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Abstract

Let uZ denote the small quantum group associated with a simple Lie
algebra g and a root of unity ¢. In [9] a geometric realization of Z (uZ)Gv
the G"-invariant part of the center of u/, was proposed. We compute the
dimension of the geometric subalgebra of the center and in the case where

G = SL,, we study a bigraded refinement of the result.
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1 Introduction

Let G be a complex simple simply connected algebraic group, and g its Lie al-
gebra. We will fix Cartan and Borel subalgebras t C b C g in g. Denote also
by t¥ C bY C gV the same data for the Langlands dual Lie algebra. Denote
T C B (respectively G) the connected Lie groups corresponding to t C b (re-
spectively gV). Let £ be an odd number that is greater than the Coxeter number
h of g and coprime to the determinant of the Cartan matrix and to h, h + 1.

We denote by u/ = u¢(g") the small quantum group associated to the Lie al-
gebra [39]. Let @ C A denote the coroot lattice inside the cocharacter lattice
of G, and W the Weyl group of g (and gv). Then ug decomposes into a di-
rect sum of blocks enumerated by the orbits of the extended affine Weyl group
W=WxA acting via the ¢-dilated dot action on A. See for example the in-
troduction to [31]. We denote by uZ‘)‘ the block corresponding to the W-orbit

of A € A. In particular, uZ’O denotes the principal (regular) block of the small
quantum group.

In this paper we derive a dimension formula for a geometrically defined sub-
algebra Z (uZ)gevom cz (uZ)GV, the GV-invariant part of the center of the small
quantum group. The precise definition is in terms of affine Springer theory and
will be given in due course. One of our main results is a dimension formula for

this subalgebra:
Theorem 1.1. Suppose that { is as above. Then

dim Z(uf)S.,,,, = Catyw ((h+1)¢ — h, h),

geom

where Catyy is the generalized rational Coxeter—Catalan number of W, and h the
Coxeter number associated with the root system of g.

After writing the present paper, we received the complete text of [9], where the
same dimension formula is obtained in [9, Theorem C]. Whereas the proof in
[9] uses a comparison to certain elliptic affine Springer fibers and the results
of Sommers, our argument is based on the block decomposition and Coxeter—
Catalan combinatorics. However, it will be clear to the reader that our results
rely heavily on the definitions and results in [9]. A major point of divergence
from that paper is the case G = SL,,, for which we study a refinement of The-
orem 1.1 involving a bigrading coming from the geometry of affine Springer
fibers. This is done in Sections 3 and 5.

We now recall the definition of Z (ug)?evom, following [9]. Let Gr™¢ = Gr”NGr*,
where Gr” is the affine Springer fiber with v = ¢/~ s for a regular element s €
9, and Gr® is the set of fixed points for the cyclic group action generated by ¢.
There is a left W-action on the singular cohomology groups H*(Gr”*¢) induced
by the lattice action on the affine Springer fiber, as well as a monodromy action
coming from variation of s in a family. This action is called the equivariant
centralizer-monodromy action in [10] and the dot action in [12]. More precise
definitions will be given in the next section.

Theorem 1.2 ([9]). There is an algebra embedding
H (G )W € zw))¢,

where the product on the left is the cup product and we take invariants for the dot
action.



Motivated by this, we let Z (uz/)g;evom =H *(Gr”’c)w'. Conjecturally, this is all
of the G -invariant center:

Conjecture 1.3 ([9]). The embedding above is an isomorphism.

The logical structure of the proof of the dimension formula in Theorem 1.1 is
as follows. Both sides of Theorem 1.2 naturally decompose into blocks. Geo-
metrically, this follows from the fact that Gr”*¢ can be written as a finite dis-
joint union of generalizations of affine Springer fibers, as explained in the next
section. This block decomposition respects the embedding into Z (uz/)Gv. Cru-
cially, reinterpreting Gr”* using varieties which do not depend on ¢ lets us
describe each block without using the variable /.

av
geom

with C[Q/(h + 1)Q]. We then rewrite all of H*(Gr”*)"" by relating the singu-
lar blocks with the regular block. Both of these constructions use a second
W —action on the cohomology, given by the affine Springer action, which is not
obvious from the point of view of Z (ug)Gv.

First restricting to the regular block, we identify Z(u)) as a W-representation

Assuming Conjecture 1.3, the regular block part of Theorem 1.1 agrees with an
ungraded form of the conjecture formulated in [30]. In the case where g = sl,,,
the formula of Theorem 1.1 coincides with the formula conjectured by Igor
Frenkel for the whole G"-invariant part (computed for n < 4 in [31]):

Corollary 1.4. Let G = SL,, and suppose that n # 0, —1 mod . Then

dim H* (Gr") 7" = Caty(n + 1)¢ — n,n) = ﬁ ((n ) w)’

the rational ((n + 1)¢ — n, n)-Catalan number.

The GV-invariant parts of the blocks of the center, indeed the entire blocks, can
be equipped with two gradings that arise from isomorphisms with the equiv-
ariant cohomologies of certain coherent sheaves on the Springer resolution[8]
(see Theorem 4.1).

On the geometric side, the bigrading of the principal block is closely related to
the isomorphism of W —representations C[Q/(h+1)Q]®sgn = DRy, where the
latter is Gordon’s canonical quotient of the space of the diagonal coinvariants
[18]. The latter space is algebraically defined and has an obvious bigrading.

When G = GL,, assuming the main conjecture in [12], we define a bigrading
on the side of the affine Springer fibers, which coincides with the bigrading
on the sign-twisted diagonal coinvariants (see Theorem 3.8). This bigrading
comes from the realization of the invariant piece of the cohomology as a quo-
tient of the BM homology of the “positive part” of the affine Springer fiber, up
to a linear dual.

In Section 5 we also study another model for the bigrading, coming from the
perverse filtration on certain parabolic Hitchin fibers. This formulation is more
geometric and allows us, for example, to define an sly-action on the blocks of
H*(Gr"*)"W". Based on the Hilb-vs-Quot conjecture of [27], the two bigradings
are the same up to a simple change of variables.

To complete the triangle between affine Springer fibers, coherent sheaves on
the Springer resolution, and the diagonal coinvariants, we conjecture that the



transport of either of our two bigradings to the blocks of the center coincides
with the one coming from the equivariant cohomologies of the coherent sheaves
on the Springer resolution. There is a natural sl;-action on the cohomologies
on the affine Springer fiber side, which we conjecture to coincide with the sl;
action “along the diagonals” as in [30, Section 4].

The outline of the paper is as follows. In Section 2, we define the geometric
objects and prove Theorem 1.1. In Section 3, we study the diagonal coinvariant
ring with a focus on type A, providing H*(Gr”®) with a combinatorially de-
fined bigrading. In Section 4, we recall some earlier results on the structure of
the center of the small quantum group and apply results from the previous two
sections to the structure of the Harish-Chandra center, the Higman ideal and
the Verlinde quotient of u!. In Section 5, we study a geometrically defined bi-

grading on H*(Gr”*¢) and its relation to the center together with the bigrading
defined in Section 3.

2 Affine Springer fibers

2.1 Definitions

In this section, we define the geometric objects under study. For more details,
the reader is referred to [38, Section 4]. Let ¢ be a primitive ¢-th root of unity
and s € t"9. Let O := C[[t]], K := C((t)), O¢ := C[[t']] and K; = C((¢*)). Let
G°" be the loop rotation torus. It acts on O, K via t — zt, as well as G(O) and

G(K). Let py = ker(Grot LN Grot) be the subgroup of ¢:th roots of unity.
Let R be a C-algebra. The fppf sheafification of the functor
R G(R((1)/G(R[[]])

is an ind-scheme called the affine Grassmannian which we will denote by Gr.
More generally, we can define partial affine flag varieties for G(K) as follows.
The choice of T fixes a standard apartment A in the Bruhat-Tits building of
G(K). To any facet f C A there is an associated parahoric subgroup Ps.

For a given parahoric subgroup P, we write Flp for the corresponding partial
affine flag variety. This is also an ind-scheme which coincides with Gr when
P = G(O); when P = Iis the standard Iwahori defined below, we simply write
Fl. We will also consider partial affine flag varieties and affine Springer fibers
with the loop variable t¢ in place of ¢. Given a parahoric subgroup P C G(K,)
we write Flp for the corresponding partial affine flag variety and so on; for
example Gr* is the fppf sheafification of the functor

R = G(R((t))/G(RI[N).-

The fi-action on G(K) descends to Gr and the fixed point ind-scheme can be
described as follows. Fix a fundamental alcove a C A for the ¢-dilated dot
action of the (extended) affine Weyl group. If A € A Nais a cocharacter, we let
P, = P for the unique facet f containing A. For example when A is a regular
weight, this is the standard Iwahori subgroup I, which can also be described as
I = evy ' (B), where evy : G(O) — G is the evaluation map induced by ¢ ~ 0.



Asin [38, §1.9], a set of representatives for A/ W can be indexed by cocharacters
in the closure of the fundamental alcove. We will use this parametrization
throughout. From [38, Proposition 4.7] we have

Proposition 2.1. There is an isomorphism of ind-schemes
G = | | Flp,
NeA/W
where P is the parahoric group scheme in G((t°)) associated to \. Here the extended
affine Weyl group W' is acting by the {-dilated action on A.
Remark 2.1. Thinking of ¢ as a generator of 11, we will sometimes write G1° in

place of Gr**.

Given v € g(K), we denote by
Flp = {gP|Ad,-1v € Lie(P)}
the affine Springer fiber of «y inside Flp = G(K)/P. Similarly, we denote
i3, = {[g] € Flp,|Ad, 17 € Lie(Rad(P))},

where Rad(P) denotes the pro-unipotent radical. The latter (ind-)varieties are
generalizations of affine Springer fibers, termed “affine Spaltenstein fibers” in
[9]. Throughout this paper, we only use the underlying reduced ind-schemes
of these spaces.

Let now v = t!~!s and consider Gr”*¢ = Gr" N Gr°.
Proposition 2.2. We have an isomorphism of (ind-)varieties

Gri= || fgl. (2.1)
XeA/W

Proof. We work on closed points. Note that
Gr” = {g € Gr|Ad,-st’ € tg(O)}.
Moreover, we have that G(K)¢ = G(K,). Since the actions of ¢ and ¥ commute,

Gt = | | {g€ Flp,|Ady-17 € g(Ke) N Ad-a (t9(0))}
AEA/W,

=| |{g € Fip,|Ad;-17 € Lie(Rad(Py))} = | |57,
A A

where the second equality follows from [38, Lemma 4.3]. O

We finish this subsection by a brief discussion of the symmetries of Gr™¢. The
A = T(K)/T(O)-action on Gr” coming from the stabilizer action commutes
with ¢, so we get a A-action on Gr™¢ and this preserves the decomposition
in Proposition 2.2. On H*(Gr"¢), there is also an action of W coming from
varying s € t"°9. These assemble to a left action of W on the cohomology.
There is also another commuting right action of W on H*(Gr™°) coming from
the Springer action. As mentioned before, the left action is called the dot action;
we will call the right action the Springer action or following [12] the star action.
These actions will be denoted W- and Wx, respectively.



2.2 A dimension formula for the cohomology

In this section, we compute dim H*(Gr™°) using affine Springer theory. The
strategy is as follows. Using Proposition 2.2 we are reduced to computing each

dim H* (15 )W individually and summing over the blocks. The first part is
done using Springer theory in Proposition 2.3. For the second part, we enu-
merate the blocks with a given stabilizer using the permutation representation
of W on Q/4Q. Finally, these results are shown to combine in the desired way
in Theorem 2.7.

Let ) 1
e=— w, € = — (1) )y
|W\Z: qu:

weW weW

be the symmetrizing and antisymmetrizing idempotents for W. If W C Wisa
parabolic subgroup, we also let ey, e, denote the corresponding idempotents.

Proposition 2.3. As ungraded W -representations, for the Springer action of W,

7 (f3,)" = C[Q/(h + 1)Qe;.

Here Wy, is the stabilizer of A € A inside W.

Proof. By [10, Theorem 1.2] we have that H* (ﬂ?)w' is isomorphic to

Cl/(h+1)Q)]

as a W—representation. We note that this is the sgn-twist of DRy [18]. On

the other hand, we claim that H*(fl, W~ H *(ﬂ?)w'e;. Note that there is a
natural inclusion

i, — Fip = {g € Flp,|Ad,-1t's € Lie(P))},

and that we always (i.e. for any parahoric containing I and any regular semisim-
ple v) have a Cartesian diagram

.Fliy EEEE—— [[p/Lp}

J | -

where the right-hand column is the Grothendieck-Springer resolution for Lp,
the Levi quotient of P. Taking the fiber at 0 of the bottom map gives exactly fl},.
The cohomology of this fiber is exactly the Wy-antisymmetric part of the pull-
back of the Springer sheaf (see [19, Lemma 2.2]), so after noting that everything

commutes with the W-action, we are done. O

Recall that
a={\€ AVa € dT,0< (N a) < /(}

is the /-dilated fundamental alcove for G. We would like to compute the num-
ber of blocks ug”\ for the small quantum group for A € an X*(7T') of a given



type. By the definiton of a, there is a bijection a N X*(T) <+ Q/¢Q. The stabi-
lizer in the finite Weyl group W C W of g € Q/¢Q is by [40, Proposition 4.1] a
parabolic subgroup of W. Fixing the type alluded to above is exactly fixing the
conjugacy class of the stabilizer W C W. It follows from Proposition 2.3 that
the contribution of H* (ﬂ;’f )W to the dimension only depends on this data.
Remark 2.2. Without our assumptions on £, which for example imply £ is “very
good” in the sense of [40], the W) appearing above are in general only so called
quasi-parabolic subgroups of W. We will, however, not need them.

By [23, Theorem 7.4.2], the total number of W-orbits in Q/¢Q is

1
W [ +e, (2.2)
and the number of regular orbits is
1
7 [1—e). (2.3)

Here the numbers e; are the exponents of W. They are defined by ¢; = d; —
1 where the d; are the degrees of the homogenous generators of C[t]'". The
quantity in (2.2) merits a name and plays a significant role in so called Coxeter—
Catalan combinatorics. See for example [41].

Definition 2.4. Let m be coprime to h. We define the m/h-Coxeter-Catalan num-
ber of W to be

1
Catyw (m, h) = — | | (m + ¢e;).
Wi 11
Going back to our enumeration problem, let {1} be a set of representatives

of parabolic subgroups of W. Now, C[Q/¢Q)] is by definition a permutation
representation of W, so by orbit-stabilizer splits as

ClQ/Q] = P daIndyy, (1) ,
A

where dy ¢ € Z>o. On the other hand, by Proposition 2.2 and Proposition 2.3,
we have that

dim H*(Gr7)"" = 3" dy ¢ dim C[Q/(h + 1) Qe 2.4)
A

Definition 2.5. The {/h-rational Kreweras number of type X for G is by definition
the coefficient dy ¢ in the above decomposition. In other words, it is the number of W -
orbits in Q/LQ with a given stabilizer.

Explicit formulas for the Kreweras numbers for classical groups can be found
in [40]; in type A they are simply multinomial coefficients by [3]. There is also
a general formula in terms of hyperplane arrangements [40, Proposition 5.1].
We note that since each Ind%A (1) contributes a trivial representation of IV, the
sum of dy ¢ equals the dimension of C[Q//Q]". On the other hand, we have
the following observation, originally going back to Haiman’s work.

Proposition 2.6. The sum of the Kreweras numbers over the representatives {W} is
the £/h-Coxeter—Catalan number for W:

> d = Caty (€, D).
A

In particular, diim C[Q/¢Q] = Caty (¢, h).



The main result of this section is the following theorem, which also proves
Theorem 1.1 from the introduction.

Theorem 2.7. Assume { does not divide h or h + 1 for W. Then we have

dim H*(Gr )W = Caty (£(h + 1) — h, h).

Proof. We may interpret the summation over A on the RHS of Eq. (2.4) as fol-
lows. Each orbit of type A contributes an Ind%A (1) to the representation Q/¢Q).
On the other hand, dim C[Q/(h + 1)Q]e} is by Frobenius reciprocity

dim Homyy (Indyy, (1), C[Q/(h + 1)Q] © sgn),
SO we can write
dim H*(Gr™)"" = dim Homy (C[Q/4Q), C[Q/(h + 1)Q] © sgn).
By self-duality of W —representations and adjunction, the latter is

= dim Homyy (sgn, C[Q/(Q] ® C[Q/(h +1)Q]).

Finally, by our assumptions on ¢, the Chinese remainder theorem implies C[Q//Q]®
ClQ/(h+1)Q] = C[Q/l(h+1)Q] as W-representations. Therefore, we have that

H*(Gr")"" = dim Homy (sgn, C[Q/¢(h + 1)Q)). (2.5)
To conclude the proof, we need the following lemma.

Lemma 2.8. Let m > h be coprime to h. Then we have an isomorphism of vector
spaces

ClR/mQle” = C[Q/(m — h)Qle .

Proof. Since only the regular orbits contribute sign representations, this follows
from the relation between the number of all orbits vs. the number of regular
orbits of W in Q/mQ, given by Eq. (2.2) and Eq. (2.3). O

To finish the proof of Theorem 2.7, the RHS of Eq. (2.5) is by Lemma 2.8
ClQ/U(h +1)Qle™ = CQ/(¢(h + 1) — M)QI™Y.
The dimension of this space is Caty ((h + 1)¢ — h, h) by Proposition 2.6. O

We now give some examples of Theorem 2.7.

Example 2.3. For W of dihedral type, there are three distinct types of orbits,
which one can compute by hand or using Eqgs. (2.2)—(2.3), generalizing the
Alfano-Reiner results from [23, Section 7.5]. For example for G of type B,

)(£

we have 1 maximally singular orbit (the origin), w regular orbits, and

(L—1)(¢=5
12

¢ — 1 subregular orbits. For G of type G2, we have the origin, ) regular

orbits and ¢ — 1 subregular orbits.

From these numbers, we get the following dimension formulas. In the case of
B3 one computes

dim H* (Gr”’C)W' =25-

7(6_1)8@_3)+10-(6—1)+1,

and in the case of G one has

(£-1)(¢-5)
12

49 - +21-(0—1)+1.



Figure 2.1: The dilated fundamental alcove for B, and dominant weights in it
for £ = 7. Different colors correspond to different stabilizer types.

Remark 2.4. We remark that the above examples can be checked to match the
Hochschild cohomology computations in [24], where the dimension of the cen-
ter of the quantum group is computed in several examples using coherent tech-
niques. In particular, in [24, Sections 4 and 5] the dimension of the G"-invariant
part of the center of the small quantum group is computed for all blocks in
types Ay, Az, A3, A4, B2, G2. These dimensions match the result of Theorem
2.7, so Conjecture 1.3 is confirmed in all these cases.

3 Diagonal coinvariants

Recall that the Cartan subalgebra t C g carries an irreducible representation of
the Weyl group W. Consider the ring of diagonal coinvariants

DRy := C[t x t*]/C[t x t*].

Here, C[txt*] is naturally bigraded by giving a basis of t* bidegree (1, 0) and the
dual basis in t bidegree (0,1). By definition, C[t x t*]% is the doubly homoge-
neous ideal of diagonally invariant polynomials without constant term for W.
In [18] a further representation-theoretically significant quotient DRy, — DRy
is defined and its structure as a W-module is studied.

In particular, it is shown in loc. cit. that the dimension of DRy is (h + 1)7,
where r = rank(g), and h its Coxeter number [18, Theorem 1.4]. Moreover, as
a W —representation, DRy = sgn ® C[Q/(h+ 1)Q]. Let A € A, and W, C W be
the stabilizer of X as before. Consider the space of invariants

DR}, := DRy, = Homyy, (triv, DRy ). 3.1)

By Frobenius reciprocity, the latter is the same as HomW(IndVVgA (triv), DRw).
By Proposition 2.3,

H*(fi}, )V = C[Q/(h+1)Qley = (DRw ®sgn)e; . (3.2)

Endowing DRy ®sgn with its natural W—invariant bigrading we may try to
upgrade results from the previous section to include this bigrading.



3.1 Rational shuffle theorems and the center in type A

In this subsection, we will reinterpret the proof of Theorem 2.7 for G of type A
using the language of rational shuffle theorems [14, 35]. We hope this will give
an illuminating inroad to understanding the bigrading on the center.

When g = gl,, we have W = S,, and we write

Clz1, oy Ty Y1y -« s Yn)

DRs, = DR, = DR, = :
Sn C[$17"'7xn7y17"'7yn]4‘{v

Similarly, if Sy C S, is a Young subgroup, we write ﬁ{i for the space of
invariants in Eq. (3.1).

Let Sym, ;[X] be the ring of symmetric functions over Q(q,t) in the alphabet
X = {z1,22,...} and let V be the nabla operator of [7], diagonal in the ba-
sis of modified Macdonald polynomials. Let {ex}, {pa}, {ha}, {mr},{s:} be
the bases of elementary, power sum, complete homogeneous, monomial, and
Schur symmetric functions, and w = wx the usual involution on symmetric
functions.

Consider the Frobenius characteristic map

FrObq,t : RepZZ— (W) — KO(RepZQ—graded(W))7

graded

which takes a doubly graded representation to its class in the Grothendieck
group, where a representation in bigrading (i, j) is weighted by ¢'t/. When
W = Sy, we can and will further identify Ko(Repz2_gragea(W)) = Symy, by
sending the Specht module labeled by A to the Schur function s.

Analogously to Eq. (3.1), the bigraded dimension of ﬁ: is given by the Hall
inner product of Frobenius characters:

dimy,(DRyy) = (Froby,(Ind}¥, (triv)), Froby ; (DR ). (3.3)

Obviously, dim(ﬁ{;v) = dimq,t(DiR{,\V)q:tzl.

The g, t-Frobenius character of DRy is shown in [22] to be Frob, ;(DRy/) =
Ve,,. In this case, we also have the following more explicit statement about the

bigraded dimension of DR,, *.

Proposition 3.1. Let A € A and Wy C S,, be the stabilizer of \. Then

dimy(DR,) = (hx, Vey),

Proof. It is well known that the ungraded Frobenius character of IndVV{fA (triv)
is given by h, the homogeneous symmetric function attached to A. Therefore,
we compute using (3.3):

dimy ¢ (DR,)) = (Frobg ,(Ind, (triv)), Froby (DR,,)) = (hx, Vey,).

10



We remark that the expression Ve, can also be written as P, ;1 -1, where P, ,,
for m,n > 0 are certain elliptic Hall algebra operators as in [36], acting on the
space Sym, ;. These operators play an important role for example in rational
Catalan combinatorics [14, 3] and the point-counting on affine Springer fibers
[28]. Combinatorial expressions for P, ,,-1 are the subject of the rational shuffle
theorem of e.g. [35]. We refer to [36] for the precise definition of the operators
Py,.n and their action on Sym, ,. Unsurprisingly, these operators also provide
a convenient language to understand the appearance of the rational Catalan
numbers Cat, ((n + 1)¢ — n,n) from Theorem 2.7, which we now reprove in
this language.

Theorem 3.2. Suppose ¢ is as in the introduction, i.e. odd and n # 0, —1 mod (. We
have

dim H*(Gr)V" = Caty,((n + 1)¢ —n,n) = ﬁ ((n ; w) :

the rational ((n + 1)¢ — n, n)-Catalan number.

Proof. By [6, Proposition 1.7] and [20, §5.2], we can write the rational Kreweras
numbers as dy ¢ = (P, - 1, m))|g=t=1 Where m are the monomial symmetric
functions and P, ,, for m,n > 0 are the EHA operators from above. By Eq.
(2.4), we have

dim H*(Gr7¢) = " dy (b, Ven)|g=i=1-
AFn

By combining the two above equalities, we can use linearity of the scalar prod-
uct to get

<Z APy - 1,ma), Ve g=t=1 = (WPn - 1, Ven)[g=t=1 - (3.4)
x

Write now py/y, = (Pr,n - 1)|q=t=1. Again by [6, Proposition 1.7] and [20, §5.2],
this is simply the ungraded Frobenius characteristic of C[Q/¢Q)]. In particular,
we have the specialization p;/,, (1) = Caty(n, £).

By standard properties of the Hall inner product, the RHS of Eq. (3.4) equals
(Pe/n * (Ven)|g=t=1)(1) where x denotes the Kronecker product on symmetric
functions. Just as in the proof of Theorem 2.7, when n # 0,—1 mod /¢, the
Chinese remainder theorem implies that

ClR/MQ x Q/(n+1)Q] = C[Q/(¢(n +1))€]

as Sy-representations. In particular, by the above we have

Pe/n * (Ven)lg=t=1 = P(n+1))/n-

Since p¢(n+1))/n(1) = Cat,((n + 1)¢ — n,n), we are done. O

3.2 The bigrading and the subregular block in type A

In this subsection, we discuss the bigrading on the side of the quantum group
in the case of a subregular block and its relation to the shuffle theorem. We
then return to affine Springer fibers and upgrade Theorem 2.7 to include the
natural bigrading for G = SL,,, assuming the main conjecture from [12].

11



3.21 The subregular block

In the notations of Section 2.2, when A € A has stabilizer W, = S5, we call
A a subregular weight. In type A, this implies that the associated partition is
A = (n —1,1). In this case, Proposition 3.1 has the following explicit corollary.

Corollary 3.3. When W = S,, and A\ = (n — 1,1), we have

n—1

dim(DR,) = (b, Ve,) = Y Y ¢t

k=0 i+j=k

in particular the bigraded dimensions of DR,, can be tabulated as

1[1]-{1]1]
111}-41
11

1]

Proof. The Shuffle Theorem of [14, (1.1)] states that

Ve, = Z qarea(ﬂ)tdinv(ﬂ)xﬂ_ ’
wEPF,

where m € PF, is a parking function on n letters, and area and dinv are cer-
tain combinatorial statistics (see [14] for the definition). The monomial x, is
a monomial in the alphabet {z1,...,z,,...} associated to . Collecting all the
monomials in the S,,-orbit of a fixed 7 and using the orthogonality of the bases
{my},{h,} for the Hall inner product, we see that (h), Ve,) is a weighted
count of Dyck paths whose associated monomial is A\. For A = (n — 1,1), these
are Dyck paths differing from the one with minimal area by allowing an extra
horizontal step (compare [17], where a similar result is proved using Schroder
paths). Fixing the length of this step, we get n — length Dyck paths, each of
which has the same area. It is easy to see that they all have a different dinv
statistic. In total, we get (";“1) Dyck paths, each with distinct statistics. This
completes the proof. O

This corollary has an immediate application to the small quantum group, which
does not involve the geometry of affine Springer fibers, resolving a conjecture
of the third author and Qi [30, Conjecture 4.9(3)] at the level of bigraded vector
spaces.

Corollary 3.4. Let g¥ = sl, and let Z (uZ”\) denote the block of the center of the
small quantum group uc(g¥) with A a subregular weight. Let P, C G = SL,, be

the parabolic subgroup associated to \ and Ny ~T* (G/P) the Springer resolution.

The additional grading of the coherent sheaf of poly-vectorfields AT Ny is given by
the induced action of C* along the fibers of the Springer resolution. Then there are
isomorphisms of bigraded vector spaces

(n-2+1)7 7;] ’jgi

Z(uf )i o HY Ny, NTNy) 9 = (JTRQ)

Proof. The first isomorphism is a particular case of Theorem 4.1 which is a con-
sequence of Theorem 7 in [8]. The bigraded dimensions of the equivariant
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coherent sheaf cohomologies in the case where ) is subregular and G/ Py, ~ P*
are computed in Theorem 3.3 of [31]. They match exactly the bigraded dimen-

sions of DR, obtained in Proposition 3.3. O

This shows in particular that for G of type A and a singular block Z (uZ’A) such
that G/ P, is a projective space, the cohomology of the corresponding affine
Springer fiber is isomorphic to the whole singular block of the center. Note
that in this case, the whole block of the center of the small quantum group is
GY-invariant.

3.2.2 The positive part of the affine Springer fiber and diagonal coinvari-
ants

We now define a bigrading on H*(Gr”)"V" by applying results from [12]. We
focus on H*(FI{)"", in other words, the principal block. On the principal
block, the obtained bigrading conjecturally coincides with that of DR,,. Below,
we will use symmetric functions in two sets of variables X,Y. We also use
standard plethystic notation, such as writing f[XY] for the result of substitut-
ing pi(X) by px(X)px(Y) in the expansion of f € Sym_ , in the basis of the p,.
See the book [21] for details.

Suppose v = ts for s € t"Y as before and G = GL,,. Let Gr/; be the positive
part of the affine Grassmannian, which on C-points consists of lattices A C K"
contained in the standard lattice O™. The positive part of the affine flag variety
Flf is defined as the preimage of Gr, under the natural projection FI — Gr.

The positive part of the affine Springer fiber F1] is similarly defined to be
Fiit=Flf nFiy .

Its equivariant Borel-Moore homology HY! (FIj'") is naturally bigraded by the
connected component ' € m(Fl;) = Z and the (half of the) cohomological
grading ¢’ € Z. Moreover, this space carries two bigraded S,,-actions, one from
the Springer action and one from the monodromy as s moves in a family. We
will still call these the Springer or star action and the equivariant centralizer-
monodromy or dot action, respectively.

These positive parts were studied in [12, 13, 26], and they are closely related to
the isospectral Hilbert scheme of C? as well as Haiman’s work [22]. The main
result we will need is the following theorem, which is the £ = 1 specialization
of [12, Theorem A].

Theorem 3.5. The Frobenius character of HI (F1)'™) for the S,, x S,,-action is given
by
n XY
F HT vt =q ( 2) v T | -

roby . x,y(H, (FI§7)) =¢ wx Ve, A= =1
Remark 3.1. Compare this also to [13, Conjecture 3.7], proved in [10, Remark
7.3].
Corollary 3.6.

n XY
Frobg.e.x.v (HW(FI) = ¢~ Dy Ve, L ) t] .
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Proof. Since FIj"" is equivariantly formal, the generators of H! (pt) form a reg-
ular sequence in H! (FI7'*). Now apply [22, Lemma 3.6]. O

Next, note that the positive part of the lattice A, i.e. A* = ZI acts on FIJ'*.
As explained in [27], we have a

FIPT /AT = FIJ /A

Further, from for example the explicit description as the module called "M/ in
[12], we see
HT(F1}) = HI (FI7") ®cpa+) CIA]

as C[A]-modules.

Using the degeneration of the Cartan-Leray spectral sequence for the A* and
A-actions on Fi}'*, resp. Flj, we have

Lemma 3.7.
H.(FIJ/A) = @Tor N g, (Fip ), ©)

Suppose we wanted to kill the lattice action instead of passing to the non-
equivariant limit. Indeed, since (H.(FIy")a+)* = H*(FI"")A, the bigraded
Frobenius characters under S,, are the same. Note that the coinvariant space

is by definition H.(FI]"")x+ = Torg[Aﬂ(H* (FI3'*),C), so inherits a second
grading from H..(FIJ'").

Again by [22, Lemma 3.6]

Frobg x.y (H] (U)) = wx Ve, LXYq]
where the LHS is the bigraded Frobenius characteristic equivariant Borel-Moore
homology of a certain open fundamental domain U of the lattice action defined
in [12, Definition 6.9]. It has only even dimensional nontrivial cohomology
groups, as is implied from the formula. But interestingly, this does not mean
that it is equivariantly formal, and indeed this space will have nontrivial odd
usual Borel-Moore homology groups.

Finally, Eq. (4) of [12] implies that

3 (1) Frobg, x,y (Tory * U(H.(U), C)) = wx Ve, [XY].

i>0

The main conjecture of loc. cit. states that the Tor; groups that appear on the
left contain only those nontrivial representations x of the left S,,-action (the
dot action) for ¢ = ¢(\'), ¢ being a certain combinatorial statistic from the nabla
positivity conjecture. In particular, taking lattice invariants is the result of sub-
stituting px(Y) = 1 in e,[XY], in other words taking the trivial component
of the representation of the “dot” action. This is the same as the Tor, part,
and so by [12, Conjecture A] corresponds to tensoring out both x and y from
HT(FI{") over C[A*]®C[{] = C[x, y], without including higher derived func-
tors.

Combining the above remarks, we have
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Theorem 3.8. Suppose [12, Conjecture Al is true. Then
Frob, (H*(FI)*) = wxVe,.

In other words, the bigraded structure of the A-invariants, as an S, -representation,
coincides with the sign-twist of the diagonal coinvariants.

Similarly, we may obtain the bigraded dimensions of H*(fl, )* in this way.
Corollary 3.9. Forany A\ € A/ Wg, we have

dimg ¢ (H* (1% )*) = (Frobg(H*(FI{)*), ex = (wVepn,why) = (Ven, ex).

4 The small quantum group

In this section, we discuss further implications of Theorem 1.2 and the results of
the previous two sections to the structure of Z (uZ )G, We first cite a description
for the center of the small quantum group based on the derived equivalence of
categories between a certain category of representations of quantum groups at
roots of unity and a derived category of G x C* equivariant coherent sheaves
over the Springer resolution (see [2], [8]). For A € A, let uZ’/\ denote the block

corresponding to the W-orbit of X as before. The following result is shown in
[31]:

Theorem 4.1. Let Py C GV be the parabolic subgroup associated to \ and Ny ~
T*(GY /PY) the corresponding partial Springer resolution. There is an isomorphism
of algebras
Zw!* ~ € H(Nr,NTNy.
i+j+k=0
Here A®TN,, is the coherent sheaf of poly-vectorfields, which has an induced action of
C* coming from dilating the fibers of the Springer resolution.

We will use this result to discuss some interesting previously known compo-
nents of the center of the small quantum group and identify them in the frame-
work of the affine Grassmannian model for the center. For later use, we denote
7 € H°(Ny, A*T'N,)~2 to be the canonical Poisson bivector field.

4.1 The Harish-Chandra center, the Higman ideal and the Ver-
linde quotient

The center Z(u)) contains several interesting subalgebras. In this subsection,
we define some of these and give some indications of their geometric mean-
ing. We define two commutative subalgebras of the dual small quantum group

(uf)* by
c={fe @) | fab) = f(ba) Va,beu!},

a={f € W) | flab) = f(bS*(a)) Va,beul},

where S is the antipode.
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For any ug—module M, its character defined as x/(z) = trys(x) for x € uZ is
an element in c. The complexification of the Grothendieck ring Ko ((u¢) —mod)
is a subalgebra in c:

r(uf) = Ko((u}) —mod) ®z C C .

The characters of the projective u/-modules form an ideal in 7(u!) with respect
to the multiplication induced from the tensor product of the representations.
We define the ideal

p(uw!) = {xp | Pis projective} C r(u}).

Following [1] we can define a larger ideal spanned by the characters of negli-
gible tilting modules, spanned by the characters of those direct summands of
tensor products of simple u/-modules with highest weight in the closure of the
first dominant alcove a that have zero quantum dimension:

q(ud) = {x [ trv(Ksp) = 0} C r(u),
where p is half the sum of the positive roots of g¥. It is known that
p(ud) € q(uf) Cr(uf),

and the quotient
v(ud) =r(ud)/qu)

is a semisimple commutative algebra.

Recall that u! is a quasitriangular Hopf algebra with the invertible element
R =3 R ® Ry € u/ ®u! such that u = 3~ S(Ry) R, is invertible and has the
property S*(z) = uzu~' for any 2 € uf. We can define the isomorphism of
commutative algebras

s c(wl) = a),  w(f)=flu-).

Then we set

r(ul) = pu(r(ud)), @) =mlam), piul) = mp)).

Recall from [16] that the map
Jiaw) = ZW), J:f—=m(foS ! ®@id)(RaRi2)

defines an isomorphism from the space of the left-shifted tracelike function-
als ¢; to the center of u/. Here m denotes the multiplication u/ ® u! — u/.
Restricted to ry, it is an injective algebra homomorphism.

Definition 4.2. The Harish-Chandra center Zy is the subalgebra in the center Z (ug)
defined by
ZHC = J(rl(uZ))

Since the Harish-Chandra center descends from the center of the divided pow-
ers quantum group, it lies in the G¥-invariant part of the center of u (see [32]).

Definition 4.3. The Higman ideal in the center Z(u() is defined by

Zitg = T(pu(?).
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Remark 4.1. A more conventional definition of the Higman ideal in the center
of a finite dimensional Hopf algebra is the following. Recall that u! is a uni-
modular Hopf algebra, meaning that it contains a two-sided integral v € Z(u)
that is unique up to rescaling and such that vz = ¢(z)v and zv = ¢(z)v for any
T € ug, where ¢ : uZ — C is the counit. The Hopf algebra uY is a left module
over itself with respect to the Hopf adjoint action adh(x) = 3 h12:S(h2) for any
h,x € u. Then the Higman ideal is defined as

ZHig = adl/(uz/ ) .

The equivalence of the two definitions in the case of the small quantum group
is shown in [32].

By analogy with the Verlinde algebra arising from the fusion category coming
from the representation theory of quantum groups at roots of unity, we also
define the semisimple Verlinde quotient of the center.

Definition 4.4. Let

Zneg = J(qu(uf)
be the ideal spanned by the images by J of the characters of uf-modules with zero
quantum dimension. The Verlinde quotient of the center Z (uZ) is defined by

Ver = Zwc /[ Zneg-

We have y
ZHig C Zneg C Zuyc C Z(uZ)G .

Proposition 4.5. Suppose that { is very good. We have

dim Zc = 650 dim Zy, = Catw (£, h), dim Ver = Catyy (€ — h, h).

Proof. The dimension of the Harish-Chandra center equals to the number of
inequivalent simple u/-modules, which are classified by the elements of the
l-restricted weight lattice by Lusztig’s tensor product theorem [33]. The di-
mension of the Higman ideal equals to the total number of blocks of u! as
computed in [32]. The dimension of Ver equals to the number of regular blocks
of uf, which follows from the characterization of the negligeable tilting mod-
ules given in [1]. The number of total and regular blocks equals to the number
of total and regular orbits of I in the ¢-restricted weight lattice and is given in
equations (2.2) and (2.3) respectively, expressed in terms of the rational Catalan
numbers. O

Next we will describe the block decomposition of these subspaces in the center.

Proposition 4.6. (a) Let C}y* = C[{]">/ C[t]%¥ denote the (partial) coinvariant
algebra associated to the stabilizer subgroup Wy C W. Then there is an isomor-
phism of algebras

Zhe = Znc N Z(ul?) ~ Oy,

In particular, Z3 has the dimension dim Zj, = [W : Wy].

(b) We have
Zf-\ng = Znig N Z(uz/”\) Y AnnRad(C"‘,’VV*).

In particular, dim Zp;, = 1 for all \.
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(c) We have

C)‘/RadC’VV“,/*, A regular

Ver* = Ver N Z(u!") ~ :
o o (uc ) 0, otherwise.

The dimension of Ver™ is one if A is reqular and zero otherwise.

Proof.  (a) The algebraic structure of the Harish-Chandra center blocks was
computed in [11] to be isomorphic to the coinvariant algebra C’va*, which
carries a natural action of W and has dimension [W : W,].

(b) Since Zmuig annihilates the radical of Z (uZ), and C"I//VVA is a local Frobenius
algebra for each A, we have that Zﬁig spans the one-dimensional annihi-
lator of the radical of Cyj*. In particular, dim Zj);, = 1.

(c) Following the description of the characters of the negligible modules in
[1], we conclude that they span the radical (of codimension 1) of each
regular block in the algebra r;(u/). All characters of modules in singu-
lar blocks come from the negligible modules. Using the algebra isomor-
phism J : (uZ) ~ Zyc that maps ¢ (uZ) — Zneg allows us to conclude.

O

We want to understand the place of Zyc, Zuig and Ver inside the new model
for the center of the small quantum group that comes from the isomorphism of

algebras
Z ()G o =~ H*( Gr W @d”H (fip,)

geom —
Wil

It was remarked in [8] that the Harish-Chandra center Zj}o C Z (uZ"A) can
be identified in the framework of Theorem 4.1 with the canonically defined
subalgebra corresponding to the cohomology of the (partial) flag variety. Let

Ny ~T*(GY/PyY)and d = dim¢(GY/PY). Then
Zjo =~ ®o<icaH' (Nx, NTNY) "2 ~ H*(GY/PY) ~ CI>.

Since Zf-\ng and Ver” are respectively the socle and the head of the ring O} *, we
have (see also [32]):

Z?Iig ~ Hd(]v,\, /\dTN)\)_2d ~ C.
For a regular weight A

Ver)‘ ~ HO(N)\,/\OTNA)O ~ C.

Now consider the affine Sprmger fiber model. Each component I}, contains
a (partial) flag subvariety X, = G/P,, where P, is a parabolic subalgebra
with the parabolic roots fixed by the stabilizer subgroup in W of the weight
A € A. Then the algebra H*(flp )W' contains a well defined subalgebra H* (X )
isomorphic to Cjy*, which can be idetified with Z}}. The Higman ideal is then
spanned by the socles of all blocks Cyi*, and the Verlinde quotient is spanned
by the heads of the regular blocks.
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Recall the isomorphism (3.2) of W-representations for the Springer action of W
on the left hand side

H*(fij, )V = (DRw ®sgn)e;, ,

that comes from Proposition 2.3. Then Z} C (DRw ®sgn)e) isa W-submodule
isomorphic to (Cw ® sgn)e, . Here Zy;, is the subspace of the sign isotypical
component in each block (Cy ®@sgn)e C (DRy ®sgn)e; , and Ver is the trivial
isotypical component of (Cy ® sgn)e, for regular .

Zniig ™ @ dx ¢ sgn C Zuc =~ @ dxre (Cw ®sgn)e, .
[Wi] W]

Similarly we have

Ver ~ @ dyp triv C Zpc ~ @ dxe (Cw ®sgn)e; .
[W], A regular [Wi]

In particular, dimZg;; = Caty (¢, h) is the number of orbits of the action of the
extended affine Weyl group in the weight lattice, and dimVer = Catw (¢ — h, h)
is the number of the regular orbits. Note that Zy;, is exactly the isotypical com-

ponent of the sign representation in H*(fl}, )" with respect to the Springer
action.

5 Spectral curves and the parabolic Hitchin fibra-
tion

As is by now well-known, the cohomology of affine Springer fibers can be real-
ized in the cohomology of Hitchin fibers [37]. The cohomology of Hitchin fibers
carries a natural perverse filtration, which can be used to obtain a bigrading on
the space H*(FI])V" =~ H*(FI])* for G = GL,, which corresponds to the
principal block of the center under Conjecture 1.3. In this section, we make
this connection precise and conjecture that the obtained bigrading is that of the
diagonal coinvariants up to a linear regrading. We note that by [27, Conjec-
ture 8.10], Conjecture 5.5 is equivalent to Theorem 3.8, so that the bigradings
obtained in the two ways should be equivalent.

There are several desirable features in obtaining the bigrading through the per-
verse filtration. For example, there is a natural Lefschetz element acting on
the cohomology, coming from the relatively ample determinant bundle on the
parabolic Hitchin fibration. We conjecture that the sl;-action on the center ob-
tained this way coincides with the one given by the wedge product with the
Poisson bivector field 7 on the Springer resolution.

5.1 The parabolic Hitchin fibration

First, we want to construct a particular compactification of the singular curve
givenby 2" +y" =0 C C?, inside a Hirzebruch surface. Most importantly, this
compactification will be irreducible, i.e. a spectral curve for the anisotropic
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locus of the Hitchin fibration, and have only an isolated singular point which
is an ordinary n-uple point.

Let X, = P(Op: (1) & Op1 ) be the r-th Hirzebruch surface. The Picard group of
¥, is generated by the zero section E, and the class of a fiber F', with intersec-
tion form determined by F? = 0, E?> = —rand E,.F = 1.

Recall that there is a birational map from >, to ¥,;, called an “elementary
transform” (see [4, Chapter 3]), constructed as follows. We choose some fiber
F, and consider the surface ¥/, the blow-up of ¥, at p := F N E,.. Let F', E.
the strict transforms of F, E, and E be the exceptional divisor of this blow-up.
Then we have
0=F?=(F +E)?=(F)?4+2-1,

hence F' is a (—1)-curve and can be contracted, the resulting surface being
Y,+1. See Figure 5.1 for the toric picture, where the red line is the contracted
curve.

Figure 5.1: The toric blow-up and contraction giving a birational map %, —
I

Now we can prove :

Lemma 5.1. Forall n > 0, there is a curve C C X5 such that C is irreducible, has a
unique singular point, with singularity type ™ + y™ = 0.

Proof. Let Cy C P? be a smooth curve of degree n, and ¥; be the blow-up of
P? at a point a ¢ Cy. We denote by C; the strict transform of Cy. Consider a
generic fiber Fjy and the corresponding elementary transform.

The strict transform C” of (4 inside ¥} is isomorphic to C;. Denote by C' the
image of C’ under the contraction of F’. Since F' N C; is given by n points,
we see that C is analytically isomorphic to C>; where n points have been glued
transversally together, resulting in an ordinary n-uple point ¢. It’s clear that
C\{q} is smooth. Since C\{q} is connected, C'is irreducible. O

Remark 5.1. Since Cs is the normalization of C, the geometric genus of C is
gy = (";"). Since the blowdown introduces (%) nodes to C’, the arithmetic

genusis g, = gy + (5) = (n — 1)

Definition 5.2. Let X/C be a smooth projective curve, G a split reductive group, and
L a line bundle on X with deg £ > gx. The Hitchin moduli stack is the functor

M : Sche — Grpd
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sending
S — {(E,)|Eisa G — torsor over S x X,p € H'(Ad(E) ® L)}.

Definition 5.3. Let X, G, L be as above. The parabolic Hitchin moduli stack is the
functor
M : Sche — Grpd

sending

S—={(E,¢,z,E)|(E,¢) € M,z € X,E, isa B — reduction along I'(x) of E'}.

Let D be a divisor so that O(D) = L. The Hitchin moduli stack can be inter-
preted as classifying sections

a:X — O(D) x® [g/a],
(see [37, Lemme 2.4]).

Definition 5.4. The morphism

M— A= éHO(X, O(d; D))

i=1

sending a section a to its image in O(D) x®m Sym(t*)W is called the Hitchin fibra-
tion. The base A is called the Hitchin base. The composition

Mo MxX 5 AxX

is called the parabolic Hitchin fibration.

Let now G = SL, and £ be a line bundle of degree > 0 on P'. By the BNR
correspondence [5], we may realize the curve C from Lemma 5.1, or rather its
intersection with Tot(O(2)) as a spectral curve {det(z—¢) = 0} for the Hitchin
fibration

M- A

associated to the data of P!, G, L. Let a € A be such that C is the associated
spectral curve. Note that we in fact have a € A" C AY, the locus where the

spectral curves are irreducible, resp. reduced (we will not need a more general
definition of A*™ or A" here, for that see [37, § 6.1]).

The relationship to the affine Springer fibers considered in this paper is as
follows. The curve C may be chosen so that the unique singularity is over
0 € X. Its local form corresponds to v = ts € g(K) as before, for s =
diag(1, p, ..., p" 1) where pis a primitive n:th root of unity. Let (a,0) € A% x X.
Then [42, Proposition 2.4.1] says that

Po xTVD FIY 5 M, (5.1)

is a homeomorphism of stacks.

Here P, is the generalized Picard stack, P;¢?(J,) the reduced quotient of the
local Picard stack at 0. Modding out by P,, the left-hand side of Eq. (5.1)
simplifies to F1y /Pj¢(.J,). By taking v = st for s € t"°9 as above, it is easy to
compute by hand in this case that Py(J,) = T(C) x A where T is the diagonal
torus in GL,, and A = X*(T') = Z" is the lattice part of the centralizer.
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Modifying the proof of [37, Proposition 4.13.1] slightly, we can write the fol-
lowing variant of Eq. (5.1):

Ma/P = FIj A (5.2)
where P? is the Picard group of the normalization of C' as in [37, 4.7.3].

The upshot of this analysis is that we may define the perverse filtration on H*(Fij /A).
Namely, if 7 : M — M x {0} — A*™ denotes the restriction of the parabolic
Hitchin fibration to the locus of irreducible spectral curves and with the parabolic
reduction at 0 € X, 7,.C acquires a filtration from the ¢-structure on the base as

P :=im(Pr<;m,.C — Pr<jp1m,.C).

Restricting to the stalk at a, we get a filtration P<; on H* (Mo/P) = H*(F 7/A).
By results of Maulik—Yun [34] this filtration is independent of the choice of de-
formation of C used here (we only require the total space to be smooth and a
codimension estimate on the base, handled in this case by [37]). See also [34,
Section 3.1.3].

Based on [27, Conjecture 8.10] and results of the previous section, we make the
following conjecture.

Conjecture 5.5. For

DR, = gl H¥(FI])™ . (5.3)

3 3

Proposition 5.6. The conjecture 5.5 is true for G = SLo.

Proof. In this case, the two vector spaces are equal to C3, hence we just need to
check that the gradings agree. The affine Springer fiber I can be identified
with an infinite chains of P!, and the lattice action is obtained by translation by
2 ([43]). Hence the quotient X, = FI] /A is isomorphic to an elliptic curve with
a singularity of type I, (i.e two P! glued transversally twice). By the discussion
before, this curve also appears as a spectral curve inside a cotangent bundle of
P!, hence its compactified Jacobian is a Hitchin fiber inside the corresponding
Hitchin fibration. Since X has arithmetic genus 1, it is isomorphic to its own
compactified Jacobian. It follows by versality of the Hitchin map in this case
that the restriction of this fibration to a generic line is simply a smoothing of
Xo,say f: X - L =C. Let L* = L\{0}. By the decomposition theorem, we
have
[Cx =CpoCr[-2] @ Co[-2] @ Z[-1],

where .Z is the rank 2 local system on L* given by the matrix <(1) %) The

pure part is given by C; & C; [—2] & Cy[—2]. The perverse degrees are —2,0, 2.
Up to renormalisation, this agrees with the diagonal coinvariants. O

5.2 The Lefschetz element

Let L4e: be the determinant line bundle on M. The iterated cup product by
¢1(Lget) induces a map

Ucy (Ldet)g,,,—i : pHdim A”m@ N pHdim A+2g,1—iﬂ_*(c ,
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and therefore maps
Uct (Laer) : gr? H*(FIJ JA) — gr” H*(FI] /A)

of bidegrees (a,b) = (2,2), where a is the cohomological degree and b is the
perverse degree.

We will now prove that ¢; (L4e:) coincides with a certain polynomial in the ring
of diagonal coinvariants, under Conjecture 5.5. On the other hand, under the
bigraded isomorphism of the principal block of the center Z(u{) with sheaf
cohomology groups of the Springer resolution, we can hope that ¢; (£4e:) coin-
cides with the Poisson bivector field on the Springer resolution as explained in
more detail in Conjecture 5.8.

Theorem 5.7. Under the identification Eq. (5.3), the element c1(Lger) € gr? H* (FI7 )™
corresponds up to a nonzero scalar to the "Haiman determinant” A(,_y 1) € DR,
given by

A(n—l,l) = det(yz[’)j‘r;]j)lfiyjfn ’
where (p1,41), - -, (Pn, qn) is any ordering of (0,0),(0,1),...,(0,n — 1),(1,0) €
Z2>()'

Proof. Since the relevant subspace in grading (n — 1,n — 1) is 1-dimensional,
contains A(,,_q,1y and ¢;(Lge¢) is nonzero, we are done. O

Finally, note that by the Jacobson-Morozov theorem, the nilpotent action of
e = Uci(Lger) extends to an sly-triple (e, f,h) acting on gr” H*(FI{/A). By
[34, Conjecture 2.17] the Jacobson-Morozov filtration induced by ¢;(Lge:) on
H*(FI{/A) is opposite to the perverse filtration. It is clear that the Jacobson—
Morozov filtration induced by A(,,_; 1) on the diagonal coinvariants induces
the filtration by antidiagonals. Combining Theorem 4.1 and Conjecture 1.3, we
also have the following conjecture.

Conjecture 5.8. There is a bigraded algebra isomorphism
DiyjhmoH (N, NTN)F = H*(FIj)*
where the bigrading on the right is the one defined in in Theorem 3.8. Alternatively,
PirjrhmoH (N, NTN)* = gr? H*(FIT)N .
Moreover, the element T corresponding to the Poisson bivector field on the left should

correspond up to a scalar to the polynomial A, 1y introduced in Theorem 5.7, or in
the second version equivalently to c1(Lget).

In particular, combined with Theorem 3.8 this Conjecture would imply [30,
Conjecture 4.9(3)].

5.3 A degeneration of spectral curves

In this section, we will geometrically construct a degeneration of spectral curves,
including a map between the cohomologies of two affine Springer fibers in
type A. The first of these cohomology groups is also conjecturally isomorphic
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to the double coinvariants by [15, 27], and the other is the principal block of
H*(Gr"*)W", hence conjecturally equal to the G'V-invariant part of the center.

We will study the elliptic homogeneous affine Springer fibers of slope (n+1)/n
associated to the elements v,, .1/, = u"t1, where

o =
— O o O

o O O

0

o

In particular, we study these affine Springer fibers in relation to FIj, where
7 = ts as in the previous section. In particular, we will construct a a family of
irreducible spectral curves Cy C Tot(Op:(2)), such that the associated family
of parabolic Hitchin fibers models the degeneration of affine Springer fibers
of slope n/n to the one of slope (n + 1)/n. One can then ask whether the
specialization map from the cohomology of the total family (which is just that
of the central fiber) gives an injection to the cohomology of the special fiber,
respecting the perverse filtration.

Theorem 5.9. There exists a family of irreducible curves C — A, arising as a re-
striction of the Hitchin system to a line on the Hitchin base, so that the spectral curve
Cy, t € Al will have two singular points: one singular point with equation y™ = 2"~
independently of t, and another singular point of the form y™ = tz" + z" 1.

Proof. We construct the family of spectral curves realizing this degeneration
as follows: let E C 3; be the exceptional section inside the first Hirzebruch
surface, and F' C ¥; some fiber, which we will call “the fiber at infinity”. Let
U = Z;\(F U F). Take coordinates z,y on U such that the straight lines z =
constant are the fibers of the projection U C ¥; — P!. Let us consider the curve
C,cU given by the equation y™ = t + z. The effect of a positive elementary
transform ¢ : ¥, --» ¥, is given by the change of variables v = y/z,v = x.

Hence the strict transforms of C, (inside ¢(U)) have local equation given by
u™ = tv" + ", giving the desired degeneration. Now let us describe the
singular point at infinity (i.e compute the closure of these curves inside ),
and prove that C; is irreducible for all ¢ € Al.

First, we claim that the closure of @ doesn’t intersect E. Indeed, recall that X3¢
is the blow-up of P? at a point. Hence, it’s enough to take the closure of the
preimage of C; inside P? (call this curve C;) and check that C; doesn’t intersect
the center of the blow-up. On U, we have coordinates z, y, that form a dense
open of P? (recall that U and E are disjoint by definition). Because U = A?,
we can take homogeneous coordinates [z : y : z] on P2. The fiber at infinity is
givenby z = 0 and U is given by z = 1. The fiber = 0 and z = 0 both contains
the center of the blow-up which is therefore [0 : 1 : 0].

The closure of C; has equation y" = t2" + x2"~!, which clearly doesn’t con-
tain [0 : 1 : 0]. Since the elementary transforms are isomorphism outside the
exceptional locus, it follows that the closure of C; coincide with the closure of
C; inside P?, i.e the curve with equation y™ = t2" + 22"~'. The only point at
infinity is [1 : 0 : 0], and has local equation y" = tz" + z"~! as claimed. To
check that C} is irreducible, it’s enough to check that C; is irreducible on the
chart z # 0. On this chart, C; is isomorphic to the curve given by y" = 2" 1,
which is irreducible. O
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Consider the associated family of parabolic Hitchin fibers, which is a restriction
of the family in Definition 5.4 to a line. Using Eq. (5.1), we note that the only
affine Springer fibers contributing to the cohomology are the ones coming from
the singularities described above. We will ignore the one which is constant,
for there is an injective map in cohomology sending the cohomology classes
a € H*(FlJ/A,) of interest to

a®1e H (FII/A,) © H (FI" V") = H*(M,)

where 7) is either « or 7,1/, depending on .

Remark 5.2. If t # 0, note that y™ = ta™ + 2" is locally isomorphic to the
singularity y" + 2" = 0.

In particular, by Theorem 5.9, we get a pullback map i* : H*(FI{""/") —
H*(FI{/A), coming from the inclusion i : C; — C of a fiber with ¢ # 0 into the
family C.

Remark 5.3. The perverse filtration on both the source and the target of ¢* is
defined using the perverse filtration on the full Hitchin fibration. However, it
is unclear how the perverse filtration defined in the full family compares with
that induced by the ¢-structure on A, as the pullback along the inclusion to the
base is, in general, only right t-exact.

We end the paper with the following conjecture.

Conjecture 5.10. The map i* is injective and its image is exactly H*(FI])*. More-
over, since the map respects the perverse filtrations, we have an isomorphism of bi-
graded vector spaces

gr” H*(FI)* = geP H* (FI" ).

Note that together with Conjecture 5.5 and the results of [15], this is compatible with
Theorem 3.8.
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