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ABSTRACT. We study invariants of a plane cuve singularity (f,0) coming from motivic
integration on symmetric powers of a formal deformation of f. We show that a natural
discriminant integral recovers the motivic classes of the principal Hilbert schemes of points
on f, while the orbifold integral gives the plethystic exponential of the motivic Igusa zeta
function of f. The latter result also holds in higher dimemsions.

Combined with results of Gorsky and Némethi we obtain an interpretation of the dis-
criminant integrals in terms of knot Floer homology, which is reminiscent of the relation
between the cohomology of contact loci and fixed point Floer homology proven by de la
Bodega and Poza.

1. INTRODUCTION

Consider a nonconstant polynomial map f : A™ — Al over k = C defining an isolated
hypersurface singularity at 0 € A™. A fundamental invariant of (f,0) is its Milnor fiber Fy,
a compact smooth manifold with boundary depending only on the singularity at 0 [32]. Its
singular cohomology H*(Fpy, Q) admits a monodromy endomorphism M, whose zeta func-
tion (ro(T) = [ [;5; det(l — TM | H(F, Q)Y can be computed purely algebraically
by a remarkable result of Denef and Loeser [17]:

For any n > 1 let X%n denote the n-th restricted contact locus of f. It is defined as

X0, =A{z e AR/ )0 | fz) =" € k[[t]]/£"},

where A™(k[[t]]/t""")o denotes the locus of n-jets reducing to 0 modulo ¢. Then the Euler
characteristics x(X?,,) determine (fo(7T") via the formula

0

(11) (ol ) = exp (2 MT) |

n=1 n

While the original proof of proceeds by computing both sides independently on an
embedded resolution of f, there exists now a more conceptual interpretation [33, 27] as a
Lefschetz fixed point formula on the analytic Milnor fiber. In a similar spirit, the goal of
this paper is to study refinements of coming from motivic integration.

Concretely, consider the k[[t]]-scheme

Xf = Spec(k[[t]][xla s ’xm]/f - t)7

and associated with it for any n > 0 the relative symmetric power Sym, Xy = X xy

<X p[7) Xt/ Sn- In anutshell our paper studies motivic classes in the localized Grothendieck
1
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ring C, = Ko(Vary,)[L™!, (1—=L") "' : 4 = 1] coming from Cluckers-Loeser motivic integrals
[10] on
Sym,, X7 (k[[t]]) = {z € Sym,, (Xp)(k[[t]]) | @ = n[0]}.

Our first main result is in the case m = 2, i.e. when (f,0) defines an isolated plane
curve singularity, and is partially motivated by the second author’s work on the relation
between Hilbert schemes and knot invariants [35, [34]. Namely, since X k() is a smooth
curve, the generic fiber of Sym, Xy admits another model over Spec(k[[t]]) given by the
relative Hilbert scheme of points Hilb,, (XF).

The special fiber Hilb, (Xf); is the classical Hilbert scheme Hilb,,(f) of length n sub-
schemes on the singular curve f = 0 and we write Hilb) (f)o = Hilb,(f) for the locally
closed subscheme parametrizing principal subschemes supported at 0.

Theorem 1.1 (3.3). For any n = 1 there exists a generically non-vanishing definable
volume form |w$®'| on Sym, X7 such that

J |wo| = L "[Hilb,,(f)o] € Ci.
SymnXJ?
By Proposition the generating series

Pgel(T) = ZJ |wg€l|Tn7

n=0 Sym,, X})

can be identified with the one-variable motivic Poincaré series of Campillo, Delgado and
Gusein-Zade [7, §].

Since |wf®| is generically non-vanishing, one can compute the Euler characteristic spe-
cialization of P, (T) by the trace formula for motivic Serre invariants, recovering an old
result of Milnor [32) Lemma 10.1]:

Corollary 1.2 (3.10). For any reduced plane curve singularity (f,0) with link L we have

o) = 4,

where Ar(T) denotes the normalized Alexander polynomial of the link.

If (f,0) is unibranch, we obtain a second corollary, by combining Theorem with
results of Gorsky and Némethi [2I] to obtain an interpretation of the motivic integrals
SSym o [wg| in terms of the knot Floer homology HFL™(K,v) of the knot K defined by

nty

the plane curve singularity (f,0) [36, 37].

Corollary 1.3 (5.4). For a unibranch plane curve singularity (f,0) with assiciated knot
K we have the equality
Py(T) = ) dim HF L, (K, v)L* "1,
v,deZ

where h(v) = codimyp ,1Jy as in Section .



DISCRIMINANTS AND MOTIVIC INTEGRATION 3

It seems tempting to try to relate Corollary to the arc-Floer conjecture of Budur-de
Bobadilla-Lé-Nguyen [6], now a theorem for plane curve singularities [14], predicting an
isomorphism between the compactly supported cohomology of the contact loci X7 9 and
the fixed point Floer homology of the n-th iterate of the monodromy of Fj. Although we
do not know any direct relation between Py (T") and the geometry of the spaces X On
the moment, our second main result shows that a closely related integral on Sym, X’ 0 ]
determined by the motivic Igusa zeta function [16]

Z4(T) = X9, LT

nz=1

Theorem 1.4 (4.2)). For any non-constant f € k[xy,...,xy] there exists a natural orbifold
form |wors|Y? on Sym, X} such that

3 j lwors|2T™ = Exp (L—mT‘lZf(L—”T“”T)) ,
n>0 ¥ Sym,, X}

where Exp : TCL[LY2[[T]] — 1 + TCL[LY?][[T]] denotes the plethystic exponential.

For m = 3 the relative Hilbert scheme Hilb,, (X;) provides a crepant resolution of the
generic fiber of Sym, X7y 0 and a formula similar to Theorem . has appeared in [3§], see
also Remark [4.3]

Finally, for m = 2, we can relate the two volume forms |w?®| and |wos|
by means of the formula

2 on Sym, X7

LfordAf/2|wo |1/2 |wgel|

where Ay < Sym, Xy denotes the discriminant, see Proposition [£.5] In particular, due

to the factor L~ "4+ ?, the series P,ei(T') does not seem to be determined by the classes
[X?,]. Instead, there is a natural 1-parameter family

j 1A oo 2T € GILYIT, L)
for some formal parameter s, such that
(1.2) Qs(1/2.T) = Pa(T) and Qy(0,T) = Bxp (L3 Z,(L3T))

A good understanding of Qf(s,T") might give a new way of relating Z¢(T") to (so(T),
however, even for a smooth curve computing Q¢(s,T") is equivalent to computing the Igusa
zeta functions of all classical discriminant polynomials, see Section[6] The latter is an open
problem as far as we know, and we hope to come back to it in future work.

The paper is organized as follows: In Section [2| we recall the necessary background on
Hilbert schemes and motivic integration. In particular, we discuss Haiman’s charts of the
Hilbert scheme of A? which we use in Section [3|to construct the definable form |w?¢| and
prove Theorem [1.4] In Section [4] we discuss the orbifold formalism for symmetric powers,
establish Theorem and compare the orbifold form |we|'/? with |[w9|. In Section
we discuss the relation with (symplectic) knot invariants, in particular Corollary [1.3} and
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speculate about possible refinements and extensions of our results. Finally, in Section [0]
we discuss explicit examples of the series Q¢(s,T') and its specializations.
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supported the by Swiss National Science Foundation [no. 196960]. O.K. was also sup-
ported by a Viisala project grant of the Finnish Academy of Science and Letters. A.O was
supported by National Science Foundation grant DMS-2200798.

2. BACKGROUND

2.1. Hilbert Schemes. Throughout this section we work over an algebraically closed field
k of characteristic 0.

2.1.1. Hilbert scheme of the plane. The Hilbert scheme of the plane Hilb, (A?) is a smooth
and irreducible variety of dimension 2n. In the work of Haiman [25] a cover of Hilb, (A?)
by affine charts is constructed as follows:

For any subset M < N? of size n we may consider the open

Un = {1 < k[X, Y] | spardXPY ) pens — K[X, Y]/I}.

Any monomial X?Y? defines a section of the tautological bundle 7 — Hilb, (A?) and
the collection {XPY %}, gerr trivializes Tjp,,. Any f € k[X,Y] defines a global section f!
of 7 which we can describe on U, using this trivialization as follows: for I € Uy; we may
write the image f of f in k[X,Y]/I uniquely as

f= > fiaxrye

(pg)eM

If we write f][\’;] : Uy — A for the function ( f}?q]i)lggn obtained this way we have f][\Z] =
f|[gz]w in the trivialization given by {X?Y 9}, yers. Here we used the inverse lexicographical
order on N2, i.e (a,b) < (¢,d) iff b < d or b = d and a < ¢, to order the elements

(p1,q1) < -+ < (Pn,qn) of M.
Now assume I € Uy, has support (with multiplicities) (z1,1),. .., (¥n, yn) € A% Then

][\Z] (I) is related to the evaluation of f at the points (z;,y;) by the matrix By/(z,y) =

(7' yi")ij i-e.

Flen, ) f;%?%(f)
(2.1) f(m;h%) = Bu(z.y) fmqf(l)

F (@) 7.
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We write Ay for the for the determinant of By/(z,y), which is an alternating function
on (A%)".
In what follows we will consider M = M, with M), the Young diagram of a partition

A = n and we write Uy for Uy, , f/{n] for f][\ﬂ etc. In particular, we have an open covering
Hilb, (A%) = U,_, Ux.

2.1.2. Hilbert scheme of a plane curve. Throughout this section we let f € k[X,Y] be a
reduced non-constant polynomial defining a curve C = {f = 0} = A?. The Hilbert scheme

Hilb,(f) = Hilb, (C) naturally embeds into Hilb, (A?). In fact, we have

Lemma 2.2. Let A% = Spec(Sym(0O3%)) be the affine plane over a base S and Cs the 0-
scheme of a section f € Sym(O%). The Hilbert scheme Hilb,(Cs) is the 0-scheme of the
section fI"l e HO(Hilb, (A%),T).

Proof. This is a consequence of [I, Proposition 4]. O

For any k > 1 we write HilbS"(f) < Hilb, (f) for the open subscheme of ideals I < O¢
that can be generated by k elements. In particular we denote by Hilb) (f) = Hilb,,(f) the
1-generator Hilbert scheme i.e. the locus of principal ideals

Hilbl (f) = {I € Hilb,(f) | I = (g) for some g € Oc¢}.
Lemma 2.3. The 1-generator subscheme Hilb) (f) agrees with the smooth locus of Hilb,,(f)

Proof. This is |29, Proposition 6.5.]. To elaborate, the tangent space at x € Hilb"(f)
corresponding to a closed subscheme Z is given by Homp, (17, Oz). If x € Hilby(f), or
equivalently when Z is Cartier, Homp, ({7, Oz) = Homp,(O¢, Oz), which has dimension
n. So these points are in the smooth locus. Conversely, if z € Hilb™(f)\Hilb! (f), we can
assume 7 is supported at a single point and in this case the completed local ring at that
point will be isomorphic to k[[z,y]]/f for some f € k[[z,y]]. Lifting I to I, < k[[z,]],
there is an exact sequence

0— HOHl(Iz, Oz) i Hom(INZ, Oz) - OZ

In the proof of [29, Proposition 6.5.], it is proved that the image of the last map lies in
my, the maximal ideal of Oz. Since dimmz = n — 1, the exact sequence implies a lower
bound

dimy, T, (Hilb"(f)) = 2n—n+1=n+1

and hence the points outside the 1-generator locus are singular. O

Finally, we consider for any k > 1 the deformation f — t* seen as a subscheme of Ai[[t]].

Lemma 2.4. Let k = 1. Then any section s of the relative Hilbert scheme Hilb"™(f —t*) —
Spec(k[[t]]) evaluates to an ideal with at most k-generators: sispec(ry € Hilbs*(f).

Proof. The local structure ring of the ambient space is R = (k[z, y|Qk[t])m and m = (z,y, t)
is the maximal ideal. Having a section s is equivalent to having an ideal I < R such that
f—tF el and R/I is flat over k[[t]] of length n. Thus R/I is finite rank over k[[t]] and
since Spec(k[[t]]) is regular, we conclude that R/I is Cohen-Macaulay.
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Since R/I is Cohen-Macaulay and is structure ring of one-dimensional scheme, we have
depth(R/I) = 1 and by the Auslander-Buchsbaum theorem [19, Theorem A 2.15] we
conclude that the projective dimension of R/I is 2. Hence I admits two step free resolution
and by the Hilbert-Burch theorem[I9, Theorem 3.2] there is g by g+1 matrix A with entries
in m such that we have short exact sequence:

0— RS RIS 1 50.

where G is the row of the minors of A and g + 1 is the minimal number of generators of I.
Next, we observe that f — t* € mM\m*"! and that the entries of G are in m9. Hence we
conclude that g < k and I has g + 1 generators hy,...,hg1. If g < k then the statement
is proven otherwise we need to argue explain why f — t* is one of the generators h;.
Indeed, if g = k then h; = Z?:o t/al, ot € m"~7. On the other hand f —t* = 3, ih,,
B; € R and hence at least one of (3; is not vanishing modulo m. In particular, 5; is a unit

in Rand h; = (f —t5)p; ' — Zj# h;B;/B; and I is generated by f —t* and hj, j #i. O
2.5. Motivic integration.

2.5.1. Grothendieck Rings. For any k-variety Z we write Ko(Vary) for the relative
Grothendieck ring of varieties over Z and L for the class of A! x Z — Z. We further
write My for the localized ring Ko(Varz)[L™'] and Cz = Mz[(1 —LH)"' i > 1]. If
Z = Spec(k) we simply write Ko(Vary), My and Cj, instead of Ko(Varspec(r)); Mspec(k)
and CSpec(k)'

In [22] the authors construct power structures on Ko(Vary) and My and in particular
plethystic operations. For R either Ko(Vary) or My, the plethystic exponential is a group
homomorphism

Exp : TR[[T]] — 1+ TR][[T]],
defined by the formula
Exp(aiT + a;T? +...) = H(l — T,
nz=1
Here, if a = [X] € R is the class of a variety, then
(1=T)"" = (x(T) = ) [Sym, X]T™
m=0

is the Kapranov zeta function of X [28], with Sym,, X the m-th symmetric power of X
defined by

Sym, X =X x X x---x X/S,,,

where S,, denotes the m-th symmetric group. We extend this by defining the m-th sym-
metric product Sym,,(a) of any element a € R by

Exp(aT) = Z Sym,, (a)T™.

mz=0
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By [22, Statement 3] we have in particular Sym,,(L*'a) = L*"Sym,,(a). Following [12]
Appendix B| one can further extend Exp and thus Sym,, for m > 0, to the ring

Cr[LY?] = MY (1 - L)™' i > 1],
in such a way that Sym,,(L+"2a) = L+™/2Sym,, (a). Here LL'/? corresponds to the negative

square root in loc. cit.

2.5.2. Order function and absolute values. Let X be a k[[t]]-scheme and Z < X a closed
subscheme with ideal sheaf Z. For any x € X (k[[t]]) we define the order ordz(z) of x along

Z as
if %7 = d
ordz(z) = d 1 v (t°)
oo if 2*7 = (0).
Notice that ordz(x) = oo if and only if z € Z(k[[t]]). If X is affine and Z generated by
21,2k X = Al then ordz(z) = min;<;<p{ord;z;(z)}.
There is a unique way of extending ordz to a function

ordz : X(K[[t]]) = | X (*[[t""]) — Qu {oo}.

Given a subscheme Y < X and y € Y(k[[t]]) we will use that

ordzny(y) = ordz(y),

where on the right we consider y as an k[[t]]-point of X.
Finally, given a regular map f : X — A! or a subscheme Z < X we write |f| and | Z|
for the maps X (k[[t]]) — M} defined by

(22) €T — ]Lfordt(f(:v)) and z — Lfordz(:p).

When working with k[[t'/"]]-points for some n > 1 we will write | - |, to indicate that
we compute the absolute value with respect to the uniformizer /.

2.5.3. Cluckers-Loeser integration. We use the integration theory developed in [10]. As
in [10, 16.2] and in the notation of [30] we consider the category Def,. of definable
subassignments in the Denef-Pas language restricted to the theory of algebraically closed
fields.

Concretely, an object h € Def, is given by an assignment
K — h(K)ck((t)" x k™ xZ,

where K runs through all algebraically closed fields containing k, m,n,r = 0 and h(K) is
cut out by a formula in the Denef-Pas language over k. In particular any affine finite type
scheme X < A" over k((t)) defines an element in Def,. j, which we still denote by X, by
means of
K X(K((t) c K((t))" x K x Z°.
Similarly, for an affine finite type scheme X' < A" over k[[t]] we still write X for the
assignment

K — X(K][t]])-
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Finally, we will sometimes consider the assignments X,,, X, given by K +— X (K ((t'/")))
or K v X(K[[t'"]]) for some integer n > 1. Notice that these are simply the assignments
associated to the Weil restrictions of X x ) k((¢"/")) and X x g k[[¢/"]] along k((t)) —
E((tY/™)) and k[[t]] — k[[t"/"]] respectively.

These constructions can be globalized to obtain a category GDef, ; consisting of defin-
able subassignments of algebraic varieties.

To any S € Def,.¢ ) one can associate a ring of constructible motivic functions C(95) in
such a way that for the terminal object #, € Def,.; ) we have

C(*k) = Ck = Ko(Vark)[ILfl, (1 — Li)il 11 = 1]

Typical examples of constructible motivic functions are the maps in .

The content of [10] is an integration formalism for constructible motivic functions with
respect to definable volume forms satisfying in particular a change of variables formula and
a Fubini theorem.

The forms one integrates in this theory are definable forms |w| as defined in [10, Section
8.2]. On a definable subassignment associated with a k((t))-variety X any top-dimensional
form w on the smooth locus X*™ of X defines a definable form |w| and we have an identi-
fication |w| = |o'| if w = fw’ for some f: X*™ — Al with |f| = 1.

The definable forms in this paper will thus typically be constructed as follows. Given
X/k((t)), an open cover X*™ = | J, U; of its smooth locus and forms w; on U; such than on
U; nU; we have w; = f;;w; for a function f;; satisfying |f;;| = 1, then the U; glue together
to a definable form on X.

Given a function f € C(X), integrable with respect to a definable form |w|, one obtains
a class

L flwl € Cp.

In the following if we write §, flw| = a we mean f is integrable with respect to |w| and

flw| = a.
SXOne way to compute motivic integrals is by means of Néron smoothenings. Given
X /k[[t]] separated, flat and of finite type with smooth generic fiber, there exists a smooth
finite type k[[t]]-scheme X and a Ek[[t]]-morphism Y — X, which is generically an isomor-
phism and for every extension K /k induces a bijection Y(K|[t]]) = X (K[[t]]) [5, Theorem
3.1.3]. For any volume form w on Ay one then has [IT, Proposition 12.6]

(2.3) L W] = L-dm¥  §Y portewc]

CEﬂo(Xk)

2.5.4. Motivic Igusa Zeta functions. Consider a non-constant polynomial map f : A™ —
Al over k with f(0) = 0. The (local) n-th restricted contact locus of f is defined as

(2.4) Xin = Az e A"(K[t)A" )0 | fz) =t" € k[t]/t"1},
where A™(k[t]/t""!)o denotes the locus of jets reducing to 0 modulo ¢.
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The motivic Igusa zeta function of f is defined as the generating series

(2.5) Zy(T) = Y [X9, LT € M[[T]]-
n=1
In fact, using an embedded resolution of singularities one can show that Z;(T") € Cyx(T)
[16]. There is an additional p,-action on each X9, but we will ignore it in this paper.
Our goal is to give an expression for the plethystic exponential Exp(Z;(T")) € Ci[[T]].
For this we’ll need a slightly different way of writing the Igusa zeta function following [33].
Let w,,, = dxq A~ --Adx,, be the standard form on A™ and consider the relative m—1-form
Wp/df on the smooth locus of f.

Next consider the k[[t]]-scheme X} obtained as the pullback of A™ I, A under the
completion morphism Spec(k[[t]]) — Spec(k[t]), explicitly

Xy = Spec(k[[t]][z1, ..., xm]/f —1).

Then w,,/df induces a volume form w; on the generic fiber of X called the Gelfand-Leray
form.
For any n > 1 we write X }),n for the definable subassignment whose K-points are given

by {z € Xp(K[[tY"]]) | zx = 0}.

Lemma 2.6. [33, Lemma 9.9] For any n = 1 we have

|| ot = Lo ec.
X9, '

The proof of Lemma |2.6| uses an embedded resolution of singularities f to compute both
sides independently. Technically a different integration theory is used in loc. cit., but the
same argument can be applied in the Cluckers-Loeser theory using ([2.3).

3. ARCS AND GELFAND FORMS ON HILBERT SCHEMES

Let f € k[X,Y] be reduced and nonconstant with an isolated singularity at 0. We write
C = {f = 0} < A? for the associated curve. Consider the relative curve X;/k[[t]] as in
Section [2.5.4] and the relative Hilbert-Chow morphism

h : Hilb,(X;) — Sym,, (X}).

Since the generic fiber of Xy is smooth, A ) is an isomorphism. Furthermore h is proper
and thus we have for every K/k and every K|[[t]]-point of Sym,(X}) a unique lift to a
K[[t]]-point of Hilb, (X}), in other words the definable subassignments associated with
Sym,, (Xf) and Hilb, (X)) are isomorphic.

Recall that Hilb! (f) < Hilb,,(f) denotes the 1-generator locus. We further write Hilb} (f)o =
Hilb} (f) nh~(n[0]) for the closed subscheme of ideals supported at the origin. As a direct
consequence of Lemma [2.4] we have

Corollary 3.1. For any K/k and any x € Hilb, (X})(K[[t]]) such that (h.x)x = n[0] €
Sym,, (C) we have x);, € Hilb},(f)o.
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Next we use Corollary to construct a definable volume form on Symn(?(})), the
definable subassignment given by

K = {z e Sym, (Xp)(K[[t]]) | zx = n[0]}.
First, by Corollary [3.1] we have an isomorphism of Sym,, (X7) with Hilb, (X}) defined by
K — {z € Hilb,(Xp)(K[[t]]) | z/x € Hﬂb;(())o}.

Next recall the open covering Hilb,(A%) = | J,_, U from Section . Since Hilb, (X})
Hilb,,(A%) we obtain an open covering of Hilb, (X;) by setting Uf,/\ = U,\ n Hilb, (Xf). By
Lemma [2.2) we can also describe Uy, as

Uf,,\ = {f)[\n] = O} c U)\.

Now since Hilb (A?) is algebraic symplectic there exists in particular a global non-vanishing
top-form w!™. We define the Gelfand form wi on the smooth locus Ui < Uy as

gel _w /f/\ v,

where v = dy; A -+ A dy, is the standard form on A",

gel

Proposition 3.2. The definable forms |w{”| glue together to a give a non-vanishing de-

finable form |wge'| on Sym,, (X}) = Hilb, (X7)

Proof. For any two partitions A\, u — n the two forms wid,wgel differ by an invertible
function uy, on Uy n U, By combining Lemma and Corollary we see that for
any K /k, any 2 € Hilb, (X7)(K[[t]]) factors through the smooth locus of Hilb,(X;) and
thus |uy,(x)| = 1 which implies the proposition. O

Theorem 3.3. For any n = 1 we have
| et = Lo )
Sym,, X f

Proof. Since Sym,,(X7) = Hilb,, (X}) this follows from (2.3)). O
We also record the following for later.

Lemma 3.4. Let 7 € U\(K|[[t]]) and (z,y) € (A*)*(K((t))) a preimage of supp(Zjx(ty) €
Sym,, (A?)(K((t))) under the Hilbert-Chow morphism. Then

ordi(Ax(z,y)) < ord¢(An(z,y)),
for all M < N? with |M| = n.

Proof. This follows since on U, the fraction Ay;/A) defines a regular function[26, Propo-
sition 2.6.], thus Ay (x,y)/Ax(z,y) € K[[t]] O
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3.5. The motivic Poincaré series. In this subsection we assume k = C. Consider the

generating series
P =X [ iz e CellT1)
’I’L>U Sym

The motivic Poincaré series of [§] is deﬁned as follows when m = 2. If the germ (C,0)
defined by f contains r branches, we can define a multi-index filtration on k[[z,y]] by

setting

Jo = {g € K[[z, y]]lvi(g) = vi}
where v = (vq,...,v,) € Z" and v;(g ) is the order of the pullback of f to the normalization
of the i-th branch of C. Let h( ) = codimypz 7/ and write

L@ _ 1, ~h(x+l)
Ly(ty, ...t L7 = ) —

VEZL"

By [8] one can define the motivic Poincaré series of f as
Li(ty, .. LY (-1
Pty ...t L) = AGE )it —1)
tot, — 1

In particular, when r = 1 and the curve is unibranch, we have L;(t,L 1) = P;(¢t,L!).
Our interest in the motivic Poincaré series is encapsulated in

Proposition 3.6. For a unibranch plane curve singularity (f,0) we have
Pe(t=T,L7" 2 L"[Hilb. (f)o]T" = Py(T)

Proof. As explained in [21], Section 3], the coefficient of ¢ in P;(¢,L.™!) is given by
(3.1) (L) = LMD [PH (v))],

where [PH'(v)] is the motive of the projectivization of the hyperplane arrangement H'(v)
defined by

H'(v) =

v+1\{0}

Next, note that any nonzero function not proportional to f gives a finite codimension
ideal in O¢ = k[[z,y]]/f. Note that these are exactly the functions with finite valuation
reg

on C. We call them regular elements and denote the set of them by Og. For g € O we
have by [35, Proposition 6]

(3.2) dim Oc/(g) = v(9),

and there is a map Op? — || Hilb}(f)o sending g — I = (g). The only ambiguity in
defining this principal ideal is multiplication by invertible functions in Oy, which gives
that there is a bijection (J,\J,11)/O% — Hilb}(f)o.

In particular we see that Hilb](f)o is empty if and only if J, is, and if they are both
non-empty Hilb} (f)o can be identified with g + J,,1/1 + mg, where mg = O¢ denotes the
maximal ideal and g is any element in J,\J, 1.
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Now write I' € N for semi-group of O and H = N\T for its complement. As in [35]
Lemma 25] we can eliminate coefficients iteratively to get that g + J,41/1 + m¢ is an affine
space whose dimension is given by |(v + H) n I'|. There is a bijection

(v+H)nT S {he H|h<uv},

given by sending v + h to h — kv with k such that 0 < h — kv < v. The proof now follows
from the observation that [{he H | h <v}| =v+1—h(v+ 1). O

Remark 3.7. If (f,0) has r > 1 branches we expect the equality
Pity=ty=---=t, = 2 L"[Hilb. (f)o]T™ = P (T).

3.8. The Euler characteristic specialization. In this subsection we assume k = C.
Consider the generating series

P = Y | i7" eI

n>0+Sym, X

By Theorem we have Py (T) = Zn>0 L~"[Hilb},(f)o]T™ and thus P,(T) lies in
the image of Mc|[|T']] — Cc[[T]]. In particular, we may consider its Euler-characteristic
specialization

Poet(T) = D x(Hilby, (£)o)T™.
nz=0

If L denotes the link defined by the plane curve singularity (f,0) and A,(T) e 1 + TZ|T]
the normalized Alexander polynomial, it follows from [35, Section 3] that

AL(T)
1-T

On the other hand, since |w9| is non-vanishing and the generic fiber of X }) is smooth, the

P gel,x (T) =

Euler-characteristic specialization of Ss wd| equals the Euler-characteristic special-

ymnXJ? |
ization of the motivic Serre invariant of Sym, X7 [33, Section 6.1]. Using this, we deduce
from the trace formula [33, Theorem 5.4]

X <~Lym |wzel|> = TT(¢7 HE(Symn(XJ?)7 @Z)) = Z(—l)ZTT(gb, H;B(Symn(_)(}))’ Q€)7

i0
where Hp(Sym, (X7),Q,) denotes the Berkovich étale cohomology of the rigid analytic
space associated to Sym,,(X7) and ¢ is the topological generator of Gal(C((t))) = i given
by Y7 v exp(27i/n)t"/".

Lemma 3.9. We have
Hp(Sym, (X7),Q0)) = (H5 (X7, Qo)®")",

as graded fi-modules.
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Proof. Instead of working directly with Berkovich étale cohomology we use the comparison
with (-adic nearby cycles [4, Corollary 3.5] implying
HE(Symn(X]?), @E,Symn(xf)) ~ H* (R¢n (QZ,Symn(Xf)))\n[O])7
HE(XP, Qux,) = H* (R (Qux, )po)-

Here we wrote Qg sym, (x,;) and Qg x, for the constant sheaves on (the generic fibers of)
Sym,, (Xf) and Xy. Therefor it suffices to show that we have a quasi-isomorphism

Ry (Qusym, (x)) = (s 6" Ry (Qp )"

in DY(Sym,,(Xf)x), where [] denotes the exterior product on X7. Notice that taking S,-
invariants can be defined via a projector as for example in [31] and thus R, commutes
with taking S,-invariants. Furthermore R, commutes with proper pushforward [15, XIII
2.1.7] and exterior products [3, Lemma 5.1.1]. The lemma thus follows from the identity
@Z,Symn()(f) = (7T* xI" @Z,Xf)sn- U

Combining Lemma with Lemma below we deduce
3 Tr(¢", H*(xg,@g))Tn>
nz=1

n

P (T) = exp (

Finally choosing an embedding Q, ¢ C, we deduce from [33, Theorem 9.2] the equality

. - <Z Tr(czS",H;(XJ?,@e))Tn) _¢olD),

where (70(7) denotes the monodromy zeta function of the Milnor fiber of f at 0. Putting
all of this together we find

Corollary 3.10. For any reduced plance curve singularity (f,0) with link L we have

Cf,o(T) = ?L_(?

Corollary is originally due to Milnor 32, Lemma 10.1].

Remark 3.11. In [23] the authors consider the series P, , (1) as the Poincaré series of the
ring of functions on (f,0). Our proof of Corollary can be seen as an answer to their
question, whether there is a direct link between the Poincaré series and the monodromy
zeta function. [23| Section 1].

Lemma 3.12. Let k be a field of characteristic 0, V* a finite dimensional Z-graded k-vector
space and ¢* an endomorphism of V* preserving the grading. Then

nx=1 nz=0 €L

exp (Z TT((¢2 * ) Z T?” V @n Sn Hdet (ﬁlT ( 1)2+17

where for a graded endomorphism * of a finite dimensional graded k-vector space W* we

wrote Tr(y*, W*) = 3. (=1)"Tr(", W").
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Proof. When there is no grading and ¢ is diagonalizable with eigenvalues Ay, ..., \,,, we
have
Pr(Ats -5 Am) ool 1
exp ™ | = (A, oo A) T = =
(; n n;o H 1=XNT  det(1—¢T)

The general ungraded case can be deduced from the Zariski density of diagonalizable .
To upgrade to the graded case, we simply note the well-known identities

pn(_/\h ER) _Am) = (_]-)npn(Ah EIR) )‘m)7
(=1, ooy =Am) = (=1)"en (A1, ..., Am),
Dlen(h )T =] [+ N,
n=0 i=1
and apply these for the odd graded pieces. O

4. THE ORBIFOLD MEASURE ON SYMMETRIC POWERS

Let X' /k[[t]] be separated, flat and of finite type with smooth d-dimensional generic fiber.
Furthermore let 0 € X, be a point in the special fiber of X and define Sym, (X°) as the
definable subassignment whose K points are given by {x € Sym,, (X)(K][[t]]) | zx = n[0]}
as before.

Let p; : X™ — X denote the projection onto the i-th coordinate. Given an algebraic
d-form w on X)), consider the dn-form w,, = pfw A -+ A prw on X,?((t)). For any o € 5,
we have 0*w, = sgn(o)%w,. Thus w, does not descend to a form on Sym, X)) unless d
is even.

Instead of w, we thus consider its tensor-square w®? € H° (Xl?((t))’ (Q%L((t))/k((t)))@)'
This form now descends to the orbifold form wey, on Sym, Xy () and for any choice of
square root LY? of L we obtain, assuming integrability, a well-defined class

f wors| 12 € CiILY2].
Sym,, X0

Proposition 4.1. Assume that |w|, is integrable on X for each n = 1. Then we have

|worb|1/2= L™ Sym,,_ J lwli |,
LymnXO A Z :zl;!: ' Xio

=(191,292 ... )}-n

where v(A) = 2%, a;(i — 1).

Proof. Since everything depends only on a neighborhood of 0 we may assume that X is
affine. Let us assume first that 0 € X is a smooth point of X' /k[[t]]. Then the completed
local ring @X,O is isomorphic to k[[t]][[z1,...,z4]]. Since w is generically non-vanishing
we may write w = Adxy A -+ A dxg in these local coordinates for some A € k[[t]]. Then
|wors| 2 = [A\*|(dzy A -+ A dg)om|? and also |w|; = [A['|dzy A -+ A dzg| on &L, Thus
after multiplying by |A\|™™ on both sides we may assume that w = dzy A - -+ A dzg. In this
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case the proposition reduces to the orbifold formula for S, acting on (A%)" as it is proven
for example in [I8, Theorem 3.6]. In the notation of loc. cit we have

J |Worb|1/2 = Z ]L—w(o)7
Sym,, (A™)0 .
Yy [c]eConj(Sn)

where Conj(S,,) denotes conjugacy classes in S,, and the weight w(c) is defined as follows:
Let r denote the order of o and ¢ a primitive r-th root of unity. Then there are unique
integers 1 < e,; < r for 1 <4 < dn such that % are the eigenvalues for the action of o
on (A", If o has cycle-type given by the partition A\ = (191,292 ...) then one gets the
the formula

w(a)=§2az(z+1 = —i—dZaz

7

Since in this case Sym,,, (S 20 |w|z> = Sym, L™ = L™% the statement follows.

If 0 € X is not a smooth point, we may choose by [33, Proposition 2.5] a resolution
of singularities, that is a regular, flat k[[t]]-variety J with YV} = >, N;E; a strict normal
crossing divisor, and a proper birational morphism 7: Y — X which is an isomorphism
on generic fibers. Regularity implies that for any K/k, any K[[t]]-point of ) factors
through the smooth locus of ) [5, Proposition 3.2]. By [33, Lemma 4.3, Theorem 4.5] we
may further assume that the same holds true for K[[t'/]]-points for all 1 < i < n. The
proposition thus reduces to the smooth case proven above. [l

If we apply this to XJQ and wy with f: A™ — Al as in Section we get the following
interpretation of the plethystic exponential of the motivic Igusa zeta function:

Theorem 4.2.

x).

n=0 Sym,, XO

lwors| V2T = Exp (IL: = 2L ’3T)).

Proof. Combining Proposition 4.1} and Theorem [2.6] we get

J |w0rb|1/2 _ Z L™ nsym J |Wf|i
Sym,, X’ f =1 fz

>‘=(1a1 72a2 [ )'_

_ Z v(/\ nsym ( —(i+1)(m— 1)[Xf, ]) ‘

A=(191,292 .. )}bn =1

Thus for the generating series we get
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Z J |worb|1/2T” = Z L~ "t Yai(i-1) n Sym,, (L*(ijtl)(mfl)[X?’i]) 7Y
n=0 Sym X}) )\:(10.172(127“.) i>1
w ia
11 (2 Sym, (L [Xfl]) T )
=1 \a=0
~ (m—1)(3i+1) 1)(31+1) i
=1

— Exp (]Lm21 ML) (]Lm23T)’> — Exp (L*”T”Zf(L*mT’ST)) .

121

U

Remark 4.3. If we take f € k[z,y, z], then the generic fiber of X} is a smooth surface
and h : Hilb, (Xfk(w))) — Sym, (X)) is a crepant resolution. Thus by the change of
variables formula

> J |h*wor|/*T™ = Exp (L7 Z4(T)) .
1150 JHilbn(

XJQ)

It would be interesting to see, if the left hand side admits a description in term of the
Hilbert scheme of the surface singularity f = 0 similar to Theorem [3.3]

4.4. Relation to the Gelfand form. Let f € k[X,Y] be an isolated plane curve singu-
larity as in Section . In this section we give a precise relation relation between |w,,| and
|wg!| on Sym,, X7.
For this consider the discriminant subscheme A < (A2)" given by
A= U{Zﬂz = zj,Yi = Y;}-
i#]
It follows from the results of Haiman, see e.g. [24], that the ideal J defining A equals the

ideal generated by the diagonally alternating polynomials on Xy,..., X,,,Y;,....,Y, and is
generated by the functions {Ay} - introduced in Section Furthermore the image

A < Sym, (A2) of A has defining ideal J A k[X1,Y1,..., Xy, Y,]5 which has generators
VA YPANYA T} VI T

We write ﬁf and Ay for the intersection with X7 < (A*)" and Sym,,(X;) < Sym,,(A?)
respectively.

Proposition 4.5. For any n = 1 we have

LfordAf/2|wo |1/2 |wgel|
on SymnXJ?.

Proof. The proof goes by comparing the underlying algebraic forms defining both sides
when pulled back under 7 : X7 — Sym,,(X). For the left hand side recall that 7*w,, =
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(piws A - A prwr)®? by definition. Furthermore for any = € Sym, X7 (K[[t]]) and any lift
T € X7 (K[[t]]) we have orda,(z) = orda(x) = 20rdx(Z) since the generators of the ideal

of A are the pairwise products of the generators of the ideal defining A.
For the right hand side recall that we have an open cover J,,_,, Uy = Hilb, (&) and

|w9!| is glued together from the absolute values of the forms wi® = wl™l/ f/{"]*u on Us7.
Let X} = X\{0} denote the smooth locus of Xy. Then Sym,,(X}) = Hilb,,(X}) and we can

think of U}, = U n Hilb,(&}) as an open in Sym,,(Xy) and hence compute W*Wirlljb‘
First since Hilb,(A?) — Sym, (A2) is crepant, it follows that wl™ pulls back to the

standard form dxy A dy; A -+ A dy, on (A%)". In order to compute w*f/{”]*u we use that

by @.1)

f(901,yl)

(Ao m)(@,y) = By (z,y) f(%.’yQ)

f (xn., Yn)

Thus 7w = ﬂ*w["]/w*f)[\n]*u can be written as

W*wf’\el = (Ax(z,y) + tay(z,y) + Pas(z,y) + ... IPTws Ao A prwy,

with a; € K|z, y|. Since W*wf\el is Sp-invariant, all the a;(x,y) are alternating.

Now given any z € Sym, X7 (K[[t]]) = Hilb,(X?)(K[[t]]) there exists a A - n such
that © € Up\(K|[t]]). Let (z,y) € (A%)"(K((t))) be such that m(x,y) = zx(r). Then

from Lemma and the fact that the ideal J defining A is generated by the functions
{Anr}p—n we finally get

|A)\(*T7 y) + tOél(ilf,y) + t2a2('x7 y) +... | = |A,\(5U>Z/)| = L*Ordg(w,y),
which finishes the proof. O
The motivic version of Igusa’s monodromy conjecture [16] relates the poles of Z;(T') to

the roots of (;o(T). Hence it might be interesting to relate the integrals of |wy,s| and |[wd|
on Sym,, X }). Proposition gives a way of doing so by considering the series

Q) =X [ A el T
n=0 SymnXJQ

for some formal parameter s. In Section [6] below we discuss a few examples showing that
the computation of Q¢(s,T) seems to be an interesting challenge.

5. RELATION TO FLOER THEORIES

5.1. Fixed point Floer homology. Let f € C[X,Y] and f~'(0) = C < AZ the plane
curve it defines. Denote the Milnor fiber f~!(e) N Bsg of f by X and let ¢ : ¥ — 3 be
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the symplectomorphism given by the monodromy of the Milnor fibration. The fixed point
Floer homology of ¢" : ¥ — ¥ for n > 1 is a graded Z/2-vector space

HF, (", +)

associated to " : X — 3, only depending on the embedded contact type of the link L of
f. For the definition, see [13, 6.2.5.]. In this case we have

Theorem 5.2. [14, Theorem 1.1.] There is an isomorphism of graded vector spaces
HF*(90n7 +) = Hc*+2n+1(X;‘),n)
where X7, is the m-th restricted contact locus as before.

The theorem is expected to hold for any hypersurface [6]. A fortiori, this implies an
equality of Buler characteristics x(H Fy(¢", +) = —x(X},,).

5.3. Knot Floer homology. We consider another Floer-theoretic invariant of the link L
defined by f. It is the minus version of the knot Floer homology of L, defined in [36] for
7,/27-coeflicients and in [37] for Z-coefficients.

If L is a link with r components, the knot(/link) Floer homology is a Z"*!-graded Z[U]-
module

HFL™(L,5%) = & HFL;(L,S%v)
VEZL" dEZ

where U is an operator which decreases the Maslov/homological grading by 2 and the
Alexander grading by 1. We will drop S® from the notation, as it is always the ambient
3-manifold for us. Taking the FEuler characteristic in the Alexander grading, one has

Z Y(HF L™ (L,v))t’ = {A(th"'atr), ifr>1

A1) e
= — ifr=1

-t
It follows from [21], Corollary 1.6] and Proposition [3.6| that we have the following.

Corollary 5.4. For a unibranch plane curve singularity (f,0) with assiciated knot K we
have the equality
Pya(T) = . dim HF Ly (K, v)L¢ 2",
v,deZ

where h(v) = codimyg, ,)1Jy as in Section 3.

Remark 5.5. (i) In light of Remark we also expect Corollary to extend to
multibranch curve singularities.

(ii) Recall that [21, Corollary 1.5.3.] is proved by relating both sides to the lattice
homology of isolated singularities defined by Némethi. Thanks to the integral
version of knot Floer homology in [37] the coefficient issue in [21I, Remark 2.1.2]
can be avoided.



DISCRIMINANTS AND MOTIVIC INTEGRATION 19

Symplectic

Algbraic l@ l[14J

s=1/2

Bxp (L32,(L3T)) 22 [x7,]

exponential

FIGURE 1

5.6. Questions and speculations. In [20] Ghiggini and Spano show that for fibered
knots HFL(K,1 — g) = HF,(¢,1) and more generally conjecture that

HFL(K,i) =~ PFH; (T,

where H/F\L(—) denotes the hat version of knot Floer homology, HF,(¢,#) is an ”inter-
mediate” variant of fixed point Floer homology, and PF H (T, ) denotes a certain version
of the periodic Floer homology of (the mapping torus of) ¢. We refer to loc. cit. for the
precise definitions, but remark that multisets of fixed points give generators of the periodic
Floer complex and more generally the theme of realizing Heegaard-Floer theory in terms
of Fukaya categories of symmetric powers has been a recurring theme in the Floer theory
literature, see for example [2]. It thus seems possible to expect a relation of the form

(5.1) ”Exponential of fixed point Floer homologies of the iterates of ¢” = HF L (K).

Combining Corollary with [14, Theorem 1.1.] this leads to the following natural
question which can be phrased in purely algebraic terms.

Question 5.7. Is there an exponential-type relation between HF (X})’n) and the cohomology
or motives of Hilb! (f)?

Let us also mention that Rossinelli [39] has shown a relation between curvilinear Hilbert
schemes and motivic classes of certain open subvarieties in X7, but we don’t see a direct
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connection with Question at the moment. We summarize the relations between the
various invariants discussed above in Figure

6. COMPUTATIONS AND EXAMPLES

In this section we discuss the generating series Q (7)) in the case of the smooth curve
f = x and of the simplest non-trivial singularity f = xy.

6.1. Smooth curve. The Hilbert scheme Hilb,(f) of the smooth line f(z,y) = x is an
affine space A" = Sym,, (A') = Hilb) (f) that can be identified with the space of monic
polynomials of degree n, y™ + .. a;y". Thus the discriminant A; agrees with the classical
discriminant Disc,. Moreover, since Hilb,(f) is smooth we have |w9| = |dag A --+ A
da,_1| and the function Qs(s,T) is a generating function for the Igusa zeta functions of
discriminants:

Qs(s,T) = Z L(s)T", I,(s) = f IDisc, |*"2|dag . . . da,_1|.
n=0 Ag

For small values of n the corresponding Igusa zeta function can be computed. For n = 1

the discriminant is constant and I;(s) = L™!. For n = 2 the discriminant is a; —4a3. Thus

after the change of variables a; = a; — 4aZ, @y = ay we obtain:

Ls—5/2

]—2(8) _ J2 |d1|371/2|d&0dd1| = (L— 1)—LS+1/2 — 1

A0
Since the discriminant of a cubic polynomial 2® + px + ¢ is equal to —4p® — 27¢? the
computation of the integral reduces to the computation of the Igusa zeta function for the

cusp singularity. This computation can be found in many places, for example in chapter
1, §3 of [9]:

L-1 1 . X2 L-1

Ls)= | -+ X+ + XL

3(8) = Xepr—1 (]L,? MRS TR 15 g I )

The computation of the integral I,(s) is equivalent to the computation of the Igusa zeta

function for the swallow-tail singularity and we postpone the discussion for the forthcoming

paper where we use Fulton-MacPherson space formalism to compute the integrals 7,,. On

other hand we check the properties of the function Q¢(s,T") with the above computations.

Indeed, since [Hilb,,(f)o] = 1 we obtain Py(T) = >,.,(T/L)". As check of formula

(1.2) one can verify that I,(1/2) = L™. To discuss the second part of the formula (|1.2))

we need to compute the Igusa zeta function for f, which is by definition (2.5) given by
Zi(T) = 3,5, (T/L)". Thus the formula (1.2) states that

[Ta—-1m=""" =1+ L)1

nx=1 nz=1

) ’ Lsfl/Q - X.

The first four terms of the T-expansion are consistent with the above computations.
For example the terms in front of 72 are L=2 + L=%2 and the terms in front of 7° are
L3 4+L5%24+L2
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6.2. Nodal singularity. The Hilbert scheme Hilb,,(f)o in this case is known to be a chain
of projective lines. Indeed, to describe Hilb,(f)o we need to classify codimension n ideals
in the local ring of this singularity which is equal to k@ x - k[[z]] Dy - k[[y]] as a k-vector
space with xy = 0 as the main defining relation. In details, the ideals of codimension
n are union of n — 1 projective lines Pt = {(apz® + By %, %1, 4" * )Y oy, B # O,
k=1,...,n—1. The points ideal for g, = 0 is equal to the ideal for a;_; = 0 and a; = 0
is equal to the ideal for B, = 0.

From the above description we see that the one generator locus Hilb}. () inside Hilb, (f)o
is the union of G,,, © ]P’}C defined by the condition a8 # 0. Thus we have computed the
Pgel (T)

e}
Pp(T) =1+ (L—1) > (n— DL™"T" = 1+ T*/(L - T)*.
n=2
The Igusa zeta function can be computed by elementary means as well, since [X})m] =
(n —1)(L — 1)L"2

Z;(T) = Y [X9,JL7"T" = (L — HL™°T?/(1 — TL™')*.
nz=1
The function Q(s,T’) interpolates between the functions P, (7") and Z;(T) as we state
in (1.2)). In a forthcoming manuscript, we provide and argument similar to Proposition
that yields a formula for the function Q(s,T):

s 171 = Lo | At T ot
J\Symn(xf) Z HL Symai (XO) n

A=(191,292 ... )}n i 121
For n < 3 the integrals can be computed by elementary means: for n = 1 the integral
vanishes. For n = 2, only the term with A = (2) appears with v()\) = 1/2. The locus X7,
consist of the pairs x,y € t'/2k[[t'/?]] such that zy = t. Hence |Af| is constant along X7,
and equal L. Thus combining this observation with the Lemma 2.6/ and [X},] = [{z,y €
k[t]/t3 |z, y = t* € k[t]/t*}] = (L — 1)L? we obtain:

(@) J A wslz = LY2L75(L — 1)L,
XO
12

Similarly, for n = 3 the only non-trivial term in the formula is the term with A = (3).
Respectively, v((3)) = 1 and the space A7, consists of two connected components {z =
tEQ(t),y = Y F)} and {o = t*Pp(t?), y =ty (')} with ¢, ¢ € k[[¢'°]] with
¢y = 1. Hence |A;| is constant along the both components and it is equal L?. We can
again use Lemma [2.6/and [X?},] = 2(IL — 1)L? to complete the computation:

]L—”<<3>>f |Af|*lwsle = 2L L7 (L — 1)L
X0
f,3

Thus we can write the start of T-expansion of the function Q(s,T):

Qs(s,T) =1+ (L — 1)(L™5%272 4 2L=25727%) 4 ...



22

OSCAR KIVINEN, ALEXEI OBLOMKOV, AND DIMITRI WYSS

If we substitute s = 1/2 into the expansion then we obtain the first four terms of the
series Py (7). On the other hand the substitution s = 0 yields the first four terms of the
expansion of

Exp(L™Y2Z;(LY?T)) = Exp((L — 1)(L~**T? + L72T%) + ...)

[1]

_ (1 o TZ)—L—3/2(L—1)(1 o T3)—2L—2(1L—1) .
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