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1 Introduction and motivation

This paper consists of two parts that can be read almost independently from
each other. The �rst �system theory part� takes all of Section 1. It serves as a
motivation for the second �numerical analysis part� that consists of Sections
2 � 5. All the new results are presented there, such as Theorems 1 and 2.

In Section 1 we discuss how time discretisation (1.2) of linear dynamical
systems is related to the Cayley transform (understood in the sense of lin-
ear system theory). In �nite-dimensional case, our dynamical systems are
described by (1.1) but it is necessary to use the more general formulation
(1.11) in in�nite dimensions. Even the Cayley transform has to be general-
ized as explained in Section 1.3.

By Proposition 2, integration scheme (1.2) has the following nice property:

If the original continuous time dynamical system (1.1) is conser-
vative (as de�ned in Section 1.2), then the resulting discrete time
system (1.4) satis�es an analogous energy equality.

Motivated by this observation, the convergence of a generalized, in�nite-
dimensional version of scheme (1.2) is investigated in the second part of
the paper. The resulting numerical method can be used for input/output-
simulation of input/output stable linear dynamical systems that are governed
by PDE's from physics and engineering. Some of our results have been
presented in [21] in a shortened form.

The real axis is denoted by R and the complex plane by C, and we
write R+ = (0,∞), iR = {z : Re z = 0}, C+ = {z : Re z > 0}, and
D = {z : |z| < 1}. The usual Hardy spaces of X-valued analytic functions are
denoted by H2(D; X), H∞(D; X), H2(C+; X), and H∞(C+; X) where X is a
Banach space. By C([0,∞); X) we denote the X-valued norm-continuous
functions on [0,∞), and the subset of compactly supported functions is
Cc([0,∞); X). The space Cn([0,∞); X) denotes n times continuously dif-
ferentiable functions for n = 1, 2, . . . where the derivatives at the endpoint
is one-sided. If X = C above, then C is not written out explicitly. For
I ⊂ R, the Sobolev space H1(I) consists of complex-valued functions whose
distribution derivative is in L2(I) � the set of square integrable functions.
Bounded linear operators are denoted by L(X; Z) and L(X). Rest of the
notation is either standard or introduced when used for the �rst time.
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1.1 Cayley transform as Tustin time discretisation

For simplicity, we consider �rst the classical �nite-dimensional case. Then
the system S is described by the dynamical equations

S :


x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ 0,

x(0) = x0,

(1.1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, and D ∈ Cp×m. The input and the
output of S are the signals u(·) and y(·), respectively. The function x(·) is
called the state trajectory. Given a discretisation parameter h > 0, a slightly
non-standard time discretisation of (1.1) of Crank�Nicolson type is given by

x(jh)−x((j−1)h)
h

≈ Ax(jh)+x((j−1)h)
2

+ Bu(jh),

y(jh) ≈ C x(jh)+x((j−1)h)
2

+ Du(jh), j ≥ 1

x(0) = x0.

(1.2)

In engineering literature, this is sometimes called the Tustin discretisation of
(1.1). Rewriting (1.2) gives the discrete time dynamics

x
(h)
j −x

(h)
j−1

h
= A

x
(h)
j +x

(h)
j−1

2
+ B

u
(h)
j√
h
,

y
(h)
j√
h

= C
x
(h)
j +x

(h)
j−1

2
+ D

u
(h)
j√
h
, j ≥ 1,

x
(h)
0 = x0,

(1.3)

where u
(h)
j /

√
h is an approximation to u(jh). The purpose of this paper is

to characterize the convergence1 of y
(h)
j /

√
h to y(jh) as h → 0 in several

di�erent ways and under rather general assumptions.
Let us proceed to describe the connection of (1.1) � (1.3) to the Cayley

transform in system theory. After some computations, equations (1.3) take
the form

φσ :


x

(h)
j = Aσx

(h)
j−1 + Bσu

(h)
j ,

y
(h)
j = Cσx

(h)
j−1 + Dσu

(h)
j , j ≥ 1,

x
(h)
0 = x0,

(1.4)

where σ := 2/h, and the operators Aσ, Bσ, Cσ and Dσ comprise the discrete
time linear system (henceforth, DLS)

φσ ≡
[
Aσ Bσ

Cσ Dσ

]
=

[
(σ + A)(σ − A)−1

√
2σ(σ − A)−1B√

2σC(σ − A)−1 Ĝ(σ)

]
. (1.5)

1To state this claim rigorously, we should de�ne the sampling and interpolating opera-
tors T2/h and T ∗

2/h. This is postponed to Section 2.2. Also note that we do not consider the

approximation of x(·) in this paper but we restrict ourselves to the input/ouput framework.
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Here Ĝ(·) denotes the transfer function of system S = [ A B
C D ] in (1.1), and it

is de�ned by Ĝ(s) = D + C(s − A)−1B for all s ∈ ρ(A). Then the transfer

function D̂σ(·) of φσ clearly satis�es

D̂σ(z) := Dσ + zCσ(I − zAσ)−1Bσ = Ĝ
(

1− z

1 + z
σ

)
(1.6)

for all z−1 ∈ ρ(Aσ). The mapping S 7→ φσ described above is called the
Cayley transform of continuous time systems to discrete time systems. The
purpose of this paper is to show that (1.2) successfully approximates (1.1) in
a context of input/output mappings of in�nite-dimensional linear dynamical
systems. Hence, the DLS φσ can be regarded as a convergent time discreti-
sation of S.

Out of our convergence results, Proposition 4 and Lemma 1 are stated
in the frequency domain. Lemma 1 provides a speed estimate for the con-
vergence that is uniform on the compact subsets of frequencies; see also
Corollary 1 for a more intuitive but less sharp estimate. As a consequence
of Lemma 1, more practical Theorems 1 and 2 are given in time domain but
unfortunately without a speed estimate. It is �nally shown that Theorem 2
cannot be improved by a speed estimate similar to Lemma 1.

1.2 In�nite-dimensional linear systems

Even though we considered above only matrix systems (1.1), the Cayley
transform can be de�ned similarly to (1.5) for any system node S. System
nodes are a functional analytic framework for presenting linear dynamical
systems with possibly in�nite-dimensional state spaces � including bound-
ary control systems de�ned by PDE's. System nodes are discussed in, e.g.,
Malinen, Sta�ans and Weiss [25] but we review the construction below2.

Let X be a Hilbert space and let A : dom (A) ⊂ X → X be a closed,
densely de�ned linear operator with a nonempty resolvent set ρ(A). Take
α ∈ ρ(A), and de�ne ‖x‖X1 = ‖(α − A)x‖X for each x ∈ dom (A). Then
‖·‖X1 is a norm on dom (A) which makes it into a Hilbert space called X1. It
follows that A ∈ L(X1; X). The space X−1 is de�ned as the completion of X
with respect to the norm ‖x‖X−1 = ‖(α−A)−1x‖X which makes X−1 a Hilbert
space. We have now constructed a triple of Hilbert spaces X1 ⊂ X ⊂ X−1

with dense and continuous embeddings � the rigged Hilbert spaces induced
by A and X. A di�erent choice of α ∈ ρ(A) leads to equivalent norms in
X1 and X−1 but it does not change the spaces themselves. The operator A

2The rest of this section serves only as a motivation and background. An already well-
motivated reader may skip to Section 2 without any loss to read the rest of this paper.
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has a unique extension (by density and continuity) to an operator A−1 ∈
L(X; X−1), known as the Yosida extension of A.

De�nition 1. Let U , X and Y be Hilbert spaces3. An operator

S :=

[
A&B
C&D

]
:

[
X
U

]
⊃ dom (S) →

[
X
Y

]
is called a system node on (U,X, Y ) if it has the following structure:

(i) A is a generator of a strongly continuous semigroup on X with its
Yosida extension A−1 ∈ L(X; X−1) as explained above.

(ii) B ∈ L(U ; X−1).

(iii) dom (S) :=
{
[ x
u ] ∈ [ X

U ]
∣∣ A−1x + Bu ∈ X

}
.

(iv) A&B =
[
A−1 B

]
|dom(S)

.

(v) C&D ∈ L(dom (S) ; Y ); we use on dom (S) the graph norm of A&B:∥∥[ x
u ]
∥∥2

dom(S)
:= ‖x‖2

X + ‖u‖2
U + ‖A−1x + Bu‖2

X .

Let now S = [ A&B
C&D ] be a system node on Hilbert spaces (U,X, Y ) as in

De�nition 1. We call A ∈ L(X1; X) themain operator or semigroup generator
of S, B ∈ L(U ; X−1) is its control operator, and C&D ∈ L(dom (S) ; Y ) is its
combined observation/feedthrough operator. From the last operator we can
extract C ∈ L(X1; Y ), the observation operator of S, de�ned by

Cx := C&D

[
x
0

]
, x ∈ X1. (1.7)

It is trivial that A&B ∈ L(dom (S) , X). A short computation shows that
for each α ∈ ρ(A), the operator Eα :=

[
I (α−A−1)−1B
0 I

]
is a bounded bijection

from [ X
U ] onto itself and also from

[
X1
U

]
onto dom (S). Since

[
X1
U

]
is dense in

[ X
U ], this implies that dom (S) is dense in [ X

U ], too. It takes more reasoning
to see that S, in fact, is closed as a densely de�ned operator from [ X

U ] to
[ X

Y ]. Since the second column of Eα maps U into dom (S), we can de�ne the
transfer function of S by

Ĝ(s) := C&D

[
(s− A−1)

−1B
I

]
, s ∈ ρ(A), (1.8)

3We shall use the notation [ X
Y ] for X × Y .
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which is an L(U ; Y )-valued analytic function. A system node is called in-

put/output or I/O stable if C+ ⊂ ρ(A) and Ĝ(·) ∈ H∞(C+;L(U, Y )).
In above construction, the operator node S, the observation operator C,

and the transfer function Ĝ are determined by the operators A, B and C&D.
Alternatively, S and Ĝ may be constructed from A, B, C and the value Ĝ(α)
at one point in α ∈ ρ(A); see [25, Section 2] for details.

Example 1. For any m, n, p ∈ N, take any matrices A ∈ Cn×n, B ∈ Cn×m,
C ∈ Cp×n, and D ∈ Cp×m as in Section 1.1. Then the block matrix S ′ :=
[ A B
C D ] is a system node on (Cm, Cn, Cp) with dom (S ′) = [ Cn

Cm ], A1 = A =
A−1, A&B =

[
A B

]
, and C&D =

[
C D

]
. Also (1.8) is equivalent with

Ĝ(s) = C(s− A)−1B + D for all s ∈ ρ(A).

In Example 1, we have D = lim|s|→∞ Ĝ(s). Such an operator D is called
the feedthrough operator of S = [ A&B

C&D ] whenever the de�ning limit exists
in some operator topology. We remark that not all system nodes satisfying
dim X = ∞ have a well-de�ned feedthrough operator, and this is the reason
why we use the combined operator C&D in De�nition 1. System nodes
known as regular well-posed systems possess feedthrough operators; see, e.g.,
Sta�ans and Weiss [34, 35], and Weiss [38].

The main reason for de�ning system nodes is that the ��nite-dimensional�
dynamical equations (1.1) can be generalized for any system nodes. Indeed,
there exists a unique x ∈ C1([0,∞); X) such that{

x′(t) = A−1x(t) + Bu(t), t ≥ 0,

x(0) = x0

(1.9)

holds for any input u ∈ C2([0,∞); U) and any initial state x0 ∈ X for which

the compatibility condition
[ x0

u(0)

]
∈ dom (S) holds. Moreover,

[
x(·)
u(·)

]
∈

C([0,∞); dom (S)) and because C&D ∈ L(dom (S) ; U), the output signal
given by

y(t) = C&D
[

x(t)
u(t)

]
(1.10)

is well-de�ned and continuous for all t ≥ 0. We may write (1.9) and (1.10)
shortly as [

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0, (1.11)

which is the required generalization of (1.1) to system node S.
The role of the transfer function (1.8) is the same as in the �nite dimen-

sional case. Indeed, de�ne the Laplace-transform as usual by

f̂(s) ≡ (Lf) (s) =

∫ ∞

0

e−stf(t) dt for all s ∈ C+. (1.12)
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Then ŷ(s) = Ĝ(s)û(s) for all s ∈ C+ with the estimate

‖y‖L2(R+;Y ) ≤ sup
s∈C+

‖Ĝ(s)‖L(U ;Y )‖u‖L2(R+;U) (1.13)

if u(·) and y(·) are related by (1.11) with x0 = 0 (and the integral in (1.12)
converges). This mapping u(·) 7→ y(·) (with x0 = 0) is called the input/output
mapping of S. It has by density a unique extension to a bounded operator
from L2(R+; U) into L2(R+; Y ) assuming that S is I/O stable. These and
many other facts can be found in [25, Section 2] with all details.

1.3 Cayley�Tustin transform in in�nite dimensions

We now describe how the Cayley transform can be extended to system
nodes S with in�nite-dimensional state spaces. The Cayley transform φσ ≡[

Aσ Bσ
Cσ Dσ

]
of S is simply the DLS de�ned by

φσ :=

[
(σ + A)(σ − A)−1

√
2σ(σ − A−1)

−1B√
2σC(σ − A)−1 Ĝ(σ)

]
(1.14)

for any σ ∈ ρ(A)∩R+. When comparing to the matrix formula (1.5), we see
that A has been replaced by its extension A−1 in one place. The observation
operator C and the transfer function Ĝ(·) are now de�ned through (1.7) and

(1.8), respectively. The transfer function of D̂σ(·) of φσ � together with its

relation to Ĝ(·) � is described by (1.6) without change.

Proposition 1. Let σ > 0 and S be a system node whose main operator
satis�es R+ ⊂ ρ(A). Then S is (continuous time) I/O stable if and only if
its Cayley transform φσ is (discrete time) I/O stable.

This follows by applying the spectral mapping theorem to the identity Aσ =
(σ + A)(σ − A)−1, using (1.6), and recalling that the DLS φσ is I/O -stable

if and only if σ(Aσ) ⊂ D and D̂σ(·) ∈ H∞(D;L(U ; Y )).
From now on we shall not use equations (1.1) � (1.3) and (1.5) (which

were given only as an introduction) any longer but their in�nite-dimensional
generalized versions (1.9) � (1.11) and (1.14) instead. The approximating tra-
jectories will be given by (1.4) even in the general case, de�ning the required
operators by (1.14) and the identity φσ ≡

[
Aσ Bσ
Cσ Dσ

]
.

There exists an extensive general literature on the Cayley transform
of systems but we shall not make an account of it; see, e.g., Ober and
Montgomery-Smith [28] and the numerous other references given in [33]. The
idea of using the Cayley transform for the simulation of linear systems is not
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new, either. In �nite dimensions, the method described by (1.3) was already
discovered in 1940's by Tustin, and it is known as the Tustin transform in
digital and sampled-data control circles; see, e.g., [29, p. 137].

The Cayley transform can be used in numerical analysis in a way that
is completely di�erent from Tustin's approach; see Arov and Gavrilyuk [1],
Gavrilyuk [9, 10, 11], and Gavrilyuk and Makarov [12, 13, 14, 15, 16, 17, 18].
The analytical and numerical solution of di�erential equations of type x(n) =
Lx and x(n) = Lx + f for n = 1, 2, is considered with various assumptions
on operator L that are relevant either in Hilbert or in Banach space context.
The numerical method proposed by these authors is spectral in the sense that
the discretisation is a truncation in the Laguerre polynomial basis. This is
in contrast to Tustin's approach which is a time-domain di�erence approxi-
mation instead.

1.4 Tustin's discretisation preserves conservativity

The system node S is (scattering) energy preserving if for all T > 0 the
energy balance equation

‖x(T )‖2
X +

∫ T

0

‖y(t)‖2
Y dt = ‖x0‖2

X +

∫ T

0

‖u(t)‖2
Udt (1.15)

holds, where u, x, y and x0 are as in (1.9) � (1.11). For any energy preserving
S, the main operator A is maximally dissipative and C+ ⊂ ρ(A). Then
equation (1.14) de�nes the Cayley transform φσ for all σ > 0. Letting T →∞
in (1.15) shows that the input/output mapping of an energy preserving S is
a contraction from L2(R+; U) into L2(R+; Y ), and hence its transfer function

satis�es ‖Ĝ(s)‖L(U ;Y ) ≤ 1 for all s ∈ C+.

If both S = [ A&B
C&D ] and its dual node Sd =

[
[A&B]d

[C&D]d

]
are scattering energy

preserving, then [ A&B
C&D ] is called (scattering) conservative. The dual node

Sd is de�ned simply as the unbounded adjoint of S when it is regarded
as a closed, densely de�ned operator from [ X

U ] to [ X
Y ] (see the discussion

following (1.7)). We remark that it is now a nontrivial fact that the adjoint
of S actually is a system node in the sense of De�nition 1. For details, we
refer to [25, Proposition 2.4, and De�nitions 3.1 and 4.1].

We say that the DLS φ = [ A B
C D ] is energy preserving if the block matrix

[ A B
C D ] is isometric from [ X

U ] into [ X
Y ]. Then, and only then, the discrete time

balance equation

‖xN‖2
X − ‖x0‖2

X =
N∑

j=1

‖uj−1‖2
U −

N∑
j=1

‖yj−1‖2
Y
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is satis�ed for all N ≥ 1, all initial values x0 ∈ X and all sequences {uj},
{xj} and {yj} satisfying{

xj+1 = Axj + Buj,

yj+1 = Cxj + Duj, j ≥ 0.

The DLS φ is conservative if both φ and the dual DLS φd := [ A∗ C∗
B∗ D∗ ] (de�ned

as the adjoint of a bounded block operator) are energy preserving. If the
spaces U and Y coincide, then φ is conservative if and only if the block
operator [ A B

C D ] is unitary on [ X
U ]. For the proof of the next Proposition, see

[25, Theorem 3.2(v) and Theorem 4.2(iii)]:

Proposition 2. The Cayley transform φσ of an energy preserving system
node S is an energy preserving DLS. Moreover, such φσ is (discrete time)
conservative if and only if S is a conservative.

The reason for preferring the discretisation by (1.4) and (1.14) for energy
preserving and conservative problems (1.11) is due to Proposition 2. We
emphasize that Proposition 4, Lemma 1, and Theorem 2 below let us conclude
that (1.4) and (1.14) can be interpreted as a convergent time discretisation
scheme for all I/O stable � including many non-conservative � system nodes
satisfying dim U = dim Y = 1.

This is easy to understand because our results of are formulated in terms
of transfer functions and input/output mappings, and hence they do not
depend at all on the particular choice of the state space realization of type
(1.11). The only connection to system nodes is via the Cayley transform
(1.6) between continuous and discrete time transfer functions.

Conservative system nodes are known in operator theory as operator colli-
gations or Liv²ic � Brodski�� nodes. Much classical literature exists for them,
see, e.g., Arov and Nudelman [2], Ball and Sta�ans [3], Brodski�� [5, 7, 6],
Liv²ic [23], Liv²ic and Yantsevich [22], Sz.-Nagy and Foia³ [36], Smuljan [30],
and Sta�ans [31, 32, 33]. Operator theory techniques for proving conser-
vativity in applications are given in Malinen, Sta�ans and Weiss [25], and
Tucsnak and Weiss [39, 37]. The special case of boundary control systems is
further studied in Malinen [24], and Malinen and Sta�ans [26, 27]; see also
Gorbachuk and Gorbachuk [19] and the references therein.

In numerical analysis, integration schemes that preserve energy equalities
or more complex invariants of the system are called Hamiltonian or symplec-
tic, respectively. The Cranck-Nicolson scheme (1.3) for linear systems is a
lowest order symplectic integration scheme from the family of Gauss quadra-
ture based Runge-Kutta methods. There exists an extensive literature of
symplectic schemes; see, e.g., Hairer, Lubich and Wanner [20].
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2 Approximation of the input/output mapping

In this section, we rewrite the discretisation (1.4) of the in�nite-dimensional
dynamical system (1.11) in operator theory language. After that we ex-
plain how its convergence can be studied as an approximation of the Laplace
transform.

From now on we make it a standing assumption that Ĝ(·) is a (possibly
non-rational) transfer function of an I/O stable system node with scalar

input and output spaces U = Y = C. This means that Ĝ(·) ∈ H∞(C+) or,

equivalently, D̂σ(·) given by (1.6) satis�es D̂σ(·) ∈ H∞(D); see Proposition 1.

2.1 Spaces, norms and transforms

We use the norm

‖f‖2
H2(C+) =

1

2π
sup
x>0

∫ ∞

−∞
|f(x + yi)|2 dy

for the Hardy space H2(C+). Then the Laplace transform is de�ned by
(1.12) is unitary from L2(R+) onto H2(C+). The norm of H2(D) is given by
‖φ‖2

H2(D) =
∑

j≥0 |φj|2 for φ(z) =
∑

j≥0 φjz
j, and it makes the Z-transform

unitary from `2(Z+) → H2(D). If, say, f ∈ Cc(R) in (1.12), then (Lf) (s)
is well de�ned for all s ∈ iR, too. The function iω 7→ (Lf) (iω) is then the
Fourier transform of f .

By D̂σ : H2(D) → H2(D) denote the multiplication operator satisfy-

ing (D̂σũ)(z) = D̂σ(z)ũ(z) for all z ∈ D and σ > 0. Similarly, denote by

Ĝ : H2(C+) → H2(C+) the multiplication operator satisfying (Ĝû)(s) =

Ĝ(s)û(s) for all s ∈ C+. The operators D̂σ and Ĝ are unitarily equivalent to
the input/output mappings of φσ and S, respectively. The correspondence
(1.6) takes the form of the similarity transform

Ĝ = C−1
σ D̂σCσ, (2.1)

where the composition operator is de�ned by (CσF ) (z) := F (1−z
1−z

σ) for all z ∈
D and F : C+ → C. It is easy to see that (C−1

σ f) (s) := f( s−σ
s+σ

) for all s ∈ C+

and all f : D → C. Hence we have MσC−1
σ f = F where F (s) =

√
2/σ

1+s/σ
f( s−σ

s+σ
)

and Mσ denotes the multiplication operator by the function s 7→
√

2/σ

1+s/σ
.

Proposition 3. The operator MσC−1
σ : H2(D) → H2(C+) is unitary.

This holds because the sequence

{√
2/σ

1+s/σ

(
s−σ
s+σ

)j}
j≥0

is an orthonormal basis

for H2(C+) for each σ > 0.
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2.2 Discretising operators

By Tσ we denote a discretising (or sampling) bounded linear operator Tσ :
L2(R+) → H2(D). The adjoint T ∗

σ of Tσ maps then H2(D) → L2(R+), and
it is typically an interpolating operator. The operator Tσ can be de�ned in
many ways but in this paper we use the mean value sampling

(Tσu)(z) =
∑
j≥1

u
(h)
j zj where

u
(h)
j√
h

=
1

h

∫ jh

(j−1)h

u(t) dt (2.2)

with h = 2/σ (recall (1.3) and (1.4)). Then the adjoint T ∗
σ is given by

(T ∗
σ ṽ) (t) =

1√
h

∑
j≥1

vjχ[(j−1)h,jh](t), (2.3)

where ṽ(z) =
∑

j≥0 vjz
j ∈ H2(D) and χI(·) denotes the characteristic func-

tion of the interval I. It is worth noticing that the operator Tσ is a coisometry,
i.e., T ∗

σ is an isometry:

‖T ∗
σ ṽ‖2

L2(R+) =
1

h

∫ ∞

0

|
∑
j≥1

vjχ[(j−1)h,jh]|2 dt =
1

h

∫ ∞

0

∑
j≥1

|vj|2χ[(j−1)h,jh] dt

(2.4)

=
1

h

∑
j≥1

|vj|2
∫ ∞

0

χ[(j−1)h,jh] dt =
∑
j≥1

|vj|2 = ‖ṽ‖2
H2(D).

The operator Tσ itself is not isometric since ker (Tσ) 6= {0}.

2.3 Approximation of the Laplace transform

Let us now use the discrete time trajectories of (1.4) to approximate the
continuous time dynamics in (1.11) using the discretisation and sampling by
operators Tσ and T ∗

σ .
Let u ∈ L2(R+) and assume zero initial states for both the system (1.9)

� (1.11) and its Tustin discretisation (1.4). The input signal of (1.4) is the
discretised signal Tσu. If we transform the output {y(h)}j≥0 of (1.4) into a
continuous time signal by applying the interpolating operator T ∗

σ to it, we

obtain the signal T ∗
σ D̂σTσu. On the other hand, the output of the continuous

time dynamics (1.11) is given by L∗ĜLu. Our task is to show that at least
for some nice u ∈ L2(R+) and T > 0, we have the convergence

‖T ∗
σ D̂σTσu− L∗ĜLu‖L2(0,T ) → 0 (2.5)
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as σ → ∞. This will be achieved in Theorem 2. By Proposition 3 and
equation (2.1) we see that

T ∗
σ D̂σTσ = T ∗

σ

(
CσM−1

σ

)
· Ĝ ·

(
MσC−1

σ

)
Tσ

= T ∗
σ

(
MσC−1

σ

)−1 · Ĝ ·
(
MσC−1

σ

)
Tσ =

(
MσC−1

σ Tσ

)∗ · Ĝ · (MσC−1
σ Tσ

)
since the multiplication operator Mσ commutes with Ĝ. Motivated by this
equation and by (2.5), we inquire whether the operators Lσ := MσC−1

σ Tσ are
in some sense close4 to the Laplace transform L when σ →∞. Thus, another
aim of this paper is to give stronger versions of the following proposition:

Proposition 4. For any u ∈ Cc(R+) and s ∈ C+, we have

(Lu)(s) = lim
σ→∞

(Lσu)(s),

where Lσ is de�ned as above.

Proof. De�ning Tσ by (2.2) we get

(Lσu)(s) =

√
2/σ

1 + s/σ

∑
j≥1

(
1

h

∫ jh

(j−1)h

u(t) dt

)(
σ − s

σ + s

)j

(2.6)

=
1

1 + s/σ

∑
j≥1

(∫ ∞

0

χ[(j−1)h,jh](t)

(
σ − s

σ + s

)j

u(t) dt

)

=

∫ ∞

0

Ks,σ(t)u(t) dt,

where σ = 2/h and

Ks,σ(t) =
1

1 + s/σ

∑
j≥1

χ[(j−1)h,jh](t)

(
1− 2s

s + σ

)j

. (2.7)

Now, if j is such that t ∈ [(j − 1)h, jh], then we obtain from the previous

Ks,σ(t) ≈ 1

1 + s/σ

(
1− s

s/2 + σ/2

)(σ/2)·t

→ e−st as σ →∞.

4Note that by Proposition 3 and equality (2.4), we see that each Lσ : L2(R+) →
H2(C+) is a coisometry. The Laplace transform is a unitary mapping between the same
spaces. Hence, the convergence of Lσ → L must be rather weak.

12



We conclude that limσ→∞ Ks,σ(t) = e−st for all s ∈ C+ and t ≥ 0. Moreover,
for each �xed s ∈ C+ and σ ≥ 2|s| we have

|Ks,σ(t)| ≤ 2 ·
(

1 +
2|s|

σ − |s|

)(σ/2)·t

≤ 2 ·
(

1 +
2|s|

σ − |s|

)(σ−|s|)t/2

·
(

1 +
2|s|

σ − |s|

)|s|t/2

≤ 2
(
e
√

3
)|s|t

.

The proposition now follows from the Lebesgue dominated convergence the-
orem, as the integrand in (2.6) has a compact support.

3 A pointwise convergence estimate

Our most important preliminary result Lemma 1 is given in this section. We
obtain a uniform speed estimate for the convergence of (Lσu)(iω) → (Lu)(iω)
for iω ∈ K where K ⊂ iR is compact.

Before that some new de�nitions and notations must be given: Let Ij =
((j − 1)h, jh] = (tj−1, tj] and tj−1/2 = 1

2
(tj−1 + tj). For u ∈ L2(R+), let Ih,su

be the piecewise linear (with jumps) interpolating function, de�ned by

(Ih,su)(t) = ūj,h +
cj(h, s)

h
(t− tj−1/2), t ∈ Ij, (3.1)

where ūj,h = 1
h

∫
Ij

u(t) dt and the de�ning sequence {cj(h, s)}j≥1 (depending

on two parameters h and s) will be later chosen in a particular way. Let Ph

denote the orthogonal projection in L2(R+) onto the subspace of functions
that are constant on each interval Ij. Then clearly for all u ∈ L2(R+), j ≥ 1
and t ∈ Ij we have (Phu)(t) = ūj,h.

Lemma 1. Let h > 0, σ = 2/h, T = Jh for some J ∈ N, u ∈ Cc(R+) ∩
H1(R+), and assume that supp(u) := {t ∈ R : u(t) 6= 0} ⊂ [0, T ].

(i) Then the sequence {cj(h, s)}j≥1 can be chosen so that (Lσ−L)(Ih,su)(s) =
0 for all s ∈ C+.

(ii) For any such choice of the sequence {cj(h, s)}j≥1, we have

|(Lσu)(s)− (Lu)(s)|

≤ hT 1/2|s|
π

(
‖Ih,su− Phu‖L2(0,T ) +

h

π
|u|H1(0,T )

)
(3.2)

for all s ∈ C+, where |u|2H1(0,T ) =
∫ T

0
|u′(t)|2 dt.

13



(iii) The sequence {cj(h, s)}j≥1 in claim (i) can be chosen optimally so that

‖Ih,su− Phu‖L2(0,T ) ≤
15

218

(
h−1/2T−1/2 +

|s|
6e

)
‖Phu‖L2(0,T )

holds for a given s ∈ iR, T ≥ 1 if 9h ≤ T 2/3e−
4
3
|s|T . Furthermore, then

|(Lσu)(s)− (Lu)(s)| (3.3)

≤ 3h1/2|s|
100

‖u‖L2(0,T ) +
2hT 1/2|s|2

1000
‖u‖L2(0,T ) +

h2T 1/2|s|
10

‖u‖H1(0,T ).

Claim (iii) of this Lemma has an easy consequence that is easier to remember:

Corollary 1. Under the assumption of Lemma 1, there exists a constant
C < ∞ such that the estimate

|(Lσu)(iω)− (Lu)(iω)| < Ch1/2(1 + |ω|2)T 1/2‖u‖H1(0,T )

holds for all T ≥ 1, ω ∈ R and 0 < h < 1 satisfying 9h ≤ T 2/3e−
4
3
|ω|T .

Proof of Lemma 1. Let us �rst make some general observations. By a simple
argument, ‖Phu‖2

L2(R+) = h
∑

j≥1 ū2
j,h. Clearly for all t ∈ Ij

(Ih,su− Phu)(t) =
cj(h, s)

h
(t− tj−1/2).

Since for any b > a we have

1

(b− a)2

∫ b

a

(
t− b + a

2

)2

dt =
b− a

12
,

it follows that

‖Ih,su− Phu‖2
L2(0,T ) =

J∑
j=1

cj(h, s)2

h2

∫ tj

tj−1

(t− tj−1/2)
2 dt (3.4)

=
h

12

J∑
j=1

cj(h, s)2.

In claim (i) we want to determine the sequence {cj(h, s)}j≥1 so as to satisfy
(Lσ − L)(Ih,su)(s) = 0 for given h and s. After some computations, we see
that this is equivalent to requiring that {cj(h, s)}j≥1 satis�es

J∑
j=1

ūj,hI
(0)
j (h, s) +

J∑
j=1

cj(h, s)Jj(h, s) = 0, (3.5)
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where for s ∈ C+ \ {0}

I
(0)
j (h, s) :=

∫
Ij

[
1

1 + s/σ

(
σ − s

σ + s

)j

− e−st

]
dt (3.6)

=
2

σ + s

(
σ − s

σ + s

)j

+
1

s

[
e−sjh − e−s(j−1)h

]
and

Jj(h, s) := I
(1)
j (h, s)− (j − 1/2)h · I(0)

j (h, s) (3.7)

=
1

s2

[
e−sjh − e−s(j−1)h

]
+

h

2s

[
e−sjh + e−s(j−1)h

]
together with

I
(1)
j (h, s) :=

∫
Ij

[
1

1 + s/σ

(
σ − s

σ + s

)j

− e−st

]
t dt

=
(2j − 1)h

σ + s

(
σ − s

σ + s

)j

+

(
jh

s
+

1

s2

)[
e−sjh − e−s(j−1)h

]
+

h

s
e−s(j−1)h.

It is clear that (3.5) has a huge number of solutions {cj(h, s)}J
j=1 for any

�xed s and h, and most of the functions (h, s) 7→ cj(h, s) need not even be
continuous.

Claim (ii) is to be treated next. Recalling (2.6), (2.7) and (3.1)

(Lσu)(s)− (Lu)(s) =

∫ T

0

(Ks,σ(t)− e−st)u(t) dt

=

∫ T

0

(Ks,σ(t)− e−st)(u(t)− (Ih,su)(t)) dt

=
J∑

j=1

∫ tj

tj−1

(Ks,σ(t)− e−st)(u(t)− ūj,h) dt

−
J∑

j=1

cj(h, s)

h

∫ tj

tj−1

(Ks,σ(t)− e−st)(t− tj−1/2) dt =: I− II.

(3.8)

Let us �rst give an estimate to term II. By the Poincaré inequality (see, e.g.,
[8, Theorem 1.7]) we obtain for all j = 1, . . . , J

‖(I − Ph)(Ks,σ − e−s(·))‖L2(Ij) ≤
h

π
|Ks,σ − e−s(·)|H1(Ij) =

h

π
|e−s(·)|H1(Ij)
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where the equality follows because the function Ks,σ is constant on each
interval Ij. By the mean value theorem we get for s ∈ C+ and 0 ≤ a < b < ∞,

|e−s(·)|2H1(a,b) =

∫ b

a

| d
dt

e−st|2 dt =
|s|2

2Re s

(
e−2aRe s − e−2bRe s

)
≤ |s|2

2Re s
· 2Re se−2ξRe s (b− a) ≤ (b− a)|s|2e−2aRe s.

Hence |e−s(·)|H1(Ij) ≤ h1/2|s|e−(j−1)hRe s and this estimate is seen to hold also

for all s ∈ C+. We now conclude that |e−s(·)|H1(0,T ) ≤ T 1/2|s| and

‖(I − Ph)(Ks,σ − e−s(·))‖L2(Ij) ≤
h3/2|s|

π
(3.9)

for all s ∈ C+. Using (3.9) we have

II =
J∑

j=1

∫ tj

tj−1

(Ks,σ(t)− e−st) · cj(h, s)

h
(t− tj−1/2) dt (3.10)

=
J∑

j=1

∫ tj

tj−1

(
(I − Ph)

(
Ks,σ − e−s(·))) (t) · cj(h, s)

h
(t− tj−1/2) dt

≤
J∑

j=1

h3/2|s|
π

·

[
cj(h, s)2

h2

∫ tj

tj−1

(t− tj−1/2)
2 dt

]1/2

≤

(
J∑

j=1

h3|s|2

π2

)1/2

·

(
J∑

j=1

cj(h, s)2

h2

∫ tj

tj−1

(t− tj−1/2)
2 dt

)1/2

≤h3/2|s|
π

J1/2 · ‖Ih,su− Phu‖L2(0,T ) =
hT 1/2|s|

π
‖Ih,su− Phu‖L2(0,T ),

where the Schwarz inequality has been used twice, and the second to the last
step is by (3.4).

It remains to estimate term I in (3.8). In this case, since Ph maps on piece-
wise constant functions and each u(t) − ūj,h has zero mean on subintervals
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Ij, we obtain from (3.9) using the inequalities of Schwarz and Poincaré

I ≤
J∑

j=1

∫ tj

tj−1

(
(I − Ph)

(
Ks,σ − e−s(·))) (t)(u(t)− ūj,h) dt

≤
J∑

j=1

h3/2|s|
π

· h

π
|u|H1(Ij) ≤

h5/2|s|
π2

J∑
j=1

|u|H1(Ij)

≤h5/2|s|
π2

(
J∑

j=1

1

)1/2( J∑
j=1

|u|2H1(Ij)

)1/2

=
h2T 1/2|s|

π2
|u|H1(0,T ).

(3.11)

Estimate (3.2) follows from combining (3.10) and (3.11) with (3.8).
To prove claim (iii), we shall minimise h

12

∑
j≥1 cj(h, s)2 under the con-

straint (3.5); see (3.4) for motivation. We form the Langrange function

L(c1, . . . , ck . . . , cJ , λ)

=
h

12

J∑
j=1

c2
j + λ

(
J∑

j=1

ūj,hI
(0)
j (h, s) +

J∑
j=1

cjJj(h, s)

)
and compute its (unique) critical point giving the minimum. We obtain{

∂L
∂ck

= h
6
ck + λJk(h, s) = 0 for 1 ≤ k ≤ J,∑J

j=1 ūj,hI
(0)
j (h, s) +

∑J
j=1 cjJj(h, s) = 0.

Solving this gives the minimising sequence

ck = ck(h, s) = −6λ

h
Jk(h, s) = −

∑J
j=1 ūj,hI

(0)
j (h, s)∑J

j=1 Jj(h, s)2
Jk(h, s)

for all 1 ≤ k ≤ J , and then for the minimum value

h

12

J∑
j=1

cj(h, s)2 =
h

12

(∑J
j=1 ūj,hI

(0)
j (h, s)∑J

j=1 Jj(h, s)2

)2 J∑
k=1

Jk(h, s)2

=
h

12

(∑J
j=1 ūj,hI

(0)
j (h, s)

)2

∑J
j=1 Jj(h, s)2

.

Hence, choosing the operator Ih,s in (3.4) optimally gives

‖Ih,su− Phu‖L2(0,T ) ≤

(∑J
j=1 I

(0)
j (h, s)2

)1/2

(∑J
j=1 Jj(h, s)2

)1/2

‖Phu‖L2([0],)

2
√

3
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since ‖Phu‖L2(0,T ) =
(
h
∑J

j=1 ū2
j,h

)1/2

. We must now attack (3.6) and (3.7) to

estimate the required two square sums, and the required long computations
will be done in separate subsections 3.1 and 3.2 below. As a �nal result, we
get by Propositions 5 and 6(∑J

j=1 I
(0)
j (h, s)2

)1/2

(∑J
j=1 Jj(h, s)2

)1/2
≤ 5

218

(
3h−1/2T−1/2 + h1/2|s|2T 1/2

)

assuming that 9h ≤ T 2/3e−
4
3
|s|T . But then

h1/2|s|2T 1/2 ≤ |s|
3
· |s|T 5/6e−

2
3
|s|T ≤ |s|

3
· |s|Te−

2
3
|s|T ≤ |s|

2e

since maxr≥0 re−
2
3
r = 3/(2e). Noting that the norm of the orthogonal pro-

jection Ph is 1, the proof of Lemma 1 is now complete.

3.1 Estimation of (3.7)

In this subsection, we shall estimate the square sum of

Jj(h, s) =
1

s2

[
e−sjh − e−s(j−1)h

]
+

h

2s

[
e−sjh + e−s(j−1)h

]
(3.12)

from below and above. For the �rst term on the left of (3.12) we obtain

1

s2

[
e−sjh − e−s(j−1)h

]
=

1

s2

[∑
k≥0

(−sjh)k

k!
−
∑
k≥0

(−s(j − 1)h)k

k!

]

=
1

s2

[
−sh +

∑
k≥2

(−sh)k(jk − (j − 1)k)

k!

]

= −h

s
+
∑
k≥2

(jk − (j − 1)k)

k!
(−s)k−2hk.

For the latter term in (3.12) we get

h

2s

[
e−sjh + e−s(j−1)h

]
=

h

s

∑
k≥0

(−s)k(jk + (j − 1)k)

2k!
hk

=
h

s
−
∑
k≥2

(jk−1 + (j − 1)k−1)

2(k − 1)!
(−s)k−2hk.
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Hence, for all s ∈ C+ \ {0}

Jj(h, s) =
∑
k≥2

dk(j)

2k!
(−s)k−2hk,

where the coe�cient polynomials satisfy (by the binomial theorem)

dk(j) = 2
(
jk − (j − 1)k

)
− k

(
jk−1 + (j − 1)k−1

)
=

k−3∑
m=0

(
k
m

)
(k −m− 2)(−1)k−mjm for k ≥ 3

and d2(j) = 0. Hence dk(j) is a polynomial of degree k − 3 in variable j.
Finally, we get the expression

Jj(h, s) =
∑
k≥3

k−3∑
m=0

k −m− 2

2m!(k −m)!
(−j)msk−2hk.

Let us compute an upper estimate for ‖{Jj(h, s)}j‖`2 :=
(∑J

j=1 Jj(h, s)2
)1/2

.

By the triangle inequality

‖{Jj(h, s)}j‖`2

≤ |s−2| ·
∑
k≥3

k−3∑
m=0

k −m− 2

2m!(k −m)!
|sh|k

(
J∑

j=1

j2m

)1/2

≤ |s−2| ·
∑
k≥3

k−3∑
m=0

k −m− 2

2m!(k −m)!
|sh|k · Jm+1/2

√
2m + 1

≤ 1

2
|s|T 1/2h5/2 ·

∑
k≥3

k−3∑
m=0

k −m− 2

2
√

2m + 1 m!(k −m)!
|s|k−3Tmhk−m−3.

Noting that for k − 3 ≥ m ≥ 0 we have k−m−2√
2m+1 m!(k−m)!

≤ 1
m!(k−m−3)!

and

|s|k−3Tmhk−m−3 = |sh|k−3 · (T/h)m, we may estimate the sum term above∑
k≥3

k−3∑
m=0

k −m− 2

2
√

2m + 1 m!(k −m)!
|s|k−3Tmhk−m−3

≤
∑
k≥3

(
|sh|k−3

(k − 3)!

k−3∑
m=0

(
k − 3

m

)(
T

h

)m
)

≤
∑
k≥3

|sh|k−3

(k − 3)!

(
1 +

T

h

)k−3

= e|s|(h+T ).
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We now conclude for all h, T > 0 and s ∈ C+ \ {0} that

‖{Jj(h, s)}J
j=1‖`2 ≤

1

2
|s|T 1/2h5/2e|s|(h+T ). (3.13)

In addition to estimate (3.13) a lower bound can also be obtained. Decompose

Jj(h, s) =
∞∑

k=3

k−3∑
m=0

k −m− 2

2m!(k −m)!
(−j)msk−2hk

=
∞∑

k=3

(
1

2(k − 3)!3!
(−j)k−3sk−2hk +

k−4∑
m=0

k −m− 2

2m!(k −m)!
(−j)msk−2hk

)

=
∞∑

k=3

1

2(k − 3)!3!
(−j)k−3sk−2hk +

∞∑
k=4

k−4∑
m=0

k −m− 2

2m!(k −m)!
(−j)msk−2hk

so that by the triangle inequality

∥∥{Jj(h, s)}J
j=1

∥∥
`2
≥
∥∥{ ∞∑

k=3

1

2(k − 3)!3!
(−j)k−3sk−2hk

}J

j=1

∥∥
`2

−
∥∥{ ∞∑

k=4

k−4∑
m=0

k −m− 2

2m!(k −m)!
(−j)msk−2hk

}J

j=1

∥∥
`2

.

(3.14)

For the �rst term in the right hand side of (3.14) we have

∥∥{ ∞∑
k=3

1

2(k − 3)!3!
(−j)k−3sk−2hk

}J

j=1

∥∥
`2

=
∥∥{ 1

12
sh3

∞∑
k=3

1

(k − 3)!
(−j)k−3sk−3hk−3

}J

j=1

∥∥
`2

=
1

12
|s|h3 ·

∥∥{e−jsh
}J

j=1

∥∥
`2

,

(3.15)

where

∥∥{e−jsh
}J

j=1

∥∥
`2

=
J∑

j=1

|e−jsh|2

=

{
J = h−1T, when Re s = 0

e−2hRe s 1−e−2(J+1)hRe s

1−e−2hRe s , when Re s > 0.

(3.16)
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For the latter term in (3.14) we have a similar upper estimate to (3.13).
Indeed, ∥∥{ ∞∑

k=4

k−4∑
m=0

k −m− 2

2m!(k −m)!
(−j)msk−2hk

}J

j=1

∥∥
`2

≤
∞∑

k=4

k−4∑
m=0

k −m− 2

2m!(k −m)!
|s|k−2hk Jm+1/2

√
2m + 1

=
∞∑

k=4

k−4∑
m=0

k −m− 2

2m!(k −m)!
|s|k−2hkh−m−1/2Tm+1/2

=|s|2h7/2

∞∑
k=4

k−4∑
m=0

k −m− 2

2m!(k −m)!
|s|k−4hk−m−4Tm

≤|s|h7/2e|s|(h+T ).

(3.17)

As a conclusion we can now state the following proposition:

Proposition 5. Let Jj(h, s) be de�ned through (3.12). Then for any s ∈ iR,
T, h > 0 satisfying T = Jh, J ∈ N and 9h ≤ T 2/3e−

4
3
|s|T we have

‖{Jj(h, s)}J
j=1‖`2 ≥

5

109
Th2|s|. (3.18)

Proof. It is clear that (3.18) is satis�ed for s = 0. For s ∈ iR \ {0} it follows
from (3.14) and (3.15) � (3.17) that for all s ∈ iR \ {0}, h, T > 0 satisfying
T = Jh for J ∈ N that the estimate∥∥{Jj(h, s)}J

j=1

∥∥
`2
≥
(

T

12
− h3/2e|s|(h+T )

)
h2|s|

holds. Since always h ≤ T , we have h3/2e|s|(h+T ) ≤ h3/2e2|s|T ≤ T
27

provided

that h ≤ T 2/3

9
e−

4
3
|s|T . The claim follows from this.
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3.2 Estimation of (3.6)

In this subsection, we compute an upper estimate for
∥∥{I

(0)
j (h, s)

}J

j=1

∥∥
`2

:=(∑J
j=1 I

(0)
j (h, s)2

)1/2

. Writing τ = sh and σ = 2/h, we get for s ∈ C+

I
(0)
j (h, s) =

2

σ + s

(
σ − s

σ + s

)j

+
1

s

(
e−sjh − e−s(j−1)h

)
=

2

σ + s

((
σ − s

σ + s

)j

− e−sjh

)
+

(
2

σ + s
− 1

s
(esh − 1)

)
e−sjh

=
2h

2 + τ

((
2− τ

2 + τ

)j

− e−τj

)
+

(
2h

2 + τ
− h

τ
(eτ − 1)

)
e−τj.

Let Ω ⊂ C+ be any set. Then for any τ ∈ Ω we have

|I(0)
j (h, s)| ≤

∣∣∣∣ 2h

2 + τ

∣∣∣∣
∣∣∣∣∣
(

2− τ

2 + τ

)j

− e−τj

∣∣∣∣∣+
∣∣∣∣ 2h

2 + τ
− h

τ
(eτ − 1)

∣∣∣∣ ∣∣e−τj
∣∣

≤
∣∣∣∣ 2h

2 + τ

∣∣∣∣ ∣∣∣∣(2− τ

2 + τ

)
− e−τ

∣∣∣∣
∣∣∣∣∣
j−1∑
k=1

(
2− τ

2 + τ

)k

e−τ(j−k−1)

∣∣∣∣∣
+

∣∣∣∣ 2h

2 + τ
− h

τ
(eτ − 1)

∣∣∣∣
≤h|τ |

(
CΩ

∣∣∣∣ 2jτ 2

2 + τ

∣∣∣∣+ C ′
Ω

)
,

where the constants are given by

CΩ = sup
τ∈Ω

∣∣∣∣ 1

τ 3

(
2− τ

2 + τ
− e−τ

)∣∣∣∣ and C ′
Ω = sup

τ∈Ω

∣∣∣∣1τ
(

2

2 + τ
− 1

τ
(eτ − 1)

)∣∣∣∣ .
This implies for all h ≥ 0 and τ = sh ∈ Ω

∥∥{I
(0)
j (h, s)

}J

j=1

∥∥
`2
≤CΩ

2h|τ |3

|2 + h|

(
J∑

j=1

j2

)1/2

+ C ′
Ωh|τ |

(
J∑

j=1

1

)1/2

≤CΩh4|s|3
(

1

3
J3 +

1

2
J2 +

1

6
J

)1/2

+ C ′
Ωh2|s|J1/2 (3.19)

≤CΩh5/2|s|3T 3/2 + C ′
Ωh3/2|s|T 1/2

by the facts that T = Jh and J ≥ 1. We now have to choose the set Ω in a
clever way, so that the resulting estimate is properly ��ne tuned� according
to Proposition 5.
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Proposition 6. Let I
(0)
j (h, s) be de�ned through (3.6). Then for any s ∈ iR,

T ≥ 1,h > 0 satisfying T = Jh, J ∈ N and 9h ≤ T 2/3e−
4
3
|s|T we have∥∥{I

(0)
j (h, s)

}J

j=1

∥∥
`2
≤ 1

2
h5/2|s|3T 3/2 +

3

2
h3/2|s|T 1/2. (3.20)

Proof. Since we assume (motivated by Proposition 5) that 9h ≤ T 2/3e−
4
3
|s|T ,

we have

|τ | = |s|h ≤ |s|T 2/3

9
e−

4
3
|s|T ≤ |s|T

9
e−

4
3
|s|T ≤ 1

12e

since maxr≥0 re−
4
3

r = 3/(4e). Hence, we must estimate the constants CΩ and
C ′

Ω for the set Ω := [−i/(12e), i/(12e)]. By computing the Taylor series, we
see that

CΩ ≤
∑
j≥0

∣∣∣∣ 1

2j+2
− 1

(j + 3)!

∣∣∣∣ · ( 1

12e

)j

<
∑
j≥0

1

2j−1
·
(

1

12e

)j

<
1

2

and similarly

C ′
Ω ≤

∑
j≥0

∣∣∣∣∣
(
−1

2

)j+1

− 1

(j + 2)!

∣∣∣∣∣ ·
(

1

12e

)j

<
∑
j≥0

1

2j
·
(

1

12e

)j

<
3

2
.

But now (3.19) implies (3.20).

4 Weak and strong convergence

Our main results are given in this section. We �rst show that Lemma 1
implies that Lσ → L in weak operator topology. Using this, it is then shown
in Theorem 1 that the convergence is actually strong. The input/output
approximation of linear dynamical systems is treated in Theorem 2.

It follows from Lemma 1 that (Lσu)(iω) → (Lu)(iω) uniformly in the
compact subsets iω ∈ K ⊂ iR for any u ∈ Cc(R+) ∩ H1(R+). Hence, for
�nite linear combinations s of characteristic functions χK of compact intervals
K ⊂ iR (also called simple functions) we have 〈s, Lσu〉L2(iR) → 〈s,Lu〉L2(iR).

Since ‖Lσ‖L(L2(R+);H2(C+)) ≤ 1 and simple functions are dense in L2(iR), it
follows that

〈v, Lσu〉K2(iR) → 〈v,Lu〉H2(iR) as σ →∞ (4.1)

for all u ∈ Cc(R) ∩ H1(R+) and v ∈ L2(iR+). Another density argument
implies �nally that (4.1) holds even for all u ∈ L2(R+) and v ∈ L2(iR+). To
continue the argument, we recall a result from elementary functional analysis:
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Proposition 7. Let H be a Hilbert space, and assume that uj → u weakly
in H. If ‖uj‖H → ‖u‖H , then uj → u in the norm of H.

Proof. 〈uj − u, uj − u〉H = 〈uj, uj〉H−〈u, u〉H−〈u, uj − u〉H−〈uj − u, u〉H =
‖uj‖2

H − ‖u‖2
H − 2Re 〈u, uj − u〉H .

Theorem 1. We have ‖Lσu−Lu‖H2(C+) → 0 for any u ∈ L2(R+). Moreover,
‖L∗

σv − L∗v‖L2(R+) → 0 for any v ∈ H2(C+).

Proof. Adjoining (4.1) shows that L∗
σv → L∗v weakly. Since Lσ is a coisom-

etry by Proposition 3 and (2.4), we have

‖L∗
σv‖2

L2(R+) = 〈LσL
∗
σv, v〉2H2(C+) = ‖v‖2

H2(C+).

Now Proposition 7 implies the latter part of this Theorem.
To show the �rst part, we have to work a bit harder to verify that

‖Lσu‖L2(iR) → ‖u‖L2(R+) = ‖Lu‖L2(iR). Suppose that h = 2/σ > 0 and
u ∈ L2(R+) is such that u(t) = uj,h :=

∫
((j−1)h,jh]

u(t) dt for all t ∈ Ij :=

((j − 1)h, jh] � in other words, this is simply u = Phu. For such u

‖u‖2
L2(R+) =

∑
j≥1

∫
Ij

|u(t)|2 dt = h‖{uj,h}j≥0‖
2
`2 .

By the de�nition of the discretising operator Tσ, we have

‖Tσu‖2
H2(D) =

∑
j≥1

(
1√
h

∫
Ij

|u(t)|2 dt

)2

= h
∑
j≥1

|uj,h|2 = ‖u‖2
L2(R+).

Hence, we have ‖TσPhu‖H2(D) = ‖Phu‖L2(R+) for all u ∈ L2(R+) where σ =
2/h. Also note that Tσu = TσPhu for all u ∈ L2(R+) provided that σ = 2/h.
We now have for any u ∈ L2(R+)∣∣‖Tσu‖H2(D) − ‖u‖L2(R+)

∣∣
≤
∣∣‖Tσu‖H2(D) − ‖TσPhu‖H2(D)

∣∣+ ∣∣‖TσPhu‖H2(D) − ‖Phu‖L2(R+)

∣∣
+
∣∣‖Phu‖L2(R+) − ‖u‖L2(R+)

∣∣ =
∣∣‖Phu‖L2(R+) − ‖u‖L2(R+)

∣∣ ,
where again σ = 2/h. Since the projections Ph → I strongly in L2(R+) as
h → 0, we conclude that ‖Tσu‖H2(D) → ‖u‖L2(R+) and hence ‖Lσu‖H2(C+) →
‖u‖L2(R+) as σ → ∞, see Proposition 3. The �rst claim of this theorem
follows from this, Proposition 7 and equation (4.1).

Using Theorem 1 we can �nally show that the output of integration
scheme (1.4) converges to the output of continuous time dynamics (1.1) for
input/output stable systems S.
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Theorem 2. For any u ∈ L2(R+) and Ĝ ∈ H∞(C+), we have

‖T ∗
σ D̂σTσu− L∗ĜLu‖L2(R+) → 0 (4.2)

as σ →∞.

Proof. As noted just before Proposition 4, we have T ∗
σ D̂σTσ = L∗

σĜLσ. Then
we get for all σ > 0

‖L∗
σĜLσu− L∗ĜLu‖L2(R+) ≤ ‖(L∗

σ − L∗) Ĝ (Lσu− Lu)‖L2(R+)

+ ‖(L∗
σ − L∗) ĜLu‖L2(R+) + ‖L∗Ĝ (Lσu− Lu)‖L2(R+).

Now (4.2) follows by Theorem 1.

5 On the optimality of Theorem 2

We complete this paper by showing that Theorem 2 is optimal in the sense
that it cannot be improved to have a speed estimate for convergence as in
Lemma 1. To this end, we consider estimate (2.5) in the special case when

Ĝ(s) = I for all s ∈ C+.

In this special case it follows from the very de�nitions that L∗
σĜLσ =

T ∗
σTσ = P2/σ where the orthogonal projection Ph is de�ned as in Section 3.

Since L∗L = I on all of L2(R+), we should give an estimate to

‖u− Phu‖L2(0,T ) for a family of functions u ∈ L2(R+).

It is, of course, true that Phu → u as h → 0 for all u ∈ L2(R+). However,
there cannot be a uniform speed estimate of type

‖u− Phu‖L2(0,T ) ≤ Cuh
α, (5.1)

where Cu < ∞ for all u ∈ L2(0, T ). If it were so, then for any 0 < β < α
we would have ‖h−β(I − Ph)u‖L2(0,T ) ≤ Cuh

α−β → 0 as h → 0, for all
u ∈ L2(0, T ). By the uniform boundedness principle,

sup
h>0

‖h−β(I − Ph)‖L2(0,T ) =: M < ∞

and hence ‖(I − Ph)‖L(L2(0,T )) ≤ Mhβ for all h > 0.
Making now h small enough, we see that then the norm of the orthog-

onal projection (I − Ph)|L2(0, T ) is strictly less than 1; this implies that
I|L2(0, T ) = Ph|L2(0, T ). But Ph|L2(0, T ) is a �nite rank operator, and the
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uniform speed estimate (5.1) cannot hold by contradiction. The same con-
clusion holds, if hα in (5.1) is replaced by any increasing continuous function
φ(h) satisfying φ(0) = 0.

It should be noted that a speed estimate of type (5.1) can be obtained
for functions u ∈ L2(R+) that have some �smoothness�. See [4] for a further
discussion on what is obtainable and what is not.

6 Conclusions and remarks

We have shown in Section 1 that the Cayley transform (in the context of
linear system theory) is equivalent to the classical Tustin discretisation (1.2)
even for in�nite-dimensional linear systems S = [ A&B

C&D ]. The convergence of
this discretisation is studied in the scalar-valued input/output setting, using
the operators Lσ as introduced before Proposition 4.

It is shown in Theorem 1 (see also Corollary 1) that for a wide class
of functions u, the function Lσu provides a pointwise approximation to the
usual Laplace transform. Even a convergence speed estimate is given as a
function of the sampling parameter h = 2/σ. This result is extended to the
input/output mapping of the linear system S; see Theorem 2.

Unfortunately, Theorem 2 cannot be improved with a speed estimate, as
discussed in Section 5. This is understandable since for any σ > 0, the sam-
pling operator Tσ cannot detect above a certain cuto� frequency. However,
there are always high frequency signals u carrying substantial energy that
the discretised input/output mapping T ∗

σ D̂σTσ of S cannot capture at all.
It is possible to make some variants of Theorem 2 to operator-valued

transfer functions Ĝ(·) but we do not discuss them here. Likewise, the ap-
proximation of the true state trajectory x(·) in (1.11) by the discrete trajec-

tories {x(h)
j }j≥0 solving (1.4) remains a subject of further study.
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