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Preface

These notes are from a course in Combinatorics at Aalto University taught
during the first quarter of the school year 14-15. The intended structure is five
separate chapters on topics that are fairly independent. The choice of topics could
have been done in many other ways, and we don’t claim the included ones to be
in any way more important than others. There is another course on combinatorics
at Aalto, towards computer science. Hence, we have selected topics that go more
towards pure mathematics, to reduce the overlap. A particular feature about all of
the topics is that there are active and interesting research going on in them, and
some of the theorems we present are not usually mentioned at the undergraduate
level.

We should end with a warning: These are lecture notes. There are surely many
errors and lack of references, but we have tried to eliminate these. Please ask if
there is any incoherence, and feel free to point out outright errors. References to
better and more comprehensive texts are given in the course of the text.

ix





CHAPTER 1

Posets

Definition 1.1. A poset (or partially ordered set) is a set P with a binary relation
≤⊆ P × P that is

(i) reflexive: p ≤ p for all p ∈ P ;
(ii) antisymmetric: if p ≤ q and q ≤ p, then p = q;

(iii) transitive: if p ≤ q and q ≤ r, then p ≤ r

Definition 1.2. We say the elements p, q ∈ P are comparable, if p ≤ q or q ≤ p.
Otherwise p and q are incomparable, denoted x||y. An element p ∈ P is larger than
q, denoted p > q, if p ≥ q (ie. q ≤ p) and p 6= q. The element p covers r, denoted
p � r, if p > r and there does not exist q such that p > q > r.

Definition 1.3. A Hasse diagram is a picture of a poset with the elements repre-
sented by dots and covering relations represented by lines such that larger elements
are drawn above the smaller ones.

Example 1.1. Hasse diagrams for the integers from 2 to 5 in increasing order, and
the subsets of {a, b, c} ordered by inclusion, as shown in Figure 1.

Definition 1.4. A poset map φ : P → Q is a map of sets (by abuse of notation the
posets and corresponding sets are identified with the same letter) P → Q satisfying
φ(p) ≥ φ(q) in Q if p ≥ q in P .

Definition 1.5. A poset map is called bijective resp. injective resp. surjective
if the corresponding map of sets is bijective resp. injective resp. surjective. Two
posets are called isomorphic, if there exist bijective poset maps (isomorphisms)
φ, ψ between them that are inverses of each other.

5

4

3

2

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Figure 1. Hasse diagrams of 2 < 3 < 4 < 5 and B3.
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2 1. POSETS

Definition 1.6. If P is a poset and Q is a subset of P , then Q becomes a subposet
of P by inheriting all relations from P between elements in Q.

Proposition 1.1. A subposet is a poset.

Proof. It is an easy exercise that by inheritance, the reflexivity, antisymmetry
and transitivity of the induced order ≤ are satisfied. �

Definition 1.7. Let p, q ∈ P . If there exists a well-defined least upper bound for
p and q, then it is called the join of p and q, and is denoted by p∨ q. If there exists
a well-defined greatest lower bound of p and q, it is called the meet of p and q, and
is denoted by p ∧ q.
Definition 1.8. If both the join and meet exists for all p, q ∈ L, then L is called
a lattice.

Proposition 1.2. Let S be a set and P the poset of all subsets of S ordered by
inclusion. Then P is a lattice.

Proof. We have p ∧ q = p ∩ q and p ∨ q = p ∪ q. �

Definition 1.9. Any poset isomorphic to one constructed as in Proposition 1.2 is
called a boolean lattice.

Definition 1.10. A sequence p1 < p2 < · · · < pk of elements in a poset is called a
chain of length k. It is saturated if each < is a covering relation.

Definition 1.11. A poset is called bounded if the lengths chains are bounded.

Definition 1.12. A unique maximal element of a poset is denoted 1̂ and a unique
minimal element is denoted 0̂. Adjoining them to a poset P yields a new poset P̂ .

Proposition 1.3. Every bounded lattice L has a 0̂ and a 1̂.

Proof. Take a chain p1 < · · · < pl of maximal length in L. Suppose pl 6= 1̂.
Then there is another maximal element p′ in L, with pl < pl ∨ p′, hence l cannot
be the maximal length, a contradiction. �

Example 1.2. The positive integers ordered by divisibility (that is, i ≤ j if and
only if i|j) form a lattice, with join and meet given by the least common multiple
and greatest common divisor, respectively.

Definition 1.13. Let G be a group and L = L(G) be the set of subgroups of G
ordered by inclusion. Then L is a lattice with H1 ∧H2 = H1 ∩H2 and H1 ∨H2 =
〈H1, H2〉. This is called the subgroup lattice of G.

Definition 1.14. A subposet of a lattice that is also a lattice is called a sublattice.

Example 1.3. The normal subgroups N(G) form a sublattice of L(G).

Example 1.4. The symmetry group of a hexagon is the dihedral group on 12
elements, and denoted by D12. With generators and relations, it can be expressed
as 〈r, f |r6 = f2 = e, f−1rf = r−1〉. The subgroup lattice and the generators are
given in Figure 2.

Definition 1.15. Let L,M be lattices and φ : L→M a poset map. If φ(a ∧ b) =
φ(a) ∧ φ(b) and φ(a ∨ b) = φ(a) ∨ φ(b), then φ is called a lattice homomorphism. If

both L and M have 0̂ and 1̂, and in addition we have φ(0̂) = 0̂, φ(1̂) = 1̂, then φ is

called a 0̂1̂–lattice homomorphism.
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〈r3, f〉 〈r3, fr2〉 〈r2, fr〉
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〈f〉 〈fr4〉 〈fr2〉 〈r3〉 〈fr5〉 〈fr3〉 〈fr〉

〈e〉

Figure 2. The generators and subgroup lattice of D12.

Example 1.5. Consider the subgroup 〈f〉 ⊆ D12 (cf. Example 1.4). Then there
is a poset map L(D12) → L(〈f〉) given by φ(H) = H ∩ 〈f〉, and which is a lattice
homomorphism.

Definition 1.16. A poset map g : P → Z satisfying p � q ⇒ g(p) � g(q) is a
grading of P , and P is called graded.

Example 1.6. All posets are not graded, as Figure 3 shows.

Figure 3. A non-graded poset.

Example 1.7. There is a grading of the divisibility lattice of positive integers by
g(
∏
i p
ei
i ) =

∑
i ei. Consider 1, 2, 3, 6 to see that g is not a lattice homomorphism.

Example 1.8. Let O be the sublattice of odd integers in the divisibility lattice
of positive integers. Then the poset map that drops all factors of two is a lattice
homomorphism.

Definition 1.17. A subset of a poset consisting of mutually incomparable elements
is called an anti-chain.

Example 1.9. The integers 6, 49, 55 form an anti-chain in the divisibility lattice.
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Definition 1.18. A subset I of a poset P is called a lower ideal in P if p ≤ q ∈
I ⇒ p ∈ I. The transitive closure or lower ideal generated by a subset of a poset is
the smallest lower ideal containing it.

Definition 1.19. The set of lower ideals of a poset is denoted J(P ). It has a
natural poset structure given by the inclusion order.

Proposition 1.4. The poset of lower ideals is a lattice.

Proof. As in the boolean lattice case, join is union and meet is intersection.
�

Remark 1.1. A lower ideal is also a poset.

Example 1.10. Simplicial complexes are basic building blocks in topology. In
Figure 4, the lower ideal on the left would, by a topologist, be represented by the
simplicial complex on the right.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3} {4}

{3, 4}

∅

2

1 3 4

Figure 4. A poset and the corresponding simplicial complex.

Proposition 1.5. There is a bijection between the anti-chains and the lower ideals
of a bounded poset.

Proof. We can get a lower ideal from an anti-chain by taking the transitive
closure. On the other hand, selecting the maximal elements in a lower ideal gives
an anti-chain. It is left as an exercise for the reader to verify these operations are
well-defined and inverses of each other. �

Example 1.11. Consider the poset of lower ideals J(P ) for the poset P in Figure 5.
Labeling the lower ideals as in Figure 6, and so on, gives the poset of lower ideals
in Figure 7.

Definition 1.20. A lattice D is called distributive if p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r)
for all p, q, r ∈ D.

Proposition 1.6. In Definition 1.20, it is equivalent to require

p ∨ (q ∧ r) = (p ∨ q) ∧ (p ∨ r).
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b d

a c

Figure 5. The poset P .

b d

a c
acd

b d

a c
abc

b d

a c

· · ·

ac

Figure 6. Some of the lower ideals of P .

abcd

acd abc

ac ab

c a

∅

Figure 7. The poset of lower ideals of P .

Proof. Assume p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r). Then

(p ∨ q) ∧ (p ∨ r) = ((p ∨ q) ∧ p) ∨ ((p ∨ q) ∧ r) = p ∨ ((p ∨ q) ∧ r) =

p ∨ ((q ∧ r) ∨ (q ∧ r)) = (p ∨ (p ∧ q)) ∨ (q ∧ r) = p ∨ (q ∧ r).
The converse is similar. �

Proposition 1.7. For any poset P the lattice J(P ) is distributive.

Proof. Since the join is union and the meet is intersection, the proposition
follows from basic distributivity of these in set theory. �

Remark 1.2. Many interesting sets in combinatorics form distributive lattices if
the order is given the ”right” way, which in turn often makes analysis easier.

Example 1.12. The north/east paths in a rectangle form a lattice structure as in

Figure 8. The lattice here is isomorphic to J
( )

.
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Figure 8. The lattice of N-E paths.

Figure 9. A subdivision of the rectangle into ”diamonds”.

Example 1.13. There is a distributive lattice structure to subdivisions of hexagons

as shown in Figure 9. This lattice is isomorphic to J
( )

.

Remark 1.3. The large scale behaviour of patterns like this are strongly related to
random matrix theory and physics. Andrei Okounkov got his 2006 Fields medal in
part for studying how big patterns have a ”frozen” and a ”liquid” region, as hinted
by Figure 10, generated by David Wilson.

Theorem 1.1 (The Fundamental Theorem of Finite Distributive Lattices). Any
finite distributive lattice can be represented as L ∼= J(P ) for some poset P .
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Figure 10. Solid and liquid regions in a random tiling.

Proof. We will sketch a proof after introducing a few concepts. �

Definition 1.21. A lower ideal I ∈ J(P ) is called principal if it is of the form

{p ∈ P |p ≤ q}

for some q. Note that there is a copy of P in J(P ) given by the principal lower
ideals.

Definition 1.22. An element p of a poset is called join-irreducible if p = q ∨ r
forces p = q or p = r.

Remark 1.4. In J(P ), the principal and join-irreducible elements coincide. To
find a P with L ∼= J(P ), one takes the join-irreducible elements of L and creates
P . Elementary further considerations confirm that this gives the representation of
L.

Remark 1.5. We have already seen lattices coming from groups. The following is
a classical result by Ore [O].
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Theorem 1.2. The lattice of subgroups of G is distributive if and only if G is
locally cyclic.

Definition 1.23. A group G is locally cyclic if every finitely generated subgroup
is cyclic.

Remark 1.6. In particular, the finite locally cyclic groups are the cyclic groups.
The rational numbers equipped with addition form an infinite locally cyclic group.
By only considering the lattice of normal subgroups of G, we often find distributive
behaviour, however not always. In the other direction, we have the following result
by Silcock [Si].

Theorem 1.3. Every finite distributive lattice is isomorphic to the lattice of normal
subgroups of a group.

Definition 1.24. An injective poset map t : P → R (here R is taken with its usual
linear order) is called a total ordering of P .

Proposition 1.8. For any finite poset P there is a total ordering t : P → {1 <
2 < · · · < |P |}.

Proof. Induction on |P |. As a base case, this is clear for ∅ with the trivial
order. Assume then the proposition holds for all cardinalities up to |P | − 1. Take
a maximal element p in P and set t(p) = |P |. By induction, pick a total ordering
on P − p. Clearly T is a total ordering of P . �

Remark 1.7. Most of the time we simply relabel the elements of P by 1 < 2 <
. . . < |P |, instead of carrying the map t around.

Definition 1.25. The incidence matrix MP of P has rows and columns indexed
by P and

MP (x, y) =

{
1 x ≤ y,
0 x 6≤ y.

Definition 1.26. The incidence algebra of a poset P and over a field k (that shall
in our case be the field C)

I(P ; k) =
⊕
x≤y

k

is spanned by the basis ex≤y. We define a multiplication for f =
∑
fx≤yex≤y, g =∑

gx≤yex≤y as the convolution

(fg)x≤y =
∑

x≤z≤y

fx≤zgz≤y

with the identity δ =
∑
δx≤yex≤y, where

δx≤y =

{
1 if x = y,

0 if x < y.

Remark 1.8. For finite P , relabeled according to a total ordering, the incidence
matrix MP is upper triangular and I(P ; k) is isomorphic to the matrix algebra with
nonzero k-entries allowed at nonzero positions of MP .

Definition 1.27. The zeta function of a poset P is defined as ζ(x, y) = 1 for all
x ≤ y in P .
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Remark 1.9. Tabulated as a matrix, the zeta function gives the incidence matrix.

Definition 1.28. For a finite poset P , define the Möbius function µ(x, y) for x ≤ y
as

µ(x, y) =

{
1 if x = y,

−
∑
x≤z<y µ(x, z) if x < y in P.

Remark 1.10. As matrices, µ is given by M−1
P .

Proposition 1.9 (Möbius inversion). If f, g : P → C, then

g(x) =
∑
y≤x

f(y)

for all x ∈ P if and only if

f(x) =
∑
y≤x

g(y)µ(y, x)

for all x ∈ P .

Example 1.14. For the divisibility lattice, we have

µ(a, b) =

{
(−1)t if b

a is a product of t distinct primes,

0 otherwise.

This recovers the ”classical” number-theoretic Möbius function.

Definition 1.29. For a poset P , we may associate a poset ∆(P ), called its order
complex. It is the poset of chains in P ordered by refinement.

Remark 1.11. By forgetting the order within the chains in Definition 1.29, ∆(P )
becomes an abstract simplicial complex.

Definition 1.30. The reduced Euler characteristic of an abstract simplicial com-
plex ∆ is

χ̃(∆) = −
∑
σ∈∆

(−1)|σ|.

Proposition 1.10. Let P be a finite poset. Then

µP̂ (0̂, 1̂) = χ̃(∆(P )).

Exercise 1.1. An poset map between posets (or simply a homomorphism), f :
P → Q, is a function satisfying a ≤P b ⇒ f(a) ≤Q f(b). Let f : P → P be an
order preserving map from a finite poset to itself.

a) If P has a largest element 1̂, show that f has a fixed point.
b) Suppose P has a central element, ie. a c ∈ P such that ∀x ∈ P , x ≤ c or c ≤ x.

Show that f has a fixed point.

Exercise 1.2. (Hard) Denote by Dn the poset of positive integer divisors of n,
that is, with a partial order defined by i ≤ j ⇔ i|j. Draw the Hasse diagram of this
poset for n = 60. For n =

∏m
i=1 p

ai
i , where the pi are primes and ai ∈ Z, prove that

Dn
∼=
∏m
i=1[ai], where [k] is the linear poset on 0, . . . , k. Here isomorphism means

an order-preserving bijection. (Here
∏

denotes the cartesian product of posets,
with order given by (s, t) ≤ (s′, t′) iff s ≤ s′ and t ≤ t′.)
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Exercise 1.3. A chain in P is a linear subposet. An antichain is a subset of P in
which no two elements are comparable. True or false: ”If all chains and antichains
of P are finite, P is finite.”

Exercise 1.4. Calculate µ(1, n) in the divisibility lattice of (positive) integers (the
Möbius function can be shown to be defined locally, ie. depending only on the
interval in question, so you may just think about Dn). How about µ(m,n)? If you
have taken a course in elementary number theory, this might look familiar.

Exercise 1.5. Let f : Z>0 → Z be a function, and define g : Z>0 → Z by
g(n) =

∑
d|n f(d). Using the previous exercise, recover f from g using Möbius

inversion. If φ(n) is Euler’s φ-function, defined as the number of d coprime to n,
and we know that

∑
d|n φ(d) = n (do you see why?), find φ(n).

Exercise 1.6. (Hard) Calculate the Möbius function of the poset P on {0, 1} with
0 ≤ 1. Identify the Boolean lattice Bn as an n-fold product of P , and deduce the
Möbius function of Bn, using the fact that µP×Q((s, t), (s′, t′)) = µP (s, s′)µQ(t, t′).

Exercise 1.7. Which of the following Hasse diagrams describe posets that are
lattices?

Exercise 1.8. Use the FTFDL to show that the following are not distributive:

Exercise 1.9. (Hard) Let L be the divisibility lattice of the (positive) integers, with
meet and join given by the least common multiple and greatest common divisor.
Draw Hasse diagrams of the principal ideals 〈4〉 and 〈12〉. Show that for every
k ≥ 1 there exists nk ∈ N so that 〈nk〉 ∼= Bk. Deduce that every finite distributive
lattice can be embedded into L, given that every finite distributive lattice occurs
as a sublattice of some Bm. Give a counterexample for the countable case.

Exercise 1.10. (Hard) Give an example of a meet-semilattice L (that is, a poset

with a well-defined meet) with a largest element 1̂ such that L is not a lattice.



CHAPTER 2

Extremal combinatorics

In combinatorics, it is common to study how large you can make a structure, while
avoiding certain ”forbidden” substructures. The maximal such structures are called
extremal and a first step in extremal combinatorics is always to try to characterize
them.

The second step, is to understand that the extremal structures are very few,
and that smaller admissible structures avoiding the forbidden substructures, can
be well described as substructures of the extremal ones.

All interesting complications and phenomena that could arise already do it for
graphs. After a short recap and intro on graphs, we will proceed to study the
extremal questions.

Definition 2.1. A graph G = (VG, EG) is a set of vertices VG and edges EG ⊆
(
VG

2

)
(meaning the two–element subsets of VG).

Example 2.1. Figure 2.1 shows examples of graphs.

1

2

3 4

5

Figure 1. A graph with labels and a graph without labels.

Definition 2.2. A graph homomorphism ϕ from G = (VG, EG) to H = (VH , EH)
is a function ϕ : VG → VH preserving edges: {u, v} ∈ EG ⇒ {ϕ(u), ϕ(v)} = EH .

Remark 2.1. From now on, an edge {u, v} will be denoted uv.

Definition 2.3. A graph G = (VG, EG) is a subgraph of H = (VH , EH) if VG ⊆ VH
and EG ⊆ EH . The graph G is an induced subgraph, if EG = EH ∩

(
VG

2

)
.

Example 2.2. Some common graphs are shown in Figure 2.2.

Definition 2.4. A subset I ⊆ VG is called independent if e 6⊂ I for all e ∈ EG.

Example 2.3. To give a taste of where we are going, let us consider subgraphs of
K5 containing no triangles K3. The one with a maximal number of edges is shown
in Figure 3.

Note that K2,3 has 6 edges. There are no other subgraphs to which an edge
can be added without forcing a triangle, cf. Figure 4.

11



12 2. EXTREMAL COMBINATORICS

Figure 2. From left to right: the complete graph K4, the path
P4, the cycle C5 and the complete bipartite graph K2,3.

Figure 3. K2,3

Figure 4. K1,4 and C5.

k

Figure 5. The star graph K1,k.

Definition 2.5. The maximal number of edges in an n-vertex graph G not con-
taining a copy of H is denoted ex(n;H).

Exercise 2.1. If H is the star graph in Figure 5, find, using elementary consider-
ations, a tight asymptotic expression for ex(n;H) as n→∞.

Exercise 2.2. Draw the Hasse diagram of all nonlabeled subgraphs of K4 on four
vertices not containing a subgraph isomorphic to C4.

Example 2.4. Many times it is informative to create graphs without forbidden
substructures by first taking a random graph and then removing edges to kill for-
bidden substructures. In this example, we will do this in a very crude way.
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Figure 6.

Let us consider a random graph G on n vertices given by including edges
independently with probability p. We want to kill triangles by removing an edge
from each triangle in G. Later it will be demonstrated that this is indeed far too
much.

The expected number of edges is
(
n
2

)
p and the expected number of triangles is(

n
3

)
p3. After removing one edge per triangle, we might run out of triangles, but a

lower bound for the number of remaining edges is
(
n
2

)
p−
(
n
3

)
p3. This, as a real-valued

function of p, has a critical point at p = 1√
n−2

, as can be seen by differentiating.

Inserted into the previous expression, this yields roughly n
√
n

3 edges. But one can do
much better! A complete bipartite graph with around n/2 vertices has no triangles,
and n2/4 edges in total.

Example 2.5. A better way to avoid Kt in an n-vertex graph G is to partition VG
into t− 1 partitions of uniform size. This gives

t− 2

t− 1

(
n

2

)
edges as n→∞, which is optimal. To see this, we will need some more definitions.

Remark 2.2. For a finite graph G on n vertices, there is a graph homomorphism
G→ Kn by any bijection VG → {1, . . . , n}.

Definition 2.6. For a finite graph G, let χ(G) denote the chromatic number, ie.
the smallest integer for which there exists a graph homomorphism G→ Kχ(G).

Exercise 2.3. (Easy) Show that χ(Kn) = n and χ(Pn) = 2.

Exercise 2.4. Let Ht be the graph whose vertices correspond to independent
sets of cardinality t in C5. Two vertices are adjacent if the intersection of the
corresponding independent sets is empty. Determine χ(Ht) for 0 ≤ t ≤ 2.

Exercise 2.5. (Hard) Repeat Exercise 2.4 with C7 and 0 ≤ t ≤ 3.

Remark 2.3. The following theorem is most conveniently proved using the regu-
larity lemma, which is proved and used extensively in the graph theory course.

Theorem 2.1 (Corollary of Erdös-Stone ’46). Let H be a graph with at least one
edge. Then

lim
n→∞

ex(n,H)

(
n

2

)−1

=
χ(H)− 2

χ(H)− 1
.

Exercise 2.6. Let H be the graph in Figure 6. Show that

lim
n→∞

ex(n;H)

n(n− 1)
= 1.
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Figure 7. C4.

Remark 2.4. For a graph G with ex(n;H) edges and n vertices that avoids H, we
get 2ex(n;H) graphs without H, by deleting edges in different ways. If all subgraphs
of G without H were subgraphs of an extremal graph on ex(n;H) edges, there
would be exactly 2ex(n;H) graphs without H. In fact, that is almost true. There
are not substantially many more of them, as we will see.

We will now establish a theorem to that effect, but we shall first introduce the
concept of hypergraphs.

Definition 2.7. A hypergraph H is a set of vertices VH and a set of edges EH ⊆ 2VH

(the set of all subsets of VH). If all edges are of the same cardinality l, that is

EH ⊆
(
VH

l

)
, then H is called an l-graph.

Remark 2.5. A 2-graph is an ordinary graph.

Remark 2.6. An l-graph is an anti-chain in a boolean lattice.

Definition 2.8. The concept of (induced) subgraph is defined in an analogous way
to graphs. In addition, a graph homomorphism from a 2-graph to an l-graph is
defined in the natural way.

Example 2.6. The complete l-graph on {1, . . . , r} := [r] has the edge set
(

[r]
l

)
.

Definition 2.9. A hypergraph H is called vertex-edge transitive if there is a group
Γ of permutations of VH such that for every v1 ∈ e1 and v2 ∈ e2, where v1, v2 ∈ VH
and e1, e2 ∈ EH , there is a permutation π ∈ Γ such that π(v1) = v2 and π(e1) :=
{π(u)|u ∈ e1} = e2.

Example 2.7. The 2-graph in Figure 7 is vertex-edge transitive with the action of
the dihedral group D8.

Exercise 2.7. (Easy) Construct a vertex-edge transitive 3-graph on 4 vertices and
4 edges. Specify the group acting on it.

Exercise 2.8. (Hard) Construct a vertex-edge transitive 3-graph on 6 vertices and
8 edges. Specify the group acting on it.

Remark 2.7. For those who consider the previous exercises too easy, here is a
harder one: Find a vertex-edge transitive 3-graph with 12 vertices and 24 edges,
such that for each edge {u, v, w}, there are exactly two edges containing {u, v} and
the group acting on the graph is S3 × S4.

Definition 2.10. For an l-graph H, let ex(n,H) denote the maximal number of
edges in an l-graph on n vertices without H as a subgraph.

Definition 2.11. Define

π(H) := lim
n→∞

ex(n,H)

(
n

l

)−1

.
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Figure 8. The ”anti-chain inequality”.

Figure 9. An upper bound using a principal ideal.

Figure 10. The container is in red.

Remark 2.8. We should need to prove that the previous limit exists, but let us
leave this out. For 2-graphs π(H) can be calculated as stated earlier, but for higher
hypergraphs there are no known explicit formulas.

Remark 2.9. The following theorem was at first proved for 2-graphs by Erdös,
Frankl and Rödl [EFR]. Later on, the l-graph case was settled by Nagle, Rödl
and Schact [NRS]. There is now a conceptual proof using so called hypergraph
containers by Saxton and Thomason [ST], which we will discuss later on.

Theorem 2.2. Let H be an l-graph. The number of H-free l-graphs on the vertex

set {1, . . . , n} is 2(π(H)+o(1))(n
l).

Remark 2.10. The l-graphs on [n] is a boolean lattice of subsets of
(

[n]
l

)
ordered

by inclusion. Those without H is a lower ideal, and Theorem 2.2 estimates its size.
Every principal ideal is of 2-power size, and one option to bound the size of a lower
ideal from above, would be to add up the sizes of the principal ideals given by its
anti-chain representation, as shown in Figure 2.10.

another option would be to bound it by one principal ideal, as in Figure 2.10.
A mixed strategy to find a container, that is, a lower ideal I satisfying

(1) I contains the lower ideal we want to estimate the size of;
(2) I has few maximal elements, equivalently I is given by a small anti-chain;
(3) every principal ideal given by a maximal element of the container I con-

tains few elements above the lower ideal to be estimated.

An example of a container is in Figure 2.10.
Saxton and Thomason [ST] prove a very general theorem for lower ideals of

independent sets of hypergraphs and provide an algorithm for finding the good
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containers. Hypergraphs without forbidden substructures are then reformulated
as a problem in containers. Using this method, some of the hardest theorems in
additive number theory can also be proven.

Exercise 2.9. (Easy) Let I be the lower ideal 〈{1}, {2}, {3}〉 in the boolean lattice
on {1, 2, 3}. If J1 is a principal ideal containing I, how small can |J1|− |I| be? If J2

is a lower ideal with two maximal elements containing I, how small can |J2| − |I|
be?

Exercise 2.10. Let I be the lower ideal of independent sets of C5. Consider the
containers J ⊇ I with exactly two maximal elements i and j. Find the minimal
value of

|{p ≤ i}|+ |{p ≤ j}| − |I|.



CHAPTER 3

Chromatic polynomials

Definition 3.1. A coloring of a graph G by n colors is a graph homomorphism
ϕ : G→ Kn.

Remark 3.1. Recall that the chromatic number χ(G) is the smallest number such
that there exists a coloring ϕ : G→ Kχ(G).

Definition 3.2. The set of homomorphisms ϕ : G→ H is denoted Hom(G,H).

Proposition 3.1. A graph homomorphism ϕ ∈ Hom(H1, H2) induces a set map
Φ : Hom(G,H1)→ Hom(G,H2) by Φ(α) = ϕα.

Proof. A composition of the graph homomorphisms α ∈ Hom(G,H1) and
ϕ ∈ Hom(H1, H2) is a graph homomorphism. �

Proposition 3.2. A graph homomorphism ϕ ∈ Hom(G1, G2) induces a set map
Φ : Hom(G2, H)→ Hom(G1, H) by Φ(α) = αϕ.

Proof. A composition of the graph homomorphisms ϕ ∈ Hom(G1, G2) and
α ∈ Hom(G2, H) is a graph homomorphism. �

Exercise 3.1. Show that for m ≥ n,

|Hom(Kn,Km)| = m!

(m− n)!
.

Exercise 3.2. Show that for m ≥ n = |G|,

|Hom(G,Km)| ≥
(
m

n

)
|{α ∈ Hom(G,Kn)||α(VG)| = n}| .

Remark 3.2. Note that for a fixed n, m!
(m−n)! is a polynomial in m. We have a

polynomial lower bound for |Hom(G,Km)| by Exercise 3.2. For the bound to make
sense, we need |Hom(G,Kn)| > 0, which is achieved when n = |G|. Our lower
bound in m is of degree n.

Exercise 3.3. Let G be a graph on n vertices and 0 the graph on n isolated vertices.
Use a graph homomorphism 0→ G to prove that |Hom(G,Km)| ≤ mn for m ≥ n.

Remark 3.3. We have seen that |Hom(G,Km)| is confined between two degree n
polynomials in m. This makes the following theorem plausible. We will give several
proofs of it.

Theorem 3.1. The function PG(m) = |Hom(G,Km)| is a polynomial in m of
degree |G|.

Exercise 3.4. Find the chromatic polynomials for the families Cn, Kn, Pn. How
about wheels on k spokes (a k-cycle coned over a vertex)?

17
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Remark 3.4. Our argument for the plausibility of this theorem, and its first proof,
are easy to generalize to a huge context, because counting problems turning poly-
nomial is a very general phenomenon. The general reason for this is captured in
commutative algebra by Hilbert polynomials.

Remark 3.5. The first proof requires some basic geometry.

Definition 3.3. A hyperplane in Rn is a subspace cut out by linear equations.

Proposition 3.3. There is a bijection between Hom(G,Km) and

X = (Zn ∩ [0,m− 1]n)\
⋃

ij∈EG

{xi = xj},

where |G| = n.

Proof. First we construct a unique point in X for every ϕ ∈ Hom(G,Km).
Label the vertices of Km by 0, . . . ,m − 1 and the vertices of G by 0, . . . , n − 1.
Associate the point

xϕ = (ϕ(0), . . . , ϕ(n− 1)) ∈ Zn ∩ [0,m− 1]n

to ϕ. It is by construction unique, but we should check that it is in X. If xϕ /∈ X,
then there exists an edge ij ∈ EG with xϕi = xϕj , or equivalently ϕ(i) = ϕ(j),

which would contradict that ϕ ∈ Hom(G,Km). In the other direction, take x =
(x0, . . . , xn−1) ∈ X. Then construct a ϕx : VG → [0, . . . ,m−1] by ϕx(i) = xi. This
is unique and ϕx ∈ Hom(G,Km), because ϕx(i) 6= ϕx(j) for any edge ij ∈ EG,
since {xi = xj} ∩X = ∅.

�

Proposition 3.4. There are mn−k+1 points in

(Zn ∩ [0,m− 1]n) ∩ {x1 = . . . = xk}.

Proof. Consider the bijection to

Zn−k+1 ∩ [0,m− 1]n−k+1

given by removing the first k − 1 coordinates. �

Proof of Theorem 3.1. Count the number of points in X given in Propo-
sition 3.3 by inclusion-exclusion using Proposition 3.4, and taking complements for
each piece. �

Remark 3.6. A far reaching generalization is given by the following small modi-
fication of Proposition 3.4. Instead of hyperplanes of the type {x1 = . . . = xk}, we
could consider for example {x1 = 2x2}. The number of points in

Z2 ∩ [0,m− 1]2 ∩ {x1 = 2x2}

is
m 1 2 3 4 5 6 . . .

# points 1 1 2 2 3 3 . . .
or

f(m) =

{
m/2, m ≡ 0(2),

(m+ 1)/2, m ≡ 1(2).
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Remark 3.7. A function that is a polynomial in every second term, third term,
and so on, is called a quasi-polynomial. More intricate counting problems that are
not polynomial, are quasi-polynomial instead.

Exercise 3.5. What is the number of points in

Z3 ∩ [0,m− 1]3\({x1 = 2x2} ∪ {x1 = 3x3})
as a function of m?

Remark 3.8. The next proof of Theorem 3.1 is more elementary, and hard-codes
the combinatorics of the first proof.

Definition 3.4. Let G be a graph with an edge e = ij. The deletion G\e is given
by deleting e. The contraction G/e is given by replacing the vertices i and j of G
by a new vertex that is adjacent to all vertices that are adjacent to i or j in G.

Remark 3.9. When contracting an edge of a triangle, it might be more natural to
get two vertices with a double edge rather than an edge as in our definition above.
That could be achieved by taking the edge set to be a multiset, but we will not
take on that path on this course.

Proposition 3.5. Let e ∈ EG for a graph G. Then there is a bijection

Hom(G\e,Km)→ Hom(G,Km) tHom(G/e,Km).

Proof. Let e = ij. Take a ϕ ∈ Hom(G\e,Km). If ϕ(i) 6= ϕ(j), then ϕ ∈
Hom(G,Km). If ϕ(i) = ϕ(j), construct ϕ ∈ Hom(G/e,Km) by sending all ”old”
vertices of G to wherever ϕ sends them, and the vertex of the contracted edge to
ϕ(i) = ϕ(j). This map is a bijection, as seen by constructing the inverses from
Hom(G,Km) and Hom(G/e,Km). �

Lemma 3.1. Let G be a graph with an edge e. Then PG(m) = PG\e(m)−PG/e(m).

Proof. Use the previous proposition. �

Lemma 3.2. Let 0 be the graph on n vertices and no edges. Then P0(m) = mn.

Proof. This is clear. �

Proof of Theorem 3.1. The proof goes by induction on the number of edges.
If there are none, use Lemma 3.2. Otherwise, use Lemma 3.1 and induction. �

Remark 3.10. Originally, the chromatic polynomial was invented to attack the
four coloring conjecture, which states that every planar graph can be colored with
four colors. The attack failed, but some curious results were obtained, in the case
of chromatic polynomials evaluated at noninteger values.

Definition 3.5. A triangulation is an edge-maximal planar graph.

Definition 3.6. Let ξ = 1+
√

5
2 be the golden ratio.

Proposition 3.6 ([T]). Let G be a triangulation. Then

|PG(ξ + 1)| ≤ ξ5−|G|.

Example 3.1. We have the following table in Figure 1. Note that all of the graphs
are planar, and triangulations except for the dodecahedron (it has pentagons as
faces).
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Graph G |G| PG(ξ + 1)
Tetrahedron K4 4 −1

Octahedron 6 −4 + 2
√

5 ≈ 0.47

Icosahedron 12 −4575 + 2046
√

5 ≈ −0.0049

Dodecahedron 20 14667−32815
√

5
2 ≈ −9.30

Figure 1. Some values of PG(ξ + 1) for planar graphs.

Figure 2. The graph T5.

Exercise 3.6. (Hard) Let Tn be the triangulated graph formed from a cycle by
”suspending” it from two vertices, ie. so that each of the two vertices is adjacent
to each vertex in the cycle. For an example, see Figure 2. Prove that PTn

(ξ+ 1) =

(−1)n−an+bn
√

5
2 , where a3 = 3, a4 = 8,a5 = 25, a6 = 69, and an = 4an−1 −

3an−2 − 2an−3 + an−4, for n > 6. Also b3 = 1, b4 = 4, b5 = 11, b6 = 31, and
bn = 4bn−1 − 3bn−2 − 2bn−3 + bn−4, for n > 6.

Remark 3.11. Another weird fact about polynomials enumerating combinatorial
structures, is that inserting negative numbers many times has an explicit combina-
torial interpretation.

Definition 3.7. An orientation of a graph is an assignment of direction to each
edge, ie. becomes or . An orientation is called acyclic, if there are no
directed cycles.

Theorem 3.2 ([St73]). Let G be a graph. Then there are (−1)|G|PG(−1) acyclic
orientations for G.

Exercise 3.7. Prove Theorem 3.2 using deletion-contraction.

Exercise 3.8. Continuing with notations as in the previous theorem, let us gen-
eralize the above result and consider PG(−x) for x > 0.

a) For a (proper) coloring f ∈ Hom(G,Kn), define an orientation ρ as follows:

ρ := {{i, j} ∈ E|i < j, f(i) > f(j)},
ie. direct the edges (i, j) if e /∈ ρ, and (j, i) if e ∈ ρ. Here we have enumerated
the vertices as 1, . . . , |G| and 1, . . . , n. Prove that the associated digraph G′ is
acyclic.

b) Call a coloring f and an orientation ρ strictly compatible if f(i) > f(j) for all
(i, j) ∈ G′. Prove that for a strictly compatible pair (f, ρ), the coloring f is
proper and ρ is an acyclic orientation.

c) Prove that (−1)nPG(−x) is the number of compatible pairs (f, ρ) with f a
proper x-coloring and ρ an acyclic orientation. You should use a similar deletion-
contraction argument as in the previous exercise.
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+

+

Figure 3. Examples of gluing along K2 to get nonisomorphic
graphs with the same chromatic polynomials.

Figure 4. A graph that we cannot decompose the chromatic poly-
nomial of.

Remark 3.12. It is easy to produce nonisomorphic graphs with the same chromatic
polynomial, using the following proposition.

Proposition 3.7. Let G1, G2 be two disjoint graphs, each containing a copy of Kr.
Let G be the graph given by gluing G1, G2 along this copy. Then

PG(t) =
PG1(t)PG2(t)

PKr
(t)

.

Example 3.2. Some examples of gluing along complete subgraphs are shown in
Figure 3.

Example 3.3. There exist graphs with equal chromatic polynomials, not coming
from the previous trick on gluing. For example, consider the wheel on 5 spokes, ie.
C5 with an additional vertex adjoined to each vertex of the cycle, and

Exercise 3.9. A graph is called chromatically unique, if it is the only one with
its chromatic polynomial. For example, the empty, complete, cyclic, and complete
bipartite graphs with parts of equal order are all unique. Can you find a chromati-
cally unique graph on four vertices which is connected and does not come from the
aforementioned classes?

Definition 3.8. A sequence a0, . . . , an of real numbers is unimodal, if a0 ≤ a1 ≤
· · · ≤ ai ≥ · · · ≥ an for some i, and log-concave, if ai−1ai+1 ≤ a2

i .

Proposition 3.8. Any log-concave sequence of strictly positive real numbers is
unimodal.

Remark 3.13. The study of log-concave and unimodal sequences of polynomial
coefficients goes back to Newton, and is a rich source of inequalities. There are
many open and solved conjectures regarding it. Let PG(t) = ant

n − an−1t
n−1 +

. . .+ (−1)na0 be the chromatic polynomial of G. One can see that all ai ≥ 0. Read
conjectured in 1968 [R], that the ai sequence is unimodal. This conjecture, in a
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more general form, was proven by June Huh in 2011. The proof is by algebraic
geometry, and deals with matroids, a generalization of graphs in this context.

Theorem 3.3 ([H]). If PG(t) = ant
n− an−1t

n−1 + . . .+ (−1)na0 is the chromatic
polynomial of G, then the ai sequence is log-concave.

Exercise 3.10. Let an, . . . , a0 be the coefficient sequence for the path Pn. When
does it have a maximal element? If it does, what is it, and what is its value?



CHAPTER 4

Acyclic matchings on posets

Definition 4.1. A matching on a graph G is a set of disjoint edges.

Remark 4.1. There are many questions in graph theory and combinatorics in gen-
eral that can be formulated as regarding matchings. In applications, they are also
important, but we will mostly focus on their relation to topological combinatorics.

Remark 4.2. In inclusion-exclusion arguments, it is common to have expressions
like ∑

a∈A
1 +

∑
b∈B

−1

to evaluate. One method to compute these is to define a graph on A ∪ B with
vertices between elements of A and B, and then remove matched vertices. This will
keep the sum invariant.

Remark 4.3. We shall do matchings in posets, which requires some more termi-
nology.

Definition 4.2. A matching on a poset P is a set of pairs p ≺ q in P with no
element in more than one pair.

Definition 4.3. A sequence p1 ≺ q1, p2 ≺ q2, . . . , pn ≺ qn of pairs in a matching
on a poset is a cycle if q1 ≥ p2, q2 ≥ p3, . . . , qn ≥ p1 and n > 1.

Definition 4.4. A matching is acyclic or a Morse matching if there are no cycles.

Example 4.1. Consider the simplicial complex on {1, 2, 3, 4} with maximal elemnts
12, 23, 34, 14. There is an acyclic matching shown in Figure 1.

12 23 34 14

1 2 3 4

∅

Figure 1. An acyclic matching on a simplicial complex.

That only 14 is not matched in Figure 1 can be given a topological interpreta-
tion. Drawing the simplicial complex as in Figure 2, we get one hole, forcing 14 to
be unmatched. We will not state nor prove the topological facts related to acyclic
matchings but rather work in a completely combinatorial setting. Note that |χ̃| = 1
is obvious from the matching.

23
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4 3

1 2

Figure 2. A simplicial complex on {1, 2, 3, 4}.

Exercise 4.1. Let Bn be the boolean lattice on [n]. Show, without relying on later
technology, that the matching M = {a ≺ a ∪ {1}|a ⊆ {2, . . . , n}} is acyclic.

Remark 4.4. The procedure in Exercise 4.1 is called matching by adding 1.

Exercise 4.2. (Hard) Construct an acyclic matching on the subposet of the boolean
lattice B2n given by sets of order ≤ n. All elements of order < n should be matched.

Exercise 4.3. (Easy) Construct an acyclic matching for any poset P .

Remark 4.5. It is important to get as many elements matched as possible.

Definition 4.5. The nonmatched elements are called critical.

Exercise 4.4. Let L be a bounded lattice with 0̂, 1̂, not equal to each other. Show
that there is an acyclic matching on L with 0̂ not critical.

Remark 4.6. The following lemma is quite powerful in constructing acyclic match-
ings.

Lemma 4.1. Let P,Q be posets and ϕ : P → Q a poset map. If Mq is an acyclic
matching on ϕ−1(q) for every q ∈ Q, then

M =
⋃
q∈Q

Mq

is an acyclic matching on P .

Proof. Say that p1 ≺ q1 ≥ p2 ≺ q2 ≥ . . . ≺ qn ≥ p1 would be a cycle in P . It
cannot be in the same fiber ϕ−1(q), since each Mq is acyclic. Every pi ≺ qi is in
the same fiber by definition. Thus

ϕ(p1) = ϕ(q1) ≥ ϕ(p2) = ϕ(q2) ≥ · · ·ϕ(qi) > ϕ(pi+1) = ϕ(qi+1) ≥ · · · ≥ ϕ(p1),

a contradiction. �

Example 4.2. Let P be a subposet of the boolean lattice on {1, . . . , n}, satisfying
σ\{1} ∈ P ⇔ σ∪{1} ∈ P . Then there is a poset map ϕ : P → Q = {σ ∈ P |1 /∈ σ}.

The fiber of σ ∈ Q is

σ ∪ {1}

σ and there is an acyclic matching Mσ = {σ ≺
σ ∪ {1}}. Together M = ∪σ ∈ QMσ becomes an acyclic matching on P , without
critical elements.

Definition 4.6. An acyclic matching without critical elements is called complete.

Remark 4.7. Now we will study acyclic matchings on simplicial complexes coming
from combinatorics, and graphs in particular.
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1 2 3 4

13 14 24

1 2 3 4

∅

Figure 3. P4 and its independent sets.

Example 4.3. The independent sets of P4 are shown in Figure 3.

Definition 4.7. The simplicial complex consisting of all independent sets of G is
called the independence complex of G and denoted by Ind(G).

Proposition 4.1. Let G be a graph with an isolated vertex v. Then there is a
complete acyclic matching on Ind(G).

Proof. Match with v. �

Proposition 4.2. Let P be a finite poset whose elements can be bipartitioned into
”odd” and ”even” elements, so that no odd element covers an odd one and no even
element covers an even one. If there is an acyclic matching with all critical elements
odd or even, then that is the minimal number of critical elements in any acyclic
matching of P .

Proof. Every matched odd/even pair kills one odd and one even critical cell,
so there are at least |#odd−#even| critical elements. �

Remark 4.8. Whenever we are in the situation of Proposition 4.2, we say that the
acyclic matching is optimal.

Exercise 4.5. Let M be an acyclic matching with exactly one critical cell on
a finite simplicial complex. Let odd/even be the parity of the cardinality of the
elements. Show that the matching is optimal.

Definition 4.8. The neighborhood of a vertex v in a graph G, denoted N(v), is
the set of vertices adjacent to v.

Lemma 4.2. Let v be a vertex of G, G1 = G\{v}, and G2 = G\{N(v) ∪ {v}. If
there are acyclic matchings on Ind(G1) with c1 critical elements, and on Ind(G2)
with c2 critical elements, then there is an acyclic matching on Ind(G) with c1 + c2
elements.

Proof. Consider the poset map

{v}

∅
Ind(G)→

given by σ 7→ σ ∩ {v}. Then ϕ−1(∅) is Ind(G\v). Any independent set of G
containing v will have no vertices from the neighborhood N(v). This gives a poset
isomorphism

α : Ind(G\{N(v) ∪ {v})} → ϕ−1({v})
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1 2 3 3n+ k

Figure 4. A path of length 3n+ k.

given by σ 7→ σ ∪ {v}. By Lemma 4.1, any acyclic matchings on Ind(G\v) and
Ind(G\{N(v) ∪ {v})) give one on Ind(G). �

Theorem 4.1. The optimal acyclic matchings on the independence complexes of
paths are as follows:

• The complexes Ind(P3n) have one critical element of cardinality n;
• The complexes Ind(P3n+1) have no critical elements;
• The complexes Ind(P3n+2) have one critical element of cardinality n+ 1.

Exercise 4.6. (Easy) Prove Theorem 4.1 for n = 0.

Proof of Theorem 4.1. We will use induction on n. The base case was
handled in Exercise 4.6. For n > 0, we have a path P as in Figure 4. Use vertex 2
and Lemma 4.2 to break the graph into two cases:

• The independence complex of P\{2} has a perfect acyclic matching, since
1 is an isolated vertex.

• The independence complex of P\{N(2)∪ {2}} = P\{1, 2, 3} has one crit-
ical element if k = 0, 2, and none if k = 1, by induction. The potential
critical element σ lifts from P\{1, 2, 3} to σ ∪ {2} for P .

�

Exercise 4.7. (Hard) Let S be a star with at least one edge. Show that the optimal
acyclic matching on the independence complex has one critical element.

Exercise 4.8. Use Lemma 4.2 to find an optimal acyclic matching for the inde-
pendence complex of the four-cycle.

Theorem 4.2. Let G be the disjoint union of the graphs G1, G2. If there are acyclic
matchings on their independence complexes with c1, c2 critical elements respectively,
then there is one on the independence complex of G with c1c2 critical elements.

Proof. The elements of Ind(G) are of the form σ1 ∪ σ2, where σ1 ∈Ind(G1)
and σ2 ∈Ind(G2) are arbitrary independent sets. Construct a matching on Ind(G)
by matching σ1∪σ2 and τ1∪σ2 whenever σ1, τ1 are matched in Ind(G1), and match
σ1 ∪ σ2 whenever σ1 is critical on Ind(G1) with σ2, τ2 matched in Ind(G2). This
matching can be demonstrated then to be acyclic by studying the fibers of the map
from Ind(G) into Ind(G1) defined by identifying matching elements. The critical
cells are exactly those σ1 ∪ σ2 for which σ1 is critical in Ind(G1) and σ2 is critical
in Ind(G2). �

Exercise 4.9. Let G be a graph consisting of disjoint paths. Is there an optimal
acyclic matching on the independence complex of G?

Exercise 4.10. (Hard) Let us consider the n-gons drawn in the plane with some
noncrossing internal edges, seen as a poset with inclusion order. Drawn in Figure 5
are the cases n = 4, 5 with optimal acyclic matchings shown. Find an optimal
acyclic matching in the case n = 6.
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Figure 5. Acyclic matchings in polygons.





CHAPTER 5

Complete (perhaps not acyclic) matchings

Remark 5.1. Last week, we saw that more often than not, it is not possible to find
complete acyclic matchings. Sometimes this was obstructed by parity reasons with
too many odd compared to even elements, rather than the cycles themselves. How
about the situation with the odd/even obstruction gone? It will not be enough in
itself, but a slightly stronger condition from linear algebra is. The main aim of this
chapter is to describe this condition, building on results by Stanley [St93].

Remark 5.2. We start with some linear algebra. From physics courses, you might
know that a collection of vectors spanning a subspace can be given two orientations,
ie. the left/right–handed ones.

Definition 5.1. Let V = {v1, · · · , vr} be a finite set and k a field. The exterior
algebra Λ(kV ) has elements of the form αvi1 ∧ · · · ∧ vik , with addition defined by

α1vi1 ∧ · · · ∧ vik + α2vi1 ∧ . . . ∧ vik = (α1 + α2)vi1 ∧ · · · ∧ vik
and multiplication by

(αvi1 ∧ · · · ∧ vik)(βvj1 ∧ · · · ∧ vjl) = αβvi1 ∧ · · · ∧ vik ∧ vj1 ∧ · · · ∧ vjl
with the relations vi ∧ vj + vj ∧ vi = 0 for all 1 ≤ i, j ≤ r.

Remark 5.3. We denote the empty form by 1.

Remark 5.4. Any form can be transformed to have indices unique and in order,
and these form a basis for Λ over k.

Example 5.1. Let r = 2. Consider the element v = v1 + v2. We have that

1 ∧ v = v1 + v2,

v1 ∧ (v1 + v2) = v1 ∧ v1 + v1 ∧ v2 = v1 ∧ v2,

v2 ∧ (v1 + v2) = v2 ∧ v1 + v2 ∧ v2 = −v1 ∧ v2,

(v1 ∧ v2) ∧ (v1 + v2) = v1 ∧ v2 ∧ v1 + v1 ∧ v2 ∧ v2 = 0.

The right multiplication of v on

αφ1+ α1v1 + α2v2 + α12v1 ∧ v2

can be described by a matrix transformation φ : k4 → k
4 as

0 0 0 0
1 0 0 0
1 0 0 0
0 1 −1 0



αφ
α1

α2

α12

 .

The image of φ, im φ and the kernel

kerφ = {w|φ(w) = 0}

29
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are in fact the same:

im φ = kerφ = {(αφ, α1, α2, α12)|αφ = 0, α1 = α2}.
Matrices of this type, ie. ones with equal image and kernel, are crucial for this
chapter.

Exercise 5.1. Perform the same analysis as in Example 5.1 but for r = 3, with
v = v1 + v2 + v3. State the matrix explicitly and verify the equality of the image
and the kernel.

Remark 5.5. The following elementary theorem of graph theory is surprisingly
useful. There are variations of the same theme known as Dilworth’s, König’s,
and Menger’s theorems; and the Ford-Fulkerson algorithm of the max-flow min-cut
theorem.

Lemma 5.1 (The Marriage theorem.). Let D be a directed graph and A a subset
of vertices such that for every S ⊆ A there are at least |S| vertices of D\A with at
least one ordered edge from S to them. Then there is a matching a → ρ(a) for all
a ∈ A with

{ρ(a)|a ∈ A} ⊆ D\A
and

|{ρ(a)|a ∈ A}| = |A|.

Definition 5.2. A matching using all vertices is complete.

Exercise 5.2. Find a graph that demonstrates that the condition S ⊆ A in
Lemma 5.1 cannot be weakened.

Remark 5.6. The following could be considered a ”quantum” version of Lemma 5.1.

Lemma 5.2. Let D be a directed graph on n vertices VD and k a field. Let ρ be a
linear transformation of the k–vector space kVD with basis VD. If ρ(v) ∈spank{w ∈
VD|vw ∈ EV } and im ρ = ker ρ, then D has a complete matching.

Proof. By linear algebra, dim(im ρ) = dim(ker ρ), and dim(im ρ)+dim(ker ρ) =
n. Choose a subset A of VD whose image is a basis of kVD/im ρ. Then |A| =
|VD\A| = n

2 . We argue by contradiction to apply Lemma 5.1. Say that there
would be an S ⊆ A with less than |S| vertices of VD\A with edges to them from S.
Then {ρ(s)|s ∈ S} is a linearly dependent set of vectors in kVD/kA since it spans
less than |S| dimensions. Take a vector

∑
s∈S αsρ(s) = 0 in kVD/kA with not all

αs = 0. But this is not possible since ker ρ = im ρ and A is a basis of kVD/im ρ,
which forces all of the αs to be zero. �

Definition 5.3. Let ∆ be a simplicial complex on V = {v1, . . . , vr}. The exterior
face ring Λ[∆] over k is Λ[kV ] with the extra relations vi1 ∧ . . . ∧ vik = 0 for
1 ≤ i1 < i2 < . . . < ik ≤ r with {i1, . . . , ik} /∈ ∆.

Remark 5.7. The exterior algebra is naturally graded by gr(vi1 ∧ . . . ∧ vik) = k
whenever i1 < . . . < ik.

Remark 5.8. Multiplying on the right by v = v1 + . . .+ vr increases the grading
by one. Thus the matrix defining this transformation as in Example 5.1 and Exer-
cise 5.1 splits into a block matrix and the condition ker ρ = im ρ can be checked in
each grade separately. In topology this is called the coboundary operator and the
failure of ker ρ = im ρ is measured by the cohomology.
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Example 5.2. Consider the simplicial complex ∆ on {v1, v2, v3, v4} with maximal
elements {v1, v2}, {v2, v3}, {v3, v4}. Let v = v1 + v2 + v3 + v4. Then

1 ∧ v = v1 + v2 + v3 + v4,

v1 ∧ v = v1 ∧ v1 + v1 ∧ v2 + v1 ∧ v3 + v1 ∧ v4

= v1 ∧ v2,

v2 ∧ v = v2 ∧ v1 + v2 ∧ v2 + v2 ∧ v3 + v2 ∧ v4

= −v1 ∧ v2 + v2 ∧ v3,

v3 ∧ v = v3 ∧ v1 + v3 ∧ v2 + v3 ∧ v3 + v3 ∧ v4

= −v2 ∧ v3 + v3 ∧ v4,

v4 ∧ v = v4 ∧ v1 + v4 ∧ v2 + v4 ∧ v3 + v4 ∧ v3

= −v3 ∧ v4,

and v1 ∧ v2 ∧ v = v2 ∧ v4 ∧ v = v3 ∧ v4 ∧ v = 0, since the maximal cardinality of
elements in ∆ is two.

The matrix defining the coboundary transformation with rows and columns
ordered as φ, 1, 2, 3, 4, 12, 23, 34 becomes

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0


Exercise 5.3. Consider the simplicial complex on {v1, . . . , vr} with maximal ele-
ments {v1, v2}, . . . , {vr−1, vr} generalizing Example 5.2. What is the general form
of the coboundary matrix?

Definition 5.4. A simplicial complex ∆ is called acyclic if im ρ = ker ρ, where
ρ is the linear transformation defined by the coboundary operator on the external
face ring of ∆.

Remark 5.9. The simplicial complex of all subsets of a set (a simplex ) is inter-
esting enough with its graded coboundary maps. To get a name, it is called the
Koszul complex. The applications of the Koszul complex range far outside pure
mathematics, for example numerical analysis [AFW].

Remark 5.10. We have previously (see Example 1.10) hinted that simplicial com-
plexes can be realized as triangulated subspaces of Euclidean spaces. Every sim-
plicial complex that looks like a ball or a disc is acyclic; so there are many acyclic
simplicial complexes. This is proved in any basic course on algebraic topology.

Theorem 5.1 (Stanley). Let ∆ be an acyclic simplicial complex. Then there is a
complete matching M on the poset of ∆, and

∆′ = {σ|σ ≺ τ is in M}

is a subcomplex of ∆.
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Figure 1. The dunce hat.

Proof. To get a complete matching, we just introduce the coboundary opera-
tor, construct a directed graph D whose vertices are all σ ∈ ∆ and σ → τ whenever
σ ≺ τ , and then apply Lemma 5.2. To get a matching with ∆′ a subcomplex,
the choice of A in the proof of Lemma 5.2 has to be made more precise: The ba-
sis of VD can be given a lexicographic order. If we insist on A being the subset
minimal in that order, among those suitable, then it can be verified that ∆′ is a
subcomplex. �

Exercise 5.4. This is an exercise only suitable for those skilled with computers,
and not mandatory for higher grades. The simplicial complex in Figure 1 is called
the dunce hat, and it is acyclic. Construct a complete matching on its poset by
inserting it in standard software for finding matchings or contemporary versions of
Ford–Fulkerson.

Remark 5.11. One can show, using topology, that there does not exist a complete
acyclic matching of the poset of the dunce hat. There is an acyclic matching with
two critical elements. It can be found using Fourier–Morse matchings, see [E].

Exercise 5.5. (Hard) Consider the infinite poset in Figure 2. Could you construct a
2×2 matrix and use it for each level as a linear transformation such that the infinite
block matrix satisfies im ρ = ker ρ, and there is a complete matching supported by
the matrix? Note that we have not defined things in the general infinite setting.
Instead, you are asked to give a reasonable interpretation in this specific case.
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...

...

Figure 2. The Hasse diagram of an infinite poset.
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