Conservativity and time-flow invertibility of boundary control systems

Seville, 14 December 2005

Jarmo. Malinen @math.tkk.fi
Helsinki University of Technology

Overview

In this talk, we

- (i) explain the connection between boundary control systems (as defined below) and operator/system nodes;
- (ii) give sufficient and necessary conditions for such a boundary control system to define a (scattering) conservative system node (notion that has been defined in earlier literature); and
- (iii) present a PDE example involving the wave equation in \mathbb{R}^n for $n \geq 2$.

Boundary nodes (1)

Boundary control systems are described by the following equations

$$\begin{cases} \dot{z}(t) = Lz(t) & \text{(state dynamics)}, \\ Gz(t) = u(t) & \text{(input)}, \\ y(t) = Kz(t) & \text{(output)}, \end{cases}$$

for $t \ge 0$ where the operators

$$L \in \mathcal{L}(\mathcal{Z};\mathcal{X}), \quad G \in \mathcal{L}(\mathcal{Z};\mathcal{U}) \quad \text{and} \quad K \in \mathcal{L}(\mathcal{Z};\mathcal{Y})$$

and the Hilbert spaces \mathcal{U} , \mathcal{X} , \mathcal{Y} , and \mathcal{Z} satisfy...

Boundary nodes (2)

- (i) $\mathcal{Z} \subset \mathcal{X}$ with a dense, continuous inclusion;
- (ii) $\mathcal{U} = \operatorname{Ran} G$, and $\operatorname{Ker} G$ is dense in \mathcal{X} ;
- (iii) $(\alpha L) \operatorname{Ker} G = \mathcal{X}$, and $\operatorname{Ker} (\alpha L) \cap \operatorname{Ker} G = \{0\}$ for some $\alpha \in \overline{\mathbb{C}_+}$.

The triple $\Xi = (G, L, K)$ is called a boundary node.

If L|Ker G generates a C_0 -semigroup, we say that Ξ is internally well-posed.

There are many (essentially) equivalent definitions.

Connection to system nodes

Internally well-posed boundary nodes $\Xi=(G,L,K)$ are in one-to-one correspondence with system nodes

$$S = \begin{bmatrix} A\&B\\ C\&D \end{bmatrix} \quad \text{on spaces} \quad (\mathcal{U},\mathcal{X},\mathcal{Y})$$

whose input operator B is injective and strictly unbounded:

$$Ker G = \{0\} \quad and \quad B\mathcal{U} \cap \mathcal{X} = \{0\}.$$

Such system nodes S are said to be of boundary control type.

Given
$$\Xi = (G, L, K)$$
...

...you get the corresponding $S = \begin{bmatrix} A \& B \\ C \& D \end{bmatrix}$ from equations $A \& B \begin{bmatrix} x \\ u \end{bmatrix} := A_{-1}x + Bu$ and $C \& D \begin{bmatrix} x \\ u \end{bmatrix} := Kx$ where

- (i) dom(A) := Ker G and A := L|dom(A);
- (ii) $\mathcal{X}_{-1} := \operatorname{dom}(A^*)^d$ using \mathcal{X} as the pivot space, and the usual Yoshida extension $A_{-1} : \mathcal{X} \to \mathcal{X}_{-1}$;
- (iii) $BGz := Lz A_{-1}z$ for all $z \in \mathcal{Z}$;
- (iv) and dom $(S) := \begin{bmatrix} I \\ G \end{bmatrix} \mathcal{Z}$.

(Don't worry. You need not memorize them right now.)

The Cauchy problem (1)

Assume: Boundary node $\Xi = (G, L, K)$ is internally well-posed; $u \in C^2([0, \infty); \mathcal{U})$ and $z_0 \in \mathcal{Z}$ satisfy the compatibility condition $Gz_0 = u(0)$.

Then: the equations for $t \geq 0$

$$\dot{z}(t) = Lz(t), \quad Gz(t) = u(t), \quad y(t) = Kz(t),$$

have a unique solution $z(\cdot) \in C([0,\infty); \mathcal{Z}) \cap C^1([0,\infty); \mathcal{X})$, such that $z(0) = z_0$ and $y(\cdot) \in C([0,\infty); \mathcal{Y})$;

The Cauchy problem (2)

And also: the same functions $u(\cdot)$, $z(\cdot)$ and $y(\cdot)$ satisfy

$$\dot{z}(t) = A_{-1}z(t) + Bu(t), \quad y(t) = C\&D\left[\begin{matrix} z(t) \\ u(t) \end{matrix}\right],$$

for $t \geq 0$. Here the system node

$$S = \begin{bmatrix} A \& B \\ C \& D \end{bmatrix}$$

corresponds to the boundary node $\Xi=(G,L,K)$ in the way described above.

Conservativity of system nodes

The system node $S = \begin{bmatrix} A \& B \\ C \& D \end{bmatrix}$ is (scattering) energy preserving if for any $u(\cdot) \in C^2(\mathbb{R}_+; \mathcal{U})$ and any (compatible) initial state $z(0) = z_0$, the solution of

$$\dot{z}(t) = A_{-1}z(t) + Bu(t), \quad y(t) = C\&D\left[\begin{matrix} z(t) \\ u(t) \end{matrix}\right]$$

satisfies the energy balance equation

$$\frac{d}{dt} \|x(t)\|_{\mathcal{X}}^2 = \|u(t)\|_{\mathcal{U}}^2 - \|y(t)\|_{\mathcal{Y}}^2.$$

S is conservative, if both S and the dual node S^d are energy preserving.

Why is this definition "the right one"?

This definition of conservativity can be defended from several directions:

- (i) It is a generalization from the finite dimensions;
- (ii) By the Cayley transform, it is equivalent to the usual discrete time definition;
- (iii) It is equivalent to the old definition of the operator colligation by Brodskiĭ, Livšic, Sz.-Nagy &al. in the theory of Hilbert space contractions;

Why is this definition... (cont'd)

- (iv) System theoretically, it is a very "happy class" e.g. a strong form of the state space isomorphism theorem holds.
- (v) As this work shows, it relates in the right way to the time-flow invertibility an important property of hyperbolic linear PDEs.
- (vi) As our newer work shows, it relates (after a translation to "impedance setting") in the right way to the abstract boundary spaces, used for extensions of symmetric operators in Russian literature.

How about conservative boundary nodes?

Question: How to characterize those conservative boundary nodes $\Xi = (G, L, K)$ that correspond to conservative system nodes as described above?

Practical problems:

- (i) The translation of the data $\Xi=(G,L,K)$ to an operator node S is cumbersome (especially if Ξ comprises partial differential operators!)
- (ii) The dual system S^d need not be of boundary control type, even if S is; \Rightarrow the direct, pure translation of the definition to boundary nodes is impossible!

Characterization of conservative

$$\Xi = (G, L, K)$$

The triple $\Xi=(G,L,K)$ is a doubly boundary node, if both Ξ and $\Xi^{\leftarrow}:=(K,-L,G)$ are boundary nodes.

Theorem 1: Let $\Xi=(G,L,K)$ be a doubly boundary node, and by $S=\left[\begin{smallmatrix} A\&B\\ C\&D \end{smallmatrix} \right]$ denote the associated operator node. Then S is conservative if and only if

- (i) $2\Re \langle x, Lx \rangle_{\mathcal{X}} = -\|Kx\|_{\mathcal{Y}}^2$ for all $x \in \operatorname{Ker} G$,
- (ii) $\langle z, Lx \rangle_{\mathcal{X}} + \langle Lz, x \rangle_{\mathcal{X}} = \langle Gz, Gx \rangle_{\mathcal{U}}$ for all $z \in \mathcal{Z}$ and $x \in \operatorname{Ker} K$.

"Childrens version"

There is another variant whose formulation is more beautiful.

Theorem 2: Let $\Xi=(G,L,K)$ be a doubly boundary node, and by $S=\left[\begin{smallmatrix} A\&B\\ C\&D \end{smallmatrix} \right]$ denote the associated operator node.

Then S is conservative if and only if the Green–Lagrange identity

$$2\Re \langle z_0, Lz_0 \rangle_{\mathcal{X}} = \|Gz_0\|_{\mathcal{U}}^2 - \|Kz_0\|_{\mathcal{Y}}^2$$

holds for all $z_0 \in \mathcal{Z}$.

References to the proofs

The proof of Theorem 1. is based on the characterization of conservative system nodes among time-flow invertible system nodes [Malinen; (2004, 2005)], in combination with the main theorem of [Malinen, Staffans, Weiss; (2003, 2005)] on "tory" systems.

The proof of the slightly weaker Theorem 2. can be carried out alternatively by a direct argument, see [Malinen, Staffans; (2005)].

Theorem 1. can be also concluded from Theorem 2. by using the main theorem of [Malinen, Staffans, Weiss; (2003, 2005)].

The scattering conservative wave equation (1)

Suppose $\Omega \subset \mathbb{R}^n$, $n \geq 2$, is an open bounded set with C^2 -boundary $\partial \Omega$.

We assume that $\partial\Omega$ is the union of two sets Γ_0 and Γ_1 with $\overline{\Gamma_0}\cap\overline{\Gamma_1}=\emptyset$.

In the same PDE example, the sets Γ_1 and Γ_0 are allowed to have zero distance in [Weiss, Tucsnak; (2003)]. This is possible because stronger "background results" from [Rodrigues-Bernal, Zuazua; (1995)] are used there.

The scattering conservative wave equation (2)

We are interested in the system node S that (hopefully) is described by the exterior problem

$$\begin{cases} z_{tt}(t,\xi) = \Delta z(t,\xi) & \text{for } \xi \in \Omega \text{ and } t \geq 0, \\ -z_{t}(t,\xi) - \frac{\partial z}{\partial \nu}(t,\xi) = \sqrt{2}\,u(t,\xi) & \text{for } \xi \in \Gamma_{1} \text{ and } t \geq 0, \\ \sqrt{2}\,y(t,\xi) = -z_{t}(t,\xi) + \frac{\partial z}{\partial \nu}(t,\xi) & \text{for } \xi \in \Gamma_{1} \text{ and } t \geq 0, \\ z(t,\xi) = 0 & \text{for } \xi \in \Gamma_{0} \text{ and } t \geq 0, \text{ and } \\ z(0,\xi) = z_{0}(\xi), \quad z_{t}(0,\xi) = w_{0}(\xi) & \text{for } \xi \in \Omega. \end{cases}$$

Note that Γ_0 is the reflecting part of $\partial\Omega$.

The scattering conservative wave equation (3)

We discover the boundary node $\Xi = (G, L, K)$ by

$$z_{tt} = \Delta z \quad \hat{=} \quad \frac{d}{dt} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -\Delta & 0 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix}.$$

The spaces \mathcal{Z} , \mathcal{X} and and operator L are defined by

$$L:=\left[\begin{smallmatrix} 0 & -1 \\ -\Delta & 0 \end{smallmatrix}\right]: \mathcal{Z} \to \mathcal{X} \text{ with }$$

$$\mathcal{Z}:=\mathcal{Z}_0 \times H^1_{\Gamma_0}(\Omega) \text{ and } \mathcal{X}:=H^1_{\Gamma_0}(\Omega) \times L^2(\Omega)$$

where
$$\mathcal{Z}_0 := \{z \in H^1_{\Gamma_0}(\Omega) \cap H^{3/2}(\Omega) : \Delta z \in L^2(\Omega) \}$$
.

The scattering conservative wave equation (4)

The norm of \mathcal{Z}_0 is given by

$$||z_0||_{\mathcal{Z}_0}^2 := ||z_0||_{H^1(\Omega)}^2 + ||z_0||_{H^{3/2}(\Omega)}^2 + ||\Delta z_0||_{L^2(\Omega)}^2.$$

For the state space \mathcal{X} , we use the energy norm

$$\| \begin{bmatrix} z_0 \\ w_0 \end{bmatrix} \|_{\mathcal{X}}^2 := \| |\nabla z_0| \|_{L^2(\Omega)}^2 + \| w_0 \|_{L^2(\Omega)}^2.$$

The scattering conservative wave equation (5)

Define the input and output spaces by setting $\mathcal{U} = \mathcal{Y} := L^2(\Gamma_1)$, together with

$$G\left[egin{array}{l} z_0 \ w_0 \end{array}
ight] := rac{1}{\sqrt{2}} \left(-rac{\partial z_0}{\partial
u} |\Gamma_1 + w_0| \Gamma_1
ight) \; ext{and} \ K\left[egin{array}{l} z_0 \ w_0 \end{array}
ight] := rac{1}{\sqrt{2}} \left(rac{\partial z_0}{\partial
u} |\Gamma_1 + w_0| \Gamma_1
ight).$$

We have now the triple of operators $\Xi = (G, L, K)$, together with the Hilbert spaces \mathcal{U} , \mathcal{X} , \mathcal{Y} and \mathcal{Z} .

The scattering conservative wave equation (6)

Proposition 3: The triple of operators $\Xi = (G, L, K)$ defined above is a doubly boundary node on spaces \mathcal{U} , \mathcal{X} , \mathcal{Y} and \mathcal{Z} .

The proof requires well-known properties of the Sobolev spaces (like the Poincaré inequality), standard results on Dirichlet and Neumann traces, and elliptic regularity theory.

We now know that there exists a unique system node $S = \begin{bmatrix} A \& B \\ C \& D \end{bmatrix}$ associated to Ξ .

The scattering conservative wave equation (7)

Proposition 4: Let the boundary node $\Xi = (G, L, K)$ be defined as above. Use the energy norm

$$\| \begin{bmatrix} z_0 \\ w_0 \end{bmatrix} \|_{\mathcal{X}}^2 := \| |\nabla z_0| \|_{L^2(\Omega)}^2 + \| w_0 \|_{L^2(\Omega)}^2.$$

for the state space \mathcal{X} . Then the system node S associated to Ξ is conservative.

Indeed, the conditions of Theorem 2. can be checked by using a generalized Greens formula.

A numerical example will be given later by V. Havu.

References

Boundary control, operator nodes in general:

- H. O. Fattorini. Boundary control systems. SIAM J. Control, 6(3), 1968.
- M. S. Brodskii. Triangular and Jordan representations of linear operators, volume 32. AMS, 1971.
- D. Salamon. Infinite dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans. AMS, 300:383–431, 1987.
- D. Salamon. Realization theory in Hilbert spaces. Math. Systems Theory, 21:147–164, 1989.

- O. J. Staffans. Well-Posed Linear Systems. Cambridge University Press, 2004.
- B. Sz.-Nagy and C. Foias. Harmonic Analysis of Operators on Hilbert space. North-Holland Publishing Company, 1970.

Related to conservative systems:

- D. Z. Arov and M. A. Nudelman. Passive linear stationary dynamical scattering systems with continuous time. Int. Eq. Oper. Th., 24:1–45, 1996.
- M. S. Livšic and A. A. Yantsevich. Operator colligations in Hilbert space. John Wiley & sons, Inc., 1977.
- V. Havu and J. Malinen. Laplace and Cayley transforms an approximation point of view, Proc. of the CDC-ECC'05, 2005.
- J. Malinen. Conservativity of time-flow invertible and boundary control systems. Helsinki Univ. of Tech. Inst. of Math. Research Reports A479, 2004.

- J. Malinen and O. J. Staffans. Conservative boundary control systems. Submitted, 2005.
- J. Malinen, O. Staffans, and G. Weiss. When is a linear system conservative? Quart. Appl. Math., 2005.
- G. Weiss and M. Tucsnak. How to get a conservative well-posed linear system out of thin air. I. Well-posedness and energy balance. **ESAIM Control Optim.** Calc. Var., 9:247–274, 2003.

Papers related to the wave equation example:

- J. Lagnese. Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Diff. Eq., 50:163–182, 1983.
- A. Rodrígues-Bernal and E. Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete Contin. Dynam. Systems, 1(3):303–346, 1995.
- R. Triggiani. Wave equation on a bounded domain with boundary dissipation: An operator approach. J. Math. Anal. Appl., 137:438–461, 1989.

That's all of it, folks! Have a nice day.