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Abstract—We discuss post-processing of speech that has been
recorded during Magnetic Resonance Imaging (MRI) of the
vocal tract area. These speech recordings are contaminated by
high levels of acoustic noise from the MRI scanner. Also, the
frequency response of the sound signal path is not flat as a result
of restrictions on recording instrumentation and arrangements
due to MRI technology. The post-processing algorithm for noise
reduction is based on adaptive spectral filtering, and it has
been designed keeping in mind the requirements of subsequent
formant extraction.

Speech material was used for validation of the post-processing
algorithm, consisting of samples of prolonged vowel productions
during MRI. The comparison data was recorded in anechoic
chamber from the same test subject. Spectral envelopes and
formants were computed for the post-processed speech and the
comparison data. Artificially noise-contaminated vowel samples
(with a known formant structure) were used for validation
experiments to determine performance of the algorithm where
using true data would be difficult. Resonances computed by an
acoustic model and, similarly, those measured from 3D printed
vocal tract physical models were used as comparison data as well.

The properties of recording instrumentation or the post-
processing algorithm do not explain the observed frequency
dependent discrepancy between formant data from experiments
during MRI and in anechoic chamber. It is shown that the
discrepancy is statistically significant, in particular, where it is
largest at 1 kHz and 2 kHz. There is evidence that the reflecting
surfaces of the MRI head and neck coil change the speech
acoustics which results in “exterior formants” at these frequen-
cies. However, the role of test subject adaptation to noise and
constrained space acoustics during an MRI examination cannot
be ruled out.

Index Terms—Speech, MRI, noise reduction, DSP

I. INTRODUCTION

Modern medical imaging technologies such as Ultrasono-
graphy (USG), X-ray Computer Tomography (CT), and Mag-
netic Resonance Imaging (MRI) have revolutionised studies
of speech and articulation. There are, however, significant
differences in, e.g., applicability and image quality between
these technologies. Considering the imaging of the whole
speech apparatus, the use of inherently low-resolution USG
is often impractical, and the high-resolution CT exposes the
test subject to potentially significant doses of ionising radia-
tion. The MRI remains an attractive approach for large scale
articulation studies but there are, unfortunately, many other
restrictions on what can be done during an MRI scan as
discussed in [1], [2].

Since the intra-subject variability of speech often appears
to be of the same magnitude as the inter-subject variability,
it is desirable to sample speech simultaneously with the MRI
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experiment in order to obtain paired data. Such paired data
is a particularly valuable asset in developing and validating
a computational model for speech such as proposed in [3].
Unfortunately, speech signal recorded during MRI contains
many artefacts that are mainly due to high acoustic noise level
inside the MRI scanner. There are additional artefacts due
to the non-flat frequency response of the MRI-proof audio
measurement system and further challenges related to the
constrained space acoustics inside the MRI head and neck coil.
In this article, we deal only with the artefacts of the first and
the second kind here, leaving the treatment of the constrained
space acoustics to future work.

Noise cancellation is a classical subject matter in signal
processing that in the context of speech enhancement can be
divided into two main classes: adaptive noise cancellation
techniques and the blind source separation methods such as
FastICA introduced in [4]. The purpose of this article is intro-
duce, analyse, and validate a post-processing algorithm of the
former type for treating speech that has been recorded during
MRI.1 Compared to blind source separation, the tractability of
the processing algorithm favours adaptive noise cancellation
that may take place in time domain, in frequency domain,
or partly in both. The algorithm discussed in this article is
designed based on lessons learned from an earlier algorithm
introduced in [2, Section 4]. For different approaches for
dealing with the MRI noise, see also [5], [6], [7], [8].

When designing a practical solution, one should consider, at
least, these three aspects of the noise cancellation problem: (i)
what kind of noise should be rejected, (ii) what kind of signal
or signal characteristic should be preserved, and (iii) how the
resulting de-noised signal is to be used. In this work, the noise
is generated by a MRI scanner, the preserved signal consists of
prolonged, static vowel utterances, and the de-noised signals
should be usable for high-resolution spectral analysis of speech
formants. The noise spectrum of the MRI scanner (in these
experiments, Siemens Magnetom Avanto 1.5T) has a lot of
harmonic structure on few discrete frequencies as shown in
Fig. 1 (lower panel), and it changes during the course of the
MRI scan. The proposed algorithm estimates the harmonics
of the noise, and removes their contribution by tight notch
filters as explained in Fig. 1. There are additional heuristics
to prevent the removal of multiples of the fundamental glottal
frequency ( f0) of the speech that, unfortunately, somewhat
resemble the noise spectrum of the MRI scanner. One of
the caveats is not to have the algorithm “bake” noise energy
into spurious spectral peaks that would skew the true formant

1Some experiments on the same speech data have been carried out using
FastICA as well but adaptive methods seem to give better results.
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content – this may be a serious cause of worry in non-
linear signal processing that is able to move energy from one
frequency band to another.

Since the de-noised vowel data is used in, e.g., [2], [9] for
parameter estimation and validation of a computational model,
it is imperative that the extracted formant positions, indeed,
reflect precisely the acoustic resonances of the corresponding
MRI geometries of the vocal tract. For model validation,
the proposed post-processing algorithm is applied to noisy
speech data consisting of prolonged vowel samples from which
vowel formants should be extracted without bias. In a typical
speech sample, the noise component is of comparable level
as the speech component, but there is great variance between
different test subjects and even between different vowels from
the same test subject: A smaller mouth opening area results
in lower emission of sound power.

The outline of this article is as follows: After the data ac-
quisition has been described in Section II, the post-processing
algorithm is described in Section III. The validation of the
algorithm is carried out in Section IV through four different
approaches: (i) accuracy of the formant extraction using a
synthetic test signal with known formant structure, (ii) com-
parison of spectral tilts (i.e., the roll-off) of de-noised speech
recorded during MRI to similar data recorded in anechoic
chamber, (iii) comparison of the formants from de-noised
speech to computationally obtained resonances (see [9]) as
well as to spectral peaks measured from 3D printed physical
models from the simultaneously obtained MRI geometries,
and finally (iv) a perceptual vowel classification experiment
(see [10]) based on de-noised speech recorded during MRI.
These four validation experiments support the conclusion that
the proposed noise cancellation algorithm can be used with
good confidence for, at least, obtaining formants from speech
contaminated by MRI noise.

In Section V, we apply the post-processing algorithm to
speech that has been recorded during an MRI scan as detailed
in [2]. The objective is no longer to validate the algorithm
rather than draw conclusions about the speech data itself.
We again use comparison samples that have been recorded in
anechoic chamber. There is a statistically significant (p > 0.95)
discrepancy between some of the vowel formants extracted
from these two kinds of data. It is further observed that
the formant discrepancy has a consistent frequency dependent
behaviour shown in Fig. 5 with steps at 1kHz and 2kHz. We
hypothesise that it is due to the constrained space acoustics
inside the MRI head and neck coils, resulting in exterior
formants not related to vocal tract configurations.

II. SPEECH RECORDING DURING MR IMAGING

A. Arrangements

The experimental arrangement has been detailed in [11], [1],
[2]. Briefly, a two-channel acoustic sound collector samples
the speech and the MRI noise. The signals are acoustically
transmitted to a microphone array inside a sound-proof Fara-
day cage by waveguides of length 3.00 m. The microphone
array contains electret microphones of type Panasonic WM-
62. The preamplification and A/D conversion of the signals
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Fig. 1: Upper panel: A block diagram of the post-processing
algorithm. Here s[t] and n[t] denote the discretised speech
and noise samples at f s = 44 100 Hz, respectively. The signal
y[t] is de-noised speech. Lower panel on the left: Harmonic
structure of the MRI noise and stop bands estimated from it.
Lower panel on the right: The zero/pole placement in z-plane
of the notch filter of degree 20 for removing the frequency
f s/10 and its harmonics below the Nyquist frequency f s/2.

is carried out by conventional means, see [2, Section 3.1].
The experiments were carried out using Siemens Magnetom
Avanto 1.5T using 3D VIBE (Volumetric Interpolated Breath-
hold Examination) MRI sequence [58] as it allows for suffi-
ciently rapid static 3D acquisition. Imaging parameters, etc.,
have been described in [2, Section 3.2].

B. Phonetic and geometric materials

The speech materials consist of Finnish vowels [A, e, i, o,
u, y, æ, œ] that were pronounced by a 26-year-old healthy
male (in fact, the first author) in supine position during MRI.
The number of samples varies between 3 and 9 depending
on the vowel. The MRI sequence requires up to 11.6 s of
continuous articulation in a stationary supine position. The test
subject produced the vowels at a fairly constant fundamental
frequency f0, given by the cue signal to the earphones. Two
different pitches f0 = 104 Hz and f0 = 130 Hz were used, and
they had been chosen so as to avoid spectral peaks of the MRI
noise.

The paired MRI/speech data for this article was acquired
during a single session of 82 min. in the MRI laboratory using
the protocols reported in [1], [2]. We obtained 107 MRI scans
which is only possible using well-optimised experimental ar-
rangements. Of the 107 scans, no more than 36 were prolonged
vowels at f0 ≈ 104 Hz (with sample lengths ≈ 11.2 s) deemed
usable for this study. To obtain comparison data, same kind
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of speech recordings were carried out in anechoic chamber
but neither the MRI coil reflections nor the ambient noise
were replicated. Compared to MRI experiments, there are
no similar restrictions in anechoic chamber, apart from test
subject fatigue. Thus, each vowel was now produced 10 times
since the larger sample number was possible as a benefit of
less demanding experimental arrangement.

III. MRI NOISE CANCELLATION

We treat the measurement signals from speech and acoustic
MRI noise s[t] and n[t] for t ∈ {h,2h,3h, . . .} in their
digitised form where h = 1/ f s , and the sampling frequency
f s = 44 100 Hz. The post-processing algorithm for these
discrete time signals is outlined in Fig. 1 (upper panel), and
it consists of the following Steps 1–6 that have been realised
as MATLAB code:

1) LSQ: Speech channel crosstalk is optimally removed
from noise signal using coefficient k from least squares
minimisation.

2) Frequency response compensation: The frequency re-
sponse of the whole measurement system, shown in
Fig. 1 (upper panel), is compensated. The peaks in the
frequency response are due to the longitudinal reso-
nances of the waveguides, used to convey the sound
from inside the MRI scanner to the microphone array
placed in a sound-proof Faraday cage.

3) Noise peak detection: The noise power spectrum is
computed by FFT, and the most prominent spectral
peaks of noise are detected.

4) Harmonic structure completion: The set of noise
peaks is completed by its expected harmonic structure
to ensure that most of the noise peaks have been found
as shown in Fig. 1 (lower panel on the left). There are
heuristics involved so that the harmonics of the reference
value of f0 do not get accidentally removed. Details are
described below in pseudocode.

5) Notch filtering: The noise peaks are removed by us-
ing notch filters provided by the MATLAB function
iircomb with parameters n equal to the number of
different harmonic overtone structures detected, and the
−3 dB bandwidth bw set at 6 · 10−3.

6) Spectral subtraction: A sample of the acoustic back-
ground (including, e.g., noise from the helium pump) of
the MRI laboratory (without patient speech and scanner
noise) is extracted from the beginning of the speech
recording. Finally, the averaged spectrum of this “silent
sample” is subtracted from the speech signal using FFT
and inverse FFT; see [12].

The proposed approach differs essentially from the earlier
approach proposed in [2, Section 4]. Firstly, now there is
no direct time-domain subtraction of the measured noise
component from speech which makes the present approach
similar to [5]. For that reason, the low frequency components
of speech are not attenuated as a result of the proximity
effect in dipole configurations. Secondly, using notch filters
instead of high-order Chebyshev produces sharper removal of
unwanted spectral components; see also [13]. These changes
improve the audible outcome considerably.

Algorithm 1 Adaptation to spectral structure
We associate with each spectral peak p its location in spectrum
loc(p) in Hz, and its height mag(p) in dB.

1: P ← set of all peaks found in the spectrum.
2: procedure FINDHARMONICS(P)
3: while P , ∅ do
4: p← maxmag P
5: P ← P \ p
6: for q ← P sorted by |loc(p) − loc(P) | do
7: d ← |loc(p) − loc(q) |
8: if d < c f0 then
9: continue

10: if ∃ harmonics with fundamental d then
11: F ← F∪ iircomb( f s/d)
12: P ← P \ {r ∈ P : r = nd,n ∈ Z}
13: return F
Harmonics are considered successfully found at step 10, if P
contains four consecutive peaks with distance d. The value 1.5
has been used for the parameter c.

IV. PERFORMANCE ANALYSIS

A. Validation through synthetic signals

The formant extraction from noisy speech can validated
using artificially noise contaminated speech where the original
formant positions are known. Pure vowel signals were taken
from comparison data for each vowel in [A, e, i, o, u, y,
æ, œ], and their formants F1,F2, and F3 were computed2.
A sample of MRI noise (without any speech content) was
recorded using the experimental arrangement detailed in [2,
Section 3], and it was mixed with each vowel sample so that
the speech and noise components have equal energy contents
(SNR ≈ 0 dB). The post-processing algorithm was then applied
to these signals, of which an example is shown in Fig. 2.

The three formants F1,F2, and F3 were extracted from
artificially noise contaminated vowels after they had been post-
processed as described in Section III. The resulting formant
frequencies are within −0.5 . . . 0.3 semitones from those mea-
sured from the original pure vowels, except for the outlier
F2[o] where the discrepancy is 1.1 semitones.

Vowel F1 F2 F3
[A] 598 1094 1918
[e] 453 1691 2255
[i] 318 1900 2097
[o] 465 815 2233
[u] 410 898 1934
[y] 379 1535 2034
[æ] 562 1452 2375
[œ] 436 1400 2076

Vowel F1 F2 F3
[A] 615 1129 2021
[e] 443 1714 2299
[i] 327 1909 2293
[o] 451 858 2088
[u] 416 921 2041
[y] 390 1533 2015
[æ] 559 1476 2319
[œ] 428 1421 2099

TABLE I: Original formants (left) and formants extracted
after the artificial addition of MRI noise and subsequent noise
cancellation (right).

The average formant discrepancies of under 2.8 semitones
were reported in [2, Table 3] between speech formants and

2Throughout this article, the MATLAB function arburg is used for
producing low-order rational spectral envelopes from which the formants are
extracted by locating poles.
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Fig. 2: Illustration of the artificially noise-contaminated vowel
signal. On the left, MRI noise (upmost), pure vowel signal
(middle), and the synthetic signal as their sum (lowest). On the
right, synthetic signal (upmost), signal after post-processing
using the proposed algorithm (middle), and the reconstructed
noise (lowest).

Helmholtz resonances computed from vocal tract geometries
that were obtained by simultaneous MRI. Also, the observa-
tions in [14] provide magnitudes for formant error that results
from inherent variation in long vowel productions due to test
subject adaptation and fatigue. Comparing these values with
the results on artificially contaminated speech, we conclude
that formant extraction from algorithmically post-processed
signals can be regarded as a small error source.

We further observe that the post-processing algorithm de-
scribed in Section III increases the SNR of the artificially
noise-contaminated signals by 9 . . . 14 dB depending on the
vowel.

B. Comparison of spectral tilts

In addition to formants, another important spectral charac-
teristic of speech signals is the spectral tilt or roll-off. It is a
measure of attenuation of the signal at higher frequencies that
are still relevant to speech. We quantify the spectral tilt by first
fitting a low-order rational spectral envelope on the frequency
range of speech, and then finding the LSQ regression line
to the envelope on the logarithmic frequency range between
465 Hz and 5 kHz. The bound 465 Hz is the mean of all F1’s
present in the dataset.

[A] [e] [i] [o] [u] [y] [æ] [œ]
Anech 12.2 11.9 9.0 14.5 15.6 12.6 11.3 12.7
MRI 15.7 13.9 9.2 17.9 15.3 13.5 14.0 15.2

TABLE II: Spectral tilts (in dB/octave) from recordings in
the anechoic chamber and from samples recorded during MRI
noise after post-processing.

The spectral tilt data is given in Table II. The roll-off in post-
processed speech during MRI is systematically larger than in
comparison data (in average by 1.9 dB), the only exception
being the vowel [y]. We point out that the two kinds of
spectral tilt data in Table II correlate strongly (R = 0.78).
As can be seen from Fig. 4 (last panel), the difference of the
average spectral tilts is quite small. The difference is partly
explained by the fact that there was a lot of more attenuating
material around the test subject in the MRI scanner, compared
to experiments in anechoic chamber.

Fig. 3: A detail of the sweep measurement arrangement for
3D printed vocal tract configurations of [A, œ].

C. Comparison to sweeps in physical models

Three of the MR images corresponding to Finnish quantal
vowels [A, i, u] were processed into 3D surface models (i.e.,
STL files) and intersectional area functions for Webster’s
equation as explained in [15]. Fast prototyping was used to
produce physical models in ABS plastic (wall thickness 2 mm)
from the STL files. The printed models extend from the glottal
position to the lips, and they were coupled to a custom acoustic
source (see Fig. 3) whose design resembles the loudspeaker-
horn construction shown in [16, Fig. 1]; see also [17].

The acoustic source contains an electret (reference) micro-
phone (� 9 mm, biased at 5 V) at the glottal position, and
another similar (signal) microphone was placed near the lips.
These two units were picked from a set of 10 units to ensure
that their frequency responses between 80 Hz and 10 kHz
are practically identical. A sinusoidal logarithmic sweep was
preweighted by the iteratively measured inverse response of
the acoustic source in order to obtain a uniform sound pres-
sure level at the reference microphone for all frequencies of
interest. The resonant frequencies between 80 Hz and 7 kHz
of the physical models (and reference resonators with known
resonant frequencies) were measured using this arrangement.

As can be seen from Fig. 4, there is good correspon-
dence between the spectra of de-noised speech from MRI
experiments and the spectra from physical models of the
simultaneously imaged vocal tract geometry. There are some
extra peaks in both kinds of spectra that correspond to spurious
resonances not due to the vocal tract geometry. We point out
that the physical models did not contain the face, and the
sweep measurements were carried out in an open acoustic
environment in an anechoic chamber. This is in contract to
the speech recordings that were carried out within MRI head
and neck coils [1], [2].

It is worth observing from Fig. 4 that the spectral tilt
(as defined in Section IV-B) of the frequency response from
physical models is practically 0 dB/octave. This is due to two
reasons: (i) A 3D printed vocal tract is a virtually lossless
acoustic system apart from the radiation losses through mouth
opening, and (ii) the glottal excitation in natural speech has
its characteristic roll-off of 11 . . . 16 dB/octave whereas the
measurements from the physical models were carried out
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Fig. 4: The first three panels: Spectral envelopes and com-
putationally obtained resonances of [A, i, u]. The upper curves
are power spectral densities of speech recorded during an MRI
scan. The lower curves are frequency responses measured from
the physical models that have been produced from the MR
images. The vertical lines indicate the three lowest resonances
computed by Webster’s model from the same VT geometry
using the mouth impedance optimisation process introduced
in [9]. The last panel: Averages of spectral envelopes of all
Finnish vowels [A, e, i, o, u, y, æ, œ]. Vowels appear in the
averages with the same weight. The topmost curve describes
speech recorded during the MRI scan, and the center curve
recordings in anechoic chamber. The lowest curve is their
difference.

keeping the sinusoidal sound pressure constant at the glottal
position.

D. Perceptual evaluation

A listening experiment was carried out to evaluate the effect
of post-processing on vowel recognition. In the experiment, 12
subjects (of which two were female) listened to 48 recordings
of vowel phonation. The recordings consisted of 6 samples of
each Finnish vowel in [A, e, i, o, u, æ, œ]; half of the samples
were unprocessed recordings from anechoic chamber (24 in
total, three for each vowel), while the rest had undergone the
MRI noise contamination and de-noising process described in
Section IV-A. The duration of each sample was 10 s.

The test subjects were allowed to listen each sample as
many times as they wanted. Using a computer interface, they
reported the vowel that the phonation resembled the most in
their opinion. The results of the perceptual experiment are
given in Table III. As a conclusion, there is a slight increase
in classification mistakes induced by the proposed algorithm,
but the increase is a fraction of the classification mistakes
due to natural speech variation in the samples used. To draw
statistically significant conclusions on such small effects would
require a considerably larger data set.

a) Vowel samples from anechoic chamber
categorised as

target [A] [e] [i] [o] [u] [y] [æ] [œ]

[ A ] 36 0 0 0 0 0 0 0
[ e ] 0 33 0 0 0 0 0 3
[ i ] 0 0 36 0 0 0 0 0
[ o ] 6 0 0 30 0 0 0 0
[ u ] 0 0 0 13 23 0 0 0
[ y ] 0 0 0 0 0 32 0 4
[ æ ] 0 1 0 0 0 0 32 1
[ oe ] 0 3 0 0 0 0 0 33

b) Artificially MRI noise contaminated samples
categorised as

target [A] [e] [i] [o] [u] [y] [æ] [œ]

[ A ] 36 0 0 0 0 0 0 0
[ e ] 0 30 0 0 0 0 0 6
[ i ] 0 0 36 0 0 0 0 0
[ o ] 8 0 0 28 0 0 0 0
[ u ] 0 0 0 15 21 0 0 0
[ y ] 0 0 0 0 0 27 0 9
[ æ ] 0 0 0 0 0 0 36 0
[ oe ] 0 0 0 1 0 0 0 35

TABLE III: Results of the perceptual comparison experiment
on vowels, some of which were artificially contaminated by
MRI noise and then de-noised. Quite many target samples of
[u] were classified as [o] in both kinds of samples.

V. FORMANT EXTRACTION FROM NOISY SPEECH

After four validation experiments on the post-processing
algorithm described in Section III, it is time to apply it on
true speech data, recorded during an MRI scan. Our purpose is
to show by comparative studies that the acoustic environment
in the MRI scanner introduces resonant artefacts to speech
signals that are large enough to be clearly quantifiable using
the proposed algorithm.

To increase the number of vowel sound samples from MRI
experiments, six partial samples of 1 s were taken from each
recording. These partial samples are separated from each other
by at least 1 s of time to enhance the independence of the
samples. This sixfold increase of the original sample number
improves the statistical analysis given in Table IV. Spectral
envelopes of all speech samples are shown in Fig. 6 where
variance between same vowel productions in different MRI
scans (or different parts of the same scan) can be observed.

We proceed to show that some of the extracted formant
means of samples from anechoic chamber and MRI labora-
tory are significantly nonequal. The estimated formant means
µac and µmri are compared using Student’s t-distribution
where the degrees-of-freedom is determined by the Smith-
Satterwaithe procedure; see the unequal variance test statistics
in, e.g., [18, Section 10.4]. In case of the vowel formant Fj [A]
for j = 1,2,3, our null hypothesis is that

H0 : µac
(
Fj [A]

)
= µmri

(
Fj [A]

)
We try to reject H0 by showing that its converse H1 is

true with high probability, say p > 0.95, in which case the
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Fig. 5: The means of formants F1,F2,F3 have been extracted
from the vowel samples of [A, e, i, o, u, y, æ, œ] recorded during
MRI. They are plotted against the comparable data recorded in
anechoic chamber from the same test subject. The dashed lines
describe the error bounds of ±0.5 semitones due to formant
extraction from post-processed noisy speech; see Section IV-A.
Where the formant discrepancy is statistically significant at
p ≥ 0.95, the vowel has been encircled; see Table IV.

experiment indicates that the formant extraction from the two
data sources is not consistent. The results of the experiments
are given in Table IV where the p-values are given. We
conclude that H0 gets typically rejected for F2 in all vowels
except [A, o, æ] and for all formants in vowels [e, i].

The formant means from post-processed speech during MRI
are plotted in Fig. 5 against their counterparts recorded in
anechoic chamber from the same test subject. If these two
datasets were perfectly consistent, all data points would be
expected to appear between the two diagonal dashed lines,
representing the maximum error of formant extraction from
noisy speech as discussed in Section IV-A. We conclude that
(at least) 12 of the discrepancies shown in Fig. 5 reflect actual
differences of the speech data recorded in MRI laboratory,
compared to similar data from anechoic chamber.

It is worth observing that the formant discrepancy in Fig. 5
shows a peculiar staircase pattern where two plateaus appear
near 1 kHz and 2 kHz. More precisely, we observe that in
samples recorded during MRI, we have F2[y], F2[œ] → 1 kHz
from above and F2[e], F2[i]→ 2 kHz from below. The vertical
level at 1 kHz coincides with an extra peak appearing in Fig. 6
in most of spectral envelopes of signals recorded during MRI;
notable exceptions are the vowels [A,u,o] where F2 ≈ 1 kHz
would conceal any extra peak. The extra peaks can be seen
in Fig. 4 (last panel) where the spectral envelopes of all
vowel recordings in MRI laboratory (in anechoic chamber,
respectively) have been averaged. The acoustic resonances of
the exterior space are expected to show up in the averaged
envelopes, and there are, indeed, spectral peaks near 1 kHz and
2 kHz in recordings within MRI head and neck coils that do not
appear in the corresponding averages of the comparison data. It
has been excluded by frequency response measurements and
ensuing compensation that these peaks could be an artefact
of the speech recording instrumentation. A similar staircase
pattern to Fig. 5 appears in [19, Chapter 5] where formant and
resonance pairs have been plotted against each other. The vocal
tract resonances in [19] have been computed by Helmholtz

equation from MRI data without exterior space modelling, and
the formants have extracted from recordings during MRI as
explained in [2, Section 5].

[A] [e] [i] [o] [u] [y] [æ] [œ]
F1 0.99 0.98 0.84 0.14 0.70 0.95 0.25 0.07
F2 0.21 0.99 0.99 0.99 0.98 0.99 0.81 0.98
F3 0.82 0.99 0.99 0.60 0.17 0.99 0.61 0.75

TABLE IV: The p-values computed with Smith-Satterwaith
procedure for distributions with unequal variances. Formant
samples that reject the null hypothesis H0 at p > 0.95 are
written in bold.

The statistically significant discrepancy in Fig. 5 is expected
to be a combination of three different sources: (i) “frequency
pulling” of the vocal tract resonances by the adjacent exterior
space resonances, caused by reflections from test subject’s face
and MRI head and neck coil surfaces; (ii) Lombard speech due
to the acoustic noise during MRI (see [20], [21]); and (iii)
active adaptation of the test subject to the constrained space
acoustics inside the MRI head and neck coil.

VI. CONCLUSIONS

When trying to match a computational model of speech to
true speech biophysics, some sort of paired data is necessarily
required. For example, if the acoustic modelling is based on
vocal tract geometries acquired by MRI, then the most suitable
accompanying data consists of speech samples recorded during
the same MRI scan. Unfortunately, these samples are always
contaminated by high levels of scanner noise and other acous-
tic artefacts that must be eliminated before the extraction of
desired features (such as the formant positions and the spectral
tilt) is possible. Applications related to, e.g., modelling of
oral and maxillofacial surgery require extreme precision that
is feasible in model computations only by careful parameter
estimation and validation of model components. Thus, the
model can only be as reliable as its validation data.

A post-processing algorithm was proposed for removing
acoustic noise from speech that has been recorded during
MRI using special MRI-proof instrumentation. It is one of the
salient features of MRI scanner noise that it mainly consists
of few strong fundamental frequencies accompanied by their
harmonic overtones. The algorithm outlined in Section III first
identifies such harmonic structure and then adapts a collection
of notch filters to the detected frequencies. The algorithm is
realised as MATLAB code.

The post-processing algorithm was validated by using arti-
ficially noise-contaminated vowels where the noise has been
recorded from the MRI scanner running the same MRI se-
quence as in the prolonged vowel experiments. Such artificially
MRI noise contaminated vowels have known formant positions
and predetermined SNR’s which makes it possible to assess
the achievable noise reduction in post-processing. In the pro-
posed approach, we observe that 9 . . . 14 dB reduction of MRI
scanner noise is attainable for prolonged vowel signals, and
the formant extraction error due to post-processing is less than
half a semitone. This is an adequate level of performance for
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Fig. 6: Spectral envelopes of all vowel samples in the dataset.
In each panel, the upper curves represent post-processed
signals recorded during MRI experiments. The lower curves
are similar envelopes without any post-processing of signals,
obtained from the same test subject in the anechoic chamber.
These two families of curves are comparable to curves given
in [2, Figs. 7–8]. The vertical bars are error intervals for for-
mants F1, . . . ,F4 extracted from the recordings in the anechoic
chamber.

the validation and the parameter estimation of a computational
speech model such as proposed in [3].

The algorithm was applied on real speech data. A set of
prolonged vowels was recorded during MRI, and this data was
post-processed. Comparison measurements were recorded in
optimal conditions from the same test subject. Vowel formants
were extracted from both types of data, and it was observed
that the formant discrepancy between the two kinds of data
has a strongly frequency dependent behaviour. Particularly
large deviations were observed at 1 kHz and 2 kHz. At these
frequencies, the formant discrepancy is several magnitudes
larger than the formant estimation error from post-processed
speech, and the deviations are statistically significant (Stu-
dent’s t-test with p > 0.95). There is evidence that the deviant
frequencies are related to the acoustic resonances of the space
between test subject’s face and MRI coils. However, some of
the formant error may also be due to test subject’s adaptation
to his acoustic environment during the MRI scan.

The notch filtering adds a large number of transmission
zeros to processed signals which causes the phase response
of the algorithm to be non-linear. This may be a showstopper
if the post-processed signal is to be used as an input for an-
other speech processing algorithm such as the Glottal Inverse
Filtering (GIF) for glottal pulse extraction, see [23], [24]. To
produce signals with linear phase response, one should use,
e.g., non-causal spectral filtering (see [22]) instead of notch
filters.

Even though the algorithm has been designed for the pur-
pose of formant extraction, it gives audibly quite satisfactory
results from natural speech that has been recorded during
dynamic MRI of mid-sagittal sections.
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