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Abstract

We introduce a Riccati equation theory for a class of well
posed (I/O -stable) discrete time linear systems Φ as pre-
sented in [6].

We shall tie together three different problems: The first
problem is the general question under which conditions a
minimax control problem associated to Φ can be solved
by a feedback law. The second problem is the existence
of certain spectral factorization of the I/O -map of Φ.
The third problem is about certain solution of a Riccati
equation system associated to Φ.

We shall show that these three problems are in fact
equivalent. This equivalence does not require any finite
dimensional structure of the system Φ. The I/O-stability
notion that we use throughout this paper is weaker than
the conventional power stability (ρ(A) < 1). Finally, con-
nections to the existing power stable and finite dimen-
sional theories are presented.

1 Introduction

In this paper we study the nondefinite critical control
problem in discrete time. Our basic object is a general H∞

transfer function whose input, state and output spaces are
not assumed to be finite dimensional.

Furthermore, we concentrate upon a fixed realization
of the transfer function that is not assumed to be either
input or output stable. In our setting, we regard the re-
alization we are working with as given, no matter how
(topologically) uncomfortable it is.

The realization that we are working with is called the
discrete time linear system (DLS) Φ. It is given by the
system of difference equations:

{

xj+1 = Axj + Buj ,

yj = Cxj + Duj , j ≥ 0,
(1)

where uj ∈ U , xj ∈ H , yj ∈ Y , and A, B, C, D

are bounded linear operators between appropriate Hilbert
spaces. We call the ordered quadruple φ = ( A B

C D ) a DLS
in difference equation form. The three Hilbert spaces are
as follows: U is the input space, H is the state space and
Y is the output space of φ. There is also another equiva-
lent form for DLS, called DLS in I/O form. It consists of
four linear operators in the ordered quadruple

Φ :=

[

Aj Bτ∗j

C D

]

(2)

The operator A ∈ L(H) is called the semi-group generator
of Φ, and it is the seme operator as in equation (1). B :
ℓ2(Z−; U) ⊃ dom (B) → H is called the controllability
map that maps the past input into the present state. C :
H ⊃ dom (C) → ℓ2(Z+; Y ) is called the observability map
that maps the present state into the future outputs. The
last operator D : ℓ2(Z; U) → ℓ2(Z; Y ) is called the I/O
map that maps the input into output in a causal and shift
invariant way.

The above notions are closely related to the concept of
a continuous time stable well-posed linear system by O.
Staffans in [10], [11] and G. Weiss in [13], [14]. For the
basic properties of DLS’s, see [6].

In the frequency plane, the action of D is the multiplica-
tion by the transfer function of the system. I/O -stability
of Φ means that D is bounded; this is the H∞-condition.
I/O-stability implies that range (B) ⊂ dom(C). For defi-
niteness, we assume that dom (C) = H .

As usual, the indefinite cost function is given by

J(x0, ũ) = 〈ỹ(x0, ũ), Jỹ(x0, ũ)〉ℓ2(Z+;Y )

where ỹ(x0, ũ) := Cx0+Dũ for a given input ũ ∈ ℓ2(Z+; U)
and initial state x0 ∈ dom(C). Here J ∈ L(Y ) is self
adjoint, not necessarily positive.

Given a cost function J(x0, ũ), we define the control
ũcrit(x0) to be critical if the Frechet derivative of the
cost J(x0, ũ) with respect to ũ vanishes at ũcrit(x0). The
study of certain feedback, factorization and Riccati equa-
tion properties of the critical control is the subject of this
paper. Our main result is Theorem 6.
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The theory of critical controls has connections to control
theory (classical quadratic cost minimization theory when
J is positive), function theory (via the representation of
transfer functions and inner-outer factorizations; see [9])
and minimax game theory.

The lack of assumed finite-dimensionality means that
σ(A) could very well be a substantial (connected) subset
of C, or subset of the closed unit disk D intersecting the
boundary ∂D. In general, this stops us from using tools
such as matrix algebra or spectral projections. To fill this
gap, we resort to certain spectral factorizations whose ex-
istence would sometimes be implied by, for example, finite
dimensionality or power stability of the system. In this
paper we shall concentrate upon equivalence results that
are dimension independent, and not upon any particular
existence results implied by finite-dimensionality.

2 Critical control

For each x0 ∈ dom (C) the critical control ũcrit(x0) is a
saddle point of the cost functional J(x0, ũ) as a mapping
from ℓ2(Z+; U) onto R. We may have many critical con-
trols, or none at all. If we assume that the Popov operator
π+D∗JDπ+ has a bounded inverse in ℓ2(Z+; U) (i.e. D is
J-coercive), we have:

Lemma 1. Assume that the DLS Φ =
[

Aj Bτ∗j

C D

]

is I/O-
stable and J-coercive. Then the following is true:

(i) For each x0 ∈ dom (C) there is a unique critical con-
trol ũcrit(x0).

(ii) The critical control satisfies

ũcrit(x0) = Kcritx0, (3)

where

Kcrit := −(π̄+D
∗JDπ̄+)−1π̄+D

∗JC

is a linear operator dom(C) → ℓ2(Z+; U), called the
critical (closed loop) feedback operator.

The critical output is defined by ỹcrit(x0) = Ccritx0,
where Ccrit := C + DKcrit. The conjugate symmetric
sesquilinear form on dom(C) × dom (C) defined by

P crit(x0, x1) := 〈Ccritx0, JC
critx1〉ℓ2(Z+;Y )

is called the critical sesquilinear form. Trivially
J(x0, ũ

crit(x0)) = P crit(x0, x0).

3 Feedback connection

Sometimes we can write the critical control of Φ is a feed-
back form. Before we give the details we review what we
mean by feedback.

We realize the state feedback by first adding a new equa-
tion uj = Kxj to equations (1), where K ∈ L(U). This

gives us an extended DLS φ. We get the closed loop DLS
φ⋄ in difference equation form by simple manipulation.
However, we need the same DLS in I/O -form.

In I/O -form, the new output signal given by K provides
a new output ṽ ∈ ℓ2(Z+; U) to Φ, thus giving an (open
loop) extended DLS Φext = [Φ, [K,F ]]. This is a cartesian
product of two DLS’s with the same input and semigroup
structure, as presented in the following picture:

Aj Bτ∗j
(

C
K

) (

D
F

)

?
x0

�xj(x0, ũ)

�ỹ(x0, ũ)

�ṽ(x0, ũ)
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The ordered pair of operators [K,F ] is called a feedback
pair of Φ. Here K is a valid observability map and F is
a valid I/O-map for the system with semigroup generator
A and controllability map B. We require that dom(C) ⊂
dom (K), and (I − F)−1 is bounded and causal. [K,F ] is
I/O-stable if, in addition, F is bounded. The closed loop
extended DLS Φext

⋄ is the DLS that we obtain when we
close the following state feedback connection:

Aj Bτ∗j
(

C
K

) (

D
F

)
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�xj(x0, ũ)

�ỹ(x0, ũ)

�ṽ(x0, ũ)
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For further results of discrete time feedback systems and
their stability concepts, see [6].

The motivation for the following definition is clear.

Definition 2. Assume that there is an I/O-stable feedback
pair [K,F ] for Φ such that the extended system Φext :=
[

Aj Bτ∗j

( C
K ) (DF )

]

has the following properties:

(i) Both the extended DLS Φext and the closed loop ex-
tended DLS Φext

⋄ are I/O-stable.

(ii) With initial value x0 ∈ dom (C) and zero input, Φext
⋄

outputs the critical state sequence {xcrit
j (x0)}j≥0,

critical output ỹcrit(x0) and critical control ũcrit(x0)
of the original system Φ.

Then we say that the critical control of Φ with cost func-
tional J(, ) is of feedback form with the critical feedback
pair [K,F ].

4 (J, S)-inner-outer factorization

We define a factorization of the I/O map that takes into
account the interaction of the DLS Φ and the cost func-
tional induced by J .



Definition 3. The pair of operators (N ,M) is a (J, S)
-inner-outer factorization of D, if the following conditions
hold:

(i) N ∈ L(ℓ2(Z; U), ℓ2(Z; Y )) and M ∈ L(ℓ2(Z; U)) are
causal shift invariant operators,

(ii) N is (J, S) -inner, i.e. N ∗JN = S, where S = S∗ ∈
L(U).

(iii) M is outer, i.e. M−1 ∈ L(ℓ2(Z; U)) is causal shift
invariant.

(iv) D = NM−1.

The calculation of (J, S)-inner-outer factorization is a
spectral factorization problem. M−1 is the S-spectral fac-
tor of D∗JD.

5 Riccati equation

Definition 4. Let J ∈ L(Y ) be self adjoint, and let
Φ =

[

Aj Bτ∗j

C D

]

be an I/O-stable DLS. We say that the con-
jugate symmetric sesquilinear form P (·, ·) on dom (C) ×
dom (C) satisfies the Riccati equation system (associated
to J and Φ), if

P (Ax0, Ax1) − P (x0, x1) + (C∗JCx0, x1)H (4)

=
〈

Q∗
P Λ−1

P QP x0, x1

〉

H
,

〈ΛP u0, u1〉 = 〈D∗JDu0, u1〉U + P (Bu0, Bu1), (5)

〈QP x1, u2〉 = −〈D∗JCx1, u2〉U − P (Ax1, Bu2) (6)

for all u0, u1, u2 ∈ U and x0, x1, x2 ∈ dom (C). where
the linear operators satisfy ΛP , Λ−1

P ∈ L(U) and QP ∈
L(H ; U).

In particular the critical sesquilinear form P crit(·, ·) sat-
isfies the Riccati equation system. Note that if Φ is output
stable (C bounded and dom (C) = H), then we could have
stated the Riccati equation system as the familiar alge-
braic Riccati equation, and the critical sesquilinear form
as a self adjoint P crit ∈ L(H).

Also a converse is true: from certain solutions of the
Riccati equation system we can recover a critical control
feedback pair [K,F ] as stated in Theorem 6. For this end
we have to define a concept of indicator DLS associated
to a solution P (·, ·) of the Riccati equation system.

Definition 5. Let J ∈ L(Y ) be self adjoint, and let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS. Let P (·, ·) be a solution
of the Riccati equation system (4) - - (6). Then the DLS

φP :=

(

A B

−QP ΛP

)

(7)

is called the indicator DLS φP (associated to J and Φ)
of the sesquilinear form P (·, ·), where the bounded linear
operators QP , ΛP are a in Definition 4.

6 Equivalence theorem

Now we are ready to present the main results of this paper.

Theorem 6. Let Φ =
[

Aj Bτ∗j

C D

]

be an I/O-stable DLS,
and J ∈ L(Y ) be self adjoint. Then the following condi-
tions (i), (ii) and (iii) are equivalent:

(i) a) Φ is J-coercive.

b) There is an I/O-stable feedback pair [K,F ] for Φ
such that the critical control of Φ is of feedback
form with the critical feedback pair [K,F ].

(ii) a) There is a boundedly invertible operator S ∈
L(U) such that D has a (J, S)-inner-outer fac-
torization.

b) π0N ∗JC ∈ L(H ; U).

(iii) There is a solution P (·, ·) of the Riccati equation sys-
tem (4) - - (6) such that

a) the indicator DLS φP is both I/O-stable and
outer,

b) P (xj , xj) → 0 for all trajectories {xj(x0, ũ)} of
Φ, with x0 ∈ dom (C), ũ ∈ ℓ2(Z+; U).

To say that the indicator DLS φP is outer means that
the I/O-map of φP is outer. For proof, see [5]. Note that
in this case the I/O-map DφP

is the Λ−1
P -spectral factor

of D, the I/O -map of the original system.

For finite dimensional, power stable partial analogues
of equivalence (ii) ⇔ (iii), see e.g. [4], [7] and [8]. For
the equivalence (i) ⇔ (ii), see also [2]. For infinite dimen-
sional, power stable and time-variant analogue of Theorem
6, see [1, Theorems 3.2.8 and 3.2.10]. See also [3].

7 Conclusions

In this section we briefly look at the connections to the
existing power stable and finite dimensional theories. Let
us look at the implications of condition (iii) in Theorem 6
with this stronger stability assumption.

Lemma 7. Let Φ =
[

Aj Bτ∗j

C D

]

be a power stable DLS, and
J ∈ L(Y ) be self adjoint. Assume that the Riccati equation
system (4) - - (6) has a solution P (·, ·) satisfying:

(i) P (x0, x1, ) = 〈x0, Px1〉H for a self adjoint P ∈ L(H),

(ii) Λ−1
P ∈ L(U),

(iii) The closed loop semigroup generator A+BΛ−1
P QP is

power stable, i.e. P is a (power) stabilizing solution
of the Riccati equation system.

Then the conditions of Theorem 6 are satisfied.



So in the power stable case everything reduces to show-
ing the existence of a power stabilizing solution for the
Riccati equation. Note that now the Riccati equation can
be written for bounded linear operators P rather than for
conjugate symmetric sesquilinear forms P (·, ·). Assume
now that the spaces U , H and Y are finite dimensional.
The procedure of finding a power stabilizing solution is
a central task in the matrix Riccati equation theory (see
[8]). Under weak conditions, one can constructively prove
the existence of a maximal self adjoint solution P+ sat-
isfying P+ ≥ P for all other self adjoint solutions of the
Riccati equation. P+ is in fact an “almost power stabiliz-
ing” solution in the sense that ρ(A + BΛ−1

P QP ) ≤ 1. For
a positive definite cost functional J , the existence of the
power stabilizing solution can be proved. For details, see
[4, Theorems 13.1.1 and 13.5.2].
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