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Abstract

In this thesis, we study stucture theory of complete discrete valued fields
to understand the absolute Galois group of C((x)) as well as describe
some of its structure for the local field Fp((x)). We approach the theory
through the concept of ramification, which is a fundamental concept in
the theory of complete discrete valued fields, which characterizes the
way in which the prime ideals behave in extensions. In the first chapter,
we cover topics such as Hensel’s Lemma, unramified, totally ramified,
and tamely ramified extensions, ramification groups, and Artin-Schreier
extensions. In the second chapter, we apply the theory to the field of
formal Laurent series. Towards the end, we look at specific extensions
of characteristic p > 0 fields and their Galois groups as well as describe
the algebraic closure of Fp((x)) through the introduction of generalized
power series.
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Chapter 1

Preliminaries

Let K ⊆ L be a finite field extension. Then L is a K−vector space.

Definition 1.1 The trace TrL|K(α) and norm NL|K(α) of α ∈ L are the trace and
determinant of the matrix of the K−linear transformation mα : L −→ L, mα(x) =
αx for all x ∈ L.

Let K be a field. Let K((x)) denote the field of formal Laurent series over
K, that is, K((x)) :=

{
∑∞

i=m αixi | m ∈ Z, αi ∈ K
}

. Equivalently, K((x)) is the
field of fractions of the ring of power series K[[x]], or it is the localization of
K[[x]] with respect to the set of positive powers of x.

1.1 Galois extensions

1.1.1 Kummer Theory

Definition 1.2 A field extension L/K is a Kummer extension if there exists an
integer n > 1 such that:

1. K contains n distinct n-th roots of unity.

2. Gal(L/K) is an abelian group with exponent n.

If K contains n distinct n-th roots of unity, adjoining n-th root of any element
α of K gives a splitting field of the polynomial xn − α, hence creating a
Kummer extension with a cyclic Galois group of order dividing n.

Kummer Theory states that when K contains n distinct n-th roots of unity,
any abelian extension of K of exponent dividing n is formed by adjoining
roots of elements of K.
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1.2. Direct and Inverse limits

1.1.2 Artin-Schreier extensions

Let K be a field of characteristic p > 0 and a ∈ K. The polynomial of the
form

zp − z− a

is called an Artin-Schreier polynomial. If the polynomial is irreducible in
K[z], then its splitting field L over K is a cyclic extension of K of degree p.
This is because if b is a root, for any 1 ≤ i ≤ p, (b + i)p − (b + i) − a =
bi + ip − b− i− a = bi − b− a + (ip − i) = 0 by Fermat’s Little theorem, and
b + i is also a root, hence the splitting field is K(b).

Then L/K is Galois and the order of the Galois group divides p. Hence when
p is prime Gal(L/K) ∼= Z/pZ.

Lemma 1.3 (Artin-Schreier extensions) Let L/K be a Galois extension of fields
of characteristic p > 0 with Galois group Z/pZ, then L is a splitting field of the
Artin-Schreier polynomial zp − z + a for some a ∈ K. This extension is called an
Artin-Schreier extension.

1.2 Direct and Inverse limits

1.2.1 Direct and inverse systems

Let us define direct and inverse systems. Let (I,≤) be a directed set (directed
poset respectively). Let (Gi)i∈I be a family of groups and fij : Gi → Gj
( fij : Gj → Gi resp.) a family of group homomorphisms for all i ≤ j with the
following properties:

1. fii is the identity on Gi.

2. fik = f jk ◦ fij ( fik = fij ◦ f jk resp.) for all i ≤ j ≤ k

The pair
(
(Gi)i∈I , ( fij)i≤j∈I

)
is a directed system ( an inverse system resp.)

of groups Gi and transition morphisms fij over the directed set (poset resp.)
I.

1.2.2 Direct Limit

The direct limit lim−→Gi of the direct system
(
(Gi)I , ( fij)I

)
is the disjoint union⊔

i Gi of the Gi’s modulo an equivalence relation xi ∼ xj for xi ∈ Gi, xj ∈
Gj ⇐⇒ ∃k ∈ I with i ≤ k and j ≤ k such that fik(xi) = f jk(xj):

lim←−
i∈I

Gi =
⊔

i

Gi
/
∼.

There are a canonical functions φj : Gj −→ lim−→Gi that send each element to
its equivalence class.
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1.2. Direct and Inverse limits

Example 1.4 The field of Puiseux series with coefficients in a field K :
⋃

n>0 K((x1/n))
is the union of formal Laurent series in x1/n. It is the direct limit of the direct system
of
(
K((x1/n)), fmn : x1/m 7→ (x1/m)m/n) whenever m divides n, where the map

fmn : K((x1/m))→ K((x1/n)) is a field homomorphism.

1.2.3 Inverse Limit

The inverse limit lim←−Gi of the inverse system
(
(Gi)I , ( fij)I

)
is a subgroup of

the direct product of the Gi’s:

lim←−
i∈I

Gi =

{
(gi)I ∈∏

i∈I
Gi | gi = fij

(
gj
)

for all i ≤ j in I

}
.

There is a natural projection πi : G −→ Gi such that πi = fij ◦ πj for all i ≤ j.
The inverse limit satisfies the universal property.

Examples:

Example 1.5 The ring of p-adic integers

Zp = lim←−
i∈I

Z/piZ

where fij : Z/pjZ
modpi

−→ Z/piZ

Example 1.6 The group of profinite integers Ẑ is the inverse limit of the inverse
system consisting of the finite groups Z/nZ where n ∈ Z+ and the maps fij :
Z/jZ→ Z/iZ for i|j.

Proposition 1.7 Let K be a field. Let I be a set of finite Galois extensions of K. For
L, M ∈ I, we say that L ≤ M if L ⊆ M. This puts a directed partial order on I. For
all L ≤ M we have the natural surjections

φLM : Gal(M/K)→ Gal(L/K)
σM 7−→ σM|L.

Then
Gal(Ksep/K) = lim←−

L∈I
Gal(L/K)

where the inverse limit is taken over the inverse system ((Gal(L/K)I), (φLM)I) .

Proof By definition, we have

lim←−
L∈I

Gal(L/K) =
{

(σL)I ∈ ∏L∈I Gal(L/K) For L, M ∈ I such that
L ⊆ M we have σM|L = σL

}

3



1.3. Infinite Galois Theory

Let σ ∈ Gal(Ksep/K). Let (σ|L)L∈I ∈ ∏L∈I Gal(L/K) be an element of the
direct product, obtained by restricting σ to each finite Galois sub-extension of
K ⊆ Ksep, then if L ⊆ M for L, M ∈ I, σ|M|L = σ|L hence (σ|L)I is an element
of lim←−L∈I

Gal(L/K).

Now, for the opposite direction, let (σL) ∈ lim←−L∈I
Gal(L/K). Let x ∈ Ksep,

then the minimal polynomial of x over K is separable. Let L be the splitting
field of this minimal polynomial. Then L is the smallest Galois extension
of K such that x ∈ L. We define σ ∈ Gal(Ksep/K) to be such that σ(x) :=
σL(x). We have that for any other finite extension M of K such that x ∈ M,
σM(x) = σL(x) since L ⊆ M and hence σM(x) = σ(x). Hence the choice of
σ(x) does not depend on the choice of a finite extension of K containing x,
which shows that σ is well-defined.

1.3 Infinite Galois Theory

In the thesis, we will be dealing with Galois groups of infinite algebraic ex-
tensions. In this case, the Galois correspondence fails since not all subgroups
of an infinite Galois group Gal(L/K) correspond to subextensions of L/K.
We put a topology on Gal(L/K) that allows us to state a modified version of
the Fundamental theorem of Galois theory for infinite extensions.

Definition 1.8 Let L/K be a Galois extension and G := Gal(L/K). The Krull
topology of G is such that its basis consists of all cosets of subgroups HE :=
Gal(L/E) where E ranges over finite normal extensions of K in L.

Remark 1.9 Under the Krull topology every open normal subgroup of G has a finite
index.

Theorem 1.10 (Fundamental theorem of Galois theory) Let L/K be a Galois
extension and G := Gal(L/K) endowed with the Krull topology. There is an inclu-
sion reversing bijection between subextensions K ⊆ E ⊆ L and closed subgroups H
of G, hence E = LH.

1.4 Discrete Valuation Ring

Definition 1.11 A discrete valuation ring (DVR) A is a principal ideal domain
that has a unique non-zero prime (hence maximal) ideal p(A).

Equivalently, A has one and only one (up to multiplication by an invertible
element of A) irreducible element π called a uniformizing element. If x ̸= 0
is an element of A, then x = πnu, with n ∈N and u a unit.

Since p(A) is a maximal ideal, A/p(A) is a field, called a residue field of A.

4



1.5. Norms and Valuations

The invertible elements or units of A are the elements that do not belong to
p(A). They form a multiplicative group.

Proposition 1.12 Let OK be a commutative ring. Then OK is a discrete valuation
ring if and only if it is a Noetherian local ring and its maximal ideal is generated by
a non-nilpotent element.

1.5 Norms and Valuations

A norm (or absolute value) on a field K is a map

|| · || : K −→ R≥0

with the following properties:

(i) ||x|| = 0⇐⇒ x = 0.

(ii) ||x · y|| = ||x|| · ||y||

(iii) ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

Definition 1.13 A norm on a field K is called non-archimedean if it satisfies the
stronger triangle inequality: ||x + y|| ≤ max{||x||, ||y||}, ∀x, y ∈ K.

A (rank one) valuation on a field K is a map

v : K −→ R∪∞

with the following properties:

(i) v(x) = ∞⇐⇒ x = 0.

(ii) v(xy) = v(x) + v(y), ∀x, y ∈ K

(iii) v(x + y) ≥ min{v(x), v(y)} ∀x, y ∈ K

Proposition 1.14 The subset

OK := {x ∈ K
∣∣ v(x) ≥ 0} = {x ∈ K

∣∣ ∥x∥ ≤ 1}

is a ring, called the valuation ring of K, with a group of units

O×K = {x ∈ K
∣∣ v(x) = 0} = {x ∈ K

∣∣ ∥x∥ = 1}

and with the unique maximal ideal

p(OK) := {x ∈ K
∣∣ v(x) > 0} = {x ∈ K

∣∣ ∥x∥ < 1}

5



1.5. Norms and Valuations

From this point, we use the above notations and if there is no confusion, we
shorten p(OK) with p.

We have that Γ := v(K×) is a subgroup of (R,+), called the value group. A
valuation is discrete if Γ is a nontrivial discrete subgroup of (R,+) hence if
it admits a smallest positive value s such that Γ = sZ.

If s = 1 then the discrete valuation is said to be normalized. We may rescale
a discrete valuation such that s = 1 and the OK,O×K , p are unchanged. Then
an element π ∈ OK such that v(π) = 1 is a prime element (or a uniformizing
element) and every element x ∈ K× admits a unique representation x = uπm

with m ∈ Z and u ∈ O×K .

If v is a discrete valuation then OK is a discrete valuation ring and we denote
by k the residue field of OK.

Example 1.15 (P-adic integers). Let p be a prime. For any x ∈ Z\{0} write
x = pkx′ such that p ∤ x′. Then the function

ordp : Q→ R ∪ {∞}

x 7→
{

k x ̸= 0
∞ x = 0

is a valuation on Q with the non-archimedean norm defined as |x|p := p−ordp(x).
The completion of Q with respect to this norm is denoted as Qp. The ring of p-adic
integers

Zp := {x ∈ Qp | |x|p ≤ 1}
is a discrete valuation ring with the unique maximal ideal mp = {x ∈ Qp | |x|p ≤
1
p} = pZp and residue field Z/pZ.

Example 1.16 (Formal Laurent series). Let K be a field. Let K((x)) denote the
field of formal Laurent series over K, that is, K((x)) :=

{
∑∞

i=m αixi | m ∈ Z, αi ∈ K
}

.
Let α = ∑∞

i=m αixi ∈ K((x)). Then the function:

v : K((α))→ R ∪ {∞}

α 7→
{

m α ̸= 0
∞ α = 0

is a valuation on K((x)). The ring of integers K[[x]] is a discrete valuation ring
with the unique maximal ideal (x) and residue field K.

1.5.1 Completions

Definition 1.17 A normed field (K, || · ||) is complete if every Cauchy sequence is
convergent to an element in K.

Example 1.18 Fp((x)) is a completion of the ring Fp(x).

6



1.6. Hensel’s Lemma

1.5.2 Local fields

Definition 1.19 A field K is (non-Archimedean) local field if it is complete with
respect to the norm from the discrete valuation and its residue field k is finite.

Examples and non-examples:

1. Fp((x)) with the ring of integers Fp[[x]] which has the maximal ideal
(x) is local since the residue field is Fp.

2. C((x)) is not a local field. Its residue field is C which is not finite.

1.6 Hensel’s Lemma

In this section, let K be a non-archimedean complete field. We present
Hensel’s Lemma, which holds true for such fields. In general, the collection
of non-archimedean valued fields that fulfill Hensel’s Lemma is referred to
as Henselian fields, and they encompass complete fields.

Lemma 1.20 (Hensel-Kurschak lemma) Let f ∈ K[x] be an irreducible polyno-
mial whose leading and constant coefficients lie in OK. Then f ∈ OK[x].

Lemma 1.21 (Hensel’s Lemma I) Let K be a CDVF, OK its DVR with the max-
imal ideal p and k residue field. Let f ∈ OK[x] be a monic polynomial such that
f̄ ∈ k[x] has a simple root ᾱ ∈ k. Then ᾱ can be lifted to a root of f in OK

Let k = OK/p.

Theorem 1.22 (Hensel’s Lemma) Let f ∈ OK[x] be a primitive polynomial such
that

f ≡ ḡh̄mod p

for g, h ∈ k[x] relatively prime polynomials, then f admits a factorization f = gh
for g, h ∈ OK[x] such that deg(g) = deg(g) and

g ≡ g mod p and h ∼= h mod p.

Theorem 1.23 Let K be a henselian field with respect to the norm || · ||K. Then
|| · ||K can be extended uniquely to a norm || · ||L of any given algebraic extension
K ⊆ L. If the extension is of finite degree, [L : K] = n, then the extension is given
by ||α||L = n

√
||NL|K(α)||K.

Lemma 1.24 (Nakayama’s Lemma) Let R be a local ring with maximal ideal p
and let M be a finitely generated R-module. Let x1, x2, ..xn ∈ M be such that the
images of xi generate M/pM as an (R/p)-vector space. Then x1, ..., xn generate M
as an R−module.

7



1.7. Ramification

Let R be a discrete valuation ring with maximal ideal p and residue field
k. Let f ∈ R[x] be a monic polynomial of degree n. Let S f = R[x]/( f ) and
S̄ f = S f /pS f = R[x]/(p, f ). If f̄ is the image of f in k[x] then S̄ f = k[x]/( f̄ )
as it can be seen from the following diagram:

f ∈ R[x] k[x] ∋ f̄

S f = R[x]/( f ) S̄ f = S f /pS f

/p

/( f̄ )
/pS f

Let f̄ = ∏
g
i=1 f̄ ei

i and let fi be a lift of f̄i to R[x].

Proposition 1.25 (Serre) Let pi = (p, fi). Then pi are the distinct maximal ideals
of S f and S f /pi

∼= k[x]/( f̄i).

Proof We have that pi is the lift of m̄ := ( f̄i) ∈ S̄ f in S f . We have that
S̄ f /( f̄i) = k[x]/( f̄i), which implies that S f /p = k[x]/( f̄i) and that pi is a
maximal ideal. Now let us show that every maximal ideal n of S f is equal to
one of pi. It is enough to show that n contains p since then n is the inverse
image of a maximal ideal f̄i of S f . Assume for a contradiction that n does
not contain p. Then, n+pS f = S f and by Nakayama’s Lemma n = S f , which
is a contradiction. □

Remark 1.26 If a field is henselian with respect to v, and K ⊂ L is an algebraic
extension, then the valuation ring OL of the extended valuation w is the integral
closure of the valuation ring OK in L. Hence, this also holds for complete fields.

1.7 Ramification

Let (L, w)/(K, v) be an extension of valued fields, meaning that there is
a field homomorphism ι : K ↪−→ L such that w ◦ ι = v. We have that ι
induces an embedding of valuation rings OK ↪−→ OL and of maximal ideals
p(OK) ↪−→ p(OL).

Therefore we have the following homomorphism:

ῑ : k = OK/p(OK) ↪−→ OL/p(OL) = l,

called a residual extension and the degree of the extension [l : k] is the
residual degree f = f (L/K).

Furthermore, v(K) ⊂ w(L) and the index [w(L) : v(K)] = ||L×||L
||K×||K of the

subgroup is the ramification index e = e(L/K).

8



1.7. Ramification

In case v, and hence its extension w = 1
n v ◦ NL|K, is discrete and if OK, p, π,

respectively OL,B, Π,, are the valuation ring, the maximal ideal and a prime
element of K, resp. L then we have

e = [w(Π)Z : v(π)Z].

Hence v(π) = ew(Π) and therefore π = uΠe for some unit u ∈ O×K . There-
fore we have pOL = πOL = ΠeOL = Be.

Proposition 1.27 [L : K] ≥ e f and if v is discrete and K ⊆ L is separable then
[L : K] = e f .

Let K be a henselian field with respect to a non-Archimedean valuation v.
Let p be the characteristic exponent of the residue field k, that is we take p
to be 1 if k has zero characteristic and p if k has characteristic p > 0.

Definition 1.28 A finite extension K ⊆ L is

(i) unramified if the extension of residue fields k ⊆ l is separable and e(L/K) = 1.

(ii) totally ramified if e(L/K) = [L : K], equivalently l = k.

(iii) tamely ramified if e(L/K) is prime to p.

An arbitrary algebraic extension K ⊆ L is unramified/totally ramified/tamely rami-
fied if all of its finite subextensions are - respectively.

Remark that every unramified extension is tamely ramified and if the charac-
teristic of k is 0 then every algebraic extension of K is tamely ramified. An
extension is wildly ramified if it is not tamely ramified.

An extension is totally tamely ramified (TTR) if it is both totally ramified
and tamely ramified.

1.7.1 Galois Extensions and Ramification groups

Let K be a DVF, with valuation ring OK, maximal ideal p and residue field k.
Let K ⊂ L be a finite Galois extension with Galois group G. Let OL be the
integral closure of OK in L and B ⊂ OL a maximal ideal lying over p. Let
lB := OL/B. Note that since K is not complete, L is not necessarily a DVF,
as the valuation isn’t necessarily extended to L uniquely, hence there can be
more than one primes lying over p.

1. The decomposition group of B is the subgroup D = {σ ∈ G | σ(B) =
B}

2. The inertia group of B is the kernel I of the map D → Aut(lB/k)

Lemma 1.29 lB/k is a normal. extension

9



1.7. Ramification

Proof Let ᾱ ∈ lB and α be a lift of ᾱ to OL. We have that for any σ ∈ G, σ(α)
is still a root of the minimal polynomial of α over OK, hence σ(α) ∈ OL as
OL is the integral closure of OK in L.

The monic polynomial f (x) := ∏σ∈G(x− σ(α)) is invariant under the action
of G, hence it has coefficients in OK. Since f splits into linear factors in OL,
the reduction f of f in lB[x] also splits into linear factors.

Furthermore, α ∈ OL is a root of f , hence α ∈ lB is a root of f ∈ lB[x] which
is the same as reduction of f in k[x] as f ∈ OK ⊆ OL. Hence the minimal
polynomial mα of α over k divides f . Since f splits into linear factors in lB[x]
we conclude that mα also splits into linear factors in lB[x] and hence lB/k is
a normal extension. □

Furthermore D → Aut(lB/k) is surjective.

Remark 1.30 If k is a perfect field then lB/k is a Galois extension and D/I ∼=
Gal(lB/k).

For the remaining section let K denote a complete discretely valued field
with valuation v and let us assume k is a perfect field. Then L is also a CDVF
and let us denote by w the unique extended valuation on L.

Theorem 1.31 Let K be as above and K ⊂ L an extension. If k ⊂ l is separable
then OL = OK[x] for some x ∈ OL.

Let x denote the element of OL generating it as a OK-algebra.

Lemma 1.32 Let σ ∈ G = Gal(L/K), and i ≥ 1 be an integer. Let Gi be the set of
σ ∈ G satisfying the following equivalent conditions.

1. σ acts trivially on the quotient ring OL/Bi+1.

2. w(σ(a)− a) ≥ i + 1 for all a ∈ OL.

3. w(σ(x)− x) ≥ i + 1.

Each Gi forms a group and it is called the i-th ramification group of G.

Proof Let a ∈ OL. Part 1. is equivalent to σ(a) = a + (Bi+1) which is
equivalent to part 2. since elements of (Bi+1) have valuation greater or equal
to i + 1 as B is a uniformizing element of OL which is a discrete valuation
ring. Let xi = x + (Bi+1). Then x generates OL/Bi+1 as an OK-algebra,
hence parts 2. and 3. are equivalent. Lastly, it can be seen that each Gi
satisfies group axioms. □

Proposition 1.33 The i-th ramification groups Gi form a decreasing sequence of
normal subgroups of G. G−1 = G and Gi = {1} for i sufficiently large, where 1
denotes identity of G.

10



1.7. Ramification

Proof We see that Gi forms a decreasing sequence of subgroups from part 3.
since if σ ∈ Gi+1, then w(σ(x)− x) ≥ i + 2, but then also w(σ(x)− x) ≥ i + 1
hence σ ∈ Gi.

We see that Gi = ker(G
φ−→ Aut(OL/Bi+1)) where φ is a group homo-

morphism since σ(B) = B for all σ ∈ G. Let σ ∈ G and σi ∈ Gi, then
φ(σσiσ

−1) = φ(σ)φ(σi)φ(σ−1) = φ(σ) · 1 · φ(σ−1) = φ(σ)φ(σ−1) = 1 hence
σσiσ

−1 ∈ Gi hence Gi is a normal subgroup of G.

We have that G−1 = G since OL/B0 = OL/(1) = 0 and for all σ ∈ G,
σ(0) = 0.

We have that the decreasing chain of Gi stabilizes to ∩iGi. Let σ ∈ ∩iGi,
then for all α ∈ OL, σ(α)− α ∈ ∩i≥−1B

i+1 = 0 as OL is a local ring. Hence
σ(α) = α for all α ∈ OL and hence σ = 1. □

Thus we have the following exact sequence:

1→ G1 → G0 → G0/G1 → 1.

The ramification groups define a filtration of G. Note that when L is a
complete discrete valued field, the integral closure OL of OK is a DVR, hence
there is only one B lying over p. Hence decomposition group D = G is the
whole Gal(K/L).

G0 is the subgroup of G that fixes elements of OL/B = k(B) hence it is in
the inertia group I of B.

We obtain that when the residual extension is separable the quotient G/G0 ∼=
Gal(l/k).

Hence we have that ramification groups of G determine those of a subgroup
H.

Definition 1.34 The wild inertia subgroup P ⊂ I is Gal(L/Ktame
L ) where Ktame

L is
the maximal tamely ramified subextension. P is a normal subgroup of I and it is a
unique p−Sylow subgroup.

Theorem 1.35 Let l have characteristic p > 0. Then the wild inertia group is the
same as 1st ramification group G1 = P.

Proof Let us define a map the following way φ : G0 → l×, φ(σ) = σ(π)/π modB
for any uniformizer π ∈ L. The map is a homomorphism and the kernel
of φ is G1. Note that G1 ⊂ ker(φ) since σ(π) ≡ π mod B2 is equivalent to
σ(π)/π ∼= 1 mod B which is same as σ ∈ ker(φ). Also the map G0/G1 → l×

induced by φ is injective. We get that G0/G1 canonically injects into l× and
hence it has order prime to p. G1 ⊆ G0 is a p-group and since G0/G1 has
order prime to p we have that G1 is a p-Sylow subgroup of G0 and this is the
unique one, hence G1 = P. □

11



1.7. Ramification

If the characteristic of l is zero, then G1 = {1} and the group G0 is cyclic.

Proposition 1.36 Let H ⊆ G be a subgroup. Let wH be the restriction of the
valuation w to LH ⊆ L. For every s ∈ H, wH = (s(x)− x) = w(s(x)− x) and
Hi = Gi ∩ H.

Proof This follows directly from part 1. of Lemma 1.32. □

Corollary 1.37 Let Kunr
L denote the largest unramified extension of K in L and

H the corresponding subgroup of G. Then H = G0 and the ramification groups
Gi, i ≥ 0 of G are equal to those of H.

Proof We have H = Gal(L/Kunr
L ). Let ksep

l be the largest separable exten-
sion of k in l. We have that Gal(Kunr

L /K) = Gal(ksep
l /k) and Gal(l/k) =

Gal(ksep
l /k). Also G/G0 = Gal(l/k). Hence Gal(Kunr

L /K) = G/G0. Since

1→ Gal(L/Kunr
L )→ G = Gal(L/K)→ G/G0 = Gal(Kunr

L /K)→ 1

we obtain that H = G0.

The ramification groups of G and H coincide for i ≥ 0 since Gi ⊂ G0 = H for
i ≥ 0. Proposition 1.36 shows that Gi = Hi. □

Remark 1.38 Assume the residue field k is perfect. Then ksep = k̄.

The extension Kunr/K is galois and Gal(Kunr/K) = Gal(k̄/k). The extension
Ksep/Kunr is a totally ramified Galois extension. Hence we have a short exact
sequence:

1→ Gal(Ksep/Kunr)→ Gal(Ksep/K)→ Gal(k̄/k)→ 1

Let Ktame denote the maximal tamely ramified extension of K. Then similarly,
Ktame/Kunr is a Galois extension and we have an exact sequence:

1→ Gal(Ktame/Kunr)→ Gal(Ktame/K)→ Gal(Kunr/K)→ 1

.

1.7.2 Unramified Extensions

Let (K, || · ||) be a complete, non-Archimedean field whose valuation ring R
is a DVR.

The finite unramified extensions L of K with K−algebra homomorphisms
form a catefory Cunr

K . Finite separable extensions l of k with k−algebra
homomorphisms form a category Csep

k .

12



1.7. Ramification

Theorem 1.39 The categories Cunr
K and Csep

k are equivalent via the functor:

F : Cunr
K → Csep

k ,F (L) = l, F (φ : L1 → L2) = φ : l1 → l2

such that φ(α) := φ(α) where α is a lift of ᾱ as shown on the diagram:

α ∈ OL1 l1 ∋ ᾱ

φ(α) ∈ OL2 l2 ∋ φ(α)

φ φ̄

F gives a bijection between the isomorphism classes in Cunr
K and Csep

k and it induces
a bijection between HomK(L1, L2) ∼= Homk(l1, l2).

Corollary 1.40 K ⊂ L is an unramified extension if and only if OL = OK[α] for
some α ∈ L whose minimal polynomial f ∈ OK[x] has a separable image f in k[x].

Corollary 1.41 Let K have a residue field k of characteristic exponent p, and let ζn
be a primitive nth root of unity in an algebraic closure K of K, where gcd(p, n) = 1.
The extension K ⊂ K(ζn) is unramified.

Proof Let L = K(ζn). We see that OL = OK[ζn]. The field K(ζn) is a splitting
field of f = xn − 1 ∈ K[x]. By 1.20 f ∈ OK[x]. The minimal polynomial fn of
ζn in OK divides f . To show that f̄n is separable it suffices to show that f̄ is
separable. The latter is true since gcd( f̄ , f̄ ′) ̸= 1 if and only if f̄ ′ = nxn−1 = 0,
equivalently when p|n, however we have that gcd(p, n)= 1. □

Corollary 1.42 Let K have a finite residue field Fq and let K ⊂ L be a degree n
extension. L/K is unramified if and only if L ∼= K(ζqn−1). In this case L/K is a
Galois extension with Gal(L/K) ∼= Z/nZ.

Proof (⇐) From Corollary 1.41

(⇒) Assume K ⊆ L is an unramified extension. Then [l : k] = [L : K] = n
and hence l ∼= Fqn . Then l× is cyclic of order qn − 1 generated by ᾱ. The
minimal polynomial ḡ ∈ Fq[x] of ᾱ divides xqn−1 − 1 ∈ OK. By Hensel’s
Lemma 1.22, we can lift ḡ to g ∈ OK which will divide xqn−1 − 1 and by
Hensel’s Lemma 1.21 we can lift ᾱ to a root α of g. Since α is then also
a root of xqn−1 − 1 it must be a primitive (qn − 1)th root of unity. By the
Theorem 1.31 OL = OK[ζqn−1]. Since Fqn is a splitting field of xqn

, by Hensel’s
lemma L is a splitting field of xqn−1 − 1 and K ⊂ L is a Galois extension and
Gal(L/K) ∼= Z/nZ. Furthermore one can see that Gal(L/K) ∼= Gal(l/k). □

Now we add the assumption that the residue field k of K is perfect.
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1.7. Ramification

Proposition 1.43 (p. 51 Lang) Let L be a finite extension of K. Let Lunr be the
compositum of all unramified subfields over K. Then Lunr is unramified over K and
L is totally ramified over Lunr.

L

Lunr

K

tot. ram.

unr

Proposition 1.44 (Lang, p.49) Let L ⊆ L be a finite extension.

(i) If K ⊂ F ⊂ L are field extensions, then E/K is unramified if and only if E/F
and F/K are unramified.

(ii) If E is unramified over K and K1 is a finite extension of K, then EK1 is
unramified over K1.

(iii) If E1 and E2 are finite unramified over K, then so is E1E2.

These properties hold for when ”unramified” is replaced by ”tamely ramified”.

Definition 1.45 The maximal unramified extension Kunr of K (in Ksep) is the
subfield ⋃

K⊆E⊆L
K⊆E fin. unram.

E ⊆ Ksep

where union is taken over the finite unramified subextensions K ⊆ Ksep.

The residue field of Kunr is ksep.

1.7.3 Totally Ramified extensions

Definition 1.46 Let OK be a discrete valuation ring with maximal ideal p. A monic
polynomial

f (x) = xn + an−1xn−1 + ... + a1x + a0 ∈ OK[x]

is Eisenstein if ai ∈ p for all i ∈ {0, 1, ..., n− 1} and a0 /∈ p2.

Proposition 1.47 Let f ∈ OK[x] be an Eisenstein polynomial. Then OK[x]/( f ) is
a discrete valuation ring with maximal ideal generated by the image of x under the
map OK[x] −→ OK[x]/( f ) and the residue field k. Hence, the extension K ⊆ L,
where L is the fraction field of OK[x]/( f ) is totally ramified.

Proof We have the image of f in k[x] is f̄ = tn. By Lemma 1.25, OK[x]/( f )
has only one maximal ideal (p, t) hence it is a local ring. The fact that a0 ∈ p
but a0 /∈ p2 implies that a0 is the uniformizing element of OK, or p = (a0).
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1.7. Ramification

Let x̄ be the image of x in OK[x]/( f ). Then

a0 = −x̄n − an−1 x̄n−1 − ...− a1 x̄,

hence a0 ∈ (x̄) and thus, (p, x̄) = (a0, x̄) = (x̄). Hence the unique maximal
ideal in OK[x]/( f ) is a principal maximal ideal and since a0 is not nilpotent,
neither is x̄ and by Proposition 1.12 OK[x]/( f ) is a discrete valuation ring.□

Theorem 1.48 (Theorem 2.11 in (Clark, n.d.)) Let K ⊆ L,OK the discrete valuation
ring and π a uniformizer of the integral closure OL of OK in L. L/K is totally
ramified if and only if OL = OK[π] and the minimal polynomial of π is Eisenstein.

1.7.4 Tamely ramified extensions

Theorem 1.49 Let L/K be totally tamely ramified, with [L : K] = e. Then, there
exist uniformizers π and Π of K and L respectively such that Πe = π.

Theorem 1.50 Let K be a henselian DVF with algebraically closed residue field
k of characteristic p. For each e ∈ Z+ prime to p, there exists a unique tamely
ramified extension K ⊂ Le of degree e, obtained by taking the eth root of any uni-
formizing element of K. Moreover, Ktame =

⋃
e Le and Gal(Ktame/K) ∼= ∏l ̸=p Zl .

Proof We have that k = k̄ therefore there are no proper algebraic, hence
separable extensions of k. Since any unramified extension of K gives a
separable extension of k we may deduce that there are no proper unramified
extensions of K. Adjoining any primitive n−th root of unity to K when
gcd(p, n)= 1 gives an unramified extension of K, and therefore all such roots
of unity are contained in K. Since k is algebraically closed it is a perfect field
and since there are no proper unramified extensions of k by the Proposition
1.43 every extension of K is totally ramified. Thus, every tamely ramified
extension of K is totally tamely ramified, in other words, every degree e
extension, where gcd(p, e)= 1, is totally tamely ramified. Let us show that
there is a unique such degree e extension Le of K.

Let e be coprime with p and K ⊂ L an extension of degree e. Then by
the Theorem 1.49, there exists a uniformizer π of K such that L = K[π

1
e ].

Conversely, if e is coprime with p, for any uniformizer π′ of K, K ⊂ K[π′
1
e ]

gives a degree e tamely ramified extension. We have to show that K[π
1
e ] =

K[π′
1
e ]. Since π, π′ are uniformizing elements ππ′−1 is a unit in OK. Let

f (x) = xe−π−1π′ ∈ OK[x]. Since k is algebraically closed with characteristic
p, f̄ has a simple root in k. By 1.21 this root can be lifted to a root of f in
OK, hence K contains eth root of π−1π′. This shows that K[π

1
e ] = K[π′

1
e ] and

there is a unique degree e extension Le of K when gcd(p, e)= 1.

By Kummer theory we have Gal(Le/K) ∼= Z/eZ. If e|e′ there is a natural
surjection Gal(Le′/K)→ Gal(Le/K) and the following diagram commutes:
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1.7. Ramification

Gal(Le′/K) Z/e′Z

Gal(Le/K) Z/eZ

∼

mod e

∼

□

Then, Gal(Ktame/K) ∼= lim←−Z/eZ = ∏l ̸=p Zl .

In Theorem 1.50 if the residue field is not necessarily algebraically closed but
of characteristic exponent p then Ktame/K can be split Ktame/Kunr/K. Then
Ktame =

⋃
e Le where Le is a unique degree e tamely ramified extension of

Kunr. Finally Gal(Ktame/Kunr) ∼= ∏l ̸=p Zl .

1.7.5 Wildly Ramified extensions

Theorem 1.51 The wild ramification group Gal(Ksep/Ktame) is a pro-p-group.

Proof We have that Gal(Ksep/K) is a profinite group endowed with Krull
topology and since G := Gal(Ksep/Ktame) is a closed subgroup, then the
latter is also a profinite group. Let N be an open normal subgroup of
Gal(Ksep/Ktame), then it has a finite index. Let KN be a fixed field of N, so
Ktame ⊂ KN ⊂ Ksep and N = Gal(Ksep/KN). Then G/N ∼= Gal(KN/Ktame)
and since the extension KN/Ktame is wildly ramified it has a degree that is a
power of p. Hence, |Gal(KN/Ktame)| is a power of p which is equivalent to it
being a p−group as it is a finite group. □
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Chapter 2

The field of formal Laurent series

2.1 Absolute Galois group of C((x))

In the case when K is an algebraically closed, characteristic 0 field, an
algebraic closure of K((x)) is isomorphic to the Puiseux field

∞⋃
n=0

K((x
1
n )).

Theorem 2.1 Let K = C((x)). Then the absolute Galois group gK := Gal(Ksep/K) =
Gal(K/K) ∼= Ẑ.

Proof The residue C field of K is algebraically closed, hence Kunr = K. Since
the residue characteristic is zero, there are no wildly ramified extensions,
hence Ksep = Ktame. Since the characteristic of K is zero, it is a perfect field,
hence Ksep = K. Then, Gal(K/K) = Gal(Ktame/K) = ∏l Zl = Ẑ. □

2.2 Filtration of the Absolute Galois group of Fp((x))

In this section let K = Fp((x)) for some prime p.

Theorem 2.2 The maximal unramified extension of K is Kunr = Fp((x)) and the
Galois group of this extension Gal(Kunr/K) = Ẑ.

Proof Let Ln be a degree n unramified extension of K. By Corollary 1.42 Ln =
Fp((x))(ζpn−1) = Fpn((x)) and Gal(Ln/K) ∼= Gal(l/k) ∼= Gal(Fqn /Fq) ∼=
Z/nZ. Since the algebraic closure of Fp is the union

⋃∞
n=1 Fpn , then Kunr =⋃∞

n=1 Ln =
⋃∞

n=1 Fpn((x)) = Fp((x)). Hence Gal(Kunr/K) = lim←−Gal(Ln/K) =
lim←−Z/nZ = Ẑ □
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2.3. Extensions of Fp((x))

Proposition 2.3 The maximal tamely ramified extnesion of K is

Ktame =
∞⋃

n=1

Fp((x
1
n ))(n,p)=1

and its Galois group over K is such that Gal(Ktame/K)/ ∏l ̸=p Zl = Ẑ.

Proof Since Kunr = Fp((x)), from the Theorem 1.50 it follows that the max-
imum tamely ramified extension of Kunr which is the same as Ktame is Ktame =⋃∞

n Fp((x))(x
1
n )(n,p)=1 =

⋃∞
n=1 Fp((x

1
n ))(n,p)=1 and Gal(Ktame/Kunr) = ∏l ̸=p Zl .

By the exact sequence:

1→ Gal(Ktame/Kunr)→ Gal(Ktame/K)→ Gal(Kunr/K)→ 1

we obtain that Gal(Ktame/K)/ ∏l ̸=p Zl = Ẑ.

From the above results, we have that the Puiseux field
⋃∞

n=1 Fp((x
1
n )) is the

perfect closure of the maximal tamely ramified extension
⋃∞

n=1 Fp((x
1
n ))(n,p)=1

of K, as it is obtained by adjoining all pr-th roots of the uniformizing element
x where r ∈N.

2.3 Extensions of Fp((x))

There are infinitely many separable extensions of degree p of Fp((x)) namely
the extensions generated by the Artin-Schreier polynomial zp − z− x−m for
any m ∈ Z+.

There are infinitely many inseparable extensions of Fp((x)), namely by

adjoining x
1

pm to the field for any m ∈ Z+. The minimal polynomial of x
1

pm

over Fp((x)) is zpm − x, and the degree of the extension is n since each root
of the polynomial is a p times repeated root.

Let L/Fp((x)) be a degree p extension. We have that p = e f hence either
f = p or e = p. Hence we have that every degree p extension of Fp((x)) is
either totally ramified or unramified.

Furthermore, by the Corollary 1.42, L/Fp((x)) is unramified if and only
if L = Fp((x))(ζpp−1). This gives us that there are infinitely many totally
ramified degree p extensions of Fp((x)).

Now, let m be prime to p. Then, there are exactly m totally ramified extensions
of Fp((x)) of degree m, namely Fp((ζ i

mx
1
m )) for 1 ≤ i ≤ m and where ζm is

the primitive mth root of unity in the algebraic closure of Fp.

We also state a theorem from (Brown et al., 2015) that we will use in the next
example to classify the extensions of Fp((x)):
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2.3. Extensions of Fp((x))

Theorem 2.4 Let ζ be a primitive
(

p f − 1
)

st root of unity contained in K, and let
g = gcd

(
p f − 1, e

)
. Set m = e/g. There are exactly e totally and tamely ramified

extensions of K of degree e. Furthermore, these extensions can be split into g classes
of m many K-isomorphic extensions, all extensions in the same class being generated
over K by the roots of the polynomials

fr(x) = xe − ζrπK

for r = 0, ..., g− 1.

Example 2.5 Let us look at a specific example of a degree n = 6 extension L of
F5((x)). We have that L/F5((x)) has to be one of the following:

1. a degree 6 unramified extension

2. a degree 2 totally ramified extension of a degree 3 unramified extension of
F5((x)).

3. a degree 3 totally ramified extension of a degree 2 unramified extension of
F5((x)).

4. a degree 6 totally tamely ramified extension.

For each case there is a unique unramified subextension of degree dividing 6 or of zero
degree as in the 4th case. The extensions are formed by adjoining (5m − 1)st root of
unity to F5((x)) where m is 6, 3 and 2 in the first three cases above. By the Theorem
2.4 for g = gcd(e, 5m − 1) there are g non-isomorphic totally tamely ramified
extensions of degree e. For the first case there is only one unique extension. For 2, 3, 4
cases there are gcd(2, 53 − 1) = 2, gcd(3, 52 − 1) = 3 and gcd(6, 51 − 1) = 2 non-
isomorphic extensions respectively. We use the Theorem 2.4 to find the generating
polynomials of the totally and tamely ramified extensions of the unramified sub-
extension K of L/F5((x)) and summarize the results in the table:

Case e f Gal (K/F5((x))) Polynomial
for L/K

1 1 6 Z/6Z

2 3 2 Z/2Z z2 − x
2 3 2 Z/2Z z2 − ζ124x
3 2 3 Z/3Z z3 − x
3 2 3 Z/3Z z3 − ζ24x
3 2 3 Z/3Z z3 − ζ2

24x
4 6 1 z6 − z
4 6 1 z6 − ζ4x

Example 2.6 Let us find the the Artin-Schreier extension of F5((x)) generated by
the polynomial F(z) = z5 − z− x−1 ∈ F5((x))[z].
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2.4. Generalized power series

Let f = ∑∞
i=1 x

−1
5i .

(∑
i

x
−1
5i )5 −∑

i
x
−1
5i − x−1 = x−1 + x

−1
5 + x

−1
25 + ...−∑

i
x
−1
5i − x−1 = 0.

Hence f is a root of F(z). We see that f + i for 1 ≤ i ≤ 4 are also the roots of F(z).
The Galois group of the extension is then Z/5Z.

In the above example, we see that the solution f = ∑∞
i=1 x

−1
5i of the Artin-

Schreier polynomial does not belong to the Puiseux field
⋃∞

n=1 F5((x
1
n )) since

the denominators of the exponents are not bounded. This suggests that the
algebraic closure of Fp((x)) is larger than the Puiseux field. In order to
describe the algebraic closure of Fp((x)) we need to introduce generalized
power series.

2.4 Generalized power series

When K is a field with characteristic p > 0, Chevalley remarked that the Artin-
Schreier polynomial zp − z− x−1 ∈ K((x))[z] has no root in the Puiseux field.
However, an algebraic closure of K((x)) can be described explicitly through
the introduction of generalized power series which consist of expressions of the
form ∑i∈Q xiti where xi ∈ K and the support of the series {i ∈ Q | xi ̸= 0}
is a well-ordered subset of Q (meaning that each non-empty subset has a
minimum element).

We put a ring structure on the set of generalized power series:

∑
i

xiti + ∑
j

yjtj = ∑
k
(xk + yk)tk

∑
i

xiti ·∑
j

yjtj = ∑
k
( ∑

i+j=k
xiyj)tk

where the multiplication makes sense since supports of the series are well-
ordered subsets of Q hence there are finitely many i, j such that i + j = k and
xi ̸= 0, yj ̸= 0. Then, we see that the Artin-Schreier polynomial factors in the
following way:

zp − z− x−1 =
p−1

∏
i=0

(
z− i−

∞

∑
j=1

x
−1
pj

)
.

Note that ∑∞
j=1 x

−1
pj is not an element of the Puiseux field as the denominators

of the exponents are not bounded. If K = Fp((x)) then the Artin-Schreier
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2.4. Generalized power series

polynomial is irreducible, and the extension generated by the polynomial is
cyclic of degree p:

Gal
(

K[z]/(zp − z− x−1)/K
)
∼= Z/pZ.

We have the following theorem which we study further in the next section:

Theorem 2.7 (Huang, Rayner, Stefanescu) The field of generalized power series
is algebraically closed. In particular, an algebraic closure of the field Fp((x)) is
contained in the field of generalized power series.

2.4.1 Galois groups of extensions

Let us look at an example from Vaidya’s paper (Vaidya, 1997) that studies
another extension of Fp((x)) in the generalized power series field:

Theorem 2.8 Let K = Fp. Let m ∈ Z+ be coprime with p and n ∈ Z+. Let

f = ∑∞
i=1 x

−1
mpin . If m|pn − 1 then we have

1. The field K((x))( f ) a finite Galois extension of K((x)) of degree mpn. Let G
denote its Galois group.

2. There exist subgroups H and L of G such that H ∼=
⊕n

i=1(Z/pZ) and
L ∼= Z/mZ. Moreover, if m > 1, then G = H ⋊ K.

Proof Let us first show that the polynomial F(x) = zpn − z− x
−1
m is a minimal

polynomial of f over the field K((x
1
m )). Firstly:

F( f ) =

(
∞

∑
i=1

x
−1

mpin

)pn

−
∞

∑
i=1

x
−1

mpin − x
−1
m = x

−1
m + x

−1
mpn + ...−

∞

∑
i=1

x
−1

mpin − x
−1
m = 0.

Now we use Huang’s following result replacing x with x
1
m : Let f = ∑∞

i=1 x
−1
pi

with ai ∈ K. If f satisfies a polynomial of the form zpn
+ bn−1zpn−1

+ ... +
b1zp + b0z + b(x), where bi ∈ K, b(x) ∈ K((x)) and n is minimal. Then this
polynomial is a minimal polynomial of the element f over the field K((x)).

We have left to show that n is minimal as F(x) is a polynomial of this form.
Assume for a contradiction that f satisfies G(z) = zpr

+ bn−1zpr−1
+ ...+ b1zp +

b0z + b(x), for some bi ∈ K, b(x) ∈ K((x
1
m )) then:

∞

∑
j=1

x
−1

mpnj−r + ... + bi

∞

∑
j=1

x
−1

mpnj−i + b0

∞

∑
j=1

x
−1

mpnj = −b
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hence we get a contradiction. We conclude that the polynomial F(z) is the
minimal polynomial of the element f over the field K((x

1
m )) and the degree

of the extension is [K((x))( f ) : K((x
1
m ))] = pn. All the roots of F(z) are given

by f + ωi, 1 ≤ i ≤ pn − 1 where ω is (pn − 1)th primitive root of unity, since
(wi)pn −wi = 0. Since all the roots of F(z) are distinct, K((x))( f ) is separable
and algebraic over K((x

1
m )) and furthermore it is a splitting field of f over

K((x
1
m )). Hence it is a Galois extension and let us denote by H its Galois

group. We see from the roots of f that H is isomorphic to the direct sum of n
copies of Z/pZ.

Now, x
1
m is algebraic over K((x)) and since p and m are coprime, K((x

1
m )) is

a finite separable extension of K((x)) of degree m.

Hence [K((x))( f ) : K((x))] = mpn. Let F′(z) = (zpn − z)m − x−1. Then
H( f ) = 0 and since the degree of the polynomial is mpn it is the minimal
polynomial of f over K((x)). Let u be mth primitive root of unity, then we
see that the set is the solutions of F′(z): {ui | 1 ≤ i ≤ m} ∪ {ui f + ω j | 1 ≤
i ≤ m, 1 ≤ j ≤ pn − 1}. Hence the extension K((x))( f )/K((x)) is Galois.

Let σ ∈ H such that σ( f ) = f + ω and let τ ∈ G such that τ( f ) = u f . Let
K ⊆ G be the subgroup generated by τ. We see that K is cyclic of m elements
and K ∼= Z/mZ.

When m > 1 the intersection H ∩ K is a trivial subgroup and every element
of G is a product of some σ and τ. Since K((x

1
m )) is a normal extension of

K((x)) we have that H is a normal subgroup of G. Hence G is isomorphic to
a semidirect product of H and K: G = H ⋊ K.

In the above theorem, H is a p-group and we obtained the following exact
sequence from the semidirect product:

1→ H → G → K → 1.

The degree of the extension of K((x))( f ) over K((x)) is mpn. We see that the
maximal tamely ramified subextension over K((x)) has to be of degree m
and since tamely ramified extensions of K((x)) of degree m are obtained by
adjoining mth root of a uniformizer of K((x)) we see that K((x

1
m )) is exactly

the maximal tamely ramified subextension and hence H is the wild inertia
group.

2.5 Algebraic closure of Fp((x))

Let K = Fp. In this section, we give an explicit description of elements of the
generalized power series that are algebraic over K((x)). Let us first prove a
useful lemma for showing this result.
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2.5. Algebraic closure of Fp((x))

Lemma 2.9 Every finite normal extension of K((x)) is contained in a tower of
Artin-Schreier extensions over K((x1/n)) for some n ∈N.

Proof Let L be a finite normal extension of K((x)), then there exists an
intermediate extension F such that it is purely inseparable over K((x)) and
over which L is separable. Let S be the separable closure of K((x)) in L. Then
[S : K((x))] = [L : F] and hence [L : S] = [F : K((x))] =: q. Since K((x)) is an

imperfect field and the degree of extension F/K((x)), is q then F = K((x
1
q )).

Also, since L/K((x)) is normal, L/K((x
1
q )) is also normal and therefore it is

Galois.

Let M denote the maximal subextension of L tamely ramified over K((x
1
q ))

and m := [M : K((x
1
q ))]. Since K is algebraically closed it contains m

distinct m−th roots of unity (m is coprime with p) and by Kummer theory
M = K((x1/q))(a1/m) for some a ∈ K((x1/q)). Hence M = ((x1/qm)).

Since the wild inertia group Gal(L/M) is a p-group, L is a p-power extension
of M (degree is a power of p). Hence, we have left to prove that L is contained
in a tower of Artin-Schreier extensions over M. Since every nontrivial p-group
has a nontrivial center, we can find a normal series

Gal(L/M) = G0 ▷ G1 ▷ ... ▷ Gn = 1

such that [Gi−1 : Gi] = p for i = 1, .., n. The corresponding fixed subfields
of Gi form a tower of degree p Galois extensions from M to L. Every such
extension in a characteristic p field is an Artin-Schreier extension hence
showing the result.

Hence we have that every finite normal extension of Fp((x))unr = Fp((x))
is contained in a tower of Artin-Schreier extensions over Fp((x1/n))unr for
some n ∈N.

Now we give some preliminaries in order to be able to define elements
algebraic over K((x)).

Definition 2.10 A sequence (cn)n satisfies a linearized recurrence relation (LRR)

if there exists d0, ...dk such that ∑k
i=0 dic

pi

n+i = 0 for all n ≥ 0. We have that if (cn)n
and (c′n)n satisfy LRRs, then their sum and product also satisfy LRRs.

Definition 2.11 Let a ∈N and b, c ≥ 0 and define the set

Sa,b,c :=
{

1
a

(
n− b1

p
− b2

p2 − ...
)

: n ≥ −b, bi ∈ {0, ..., p− 1}, ∑ bi ≤ c
}

Note that ∑i
bi
pi < 1.
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2.5. Algebraic closure of Fp((x))

Let Tc = S1,0,c∩ (−1, 0) =
{(

n− b1
p −

b2
p2 ...
)

: n ≥ 0, bi ∈ {0, ..., p− 1}, ∑ bi ≤ c
}
∩

(−1, 0).

Then if w = ∑i wixi is supported on S1,b,c it can be written as ∑m≥b ∑i∈Tc
wm+ixm+1.

Definition 2.12 (Twist-recurrent function of order k) A function f : Tc → K
is twist-recurrent of order k ∈ Z+ if ∃d0, ...dk ∈ K such that LRR holds for any
sequence (cn)n of the form

cn = f
(
−b1

p
− ...−

bj−1

pj−1 −
1
pn

(
bj

pj + ...
))

for some j ∈N and b1, b2... ∈ {0, ..., p− 1} with ∑ bi ≤ c.

Hence if ∃λ1, ..., λk ∈ K such that

cn = f
(
−b1

p
− ...−

bj−1

pj−1 −
1
pn

(
bj

pj + ...
))

=
k

∑
i=1

ziλ
1

pn

i .

Definition 2.13 (Twist-recurrent series) A series w = ∑ witi is twist-recurrent
if:

1. ∃a, b, c ∈N such that w is supported on Sa,b,c.

2. For some a, b, c for which w is supported on Sa,b,c and for each m ≥ −b the
function

fm : Tc → K
z 7−→ w(m+z)/a.

is twist-recurrent of order k for some k.

3. The functions fm span a finite-dimensional vector space over K.

If fm as defined above (note that it depends on w) is twist-recurrent of order
k, then from the definitions it follows that LRR holds for any sequence (cn)n
of the form

cn = w
1
a

(
m− b1

p −...−
bj−1
pj−1−

1
pn

(
bj
pj +...

))

Theorem 2.14 The twist-recurrent series form an algebraic closure of K((x)).

Proof We omit the proofs of the assertions that every twist-recurrent series
is algebraic over K((x)) and that twist-recurrent series are closed under
addition and scalar multiplication which are presented in Theorem 8 of
(Kedlaya, 2001).

Let us show that if y is twist-recurrent and wp − w = y, then w is twist-
recurrent. Let y be supported on Sa,b,c for some a, b, c. Let us write y = y′+ y′′
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2.5. Algebraic closure of Fp((x))

where y′ is supported on (−∞, 0) ∩ Sa,b,c and y′′ on Sa,b,c ∩ (0,+∞). Since
the function w 7→ wp − w is additive, we can find w′ and w′′ such that
y′ = w′p − w′ and y′′ = w′′p − w′′.

We have that w′ = ∑i ∑∞
l=1(yiti)

1
pl = ∑i ti ∑l y1/pl

ipl is supported on Sa,b,b+c. To
show that w′ is a twist-recurrent series, we have to show that if −b ≤ m ≤
0, bi ∈ {0, ..., p− 1} and ∑ bi ≤ c, then for any j ≥ 0, the sequence

cn = w′
m− b1

p −...−
bj−1
pj−1−

1
pn

(
bj
pj +...

)

satisfies some fixed LRR.

In case m < 0 or j > 0, then cn = ∑l y
1
pl

ipl , where i = m − b1
p − ...− bj−1

pj−1 −
1
pn

(
bj

pj + ...
)

. Since yipl is nonzero for a bounded number of l, due to the
condition m ≥ −b on the support of the series y, we have that cn is a sum of
a bounded number of sequences, each obtained from a sequence satisfying
LRRs, by taking pl-th roots for some l. Hence w′ is twist-recurrent as a sum
of twist-recurrent series as the possible values of l are uniformly bounded
over all possible sequences.

In case m = j = 0, then

cp
n+1 − cn = y

− b1
p −...−

bj−1
pj−1−

1
pn

(
bj
pj +...

)

which satisfies LRRs implying that (cn)n also satisfies LRRs from direct
computation. Hence w′ is twist-recurrent series.

We have that w′′ = −∑i ∑∞
n=1(yiti)pn

= −∑i ti ∑n ypn

i/pn is also supported on

Sa,b,c. For i < pk, yi/pn = 0 for n > k + c. This implies that w′′ is twist-
recurrent, hence w = w′ + w′′ is twist-recurrent.

We obtain that the field of twist-recurrent series is closed under taking Artin-
Schreier extensions, hence there are no proper finite normal extensions of the
field of twist-recurrent series by Lemma 2.9, which implies that this field is
algebraically closed. □
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Conclusion

In conclusion, when K is a Henselian discretely valued field of residue char-
acteristic p, we split up the Galois extension Ksep/K into Ksep/Ktame/Kunr/K
and obtain the following filtration by normal subgroups

1 ⊂ Gal(Ksep/Ktame) ⊂ Gal(Ksep/Kunr) ⊂ Gal(Ksep/K).

When the residual field of K is finite then Gal(Kunr/K) ∼= Ẑ. For the middle
filtration, Gal(Ktame/Kunr) ∼= ∏l ̸=p Zl . And the wild ramification group
Gal(Ksep/Ktame) is trivial if the residue field of K has characteristic 0 and a
pro-p-group if characteristic p > 0.

With the above results we have obtained that when K = C((x)), Gal(K/K) =
Ẑ. For the case when K = Fp((x)), the Galois group of the algebraic
closure over the field is not characterized this easily and we have seen
that the introduction of generalized power series is needed to describe an
algebraic closure of Fp((x)). An algebraic closure of K((x)) is described by
Kedlaya when K is algebraically closed and of characteristic p > 0 by putting
constraints on the support and coefficients of the generalized power series.
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