg(xlf) =0, deg(§;) = 1, and deg(u;) = 2 for
i=1,..,n.

Lemma 5.11. We have d? = 0in A.

Proof. First note that thanks to the graded Leibniz rule, it is enough to show that d*> = 0 on
generators. Indeed, if b and ¢ are homogeneous then

d?(bc) = d(d(b)c + (=1)Plbd(c)) = d2(b)c + (—=D!DId(b)d(c) + (—D)!P!d(b)d(c) + bd?(c)
= d?(b)c + bd?(c),

where the last equality follows since |b| = |d(b)| — 1. Now, that d*(x;) = d*(x]) = d*(§,) = 0 is
obvious from the definition. As for u; we have

) = Y e O, x)D0q = x) = Y xf = (D = 0. -
i i=1

i=1

Theorem 5.12 [49]. The algebra A acts on the Rouquier complex T for any f, such that x; act as
usual, the action of xi’ is twisted by the permutation w corresponding to 8, and &; act by the dot-sliding
homotopies as above.

Theorem 5.12 follows from two lemmas below. Indeed, by Lemma 5.14 the dg algebra .A acts on
Rouquier complexes Tl.i (such that u; act by 0), and by Lemma 5.13 there is a coproduct on .4 which
allows to define the structure of .A-module on the tensor product M ®x N of two .A-modules. Note
that in general u; act nontrivially on T, see Example 5.15.
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Lemma 5.13. There is a chain map A — A Q@ A defined by the equations

AX)=x81L Ax)=10x/, A¢)=§R®1+18®¢,
n
A(uk) = Uy ®R1+1Q® U, + Z hk_z(xi,xl{, x{,)gi ® §i‘

i=1

Proof. We need to check that A commutes with the differentials. This is clear for x;. Let us check
for &;:

dAE) =d(E®1+1®E) =(x-x)®1+1® (x; —x])
but, just as before, xl.’ ®1=1Q x;,and xl.” is just a shorthand for 1 ® xl.’. So, we see that
d(A) =x; — xi” = A(d(§)).

Finally, let us compute d(A(uy)):

dA(w) =du, @1+ 1Q@u; + Z Mo (X[, %€ ® &)

i=1

n
= Dl (i XDE @ 1+ 1@ hye_y (x;, x)E;
i=1

+ hk—z(xi’xi”xi”)((xi - x{) ®§-§®(x; — x{))],

where the last negative sign is due to the graded Leibniz rule. Recalling that xlf = xi’ ®l1=1Q x;
and xlf’ =1Q® xlf we can rewrite as

n

Z[hk—l(xi:x{)fi ® 1+ hy_(x},x )1 ® &
i=1
+hye o0, ], % D(O = xDA @ &) — (x] — x])(& @ 1)]

[y (i, x;) + hy (x5 xl{, x,{,)(xi” - xil))(gi ®1)
i=1

+ (e (5, X[ + g (e, X, 6] — XD @ €D

Now we observe that hy_;(x;, x]) + by (x;, X[, x")(x]" = x]) = hy_;(x;, x") and, similarly,
hy_y (0, x]') + hy_p (e, x], x])(x; — x[) = hy_1(x;, x]). Then,

n
d(Aw) = Yl (6, XD(E @ 1+1® &) = Ald(wy)). O
i=1
Lemma 5.14. The dg algebra A acts on the Rouquier complex T;.

Proof. By degree considerations, all u; have to act by 0 on T;. The action of x; is given by the left
action of R on T;, while the action of xlf is given by the right action of R twisted by the automorphism

LONIPUOD PUe SWS | 341 385 *[£202/70/BT] U AkeiqiT8UIUO A8|IM ‘SOIBUBLRIN SYE IdIN AQ TO.ZT'SWIA/ZTTT OT/I0p/W00™A8 1M Aeld 1l U0"00syewpUO /Sy Woly papeo|umod ‘g ‘€202 ‘0212697 T

00 Ao Akeaqi

5U8017 SUOWILLOD AAIER1D 3|cedt|dde ay Ag pausenof afe sajoilie YO ‘8sn Jo S3|nJ 10} AkeiqiT autjuO A3|IAA UO (SUONIPUOD-pLE:
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5; © R = R, so that xl( is given by right multiplication by x;,, for example. Finally, the action of
§; is given by the homotopy h constructed in Lemma 5.5, the action of £, is the negative of this
homotopy, and & acts by O for k # i,i + 1. Let us verify that this indeed gives an action of .A on
T,.

Since all the maps appearing in the Rouquier complex are maps of R-bimodules, they commute
with both the left and right action of R, as needed. Any symmetric polynomial is, in particular,
symmetric in the i and i + 1-st variables, so the left and right actions of symmetric polynomials
on T; coincide. This verifies that we have an action of B = R ®gs, R with trivial differential.

By definition of the action and Lemma 5.5, we have d§; = x; — x/,and d§;,; = x;,; — xi’H. The
twist s; fixes every other variable, and the left and right actions of every other variable on T; and
on R coincide. Thus, for k # i,i + 1 we get d&,, = 0 = x; — xl’{, as needed.

Finally, we need to check that )., _, hy_;(x,, x},)§, actsby 0. Since §, actsby O unless £ = i,i +
1, we simply get by _; (x;, x)§; + hy_y(X; 41, X[, )§;11- But the action is defined so that §;,; = —§;,
and this further simplifies as (hy_; (x;, Xiy) = hy_1 (x;11, X{, 1))§;41- On B; this is zero because &4
is already zero there. On R, we get:

g1 (x;, x{) = hy_1 (x40, xl{+1) = ey (X3, Xi41) — M (X1, %) = 0. O

Example 5.15. Let us construct the action of the dg algebra .4 on the Rouquier complex for o2.

Thanks to Lemma 5.14, we get an actionof A @ AonT Q@ T = o2, Composing with the coprod-
uct map of Lemma 5.13 , this induces an action of A on T ® T = g2. Let us be more explicit. The
action of u; has to be 0, because u; acts by zero on T and A(u;) = u; ® 1 + 1 ® u,. The action of
X; (respectively, xi’ ) is given by left (respectively, right) multiplication by x;. The action of &; is the
homotopy of Example 5.6 and the action of &, the negative of this. Finally, by degree considerations
u, can only be nonzero on R, and there it is the map R — B constructed in Lemma 3.8.

Uy

>
s}
g
=

That dx; = dx, = dx| = dx/, = 0 follows because all the maps involved in the complex B —
B — R are bimodule homomorphisms. That d§; = x; — x| and d§, = —d§; = x, — X/ is essen-
tially Example 5.6 above. So, we only need to check the relation du, = (x; + x})§; + (x; + x))§,.
Note that the right-hand side is zero, while the left-hand side is the composition of the maps

x,—x!
R — B — B. To check that it is zero, it suffices to check that it is zero when evaluated at 1.

Here, we have:

(xl - x;)(xl ®Rs 1-1 ®Rx x2) = x% ®Rs 1-— xl ®Rx x2 - xl ®RS xl + 1 ®Rs x1x2
= (x% + x1x2) ®Rs 1-— xl ®Rs (xl + x2)
= (Xf + x1x2 - xl(xl + xz)) ®Rs 1= 0

Remark 5.16. Note that, similarly to Example 5.15, u; acts by zero on any Rouquier complex T'g.

To sum up Theorem 5.12, there is an action of interesting operators §;, u;, on Rouquier com-
plexes Tﬁ but these do not commute with the differential on Tﬁ. To resolve this issue, we use the
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y-ified complex with the differential

n
D=d+ Z&J’i
i=1

and define

n
0
Fk = Uy + Z hk_l(xi,xl{)y.
i=1 Vi

Then we get the following:

Theorem 5.17 [49].

(a) We have

[D,Fk] = 0, [Fk’Fl] = 0,

[Fie» x;1 = 0, [Fie, ;] = hye_y (x;, X))

In particular, Fy, define a family of commuting operators on HY ().
(b) The operator F, satisfies a ‘hard Lefschetz’ condition and lifts to an action of 81, on HY(8). As
a corollary, HY () is symmetric.

For knots, we have HY(8) = HHH(B) ® C[x, y], so HHH() is symmetric as well. This was con-
jectured by Dunfield, Gukov, and Rasmussen in [29], see Example 3.28 for the visually symmetric
representation of HHH(T'(3, 4)), and Examples 3.18 and 3.23 for HHH(T'(2, n)).

Note that the ‘curious hard Lefschetz’ property in the homology of positroid varieties was
established in [36, 83].

5.4 | Geometric analogue

The construction of the operators u;, and F} via the coproduct on A is similar to (and motivated
by) the construction of the tautological classes on character varieties [10, 11, 72, 89] which we
briefly recall in this section. Let G = GL(n) and let Q be a symmetric function in n variables of
degree r. Then one can use the Bott—-Shulman-Stasheff construction [72] to obtain the following
differential forms and cohomology classes:

®(Q) € H'(BG), ®,(Q) € Q¥ 1(G), @,(Q) € Q¥ *(G X G)...
such that d®,(Q) = 0 (so that ®,(Q) defines a cohomology class on G) and
d®,(Q) = 71 P1(Q) + 7,2, (Q) — m* P (Q),
where m : G X G — G is the multiplication map.

One can think of these classes as follows: first, recall that the cohomology of BG is isomorphic to
the G-equivariant cohomology of a point, and to C[g]® =~ C[x,, ..., X,,]°", so a symmetric function
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Q naturally defines a cohomology class ®,(Q). In particular, the cohomology of BG = BGL(n) is
a free polynomial algebra generated in degrees 2,4, ..., 2n.
Next, we consider the Leray spectral sequence

H*(G) ® H*(BG) = H*(EG) = C

associated to the universal fibration EG — G. The class [®,(Q)] € H*~!(G) is characterized by
the fact that it kills ®,(Q) € H* (BG) in this spectral sequence. We refer to [72] for an explicit
construction of the differential form ®,(Q) representing this cohomology class. In particular,
the cohomology of GL(n) is a free polynomial algebra generated by anticommuting variables in
degrees 1,3, ...,2n — 1.

The form ®,(Q) corresponds to the equation

m*[2,(Q] =1®[®,(Q)] +[®,(Q]® 1. (5.2)

Although this equation holds in cohomology (where m* : H*(G) — H*(G) ® H*(G)), it does not
hold for the actual differential forms ®,(Q) on the nose. The difference between the left and right-
hand sides in (5.2) can be then written as d®,(Q) and it turns out that such ®,(Q) can be written
explicitly. We refer to [11, 72, 89] for more details and explicit formulae for @,(Q) and @,(Q).

Example 5.18. IfQ = ) x7, then

®,(Q) = Tr(f*df Adgg™™).

These forms can be used for ‘gluing’ various G-valued functions. Given f : X - Gandg : Y —
G for some X and Y, assume that

[r@1(Q) = dwy, g"®,(Q) = dwy,
then we can define a new form
Wyyy = Wy +wy + (f X 9)*®,(Q) € Q7 A(X X Y). (5.3)
It follows from the above that

dwyyy = (f - 9)"®1(Q).

Equation (5.3) is similar to the construction of the coproduct on .A. Mellit [90] used this con-
struction with Q = )] xl.z, cf. Example 5.18, to define a 2-form on an arbitrary braid variety X(3).
Note that the 2-form on X(f3) is closed, since ®,(Q) vanishes on upper-triangular matrices, but
we cannot expect it to be symplectic in general, since dim(X(}3)) is not necessarily even. However,
Mellit takes a closed subvariety Y(8) C X(B) by fixing the diagonal of the matrix Bg, and takes
the quotient Y(B) := Y(B)/T by the action of an appropriate torus T, see [90, Definition 5.3.7] for
details.

Theorem 5.19 [90]. The above construction produces a symplectic form on Y(3) which satisfies
‘curious hard Lefschetz’ with respect to the weight filtration in cohomology.
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6 | ALGEBRAIC LINKS AND AFFINE SPRINGER THEORY
6.1 | Algebraic links

Let f(x,y) be a polynomial in two variables. Consider the plane curve C = {f(x, y) = 0} C C>. We
assume that C passes through the origin and has a singular point there.

Consider the intersection L = C N S? of C with a small three-sphere with center at the origin
and radius e. It is a classical result of Milnor [93] that for € small enough the intersection is trans-
verse (so that L is a smooth link in S*) and the topological type of L does not depend on ¢. Such
links are called algebraic links.

Example 6.1. The node {xy = 0} corresponds to the Hopf link (that is, the (2,2) torus link). The
cusp {x? = y3}corresponds to the trefoil knot, that is, T(2, 3). More generally, the singularity {x™ =
¥y} corresponds to a positive (m, n) torus link which has d = GCD(m, n) components.

It is known that (local) irreducible components of C at the origin correspond to the connected
components of the link L. In particular, if C is irreducible (and reduced) then L is an algebraic
knot with one component. Such knots are classified in [30] and are all iterated cables of torus
knots. The cabling parameters correspond to the Puiseux expansion of C. For links with more
components, the classification is more complicated, and we refer to [30] for all details.

6.2 | Oblomkov-Rasmussen-Shende conjectures

Oblomkov, Rasmussen, and Shende proposed a remarkable conjecture relating the singular curves
to Khovanov-Rozansky homology. Recall that the Hilbert scheme of n points on C consists of ide-
als I C O such that dim O /I = n. We will also consider the local version of the Hilbert scheme

where the ideals are contained in O, = Cllxl]

feey)

Conjecture 6.2 [97]. One has

HHH®(L) = @ H*(Hilb*(C, 0)).
k=0

Here the right-hand side is bigraded by the number of points k and the homological degree, and the
two gradings are related to the gradings on the left-hand side by an explicit change of variables.

Remark 6.3. In [97], there is also a conjectural model for higher Hochschild degrees using slightly
more complicated moduli spaces.

In the next few examples, we will verify Conjecture 6.2 in some special cases.

Example 6.4. Let us describe the Hilbert schemes Hilb"(C, 0) for the node {xy = 0}, which
corresponds to the Hopf link L = T(2, 2).

First, we note that a (topological) basis of O, is given by the monomials
1,x,x2,x3,...,y,¥%¥>,... Now we claim that a nonzero ideal I C O, satisfies exactly one
of the three following properties.
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ALGEBRA AND GEOMETRY OF LINK HOMOLOGY 569

(a) Itis properly contained in C[[x]] C O¢ .
(b) Itis properly contained in C[[y]] C O¢ .
(c) It has finite codimension.

The ideals in (a) are precisely those of the form (x™) for n > 0, they are properly contained
in C[[x]] thanks to the relation yx = 0 and they do not have finite codimension, as C[[y]] C
Oc/(x"). The ideals in (b) are similarly described. Finally, if an ideal I is not properly contained
in C[[x]] nor in C[[y]], then there exist m, n such that x™, y" € I. But then the quotient O¢ /I
is spanned by 1, x, ..., x™ 1, y, ...,y""1, so I has finite codimension. We will now focus on ideals
satisfying (c).

We claim that every ideal of finite codimension is either principal, of the form (ax! 4+ gy/) for
a # 0,5 # 0 or an ideal of the form (x/, y/). Assume first that I is principal, so I = (f). We may
also assume that I # O . Since I has finite codimension, f = g(x) + h(y), where g(x), h(y) # 0.
Multiplying by a unit in C[[x]] and then by a unit in C[[y]], we see that f may be assumed to be
of the form ax’ + By/, where i = v(g), j = v(h) are the valuations of g and h, that is, the minimal
power of x (respectively, y) that appears with nonzero coefficient in g (respectively, h).

Now assume that I is not principal, say I = (a,x + B,y/k) for some k > 1. Note that (ax' +
By) D (a'x™ + p'y™)ifi < mand j < n. From here, we can see that every non-principal ideal is
of the form (x/, /).

Now, O¢ o/(x',y/) has basis 1, x, ..., x"7 1, y,...,y/ 7%, s0 (x!, y/) € Hilb'*/~1(C, 0). On the other
hand, note that (ax’ 4+ 8y/) contains both x/*! and y/*!. From here, we can see that (ax! + 8y/) €
Hilb™(C, 0).

Finally, since all the ideals of the form (ax’ + y/) with a, 8 # 0 contain y/*! and x'*1, we see
that

lim (ax’ + By7) = (x"*1, ), éir%(axi +By)) = (x, yth,
a— 5

so that {(ax! + By/), (x*1, y)), (x!, yI*1) | a, B # 0} = P! C Hilb"*/(C,0), and we get that for n >
1, Hilb"(C, 0) is a chain of n — 1 projective lines P!, dual to the A,, Dynkin diagram, where each
P! corresponds to a way of writing n as a sum of two positive integers. The remaining cases,
Hilb!(C, 0) and Hilb’(C, 0) are clearly just points.

Let us verify Conjecture 6.2 in this case. The generating function for the Poincaré polynomials
of Hilb¥(C, 0) equals
242

Y gt dim H'(Hilb*(C,0)) = 1+ g + ¢*(A + 1) + ¢* (1 + 26) + - = E

+ —.
ki 1_q (1_(1)2

This agrees with the Poincaré polynomial of HHH’(L), computed in Example 3.23, up to the
change of variables ¢ — 1/qt? and the computation in Example 3.26 up to the change of variables
t—1/q%t.

Example 6.5. Let us describe the Hilbert schemes for the cusp {x? = y?} which we can
parameterize by x = t%,y = t3 so that O, = C[[t?,£*]].

First, we claim that a nonzero ideal I C C[[¢?,¢3]] has finite codimension. Let I be such an
ideal and 0 # f € I. Let ¢(t) € C[[t]] be a unit such that gf = t*. Note that g(t) may not belong
to C[[t2,t3]] but t2¢ does. Thus, t**? € I, and we have proved that every nonzero ideal contains a
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570 | GORSKY ET AL.

monomial. It remains to observe that C[[t2,£3]]/(tX) has 1,2, £3, ..., t<=1, tk*1 as a basis, so every
ideal generated by a monomial is finite codimensional and the claim follows.

Now we claim that every proper ideal in C[[t2, £3]] is either principal, of the form (t* + Atk+1)
for some 1 € C, or of the form (t¥, tk*1). Assume first that I is principal, say I = (f). Let k =
v(f). We have seen in the paragraph above that tX+2,tk+3 ... € I, so we may assume f has the
form t* + Atk+1, as needed. Now note that (t” + ut’*1) C (t* + Atk+1) if £ > k + 1. From here, it
follows that the non-principal ideals have the form (¥, tk*1).

Now note that C[[t2,£3]]/(tX, t+1) has basis 1,t2,3,...,tk71, so we have that (¢k,tk+1) e
Hilb*~'(C,0). On the other hand, C[[¢2,3]]/(tk + Atk*1) has basis 1,2, 3, ..., 571, k1 and
(tk + Ak+1) € Hilbk(C, 0).

To conclude, we have that Hilb’(C, 0) and Hilb'(C, 0) are both points, while for k > 2

Hilb*(C,0) = {(¢X + At**), K+, 52y | 1 e ¢} = P
The generating function has the form

1+ g%t?

1+q+@PQ+)+@PQ+)+ - = =g

k]

which again coincides with the Poincaré polynomial of HHH’(T'(2, 3)), computed in Example 3.23
up to the change of variables ¢ — 1/q?t.

Example 6.6. Similarly to Example 6.5, let us describe the Hilbert schemes for the curve {x*+! =
y2}. Let us, first, classify the principal ideals in C[[¢2, £2+1]]. Just as in Example 6.5, we can see
that if I = (f) is a principal ideal then we may assume f has the form f = " + a,; "+ + ... +
@y t"™+2k=1 Note, however, that we may multiply f by powers of t2 to get rid of the monomials
of the form #"*2!, Thus, the principal ideals of C[[¢2, t?*1]] have the form:

(2 + A,t2K+1) e Hilb*(C,0)
(t* + A, 2K+ 4 2,12k+3) e Hilb*(C, 0)

(tzk—z +/11t2k+1 + e +/1k_1t2k_2+2k_1) c Hilbz(k_l)(C, 0)
(™ 4 At 4 A0 4y Q21 e Hilb™(C, 0),

where m > 2k.

Assume now that I is not principal, say I = (f’ l-)le. We may assume that each f; has the form
stated above, that is, f; = ™ + ;1 t™+! + . 4+ 4, #™+2k=1 Note that if m; := min(m,), then I
already contains all monomials of the form tm+2m+j So we may assume that m; < m; < m; +
2k — 1 for all i. Moreover, if m; = m; then we can replace (f;, f;) by (f;, f; — f;) and we get rid
of the " term in f j- In other words, we may assume that m; # m; if i # j. Moreover, if m; =
m; + 2p, then we can substitute (f;, f;) with (f;, f; — 2P f) to get rid of the t™ term in fj-So,
we may assume that all m;’s have different parity. To recap: an ideal is generated by at most 2
elements. We have

(2,121 e Hilb!(C,0)

(t*, 2+ e Hilb*(C,0)
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(¢ + 2,2 23y e Hilb3(C,0)
%, 1) e Hilb*(C,0)
(t° 4 A, t2FF1, 123y e Hilb*(C, 0,

(£ 4+ A 2K 4 12053 12k+5) e Hilb%(C, 0)

@™, ™t e Hilb"*(c, 0)

(™ 4+ 4™ 3y e Hilb™ T Y(C,0)

™+ A 4 QRS g2kl e Hilb™TL(C, 0).

Let us briefly justify why we can assume the second generator, of higher degree, is simply a
monomial. We do this in the case I = (¢, ™+1), which is the most involved one. We will make
heavy use of the fact that t+2kC[[¢]] C I. A priori, we have the ideal

(tm +/11tm+1 F o +/1ktm—2k+1’tm+1 +,L£1[m+2 +’u2tm+4 oo +:uk—1tm+2k_2)-

We can multiply f :=t" 4+ A, ¢+ 4 ... 4 2, t" 2+ by y, ,t?=2 and subtract to g 1= t"+! 4
U2 ot 1262 10 get rid of the wy_;t™2¢~2 term. This introduces a mono-
mial of the form t”+2k=1 in ¢g. But now we can multiply g by a scalar multiple of t2~2 to get rid of
this term, too. We have substituted g by g; = "1 + p ™2 + "4 + o + p_,t™ 24 Note
that the coefficients u;, u,, ... , 4x_, have not changed.

Now we can do the same trick and multiply f by an appropriate scalar multiple of t2¥=* to
get rid of the t?*~* term in g,. This will introduce t"*+2¥=3 and t"+%*~1 terms. As we have seen
before, we can easily get rid of the t"*+2K~1 term. If we want to get rid of the t"+2k=3 term, we will
introduce a t"*2k=2 term, without introducing any new ¢""+2~* terms. But we have seen that we
can get rid of the t"*+2k=2 term. We can then use recursion to reduce g to simply t”+1. Then use
this monomial to simplify f to just t™. Thus, we get: Hilb’(C, 0) and Hilb'(C, 0) are both points,
while:

Hilb?(C,0) = {(£* + A, D} U {(t4, 241}
Hilb*(C, 0) = {(¢* + 4,25+, 22H3) U {6, 2+

H11b4(C, 0) — {(t4 + Alt2k+1 + /12t2k+3)} U {(l’6 + /11t2k+1, t2k+3)} U {(IS’ t2k+1)}

Hilb™(C,0) = {(t™ + A, t™ ! + A3 4 oo 4 2™}y

{(tm+1 + /11tm+2 4o Ak_ltm+2k—2, tm+2k)} U--U {(tm+k, tm+k+1)}

for m > 2k. So, we can pave Hilb™(C, 0) by affine spaces, and the closure of each one of these
affine spaces equals the union of the affine spaces of smaller or equal dimension. Thus, we see
that Hilb?, Hilb> are homeomorphic to P!, Hilb*, Hilb® have the homology of P2, ..., Hilb™ have
the homology of P for m > 2k (and, in fact, Hilb” = Hilb" for m, n > 2k).
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The generating function has the form

1+q+(@+P)A+D)+ (@ +PO)A+2+ Y+ + A+ 2+ + ) +
L4 PR 4 gt 4 gk
- = _

Up to the change of variables t — 1/qt?, this again coincides with the Poincaré polynomial of
HHH%=(T(2, 2k + 1)) computed in Example 3.23.

In Examples 6.4-6.6, we have verified Conjecture 6.2 for the Hopf link as well as for positive
(2,2k + 1)-torus knots. However, Conjecture 6.2 is wide open in general. Here we collect some
facts and references for partial results.

(a) Byaremarkable result of Maulik [86], the generating function for the Euler characteristics of
the Hilbert schemes matches the HOMFLY-PT polynomial:

Y g* x(Hilb*(C, 0)) = HOMFLY — PT(L;q, a = 0).
k=0

(b) For torus knots, both sides can be computed combinatorially and compared. The Khovanov-
Rozansky homology is computed by Theorem 3.25, while Hilb¥(C, 0) has an explicit paving
by affine cells. The combinatorial formula for the dimension of these cells is given in [97]
(see more details below), this yields an explicit formula for the Poincaré polynomial of the
homology.

(c) Recall that for an r-component link L its homology HHH (L) has a natural action of the poly-
nomial algebra C[x,, ..., x,.]. Forr = 1, this action on the Hilbert scheme side was constructed
in [87,92,113] and for r > 1 it was constructed in [78]. Roughly speaking, the operator x; adds
a point on ith component of the curve C, but one needs to use a versal deformation of C to
make it precise. We refer to [78] for more details.

6.3 | Affine Springer theory

Next, we would like to give yet another interpretation of Hilb"(C, 0) using geometric representa-
tion theory. Let us choose a projection of C to some line, and let n be the degree of this projection.
We will regard the line as a local model for the ‘base curve’ and C as a ‘spectral curve’.

Remark 6.7. The choice of the projection naturally splits the unit sphere in C? as a union of two
2
solid tori. Indeed, the equation of the sphere is |x|? + |y|?> = £? and the solid tori are |x|? < % and

2
ly|? < % For ¢ small the intersection of C with a sphere defines a closed n-strand braid which is
contained in one of the tori. This is known as a braid monodromy construction, see, for example,
[4], and references therein.

‘We will use the following results.

Lemma 6.8. Let C be a germ of an arbitrary plane curve (possibly non-reduced) given by the
equation {f(x,y) = 0}.
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(a) One can replace f(x,y) by a polynomial of some degree n in x with coefficients given by power
seriesiny.

(b) A (topological) basis in O, is given by monomials of the form x* yP, a < n — 1. In other words,
Oc o is a free C[[y]]-module of rank n with basis 1, ..., x" 1

(c) The multiplication by x and y in this basis is given by the matrices:

y 0 0 - 0 0 00 —fo)
0y 0 - 0 100 - —=fi(»
Y—|0 0 y - 0}, X~|0 1 0 —-0)
00 0 -y 000 - —f,.,(»

In particular, the characteristic polynomial of the second matrix equals det(X — x - I) = f(x,y).

Proof.

(a) We may assume that f(0,0) = 0. The Weierstrass preparation theorem says that in the local
ring C[[x, y]] we can write f as

f=uG" + fra X"+ 4 foO),

where u is a unit and f,,_;(y), ..., fo(¥) € C[[y]]. Thus, we can write the local ring O¢ =
Cllx, y11/(f) as C[[x, ¥]]/(x™ + --- + fo()). The value n is the degree of the projection of the
curve f(x,y) = 0to the y-axis (that is, the number of solutions of f(x,y,) = 0 for generic y,).

(b) Thanks to part (a), we may replace f by a polynomial of the form x" + f,_;(y)x" ! +
+ + fo(¥). Thus, O¢ is the quotient of the algebra C[[x,y]] modulo the relation x" =
— a1 )Xt — ... — foy. It is easy to see that this is a free C[[y]]-module with basis
1,x,x2%, ..., x"L.

(c) Clearly, y(x%y?) = x2y>*1 while

a+1,,b
<n-1
X(Xayb) — X y X , a n
(_fn—l(y)xn_ - _f()(y»y a=n-—1,
which coincides with the formula in part (c). n

Remark 6.9. Note that in this presentation the roles of x and y are not symmetric, and the value
of n depends on the choice of the projection.

Example 6.10. For the cusp C = {x? = y*} we have O, = C[[x][(1,y,y?) so that
2

x
Y = 0
0

S = O

0
0
1

On the other hand, we can choose a different projection and write O¢ , = C[[y]](1, x) so that

3
X=<O y).
1 0

In both cases, the characteristic polynomial equals (up to sign) x? — y°.
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We will use Lemma 6.8 to give a description of Hilb™ (C,0) when N > 0 and C is irreducible,
see also Subsection 6.4. First, let us recall that for the group SL, the affine Grassmannian is the
ind-variety

Grgy,, +=SL,(C((x)))/SL,(C[[x]]).

The affine Grassmannian Grgr, has the following interpretation. A lattice V' C C((x))"* = C"((x))
is a free C[[x]]-submodule of rank n such that V' ®1,]) C((x)) = C"*((x)). In other words, a lattice
V is the C[[x]]-span of a C((x))-basis (v, ..., U,,) of C*((x)). Let us say that a lattice V is of SL,,-type
if we can find such a basis so that the determinant of the matrix with columns v, ..., v, is 1. It is
known then that the affine Grassmannian parameterizes such lattices,

Grg;, ={V C C"((x)) : V is alattice of SL,-type}.

Remark 6.11. Of course, one can do a similar construction with GL, instead of SL,;, and obtain that
the affine Grassmannian Gr L, = GL,(C((x)))/GL,(C[[x]]) parameterizes all lattices in C"((x)).

Using this description, if Y is an n X n-matrix with coefficients in C((x)) we can define the
affine Springer fiber

Spy = {Ve Grg;, 1YV C V} C Grgp .

We will be interested in the case when the matrix Y comes from a polynomial f(x,y) via the
Weierstrass preparation theorem, as in Lemma 6.8 (with the roles of x and y interchanged) and
Example 6.10. In this case, the affine Springer fiber Spy has the following properties.

(a) If (C,0) is irreducible then Spy is isomorphic to the compactified Jacobian of C, that is, the
moduli space of rank 1 torsion-free sheaves ‘of degree zero’ on C (see, for example, [87]). It is
also isomorphic to the Hilbert scheme Hilb™ (C, 0) for N > 0. In particular, Spy is a projective
variety.

(b) If (C,0) has r components then there is an action of Z"~! on Spy by translations, and of
(C*)"~1. In particular, Spy is an ind-variety with infinitely many irreducible components, all
of the same dimension, which are permuted by the action of Z"~!.

Remark 6.12. In the GL,-case we drop the degree condition in part (a) above, and in (b) we get
an action of Z". The GL,-affine Springer fibers can be interpreted as the compactified Picard
schemes of C, and in this generality are simply unions of Z = 7;(GL,,) copies of the SL,-affine
Springer fibers.

Remark 6.13. Alternatively, one can define compactified Jacobian of (C, 0) by considering a param-
eterization of the curve (x(t), y(¢)) so that O¢ 4 = C[[x(¢), y(¢)]]. In this case, the compactified
Jacobian is the moduli space of O 5-submodules of C[[¢]] up to a shift by a power of ¢.

If C is irreducible and reduced, there is a deep cohomological relationship between the affine
Springer fiber/compactified Jacobian and the Hilbert schemes on (C, 0), coming from the natural
Abel-Jacobi map interpreting ideal sheaves as torsion-free sheaves.
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Theorem 6.14 [87, 92]. One has

H*(Hilb*(C,0)) = grp,H*(Spy) ® C[x],
k=0

where grp refers to the associated graded with respect to a certain ‘perverse’ filtration on the
cohomology of Spy-.

Furthermore, there is an action of 31, on H*(Spy ) satisfying ‘curious hard Lefshetz’ property with
respect to the perverse filtration.

Remark 6.15. A slightly weaker version of the theorem also holds for the reducible case with
appropriate modifications, as shown in [87, Theorem 3.11]. A representation-theoretic proof in
the irreducible case is given in [113].

The action of 81, is similar to the action on the cohomology of the braid variety (with weight
filtration) from Theorem 5.19 and to the action in link homology from Theorem 5.17.

Conjecture 6.16 Shende [120]. Let C be an irreducible plane curve singularity, L the correspond-
ing algebraic knot and 3 the corresponding braid on n strands. Then one has the isomorphism of
the compactly supported cohomology of the braid variety and the singular cohomology of the affine
Springer fiber

H}(X(BA;wy)/(C*)*™1) = H*(Spy),
where the (halved) weight filtration on the left-hand side matches the perverse filtration on the right.

Remark 6.17. Conjecture 6.16 is closely related to the framework of so-called P = W conjectures
of de Cataldo-Hausel-Migliorini [24] relating the weight filtration on the cohomology of the
character varieties and their cousins (such as braid varieties) and the perverse filtration on the
cohomology of the Hitchin moduli spaces and their cousins (such as affine Springer fibers). We
refer to [24] for more context.

Example 6.18. Let C = {x*> = y?}, then

0 y?
X = .
(o)
The corresponding affine Springer fiber is an infinite chain of P!, with the lattice Z acting
by translations.

Example 6.19. Let us compute the homology of the compactified Jacobian of the singularity
{x™ = y"}. Asin Remark 6.13, we are classifying C[[¢", t"*]]-submodules M C C[[t]]. Any element
of C[[t]] has an order, that is, minimal degree in ¢ with a nonzero coefficient. Up to a shift by a
power of £, we can assume that such a module M contains an element of order 0 in ¢. Let [, ,,
denote the semigroup generated by m and n, then for each element of T',,, ,, there is a corresponding
element of M and it is completely determined by the element of order 0. Also, T, ,, contains all
integers starting from (m — 1)(n — 1), hence t("~D("=1DC[[¢]] € M. We have the following cases.
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(@) (m,n)=(2,3). WehaveT,; = {0,2,3,4, ...} and there are two types of C[[¢?, *]]-modules:
(1 +40), (1,1) = C[[¢]].

The first family of modules forms an affine line, so altogether we get JC, ; = P’
(b) (m,n) =(2,2k + 1). We have

Tyoesr = 10,2,..,2k, 2k + 1,2k +2,..}
and there are the following types of C[[¢2, t2**1]]-modules:

1+ Aqt + -+ L2k,
U+ Aqt + -+ A 12673, k7D,

A+ A8, 83, £,
(L1, 6%, ..., 51 = C[[¢]].
This yields a cell decomposition of the compactified Jacobian with one cell of dimensions

k,k—1,...,1,0. The reader should compare this with Example 6.6.
(c) (m,n) =(3,4). We have

F3,4 = {0, 3, 4, 6, 7, ...}
and there are the following types of C[[3, t*]]-modules:

(1 + A4t + 4,82 + 258,
(14 A4t + 1,12, 89),

(1 + A4t,8%,1%),

(A + Ayt + 82, ¢ + ut?, t5),
(1,t,¢%) = Cl[t]].

In the fourth case we can change basis to
1+ Ay — uA)E t + pt?, 1),

so we can assume A; = 0 and there are two parameters y, 1,. The compactified Jacobian then
has one 3-cell (first case), two 2-cells (second and fourth cases), one 1-cell and one 0-cell. It is
a singular 3-dimensional variety with homology given by the following table

H° | H' | H?2 | H® | H* | H® | H®
k—p=0| 1|0 1|0 1101
k—p=1|0 |0 ] 0] 0 11010

The rows indicate the difference between the homological degree and the perverse filtra-
tion, so that H* has rank 2 and nontrivial perverse filtration. This table matches the one in
Example 4.19.

For general coprime (m, n) the compactified Jacobian of C = {x™ = y"} is always paved by
affine cells, and the dimensions of these cells can be computed by a combinatorial formula which
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