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Abstract. We study invariants of a plane cuve singularity pf, 0q coming from motivic
integration on symmetric powers of a formal deformation of f . We show that a natural
discriminant integral recovers the motivic classes of the principal Hilbert schemes of points
on f , while the orbifold integral gives the plethystic exponential of the motivic Igusa zeta
function of f . The latter result also holds in higher dimemsions.

Combined with results of Gorsky and Némethi we obtain an interpretation of the dis-
criminant integrals in terms of knot Floer homology, which is reminiscent of the relation
between the cohomology of contact loci and fixed point Floer homology proven by de la
Bodega and Poza.

1. Introduction

Consider a nonconstant polynomial map f : Am Ñ A1 over k � C defining an isolated
hypersurface singularity at 0 P Am. A fundamental invariant of pf, 0q is its Milnor fiber F0,
a compact smooth manifold with boundary depending only on the singularity at 0 [32]. Its
singular cohomology H�pF0,Qq admits a monodromy endomorphism M , whose zeta func-

tion ζf,0pT q �
±

i¥i detp1 � TM | H ipF0,Qqqp�1qi�1
can be computed purely algebraically

by a remarkable result of Denef and Loeser [17]:
For any n ¥ 1 let X0

f,n denote the n-th restricted contact locus of f . It is defined as

X0
f,n � tx P Ampkrrtss{tn�1q0 | fpxq � tn P krrtss{tn�1u,

where Ampkrrtss{tn�1q0 denotes the locus of n-jets reducing to 0 modulo t. Then the Euler
characteristics χpX0

f,nq determine ζf,0pT q via the formula

(1.1) ζf,0pT q � exp

�¸
n¥1

χpX0
f,nq

n
T n

�
.

While the original proof of (1.1) proceeds by computing both sides independently on an
embedded resolution of f , there exists now a more conceptual interpretation [33, 27] as a
Lefschetz fixed point formula on the analytic Milnor fiber. In a similar spirit, the goal of
this paper is to study refinements of (1.1) coming from motivic integration.

Concretely, consider the krrtss-scheme

Xf � Specpkrrtssrx1, . . . , xms{f � tq,

and associated with it for any n ¥ 0 the relative symmetric power SymnXf � Xf �krrtss

� � ��krrtssXf{Sn. In a nutshell our paper studies motivic classes in the localized Grothendieck
1



2 OSCAR KIVINEN, ALEXEI OBLOMKOV, AND DIMITRI WYSS

ring Ck � K0pV arkqrL�1, p1�Liq�1 : i ¥ 1s coming from Cluckers-Loeser motivic integrals
[10] on

SymnX 0
f pkrrtssq � tx P SymnpXf qpkrrtssq | xk � nr0su.

Our first main result is in the case m � 2, i.e. when pf, 0q defines an isolated plane
curve singularity, and is partially motivated by the second author’s work on the relation
between Hilbert schemes and knot invariants [35, 34]. Namely, since Xf |kpptqq is a smooth
curve, the generic fiber of SymnXf admits another model over Specpkrrtssq given by the
relative Hilbert scheme of points HilbnpXf q.

The special fiber HilbnpXf qk is the classical Hilbert scheme Hilbnpfq of length n sub-
schemes on the singular curve f � 0 and we write Hilb1

npfq0 � Hilbnpfq for the locally
closed subscheme parametrizing principal subschemes supported at 0.

Theorem 1.1 (3.3). For any n ¥ 1 there exists a generically non-vanishing definable
volume form |ωgel

n | on SymnX 0
f such that»

SymnX 0
f

|ωgel
n | � L�nrHilb1

npfq0s P Ck.

By Proposition 3.6, the generating series

PgelpT q �
¸
n¥0

»
SymnX 0

f

|ωgel
n |T n,

can be identified with the one-variable motivic Poincaré series of Campillo, Delgado and
Gusein-Zade [7, 8].

Since |ωgel
n | is generically non-vanishing, one can compute the Euler characteristic spe-

cialization of PgelpT q by the trace formula for motivic Serre invariants, recovering an old
result of Milnor [32, Lemma 10.1]:

Corollary 1.2 (3.10). For any reduced plane curve singularity pf, 0q with link L we have

ζf,0pT q �
ALpT q

1� T
,

where ALpT q denotes the normalized Alexander polynomial of the link.

If pf, 0q is unibranch, we obtain a second corollary, by combining Theorem 1.1 with
results of Gorsky and Némethi [21] to obtain an interpretation of the motivic integrals³
SymnX 0

f
|ωgel

n | in terms of the knot Floer homology HFL�pK, vq of the knot K defined by

the plane curve singularity pf, 0q [36, 37].

Corollary 1.3 (5.4). For a unibranch plane curve singularity pf, 0q with assiciated knot
K we have the equality

PgelpT q �
¸
v,dPZ

dimHFL�d pK, vqL
d�2hpvqT v,

where hpvq � codimkrrx,yssJv as in Section 3.5.
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It seems tempting to try to relate Corollary 1.3 to the arc-Floer conjecture of Budur-de
Bobadilla-Lê-Nguyen [6], now a theorem for plane curve singularities [14], predicting an
isomorphism between the compactly supported cohomology of the contact loci X0

f,n and
the fixed point Floer homology of the n-th iterate of the monodromy of F0. Although we
do not know any direct relation between PgelpT q and the geometry of the spaces X0

f,n at

the moment, our second main result shows that a closely related integral on SymnX 0
f is

determined by the motivic Igusa zeta function [16]

Zf pT q �
¸
n¥1

rX0
f,nsL�mnT n.

Theorem 1.4 (4.2). For any non-constant f P krx1, . . . , xms there exists a natural orbifold
form |ωorb|

1{2 on SymnX 0
f such that¸

n¥0

»
SymnX 0

f

|ωorb|
1{2T n � Exp

�
L�

m�1
2 Zf pL�

m�3
2 T q

	
,

where Exp : TCkrL1{2srrT ss Ñ 1� TCkrL1{2srrT ss denotes the plethystic exponential.

For m � 3 the relative Hilbert scheme HilbnpXf q provides a crepant resolution of the
generic fiber of SymnX 0

f and a formula similar to Theorem 1.4 has appeared in [38], see
also Remark 4.3.

Finally, for m � 2, we can relate the two volume forms |ωgel
n | and |ωorb|

1{2 on SymnX 0
f

by means of the formula

L�ord∆f
{2|ωorb|

1{2 � |ωgel
n |,

where ∆f � SymnXf denotes the discriminant, see Proposition 4.5. In particular, due

to the factor L�ord∆f
{2, the series PgelpT q does not seem to be determined by the classes

rX0
f,ns. Instead, there is a natural 1-parameter family

Qf ps, T q �
¸
n¥0

»
SymnX 0

f

|∆f |
s|ωorb|

1{2T n P CkrL1{2srrT,L�sss,

for some formal parameter s, such that

(1.2) Qf p1{2, T q � PgelpT q and Qf p0, T q � Exp
�
L�

1
2Zf pL

1
2T q
	
.

A good understanding of Qf ps, T q might give a new way of relating Zf pT q to ζf,0pT q,
however, even for a smooth curve computing Qf ps, T q is equivalent to computing the Igusa
zeta functions of all classical discriminant polynomials, see Section 6. The latter is an open
problem as far as we know, and we hope to come back to it in future work.

The paper is organized as follows: In Section 2 we recall the necessary background on
Hilbert schemes and motivic integration. In particular, we discuss Haiman’s charts of the
Hilbert scheme of A2 which we use in Section 3 to construct the definable form |ωgel

n | and
prove Theorem 1.4. In Section 4 we discuss the orbifold formalism for symmetric powers,
establish Theorem 1.4 and compare the orbifold form |ωorb|

1{2 with |ωgel
n |. In Section 5

we discuss the relation with (symplectic) knot invariants, in particular Corollary 1.3, and
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speculate about possible refinements and extensions of our results. Finally, in Section 6
we discuss explicit examples of the series Qf ps, T q and its specializations.

Acknowledgements: We warmly thank Javier de la Bodega-Aldama, Arthur Forey,
Paolo Ghiggini, François Loeser, Johannes Nicaise, Simon Pepin Lehalleur and Ilaria
Rossinelli for interesting discussions around the subjects of this paper. A.O. would like
to thank EPFL, Lausanne for hospitality during the visits in January 2023 and January
2024, many ideas in the paper were developed during these stays. O.K and D.W. were
supported the by Swiss National Science Foundation [no. 196960]. O.K. was also sup-
ported by a Väisälä project grant of the Finnish Academy of Science and Letters. A.O was
supported by National Science Foundation grant DMS-2200798.

2. Background

2.1. Hilbert Schemes. Throughout this section we work over an algebraically closed field
k of characteristic 0.

2.1.1. Hilbert scheme of the plane. The Hilbert scheme of the plane HilbnpA2q is a smooth
and irreducible variety of dimension 2n. In the work of Haiman [25] a cover of HilbnpA2q
by affine charts is constructed as follows:

For any subset M � N2 of size n we may consider the open

UM � tI � krX, Y s | spanxXpY qypp,qqPM
�
ÝÑ krX, Y s{Iu.

Any monomial XpY q defines a section of the tautological bundle T Ñ HilbnpA2q and
the collection tXpY qupp,qqPM trivializes T|UM

. Any f P krX, Y s defines a global section f rns

of T which we can describe on UM using this trivialization as follows: for I P UM we may
write the image f of f in krX, Y s{I uniquely as

f �
¸

pp,qqPM

f rnsp,q pIqX
pY q.

If we write f
rns
M : UM Ñ An for the function pf

rns
piqiq1¤i¤n obtained this way we have f

rns
M �

f
rns
|UM

in the trivialization given by tXpY qupp,qqPM . Here we used the inverse lexicographical

order on N2, i.e pa, bq ¤ pc, dq iff b ¤ d or b � d and a ¤ c, to order the elements
pp1, q1q   � � �   ppn, qnq of M .

Now assume I P UM has support (with multiplicities) px1, y1q, . . . , pxn, ynq P A2. Then

f
rns
M pIq is related to the evaluation of f at the points pxi, yiq by the matrix BMpx, yq �
px

pj
i y

qj
i qij i.e.

(2.1)

����
fpx1, y1q
fpx2, y2q

...
fpxn, ynq

���
� BMpx, yq

�����
f
rns
p1q1pIq

f
rns
p2q2pIq
...

f
rns
pnqnpIq

����
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We write ∆M for the for the determinant of BMpx, yq, which is an alternating function
on pA2qn.

In what follows we will consider M � Mλ with Mλ the Young diagram of a partition

λ $ n and we write Uλ for UMλ
, f

rns
λ for f

rns
Mλ

etc. In particular, we have an open covering

HilbnpA2q �
�

λ$n Uλ.

2.1.2. Hilbert scheme of a plane curve. Throughout this section we let f P krX, Y s be a
reduced non-constant polynomial defining a curve C � tf � 0u � A2. The Hilbert scheme
Hilbnpfq � HilbnpCq naturally embeds into HilbnpA2q. In fact, we have

Lemma 2.2. Let A2
S � SpecpSympO2

Sqq be the affine plane over a base S and CS the 0-
scheme of a section f P SympO2

Sq. The Hilbert scheme HilbnpCSq is the 0-scheme of the
section f rns P H0pHilbnpA2

Sq, T q.
Proof. This is a consequence of [1, Proposition 4]. □

For any k ¥ 1 we write Hilb¤k
n pfq � Hilbnpfq for the open subscheme of ideals I � OC

that can be generated by k elements. In particular we denote by Hilb1
npfq � Hilbnpfq the

1-generator Hilbert scheme i.e. the locus of principal ideals

Hilb1
npfq � tI P Hilbnpfq | I � pgq for some g P OCu.

Lemma 2.3. The 1-generator subscheme Hilb1
npfq agrees with the smooth locus of Hilbnpfq

Proof. This is [29, Proposition 6.5.]. To elaborate, the tangent space at x P Hilbnpfq
corresponding to a closed subscheme Z is given by HomOC

pIZ ,OZq. If x P Hilbn
1 pfq, or

equivalently when Z is Cartier, HomOC
pIZ ,OZq � HomOZ

pOC ,OZq, which has dimension
n. So these points are in the smooth locus. Conversely, if x P HilbnpfqzHilb1

npfq, we can
assume Z is supported at a single point and in this case the completed local ring at that

point will be isomorphic to krrx, yss{f for some f P krrx, yss. Lifting IZ to rIZ � krrx, yss,
there is an exact sequence

0Ñ HompIZ ,OZq Ñ HomprIZ ,OZq Ñ OZ

In the proof of [29, Proposition 6.5.], it is proved that the image of the last map lies in
mZ , the maximal ideal of OZ . Since dimk mZ � n � 1, the exact sequence implies a lower
bound

dimk TxpHilb
npfqq ¥ 2n� n� 1 � n� 1

and hence the points outside the 1-generator locus are singular. □

Finally, we consider for any k ¥ 1 the deformation f � tk seen as a subscheme of A2
krrtss.

Lemma 2.4. Let k ¥ 1. Then any section s of the relative Hilbert scheme Hilbnpf� tkq Ñ
Specpkrrtssq evaluates to an ideal with at most k-generators: s|Specpkq P Hilb¤k

n pfq.

Proof. The local structure ring of the ambient space is R � pkrx, ysbkrtsqm andm � px, y, tq
is the maximal ideal. Having a section s is equivalent to having an ideal I � R such that
f � tk P I and R{I is flat over krrtss of length n. Thus R{I is finite rank over krrtss and
since Specpkrrtssq is regular, we conclude that R{I is Cohen-Macaulay.
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Since R{I is Cohen-Macaulay and is structure ring of one-dimensional scheme, we have
depthpR{Iq � 1 and by the Auslander-Buchsbaum theorem [19, Theorem A 2.15] we
conclude that the projective dimension of R{I is 2. Hence I admits two step free resolution
and by the Hilbert-Burch theorem[19, Theorem 3.2] there is g by g�1 matrix A with entries
in m such that we have short exact sequence:

0Ñ Rg A
ÝÑ Rg�1 G

ÝÑ I Ñ 0.

where G is the row of the minors of A and g� 1 is the minimal number of generators of I.
Next, we observe that f � tk P mkzmk�1 and that the entries of G are in mg. Hence we

conclude that g ¤ k and I has g � 1 generators h1, . . . , hg�1. If g   k then the statement
is proven otherwise we need to argue explain why f � tk is one of the generators hi.

Indeed, if g � k then hi �
°k

j�0 t
jαi

j, α
i
j P mn�j. On the other hand f � tk �

°
i βihi,

βi P R and hence at least one of βi is not vanishing modulo m. In particular, βi is a unit
in R and hi � pf � tkqβ�1

i �
°

j�i hiβj{βi and I is generated by f � tk and hj, j � i. □

2.5. Motivic integration.

2.5.1. Grothendieck Rings. For any k-variety Z we write K0pV arZq for the relative
Grothendieck ring of varieties over Z and L for the class of A1 � Z Ñ Z. We further
write MZ for the localized ring K0pV arZqrL�1s and CZ � MZrp1 � Liq�1 : i ¥ 1s. If
Z � Specpkq we simply write K0pV arkq, Mk and Ck instead of K0pV arSpecpkqq, MSpecpkq

and CSpecpkq.
In [22] the authors construct power structures on K0pV arkq and Mk and in particular

plethystic operations. For R either K0pV arkq or Mk, the plethystic exponential is a group
homomorphism

Exp : TRrrT ss Ñ 1� TRrrT ss,
defined by the formula

Exppa1T � a2T
2 � . . . q �

¹
n¥1

p1� T nq�an .

Here, if a � rXs P R is the class of a variety, then

p1� T q�a � ζXpT q �
¸
m¥0

rSymmXsT
m

is the Kapranov zeta function of X [28], with SymmX the m-th symmetric power of X
defined by

SymmX � X �X � � � � �X{Sm,

where Sm denotes the m-th symmetric group. We extend this by defining the m-th sym-
metric product Symmpaq of any element a P R by

ExppaT q �
¸
m¥0

SymmpaqT
m.
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By [22, Statement 3] we have in particular SymmpL�1aq � L�mSymmpaq. Following [12,
Appendix B] one can further extend Exp and thus Symm for m ¥ 0, to the ring

CkrL1{2s �MkrL1{2, p1� Liq�1 : i ¥ 1s,

in such a way that SymmpL�1{2aq � L�m{2Symmpaq. Here L1{2 corresponds to the negative
square root in loc. cit.

2.5.2. Order function and absolute values. Let X be a krrtss-scheme and Z � X a closed
subscheme with ideal sheaf I. For any x P X pkrrtssq we define the order ordZpxq of x along
Z as

ordZpxq �

#
d if x�I � ptdq

8 if x�I � p0q.

Notice that ordZpxq � 8 if and only if x P Zpkrrtssq. If X is affine and I generated by
z1, . . . , zk : X Ñ A1, then ordZpxq � min1¤i¤ktordtzipxqu.

There is a unique way of extending ordZ to a function

ordZ : X pkrrtssq �
¤
r¥1

X pkrrt1{rssq Ñ QY t8u.

Given a subscheme Y � X and y P Ypkrrtssq we will use that

ordZXYpyq � ordZpyq,

where on the right we consider y as an krrtss-point of X .
Finally, given a regular map f : X Ñ A1 or a subscheme Z � X we write |f | and |Z|

for the maps X pkrrtssq ÑMk defined by

(2.2) x ÞÑ L�ordtpfpxqq and x ÞÑ L�ordZpxq.

When working with krrt1{nss-points for some n ¥ 1 we will write | � |n to indicate that
we compute the absolute value with respect to the uniformizer t1{n.

2.5.3. Cluckers-Loeser integration. We use the integration theory developed in [10]. As
in [10, 16.2] and in the notation of [30] we consider the category Defacf,k of definable
subassignments in the Denef-Pas language restricted to the theory of algebraically closed
fields.

Concretely, an object h P Defacf,k is given by an assignment

K ÞÑ hpKq � kpptqqn � km � Zr,

where K runs through all algebraically closed fields containing k, m,n, r ¥ 0 and hpKq is
cut out by a formula in the Denef-Pas language over k. In particular any affine finite type
scheme X � An over kpptqq defines an element in Defacf,k, which we still denote by X, by
means of

K ÞÑ XpKpptqqq � Kpptqqn �K0 � Z0.

Similarly, for an affine finite type scheme X � An over krrtss we still write X for the
assignment

K ÞÑ X pKrrtssq.
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Finally, we will sometimes consider the assignments Xn,Xn given by K ÞÑ XpKppt1{nqqq
or K ÞÑ X pKrrt1{nssq for some integer n ¥ 1. Notice that these are simply the assignments
associated to the Weil restrictions of X�kpptqq kppt

1{nqq and X�krrtss krrt
1{nss along kpptqq Ñ

kppt1{nqq and krrtss Ñ krrt1{nss respectively.
These constructions can be globalized to obtain a category GDefacf,k consisting of defin-

able subassignments of algebraic varieties.
To any S P Defacf,k one can associate a ring of constructible motivic functions CpSq in

such a way that for the terminal object �k P Defacf,k we have

Cp�kq � Ck � K0pV arkqrL�1, p1� Liq�1 : i ¥ 1s.

Typical examples of constructible motivic functions are the maps in (2.2).
The content of [10] is an integration formalism for constructible motivic functions with

respect to definable volume forms satisfying in particular a change of variables formula and
a Fubini theorem.

The forms one integrates in this theory are definable forms |ω| as defined in [10, Section
8.2]. On a definable subassignment associated with a kpptqq-variety X any top-dimensional
form ω on the smooth locus Xsm of X defines a definable form |ω| and we have an identi-
fication |ω| � |ω1| if ω � fω1 for some f : Xsm Ñ A1 with |f | � 1.
The definable forms in this paper will thus typically be constructed as follows. Given

X{kpptqq, an open cover Xsm �
�

i Ui of its smooth locus and forms ωi on Ui such than on
Ui X Uj we have ωi � fijωj for a function fij satisfying |fij| � 1, then the Ui glue together
to a definable form on X.

Given a function f P CpXq, integrable with respect to a definable form |ω|, one obtains
a class »

X

f |ω| P Ck.

In the following if we write
³
X
f |ω| � a we mean f is integrable with respect to |ω| and³

X
f |ω| � a.
One way to compute motivic integrals is by means of Néron smoothenings. Given

X {krrtss separated, flat and of finite type with smooth generic fiber, there exists a smooth
finite type krrtss-scheme X and a krrtss-morphism Y Ñ X , which is generically an isomor-
phism and for every extension K{k induces a bijection YpKrrtssq �

ÝÑ X pKrrtssq [5, Theorem
3.1.3]. For any volume form ω on Xkpptqq one then has [11, Proposition 12.6]

(2.3)

»
X
|ω| � L�dimX

¸
CPπ0pXkq

L�ordCωrCs.

2.5.4. Motivic Igusa Zeta functions. Consider a non-constant polynomial map f : Am Ñ
A1 over k with fp0q � 0. The (local) n-th restricted contact locus of f is defined as

(2.4) X0
f,n � tx P Ampkrts{tn�1q0 | fpxq � tn P krts{tn�1u,

where Ampkrts{tn�1q0 denotes the locus of jets reducing to 0 modulo t.
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The motivic Igusa zeta function of f is defined as the generating series

(2.5) Zf pT q �
¸
n¥1

rX0
f,nsL�mnT n PMkrrT ss.

In fact, using an embedded resolution of singularities one can show that Zf pT q P CkpT q
[16]. There is an additional µn-action on each X0

f,n but we will ignore it in this paper.
Our goal is to give an expression for the plethystic exponential ExppZf pT qq P CkrrT ss.

For this we’ll need a slightly different way of writing the Igusa zeta function following [33].
Let ωm � dx1^� � �^dxm be the standard form on Am and consider the relativem�1-form

ωm{df on the smooth locus of f .

Next consider the krrtss-scheme Xf obtained as the pullback of Am f
ÝÑ A1 under the

completion morphism Specpkrrtssq Ñ Specpkrtsq, explicitly

Xf � Specpkrrtssrx1, . . . , xms{f � tq.

Then ωm{df induces a volume form ωf on the generic fiber of Xf called the Gelfand-Leray
form.

For any n ¥ 1 we write X 0
f,n for the definable subassignment whose K-points are given

by tx P Xf pKrrt
1{nssq | xK � 0u.

Lemma 2.6. [33, Lemma 9.9] For any n ¥ 1 we have»
X 0

f,n

|ωf |n � L�pn�1qpm�1qrX0
f,ns P Ck.

The proof of Lemma 2.6 uses an embedded resolution of singularities f to compute both
sides independently. Technically a different integration theory is used in loc. cit., but the
same argument can be applied in the Cluckers-Loeser theory using (2.3).

3. Arcs and Gelfand forms on Hilbert schemes

Let f P krX, Y s be reduced and nonconstant with an isolated singularity at 0. We write
C � tf � 0u � A2 for the associated curve. Consider the relative curve Xf{krrtss as in
Section 2.5.4 and the relative Hilbert-Chow morphism

h : HilbnpXf q Ñ SymnpXf q.

Since the generic fiber of Xf is smooth, h|kpptqq is an isomorphism. Furthermore h is proper
and thus we have for every K{k and every Krrtss-point of SymnpXf q a unique lift to a
Krrtss-point of HilbnpXf q, in other words the definable subassignments associated with
SymnpXf q and HilbnpXf q are isomorphic.

Recall that Hilb1
npfq � Hilbnpfq denotes the 1-generator locus. We further write Hilb1

npfq0 �
Hilb1

npfqXh
�1pnr0sq for the closed subscheme of ideals supported at the origin. As a direct

consequence of Lemma 2.4 we have

Corollary 3.1. For any K{k and any x P HilbnpXf qpKrrtssq such that ph�xq|K � nr0s P

SymnpCq we have x|k P Hilb1
npfq0.
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Next we use Corollary 3.1 to construct a definable volume form on SymnpX 0
f q, the

definable subassignment given by

K ÞÑ tx P SymnpXf qpKrrtssq | xK � nr0su.

First, by Corollary 3.1 we have an isomorphism of SymnpX 0
f q with HilbnpX 0

f q defined by

K ÞÑ tx P HilbnpXf qpKrrtssq | x|K P Hilb1
npCq0u.

Next recall the open covering HilbnpA2q �
�

λ$n Uλ from Section 2.1.1. Since HilbnpXf q �
HilbnpA2q we obtain an open covering of HilbnpXf q by setting Uf,λ � Uλ X HilbnpXf q. By
Lemma 2.2 we can also describe Uf,λ as

Uf,λ � tf
rns
λ � 0u � Uλ.

Now since HilbnpA2q is algebraic symplectic there exists in particular a global non-vanishing

top-form ωrns. We define the Gelfand form ωgel
λ on the smooth locus U sm

f,λ � Uf,λ as

ωgel
λ � ωrns{f

rns�
λ ν,

where ν � dy1 ^ � � � ^ dyn is the standard form on An.

Proposition 3.2. The definable forms |ωgel
λ | glue together to a give a non-vanishing de-

finable form |ωgel
n | on SymnpX 0

f q � HilbnpX 0
f q

Proof. For any two partitions λ, µ $ n the two forms ωgel
λ , ωgel

µ differ by an invertible
function uλµ on U sm

f,λ X U sm
f,µ . By combining Lemma 2.3 and Corollary 3.1 we see that for

any K{k, any x P HilbnpX 0
f qpKrrtssq factors through the smooth locus of HilbnpXf q and

thus |uλµpxq| � 1 which implies the proposition. □

Theorem 3.3. For any n ¥ 1 we have»
SymnX 0

f

|ωgel
n | � L�nrHilb1

npfq0s.

Proof. Since SymnpX 0
f q � HilbnpX 0

f q this follows from (2.3). □

We also record the following for later.

Lemma 3.4. Let I P UλpKrrtssq and px, yq P pA2qnpKpptqqq a preimage of supppI|Kpptqqq P
SymnpA2qpKpptqqq under the Hilbert-Chow morphism. Then

ordtp∆λpx, yqq ¤ ordtp∆Mpx, yqq,

for all M � N2 with |M | � n.

Proof. This follows since on Uλ the fraction ∆M{∆λ defines a regular function[26, Propo-
sition 2.6.], thus ∆Mpx, yq{∆λpx, yq P Krrtss. □
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3.5. The motivic Poincaré series. In this subsection we assume k � C. Consider the
generating series

PgelpT q �
¸
n¥0

»
SymnX 0

f

|ωgel
n |T n P CCrrT ss.

The motivic Poincaré series of [8] is defined as follows when m � 2. If the germ pC, 0q
defined by f contains r branches, we can define a multi–index filtration on krrx, yss by
setting

Jv � tg P krrx, yss|vipgq ¥ viu

where v � pv1, . . . , vrq P Zr and vipgq is the order of the pullback of f to the normalization
of the i-th branch of C. Let hpvq � codimkrrx,yssJv and write

Lf pt1, . . . , tr,L�1q �
¸
vPZr

L�hpvq � L�hpv�1q

1� L�1
tv

By [8] one can define the motivic Poincaré series of f as

Pf pt1, . . . , tr;Lq �
Lf pt1, . . . , tr,L�1q

±r
i�1pti � 1q

t1 � � � tr � 1

In particular, when r � 1 and the curve is unibranch, we have Lf pt,L�1q � Pf pt,L�1q.
Our interest in the motivic Poincaré series is encapsulated in

Proposition 3.6. For a unibranch plane curve singularity pf, 0q we have

Pf pt � T,L�1q �
8̧

n�1

L�nrHilb1
npfq0sT

n � PgelpT q

Proof. As explained in [21, Section 3], the coefficient of tv in Pf pt,L�1q is given by

(3.1) πvpL�1q � L1�hpv�1qrPH1pvqs,

where rPH1pvqs is the motive of the projectivization of the hyperplane arrangement H1pvq
defined by

H1pvq :�
Jv
Jv�1

zt0u

Next, note that any nonzero function not proportional to f gives a finite codimension
ideal in OC � krrx, yss{f . Note that these are exactly the functions with finite valuation
on C. We call them regular elements and denote the set of them by Oreg

C . For g P Oreg
C we

have by [35, Proposition 6]

(3.2) dimOC{pgq � vpgq,

and there is a map Oreg
C Ñ

�
n Hilb

1
npfq0 sending g ÞÑ I � pgq. The only ambiguity in

defining this principal ideal is multiplication by invertible functions in OC , which gives
that there is a bijection pJvzJv�1q{O�

C
�
ÝÑ Hilb1

vpfq0.
In particular we see that Hilb1

vpfq0 is empty if and only if Jv is, and if they are both
non-empty Hilb1

vpfq0 can be identified with g � Jv�1{1�mC , where mC � OC denotes the
maximal ideal and g is any element in JvzJv�1.
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Now write Γ � N for semi-group of OC and H � NzΓ for its complement. As in [35,
Lemma 25] we can eliminate coefficients iteratively to get that g�Jv�1{1�mC is an affine
space whose dimension is given by |pv �Hq X Γ|. There is a bijection

pv �Hq X Γ
�
ÝÑ th P H | h   vu,

given by sending v � h to h� kv with k such that 0   h� kv   v. The proof now follows
from the observation that |th P H | h   vu| � v � 1� hpv � 1q. □

Remark 3.7. If pf, 0q has r ¥ 1 branches we expect the equality

Pf pt1 � t2 � � � � � tr � T,L�1q �
8̧

n�1

L�nrHilb1
npfq0sT

n � PgelpT q.

3.8. The Euler characteristic specialization. In this subsection we assume k � C.
Consider the generating series

PgelpT q �
¸
n¥0

»
SymnX 0

f

|ωgel
n |T n P CCrrT ss.

By Theorem 3.3 we have PgelpT q �
°

n¥0 L�nrHilb1
npfq0sT

n and thus PgelpT q lies in
the image of MCrrT ss Ñ CCrrT ss. In particular, we may consider its Euler-characteristic
specialization

Pgel,χpT q �
¸
n¥0

χpHilb1
npfq0qT

n.

If L denotes the link defined by the plane curve singularity pf, 0q and ALpT q P 1� TZrT s
the normalized Alexander polynomial, it follows from [35, Section 3] that

Pgel,χpT q �
ALpT q

1� T
.

On the other hand, since |ωgel
n | is non-vanishing and the generic fiber of X 0

f is smooth, the

Euler-characteristic specialization of
³
SymnX 0

f
|ωgel

n | equals the Euler-characteristic special-

ization of the motivic Serre invariant of SymnX 0
f [33, Section 6.1]. Using this, we deduce

from the trace formula [33, Theorem 5.4]

χ

�»
SymnX 0

f

|ωgel
n |

�
� Trpϕ,H�

BpSymnpX 0
f q,Qℓqq �

¸
i¥0

p�1qiTrpϕ,H i
BpSymnpX 0

f q,Qℓq,

where H�
BpSymnpX 0

f q,Qℓq denotes the Berkovich étale cohomology of the rigid analytic

space associated to SymnpX 0
f q and ϕ is the topological generator of GalpCpptqqq � µ̂ given

by t1{n ÞÑ expp2πi{nqt1{n.

Lemma 3.9. We have

H�
BpSymnpX 0

f q,Qℓqq � pH�
BpX 0

f ,Qℓq
bnqSn ,

as graded µ̂-modules.
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Proof. Instead of working directly with Berkovich étale cohomology we use the comparison
with ℓ-adic nearby cycles [4, Corollary 3.5] implying

H�
BpSymnpX 0

f q,Qℓ,SymnpXf qq � H�pRψηpQℓ,SymnpXf qqq|nr0sq,

H�
BpX 0

f ,Qℓ,Xf
q � H�pRψηpQℓ,Xf

q|0q.

Here we wrote Qℓ,SymnpXf q and Qℓ,Xf
for the constant sheaves on (the generic fibers of)

SymnpXf q and Xf . Therefor it suffices to show that we have a quasi-isomorphism

RψηpQℓ,SymnpXf qq � pπ� b
n RψηpQℓ,Xf

qqSn

in Db
cpSymnpXf q|kq, where b denotes the exterior product on X n

f . Notice that taking Sn-
invariants can be defined via a projector as for example in [31] and thus Rψη commutes
with taking Sn-invariants. Furthermore Rψη commutes with proper pushforward [15, XIII
2.1.7] and exterior products [3, Lemma 5.1.1]. The lemma thus follows from the identity
Qℓ,SymnpXf q � pπ� b

n Qℓ,Xf
qSn . □

Combining Lemma 3.9 with Lemma 3.12 below we deduce

Pgel,χpT q � exp

�¸
n¥1

Trpϕn, H�pX 0
f ,Qℓqq

n
T n

�
.

Finally choosing an embedding Qℓ � C, we deduce from [33, Theorem 9.2] the equality

(3.3) exp

�¸
n¥1

Trpϕn, H�pX 0
f ,Qℓqq

n
T n

�
� ζf,0pT q,

where ζf,0pT q denotes the monodromy zeta function of the Milnor fiber of f at 0. Putting
all of this together we find

Corollary 3.10. For any reduced plance curve singularity pf, 0q with link L we have

ζf,0pT q �
ALpT q

1� T
.

Corollary 3.10 is originally due to Milnor [32, Lemma 10.1].

Remark 3.11. In [23] the authors consider the series Pgel,χpT q as the Poincaré series of the
ring of functions on pf, 0q. Our proof of Corollary 3.10 can be seen as an answer to their
question, whether there is a direct link between the Poincaré series and the monodromy
zeta function. [23, Section 1].

Lemma 3.12. Let k be a field of characteristic 0, V � a finite dimensional Z-graded k-vector
space and ϕ� an endomorphism of V � preserving the grading. Then

exp

�¸
n¥1

Trppϕ�qn, V �q

n
T n

�
�
¸
n¥0

Trppϕ�qbn, ppV �qbnqSnqT n �
¹
iPZ

detp1� ϕiT qp�1qi�1

,

where for a graded endomorphism ψ� of a finite dimensional graded k-vector space W � we
wrote Trpψ�,W �q �

°
iPZp�1q

iTrpψi,W iq.
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Proof. When there is no grading and ϕ is diagonalizable with eigenvalues λ1, . . . , λm, we
have

exp

�¸
n¥1

pnpλ1, . . . , λmq

n
T n

�
�
¸
n¥0

hnpλ1, . . . , λmqT
n �

m¹
i�1

1

1� λiT
�

1

detp1� ϕT q

The general ungraded case can be deduced from the Zariski density of diagonalizable φ.
To upgrade to the graded case, we simply note the well–known identities

pnp�λ1, . . . ,�λmq � p�1qnpnpλ1, . . . , λmq,

hnp�λ1, . . . ,�λmq � p�1qnenpλ1, . . . , λmq,¸
n¥0

enpλ1, . . . , λmqT
n �

m¹
i�1

p1� λiT q,

and apply these for the odd graded pieces. □

4. The orbifold measure on symmetric powers

Let X {krrtss be separated, flat and of finite type with smooth d-dimensional generic fiber.
Furthermore let 0 P Xk be a point in the special fiber of X and define SymnpX 0q as the
definable subassignment whose K points are given by tx P SymnpX qpKrrtssq | xK � nr0su
as before.

Let pi : X n Ñ X denote the projection onto the i-th coordinate. Given an algebraic
d-form ω on Xkpptqq, consider the dn-form ωn � p�1ω ^ � � � ^ p�nω on X n

kpptqq. For any σ P Sn

we have σ�ωn � sgnpσqdωn. Thus ωn does not descend to a form on SymnXkpptqq unless d
is even.

Instead of ωn we thus consider its tensor-square ωb2
n P H0

�
X n

kpptqq, pΩ
dn
Xn

kpptqq
{kpptqqq

b2
	
.

This form now descends to the orbifold form ωorb on SymnXkpptqq and for any choice of

square root L1{2 of L we obtain, assuming integrability, a well-defined class»
SymnX 0

|ωorb|
1{2 P CkrL1{2s.

Proposition 4.1. Assume that |ω|n is integrable on X 0
n for each n ¥ 1. Then we have»

SymnX 0

|ωorb|
1{2 �

¸
λ�p1a1 ,2a2 ,... q$n

L�vpλq
¹
i¥1

Symai

�»
X 0

i

|ω|i

�
,

where vpλq � d
2

°
i¥1 aipi� 1q.

Proof. Since everything depends only on a neighborhood of 0 we may assume that X is
affine. Let us assume first that 0 P X is a smooth point of X {krrtss. Then the completed

local ring pOX ,0 is isomorphic to krrtssrrx1, . . . , xdss. Since ω is generically non-vanishing
we may write ω � λdx1 ^ � � � ^ dxd in these local coordinates for some λ P krrtss. Then
|ωorb|

1{2 � |λ|n|pdx1 ^ � � � ^ dxdqorb|
1{2 and also |ω|i � |λ|i|dx1 ^ � � � ^ dxd| on X 0

i . Thus
after multiplying by |λ|�n on both sides we may assume that ω � dx1 ^ � � � ^ dxd. In this
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case the proposition reduces to the orbifold formula for Sn acting on pAdqn as it is proven
for example in [18, Theorem 3.6]. In the notation of loc. cit we have»

SymnpAmq0
|ωorb|

1{2 �
¸

rσsPConjpSnq

L�wpσq,

where ConjpSnq denotes conjugacy classes in Sn and the weight wpσq is defined as follows:
Let r denote the order of σ and ξ a primitive r-th root of unity. Then there are unique
integers 1 ¤ eσ,i ¤ r for 1 ¤ i ¤ dn such that ξeσ,i are the eigenvalues for the action of σ
on pAdqn. If σ has cycle-type given by the partition λ � p1a1 , 2a2 , . . . q then one gets the
the formula

wpσq �
d

2

¸
i

aipi� 1q � vpλq � d
¸
i

ai.

Since in this case Symai

�³
X 0

i
|ω|i

	
� Symai

L�d � L�dai the statement follows.

If 0 P X is not a smooth point, we may choose by [33, Proposition 2.5] a resolution
of singularities, that is a regular, flat krrtss-variety Y with Yk �

°
iNiEi a strict normal

crossing divisor, and a proper birational morphism π : Y Ñ X which is an isomorphism
on generic fibers. Regularity implies that for any K{k, any Krrtss-point of Y factors
through the smooth locus of Y [5, Proposition 3.2]. By [33, Lemma 4.3, Theorem 4.5] we
may further assume that the same holds true for Krrt1{iss-points for all 1 ¤ i ¤ n. The
proposition thus reduces to the smooth case proven above. □

If we apply this to X 0
f and ωf with f : Am Ñ A1 as in Section 2.5.4 we get the following

interpretation of the plethystic exponential of the motivic Igusa zeta function:

Theorem 4.2. ¸
n¥0

»
SymnX 0

f

|ωorb|
1{2T n � Exp

�
L�

m�1
2 Zf pL�

m�3
2 T q

	
.

Proof. Combining Proposition 4.1 and Theorem 2.6 we get

»
SymnX 0

f

|ωorb|
1{2 �

¸
λ�p1a1 ,2a2 ,... q$n

L�vpλq
¹
i¥1

Symai

�»
X 0

f,i

|ωf |i

�
�

¸
λ�p1a1 ,2a2 ,... q$n

L�vpλq
¹
i¥1

Symai

�
L�pi�1qpm�1qrX0

f,is
�
.

Thus for the generating series we get
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¸
n¥0

»
SymnX 0

f

|ωorb|
1{2T n �

¸
λ�p1a1 ,2a2 ,... q

L�
m�1

2

°
aipi�1q

¹
i¥1

Symai

�
L�pi�1qpm�1qrX0

f,is
�
T
°

aii

�
¹
i¥1

�¸
a¥0

Syma

�
L�

pm�1qp3i�1q
2 rX0

f,is
	
T ia

�
�
¹
i¥1

ExppL�
pm�1qp3i�1q

2 rX0
f,isT

iq

� Exp

�
L�

m�1
2

¸
i¥1

L�imrX0
f,ispL�

m�3
2 T qi

�
� Exp

�
L�

m�1
2 Zf pL�

m�3
2 T q

	
.

□

Remark 4.3. If we take f P krx, y, zs, then the generic fiber of Xf is a smooth surface
and h : HilbnpXf |kpptqqq Ñ SymnpXf |kpptqqq is a crepant resolution. Thus by the change of
variables formula ¸

n¥0

»
HilbnpX 0

f q

|h�ωorb|
1{2T n � Exp

�
L�1Zf pT q

�
.

It would be interesting to see, if the left hand side admits a description in term of the
Hilbert scheme of the surface singularity f � 0 similar to Theorem 3.3.

4.4. Relation to the Gelfand form. Let f P krX, Y s be an isolated plane curve singu-
larity as in Section 3. In this section we give a precise relation relation between |ωorb| and
|ωgel

n | on SymnX 0
f .

For this consider the discriminant subscheme ∆̃ � pA2qn given byr∆ �
¤
i�j

txi � xj, yi � yju.

It follows from the results of Haiman, see e.g. [24], that the ideal J defining r∆ equals the
ideal generated by the diagonally alternating polynomials on X1, . . . , Xn, Y1, . . . , Yn and is
generated by the functions t∆Mu|M |�n introduced in Section 2.1.1. Furthermore the image

∆ � SymnpA2q of r∆ has defining ideal J X krX1, Y1, . . . , Xn, Yns
Sn which has generators

t∆M∆M 1u|M |�|M 1|�n.

We write r∆f and ∆f for the intersection with X n
f � pA2qn and SymnpXf q � SymnpA2q

respectively.

Proposition 4.5. For any n ¥ 1 we have

L�ord∆f
{2|ωorb|

1{2 � |ωgel
n |

on SymnX 0
f .

Proof. The proof goes by comparing the underlying algebraic forms defining both sides
when pulled back under π : X n

f Ñ SymnpXf q. For the left hand side recall that π�ωorb �
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pp�1ωf ^ � � � ^ p�nωf q
b2 by definition. Furthermore for any x P SymnX 0

f pKrrtssq and any lift

x̃ P X n
f pKrrtssq we have ord∆f

pxq � ord∆pxq � 2ordr∆px̃q since the generators of the ideal

of ∆ are the pairwise products of the generators of the ideal defining r∆.
For the right hand side recall that we have an open cover

�
λ$n Uf,λ � HilbnpXf q and

|ωgel
n | is glued together from the absolute values of the forms ωgel

λ � ωrns{f
rns�
λ ν on U sm

f,λ .
Let X 1

f � Xfzt0u denote the smooth locus of Xf . Then SymnpX 1
f q � HilbnpX 1

f q and we can

think of U 1
f,λ � U sm

f,λ X HilbnpX 1
f q as an open in SymnpXf q and hence compute π�ωgel

λ|U 1
f,λ
.

First since HilbnpA2q Ñ SymnpA2q is crepant, it follows that ωrns pulls back to the

standard form dx1 ^ dy1 ^ � � � ^ dyn on pA2qn. In order to compute π�f
rns�
λ ν we use that

by (2.1)

pf
rns
λ � πqpx, yq � B�1

λ px, yq

����
fpx1, y1q
fpx2, y2q

...
fpxn, ynq

���
.
Thus π�ωgel

λ � π�ωrns{π�f
rns�
λ ν can be written as

π�ωgel
λ � p∆λpx, yq � tα1px, yq � t2α2px, yq � . . . qp�1ωf ^ � � � ^ p�nωf ,

with αi P Krx, ys. Since π
�ωgel

λ is Sn-invariant, all the αipx, yq are alternating.
Now given any z P SymnX 0

f pKrrtssq � HilbnpX 0
f qpKrrtssq there exists a λ $ n such

that x P Uf,λpKrrtssq. Let px, yq P pA2qnpKpptqqq be such that πpx, yq � z|Kpptqq. Then

from Lemma 3.4 and the fact that the ideal J defining r∆ is generated by the functions
t∆Mu|M |�n we finally get

|∆λpx, yq � tα1px, yq � t2α2px, yq � . . . | � |∆λpx, yq| � L�ord
�∆
px,yq,

which finishes the proof. □

The motivic version of Igusa’s monodromy conjecture [16] relates the poles of Zf pT q to
the roots of ζf,0pT q. Hence it might be interesting to relate the integrals of |ωorb| and |ω

gel
n |

on SymnX 0
f . Proposition 4.5 gives a way of doing so by considering the series

Qf ps, T q �
¸
n¥0

»
SymnX 0

f

|∆f |
s|ωorb|

1{2T n,

for some formal parameter s. In Section 6 below we discuss a few examples showing that
the computation of Qf ps, T q seems to be an interesting challenge.

5. Relation to Floer theories

5.1. Fixed point Floer homology. Let f P CrX, Y s and f�1p0q � C � A2
C the plane

curve it defines. Denote the Milnor fiber f�1pϵq X Bδ,0 of f by Σ and let φ : Σ Ñ Σ be
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the symplectomorphism given by the monodromy of the Milnor fibration. The fixed point
Floer homology of φn : ΣÑ Σ for n ¡ 1 is a graded Z{2-vector space

HF�pφ
n,�q

associated to φn : Σ Ñ Σ, only depending on the embedded contact type of the link L of
f . For the definition, see [13, 6.2.5.]. In this case we have

Theorem 5.2. [14, Theorem 1.1.] There is an isomorphism of graded vector spaces

HF�pφ
n,�q � H��2n�1

c pX0
f,nq

where X0
f,n is the m-th restricted contact locus as before.

The theorem is expected to hold for any hypersurface [6]. A fortiori, this implies an
equality of Euler characteristics χpHF�pφ

n,�q � �χpX0
f,nq.

5.3. Knot Floer homology. We consider another Floer-theoretic invariant of the link L
defined by f . It is the minus version of the knot Floer homology of L, defined in [36] for
Z{2Z-coefficients and in [37] for Z-coefficients.

If L is a link with r components, the knot(/link) Floer homology is a Zr�1-graded ZrU s-
module

HFL�pL, S3q �
à

vPZr,dPZ
HFL�d pL, S

3, vq

where U is an operator which decreases the Maslov/homological grading by 2 and the
Alexander grading by 1. We will drop S3 from the notation, as it is always the ambient
3-manifold for us. Taking the Euler characteristic in the Alexander grading, one has¸

vPZr

χpHFL�pL, vqqtv �

#
∆pt1, . . . , trq, if r ¡ 1
∆ptq
1�t

, if r � 1

It follows from [21, Corollary 1.6] and Proposition 3.6 that we have the following.

Corollary 5.4. For a unibranch plane curve singularity pf, 0q with assiciated knot K we
have the equality

PgelpT q �
¸
v,dPZ

dimHFL�d pK, vqL
d�2hpvqT v,

where hpvq � codimkrrx,yssJv as in Section 3.5.

Remark 5.5. (i) In light of Remark 3.7 we also expect Corollary 5.4 to extend to
multibranch curve singularities.

(ii) Recall that [21, Corollary 1.5.3.] is proved by relating both sides to the lattice
homology of isolated singularities defined by Némethi. Thanks to the integral
version of knot Floer homology in [37] the coefficient issue in [21, Remark 2.1.2]
can be avoided.
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HFL�pL, S3q HF�pϕ
n,�q

PgelpT q H�
c pX

0
f,nq

Qf ps, T q

Exp
�
L� 1

2Zf pL
1
2T q
	

rX0
f,ns

5.1

5.7

Symplectic

Algbraic 5.4 [14]

s�1{2

s�0

4.2

exponential

Figure 1

5.6. Questions and speculations. In [20] Ghiggini and Spano show that for fibered

knots zHFLpK, 1� gq � HF�pφ, 7q and more generally conjecture thatzHFLpK, iq � PFHi�gpTφ, 7q

where zHFLp�q denotes the hat version of knot Floer homology, HF�pφ, 7q is an ”inter-
mediate” variant of fixed point Floer homology, and PFHpTφ, 7q denotes a certain version
of the periodic Floer homology of (the mapping torus of) φ. We refer to loc. cit. for the
precise definitions, but remark that multisets of fixed points give generators of the periodic
Floer complex and more generally the theme of realizing Heegaard-Floer theory in terms
of Fukaya categories of symmetric powers has been a recurring theme in the Floer theory
literature, see for example [2]. It thus seems possible to expect a relation of the form

(5.1) ”Exponential of fixed point Floer homologies of the iterates of φ” � HFL�pKq.

Combining Corollary 5.4 with [14, Theorem 1.1.] this leads to the following natural
question which can be phrased in purely algebraic terms.

Question 5.7. Is there an exponential-type relation between H�
c pX

0
f,nq and the cohomology

or motives of Hilb1
npfq?

Let us also mention that Rossinelli [39] has shown a relation between curvilinear Hilbert
schemes and motivic classes of certain open subvarieties in X0

f,n, but we don’t see a direct
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connection with Question 5.7 at the moment. We summarize the relations between the
various invariants discussed above in Figure 1.

6. Computations and examples

In this section we discuss the generating series Qf pT q in the case of the smooth curve
f � x and of the simplest non-trivial singularity f � xy.

6.1. Smooth curve. The Hilbert scheme Hilbnpfq of the smooth line fpx, yq � x is an
affine space An � SymnpA1q � Hilb1

npfq that can be identified with the space of monic
polynomials of degree n, yn �

°
i aiy

i. Thus the discriminant ∆f agrees with the classical
discriminant Discn. Moreover, since Hilbnpfq is smooth we have |ωgel| � |da0 ^ � � � ^
dan�1| and the function Qf ps, T q is a generating function for the Igusa zeta functions of
discriminants:

Qf ps, T q �
¸
n¥0

InpsqT
n, Inpsq �

»
An
0

|Discn|
s�1{2|da0 . . . dan�1|.

For small values of n the corresponding Igusa zeta function can be computed. For n � 1
the discriminant is constant and I1psq � L�1. For n � 2 the discriminant is a1�4a20. Thus
after the change of variables ã1 � a1 � 4a20, ã0 � a0 we obtain:

I2psq �

»
A2
0

|ã1|
s�1{2|dã0dã1| � pL� 1q

Ls�5{2

Ls�1{2 � 1
.

Since the discriminant of a cubic polynomial x3 � px � q is equal to �4p3 � 27q2 the
computation of the integral reduces to the computation of the Igusa zeta function for the
cusp singularity. This computation can be found in many places, for example in chapter
1, §3 of [9]:

I3psq �
L� 1

X6L5 � 1

�
1

L2
�X3 �

X2

L
�X4L�

L� 1

L3pXL� 1q



, Ls�1{2 � X.

The computation of the integral I4psq is equivalent to the computation of the Igusa zeta
function for the swallow-tail singularity and we postpone the discussion for the forthcoming
paper where we use Fulton-MacPherson space formalism to compute the integrals In. On
other hand we check the properties of the function Qf ps, T q with the above computations.
Indeed, since rHilb1

npfq0s � 1 we obtain PgelpT q �
°

n¥0pT {Lqn. As check of formula
(1.2) one can verify that Inp1{2q � L�n. To discuss the second part of the formula (1.2)
we need to compute the Igusa zeta function for f , which is by definition (2.5) given by
Zf pT q �

°
n¥1pT {Lqn. Thus the formula (1.2) states that¹

n¥1

p1� T nqL
�pn�1q{2

� 1�
¸
n¥1

Inp0qT
n.

The first four terms of the T -expansion are consistent with the above computations.
For example the terms in front of T 2 are L�2 � L�3{2 and the terms in front of T 3 are
L�3 � L�5{2 � L�2.
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6.2. Nodal singularity. The Hilbert scheme Hilbnpfq0 in this case is known to be a chain
of projective lines. Indeed, to describe Hilbnpfq0 we need to classify codimension n ideals
in the local ring of this singularity which is equal to k ` x � krrxss ` y � krryss as a k-vector
space with xy � 0 as the main defining relation. In details, the ideals of codimension
n are union of n � 1 projective lines P1

k � tpαkx
k � βky

n�k, xk�1, yn�k�1qu, αk, βk � 0⃗,
k � 1, . . . , n� 1. The points ideal for βk � 0 is equal to the ideal for αk�1 � 0 and αk � 0
is equal to the ideal for βk�1 � 0.

From the above description we see that the one generator locus Hilb1
npfq0 inside Hilbnpfq0

is the union of Gm � P1
k defined by the condition αkβk � 0. Thus we have computed the

PgelpT q:

PgelpT q � 1� pL� 1q
8̧

n�2

pn� 1qL�nT n � 1� T 2{pL� T q2.

The Igusa zeta function can be computed by elementary means as well, since rX0
f,ns �

pn� 1qpL� 1qLn�2

Zf pT q �
¸
n¥1

rX0
f,nsL�2nT n � pL� 1qL�2T 2{p1� TL�1q2.

The function Qf ps, T q interpolates between the functions PgelpT q and Zf pT q as we state
in (1.2). In a forthcoming manuscript, we provide and argument similar to Proposition 4.1
that yields a formula for the function Qf ps, T q:»

SymnpXf q

|ωorb|
1{2|∆f |

s �
¸

λ�p1a1 ,2a2 ,... q$n

L�vpλq

»
±

i Symai
pX 0

i q

|∆f |
s
¹
i¥1

|ωf |i.

For n ¤ 3 the integrals can be computed by elementary means: for n � 1 the integral
vanishes. For n � 2, only the term with λ � p2q appears with νpλq � 1{2. The locus X 0

f,2

consist of the pairs x, y P t1{2krrt1{2ss such that xy � t. Hence |∆f | is constant along X 0
f,2

and equal L. Thus combining this observation with the Lemma 2.6 and rX0
f,2s � rtx, y P

krts{t3|x, y � t2 P krts{t3us � pL� 1qL2 we obtain:

L�νpp2qq

»
X 0

f,2

|∆f |
s|ωf |2 � L�1{2L�spL� 1qL�1.

Similarly, for n � 3 the only non-trivial term in the formula is the term with λ � p3q.
Respectively, νpp3qq � 1 and the space X 0

f,2 consists of two connected components tx �

t1{3φpt1{3q, y � t2{3ψpt1{3qu and tx � t2{3φpt1{3q, y � t1{3ψpt1{3qu with φ, ψ P krrt1{3ss with
φψ � 1. Hence |∆f | is constant along the both components and it is equal L2. We can
again use Lemma 2.6 and rX0

f,3s � 2pL� 1qL3 to complete the computation:

L�νpp3qq

»
X 0

f,3

|∆f |
s|ωf |2 � 2L�1L�2spL� 1qL�1.

Thus we can write the start of T -expansion of the function Qf ps, T q:

Qf ps, T q � 1� pL� 1qpL�s�3{2T 2 � 2L�2s�2T 3q � . . . .
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If we substitute s � 1{2 into the expansion then we obtain the first four terms of the
series PgelpT q. On the other hand the substitution s � 0 yields the first four terms of the
expansion of

ExppL�1{2Zf pL1{2T qq � ExpppL� 1qpL�3{2T 2 � L�2T 3q � . . . q

� p1� T 2q�L�3{2pL�1qp1� T 3q�2L�2pL�1q � . . .
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contact loci. J. Differential Geom., 120(3):389–409, 2022.
[7] A. Campillo, F. Delgado, and S. M. Gusein-Zade. The Alexander polynomial of a plane curve singu-

larity via the ring of functions on it. Duke Math. J., 117(1):125–156, 2003.
[8] Antonio Campillo, Felix Delgado, and Sabir M Gusein-Zade. Multi-index filtrations and generalized
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scientifiques de l’École normale supérieure, 48(2):313–349, 2015.
[28] Mikhail Kapranov. The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody

groups. arXiv preprint math/0001005, 2000.
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